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Abstract: Ultrasound imaging systems (UIS) are essential tools in nondestructive testing

(NDT). In general, the quality of images depends on two factors: system hardware features

and image reconstruction algorithms. This paper presents a new image reconstruction

algorithm for ultrasonic NDT. The algorithm reconstructs images from A-scan signals

acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo

configuration. It is based on regularized least squares using a l1 regularization norm. The

method is tested to reconstruct an image of a point-like reflector, using both simulated and

real data. The resolution of reconstructed image is compared with four traditional ultrasonic

imaging reconstruction algorithms: B-scan, SAFT, ω-k SAFT and regularized least squares

(RLS). The method demonstrates significant resolution improvement when compared with

B-scan—about 91% using real data. The proposed scheme also outperforms traditional

algorithms in terms of signal-to-noise ratio (SNR).

Keywords: ultrasonic imaging; image reconstruction; sparse reconstruction; nonquadratic

regularization; nondestructive testing
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1. Introduction

Ultrasonic imaging systems (UIS) have been widely used in recent decades for many applications.

The ultrasonic energy is used because it is safe, noninvasive and can be inexpensively generated

and detected [1]. Moreover, ultrasonic imaging equipments can be portable and easy to use. In

medical-imaging, they are used to helping clinical diagnosis in several medicine specialties [1]. In

industry, they also are an important nondestructive testing (NDT) tool for structural materials [2].

The ultrasonic waves propagate uniformly in homogeneous media. However, when they reach an

inhomogeneity—discontinuity—a portion of sound energy is generally reflected. The reflected energy

depends both on the physical characteristics—density and sound velocity—of propagation medium and

discontinuity proprieties. The relationship between the amount of reflected energy and the incident

energy is referred to as the acoustic reflectivity of the discontinuity [3]. The images provided by an

UIS represents the acoustic reflectivity within an object. In order to produce these images, a set of

piezoelectric transducers—it can be a single transducer with an active element, a transducer with multiple

active elements (phased array) or several transducers with multiple active elements—sends ultrasonic

pulses into the inspected object. After that, the UIS measures any reflected waves that are produced

by internal discontinuities. The reflected waves are converted into electrical signals—this conversion is

carried out by a set of piezoelectric reception transducers, which may be the same set of transmission

transducer (pulse-echo configuration) or an independent set (pitch-catch configuration)—referred to as

A-scan. Then, by applying an appropriate image reconstruction algorithm to one set of A-scan signals,

it is possible to form an image of the internal reflectivity of the object.

There are several algorithms used for image reconstruction in ultrasonic NDT. The simplest algorithm,

known as B-scan, forms an image as a matrix of dots—pixels—, wherein each column represents the

spatial position of the transducer. Each row corresponds to the propagation time of the ultrasonic

wave from the transducer to a defined depth in the inspected object. The intensity of each pixel is

proportional to the amplitude of the A-scan signal related to the position of the transducer and to the

propagation time. A B-scan image shows a profile representation—cross-section—of the inspected

object. Although the B-scan reconstruction algorithm is quite simple and fast, it suffers from low

lateral resolution. Additionally, transducer diameter and depth of the object may negatively affect image

quality [4,5] due to beam spreading and diffraction [6]. In the early 1970s, the synthetic aperture

focusing technique (SAFT) [7–9] was developed inspired in concepts of synthetic aperture (SA) used

in airborne radar mapping systems [10]. This algorithm improves the lateral resolution of reconstructed

images. In general, SAFT is implemented by delay-and-sum (DAS) operations directly on the A-scan

signals [11–13], though it can also be implemented as a matrix-vector multiplication [14] or through

Stolt migration—ω-k algorithm—[15,16] applied to the A-scan signals in frequency-domain [17–19]. In

a recent approach, SAFT is implemented in a graphics processing unit (GPU) [20].

The B-scan and SAFT algorithms were initially developed for ultrasound imaging systems with

monostatic transducers in pulse-echo configuration. Recently, however, there has been a significant

increase in the UISs that use transducers with multiple elements—referred to as phased arrays [21].

With these transducers, UISs have the flexibility to electronically control steering, aperture and focus

of the ultrasonic beam onto the discontinuities [22]. They also allow emulating the behavior of a
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monostatic transducer by sequentially firing each element of the array. This provides two advantages:

(I) avoids physical movements of the transducer to sweep the region of interest; and (II) allows the

acquisition of A-scan from all combinations of transmitters and receivers elements. This acquisition

mode is referred to as full matrix capture (FMC) [21]. FMC allows other reconstruction algorithms

such as total focusing method (TFM) [21], inverse wave field extrapolation (IWEX) [23], a version of

ω-k algorithm for FMC [24], a reversible back-propagation imaging algorithm [25] and an adaptive

beamforming algorithm [26]. With those algorithms, the image resolution of a point-like reflector is

improved when compared with B-scan and SAFT [21,26,27]. Despite the advantages of phased arrays,

UISs with a monostatic transducer are still widely used, especially in hand-held and embedded systems.

In this configuration, only one input-output channel is required. This feature allows the design of a

portable, low-cost and low-power consumption equipment, which is suitable for embedded systems [20].

This paper aims to present a new image reconstruction algorithm for NDT. The image is reconstructed

from A-scan signals collected by an UIS with a single monostatic transducer in pulse-echo configuration.

The image resolution of a point-like reflector reconstructed by the proposed method is finer than

traditional image reconstruction algorithms and even FCM. In the proposed algorithm, the image

reconstruction is carried out by solving a regularized least squares problem with l1 norm in regularization

term that promotes a sparse reconstruction of the image [28]. This mixed-norm optimization problem

is solved by the iteratively reweighted least squares (IRLS) and conjugate gradient (CG) algorithms.

Although this approach has already been used in other applications such as image deblurring,

tomographic reconstruction and compressed sensing [29], this is the first work, to the best of our

knowledge, that uses these techniques in the context of images reconstruction for ultrasonic NDT. The

remaining of the paper is organized as follows: Section 2 describes and presents an analytical model

of the UIS used in the experiments. Section 3 presents the image reconstruction problem, the solution

proposed and its implementation. Sections 4 and 5 show the results and discussions from both simulated

and experimental data. Finally, conclusions are presented in Section 6.

2. Ultrasonic Imaging System

2.1. Description

Figure 1 shows a block diagram of the UIS used in this work. The contact transducer is a VideoScan

V110-RM produced by Olympus. Its active element has a circular shape with 6 mm of diameter and

nominal frequency of 5 MHz [30]. It emits longitudinal ultrasonic waves. It is excited by an ultrasonic

pulser/receiver model 5077PR from Panametrics. The transducer is placed in direct contact with the

inspected object at a normal angle to the inspection surface. The coupling material is liquid glycerin.

The A-scan signal received by transducer is amplified in the pulser/receiver and it is digitalized by

an acquisition system. This acquisition system—produced by NI—consists of a PXIe-1078 chassis,

a PXIe-8135 controller and a PXIe-7966R FlexRIO controller with a FlexRIO NI 5752 input and output

module. The acquisition rate of A-scan signals is 50 MS/s and the digitized values have resolution of

12 bits. The transducer is moved laterally along the object surface by a mechanical system. The active
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element of the mechanical system is a servomotor—model 302865—driven by a EPOS2 controller, both

from Maxon.

Figure 1. Block diagram of the UIS used in this work.

2.2. Data Acquisition

The A-scan signals acquisition process is carried out as a linear scan, wherein the transducer is placed

through a set of L different positions along a direction—from u1 to uL. Figure 2 illustrates this process.

The spatial sampling period must be constant. At each position, the pulser triggers an electric pulse and

the controller acquires an A-scan signal. As a result, a set of L A-scan signals with N samples is acquired.

Each one is identified by vo(ul, t). The collected data is limited to a region of the object. Therefore, the

reconstructed image is also limited to this region, which is referred to as region of interest (ROI).

Figure 2. Example of a linear scan and the delimitation of the ROI in an object. The scanning

direction is represented by the U axis, which coincides with the X axis of the object. The Z

axis of the object—depth—is coincident with the t axis of the A-scan signals.
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2.3. Analytic Model

The UIS shown in Figure 1 can be modeled as a linear time invariant (LTI) system, wherein the input

vi(t) is the electrical signal that controls the triggering of pulser. The output vo(t) is the A-scan signal [3].

As any LTI system, the output signal is related to the input signal by the convolution integral with the

unit impulse response of the system h(t) [31]:

vo(t) =

+∞
∫

−∞

h(τ) · vi(t− τ)dτ (1)

Converting Equation (1) to frequency-domain and using the convolution property of Fourier

transform [31], we have:

Vo(ω) = H(ω)Vi(ω) (2)

where H(ω) is the frequency response of the system. According Schmerr, H(ω) can be represented by a

combination of several cascaded LTI systems, each one representing a part of the UIS [3]. Thereby,

H(ω) = He(ω)P (ω)M(ω)CT (ω)T1(ω)T2(ω)CR(ω)SA(ω) (3)

where—for a given UIS in an experimental arrangement—He(ω) is the combined frequency response

of all electrical circuits—pulser, receiver and cables—, plus electrical-mechanical convertion in

transducers; P (ω) is the frequency response concerning the propagation of ultrasonic waves from

transmitter to receiver, through the object; M(ω) is the amplitude attenuation of the ultrasonic

waves during propagation; CT (ω) and CR(ω) are the diffraction effects in ultrasonic waves due to

geometry of transducers; T1(ω) and T2(ω) are the effects of water-solid interfaces—only for immersion

tests—and SA(ω) is the scattering amplitude caused by interaction between waves ultrasonic incidents

and discontinuities.

Despite the effects of some elements are not linear, linearization is possible when some conditions

are assumed [3]. Regarding to propagation frequency response, these conditions are: (I) the UIS is in

pulse-echo configuration; (II) the object is made of homogeneous material, with c referred to as the

sound speed of longitudinal waves; and (III) the ROI is located in far field of the transducer, where the

ultrasonic waves behave as plane waves. In this case, if we assume that the central point of the active

surface of transducer is at position ũ and there is a reflector at r̃, then

P (ω) = exp
(

i2
ω

c
|̃r− ũ|

)

(4)

The term ω/c is the spacial frequency or wavenumber and hereafter it is represented by k. As the

transducer is circular, with a referred to as the active element radius and the ROI being in the far field,

the diffraction correction factors in both transmission and reception are approximated by [3]:

CT (ω) = −ika2 jinc (ka sin θr̃;ũ) (5a)

CR(ω) =
2π

−ikπa2
CT (ω) (5b)

where jinc(x) = J1(x)/x, J1(·) is a first order Bessel function [3] and θr̃;ũ is the angle between normal

axis of transducer surface and the vector r̃− ũ.
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The terms M(ω), T1,2(ω) and SA(ω) of Equation (3) are approximated to the unitary constant. The

attenuation of the ultrasonic waves is compensated by a variable gain amplifier in receiver circuit [1].

This amplifier has its gain controlled over time and its operation is adjusted during system calibration.

There is not effects of water-solid interface because the transducer is on direct contact with the inspected

object [3]. Finally, the scattering amplitude for a point-like reflector is constant by the Kirchhoff

approximation [32]. Thus, replacing Equations (3)–(5) in Equation (2), and assuming that the input

signal of the pulser is a high-voltage pulse with a narrow width, like a unit impulse, then Vi(ω) can

be approximated by a constant—assuming the unitary value. Thus, the frequency-domain equation that

models A-scan signals captured by the UIS is:

Vo(ũ, ω) = (−2a2ik)He(ω) jinc
2 (ka sin θr̃;ũ) exp (i2k|̃r− ũ|) (6)

In Equation (6) only the contribution of a point-like reflector located at position r̃ in the signal

Vo(ũ, ω) is represented. Since the system is linear, the contribution of all point reflectors throughout

the ROI is [28]:

Vo(ũ, ω) = (−2a2ik)He(ω)

∫

r̃∈ROI

jinc2 (ka sin θr̃;ũ) exp (i2k|̃r− ũ|) f(r̃)dr̃ (7)

where f(r̃) is a function that represents the “image” of acoustic reflectivity of ROI. The function

definition of f(r̃) does not indicate whether it is continuous or discrete. This depends on the definition of

the ROI. In this study, both ROI as f(r̃) are discrete. Therefore, the integral in Equation (7) is replaced

by a summation. The transducer moving is limited to a straight line on the surface of the inspected object,

ũ = (u, 0, 0) where u ∈ {ul | l = 1, 2, ...L}. Thus, the ROI has two-dimension (2-D) corresponding to a

lateral cross section in the plane X-Z of the object. Therefore, r̃ = (x, 0, z) where x ∈ {xl} = {ul} and

z ∈ {zn | n = 1, 2, ...N}. The discretized version of Equation (7) for 2-D geometry is:

Vo(ul, ω) = (−2a2ik)He(ω) jinc
2 (kua/2)

L
∑

l=1

N
∑

n=1

exp
(

i2k
√

(xl − ul)2 + z2n

)

f(xl, zn) (8)

where ku = 2k sin θ(xl,zn);ul
is the wavenumber on acquisition axis direction (U) [16]. Applying the

Fourier transform with respect to variable u in Equation (8), we have:

Fu {Vo(ul, ω)} = Vo(ku, ω) = (−2a2ik)He(ω) jinc
2(kua/2)

×

L
∑

l=1

N
∑

n=1

Fu

{

exp
(

i2k
√

(xl − ul)2 + z2n

)}

f(xl, zn)
(9)

But according to Gough and Hawkins [16],

Fu

{

exp
(

i2k
√

(x− u)2 + z2
)}

= exp
(

ixku + iz
√

4k2 − k2
u

)

(10)

so:

Vo(ku, ω) = (−2a2ik)He(ω) jinc
2(kua/2)

L
∑

l=1

N
∑

n=1

exp
(

ixlku + izn
√

4k2 − k2
u

)

f(xl, zn) (11)
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However, if we define the following change of variables in the exponential term of

Equation (11) [16,19]:

kx ≡ ku

kz ≡
√

4k2 − k2
u

(12)

we have:

Vo(ku, ω) = (−2a2ik)He(ω) jinc
2(kua/2)

L∑

l=1

N∑

n=1

exp (ixlkx + iznkz) f(xl, zn)

︸ ︷︷ ︸

F (kx,kz)=Fxl,zn
{f(xl,zn)}

(13)

Such that the highlighted sum becomes the 2-D discrete Fourier transform of function f(xl, zn) [33],

represented by F (kx, kz).

The change of variables defined in Equation (12) is called Stolt Migration and it was initially used

in processing of seismic signals [15]. This transformation makes data mapping from (ku, ω) domain to

(kx, kz) domain [16]. Other mapping is possible and it is called Stolt Modeling [34]. Stolt migration and

modeling are linear adjoint operators [34] and they were represented by S {·} and S† {·}, respectively.

Therefore, the equation that models the UIS in spatial-temporal frequencies domain is:

Vo(ku, ω) = (−2a2ik)He(ω) jinc
2(kua/2)S

† {F (kx, kz)} (14)

and in space-time domain is:

vo(ul, t) = F−1
ul,t

{
(−2a2ik)He(ω) jinc

2(kua/2)S
† {Fxl,zn {f(xl, zn)}}

}
(15)

2.4. Matrix Model

Equation (15) describes a linear model that maps an input matrix f(xl, zn) to an output matrix

vo(ul, t). By rearranging matrices f(xl, zn) and vo(ul, t) as column vectors, matrices columns can be

stacked as f =
[
f
T
x1
f
T
x2
· · · fTxL

]T
and v =

[

v
T
ou1

v
T
ou2

· · ·vT
ouL

]T

. Thus, the matrix representation of

Equation (15) becomes:

v = Hf (16)

where H is a matrix that models the system. It is defined as:

H = F
†
BS

†
F (17)

where F is the matrix representation of 2-D discrete Fourier transform—the direct and inverse Fourier

transforms are adjoint operators, then F
† ≡ F

−1 [34], S
† is the matrix representation of Stolt

modeling and B = diag
[
(−2a2ik)He(ω) jinc

2(kua/2)
]
. Uncertainties in the measurements during data

acquisition process by UIS are considered into the model by adding a vector η. This vector contains

random values, according to a Gaussian probability distribution with null mean and variance proportional

to signal-noise ratio (SNR) of measurement system—Gaussian white noise. Thus, the model of the UIS

in matrix form is:

v = F
†
BS

†
Ff + η (18)
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3. Image Reconstruction Problem

Equation (18) allows simulating A-scan signals—vector v—at each transducer position ul, provided

that the UIS impulse response (matrix H) and the acoustic reflectivity of ROI points (vector f ) are known.

When v is available from measurement and one wishes to estimate f , the problem is known as image

reconstruction problem [35]. The simple matrix inversion f = H
−1
v is usually not possible due to the

Hadamard conditions: (I) the problem may not have a solution; (II) it may have infinite solutions; (III) it

may have an unstable solution. If any of those conditions is present, the problem is termed ill-posed [35].

3.1. Least Squares and Generalized Solutions

The usual approach to solve an ill-posed problem is to treat it as a minimization problem where we

are looking for the vector f̂ such as Hf̂ is “closest” to measured signals v. The “closeness” between two

vectors d1 and d2 is calculated by ||d1 − d2||p, where || · ||p represents the lp norm vector. It is defined

by [36]:

||d||p =

[

J
∑

j=1

|dj|
p

]

1

p

(19)

The minimization problem can be described as:

f̂ = arg min
f

||v −Hf ||pp (20)

where ||v − Hf ||pp is the cost function of problem. When using the l2 norm in the cost function of

Equation (20), i.e., p =2, the problem is a least squares (LS) and it is solved directly by [36]:

f̂LS =
(

H
†
H
)−1

H
†
v (21)

where [·]† represents the adjoint operator of a matrix. For complex matrices the adjoint operator is the

complex conjugate of transpose matrix, i.e., H† =
[

H
T
]∗

. For real matrices adjoint and transpose are

synonyms [36].

The LS method fixes the first condition of Hadamard, because there always is a found solution at

least. However, to fix the second Hadamard condition a single solution must be select from a set of LS

solutions [35]. The typical method used in this selection is to get a LS solution that has the lowest norm.

This is done by including a constraint into the minimization problem in Equation (20) [37]:

f̂MN = arg min
f

||f ||2
2

subject to Hf = v

(22)

The solution for this new problem is termed minimum norm (MN) of a linear system or

generalized solution [35,36] and it is solved directly by [37]:

f̂MN = H
†
(

HH
†
)−1

v (23)
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3.2. Regularization

Despite the generalized solution fixes the first two Hadamard conditions, if the matrix H is

ill-conditioned, the generalized solution is unstable in the presence of noise. A matrix is ill-conditioned

when the ratio between the largest and the smallest singular values of the matrix is very large. The

singular values characterize a matrix and they are obtained by singular value decomposition (SVD) [38].

Singular values near zero cause noise amplification [35]. To circumvent this problem, a regularization

technique can be used. It corresponds to include any prior information about the desired solution,

to stabilize the problem and obtain a useful and stable solution [38]. The most generic form of

regularization is adding a term in the cost function of Equation (20). This new term that indicates a

“measure” of the solution [38] as:

f̂(α) = arg min
f

{

||v −Hf ||pp + α
2||f ||qq

}

(24)

The first term of the cost function ensures fidelity of the solution with measured data. Meanwhile,

the second term—referred to as regularizer or regularization term—inserts prior information to solution

stability. The regularization parameter α controls the tradeoff between the two terms [35].

One of the most widely referenced regularization technique is the Tikhonov method [35]. It inserts to

the original LS problem a regularization term ||Lf ||2
2
. In general, the matrix L is chosen as a derivative

or gradient operator, so that the regularization term indicates a measure of the variability or “roughness”

of image f [35]. The final solution is also known as regularized least squares (RLS). As LS, RLS also

has a closed form [35]:

f̂RLS =
(

H
†
H+ α

2
L

†
L
)−1

H
†
v (25)

This regularization method is used by Shieh et al. to improve the resolution of B-scan images [4].

In addition to the Tikhonov method, there are other regularization techniques, formulated from different

approaches. Among them, we can cite the maximum a posteriori (MAP) method [35] and the minimum

mean square error (MMSE) method [14,39,40] both based on the Bayesian statistical approach.

More recently nonquadratic regularization methods have emerged, where the regularization term is

not calculated from a l2 norm. Some of these methods are the maximum entropy [41], total variation

(TV) [42] and nonquadratic norms [28,43]. The latter uses lq norms with q < 2, which does not

penalize large values of their argument and the norm continues to be a convex function [35]. In

Lavarello et al. [28] is presented a generalized Tikhonov regularization method in which the norm of

regularizer is lq with q ≤ 1. However, when the sought solution f has few nonzero elements—sparse

solution—l1 norm is more suitable [44,45].

In this work we used the generalized Tikhonov regularization method, such as the one used by

Lavarello et al. with l1 norm in regularization term and L = I. Thus, the optimization problem of

image reconstruction algorithm is defined as:

f̂ = arg min
f

{

||v −Hf ||2
2
+ α

2||f ||1
}

(26)

The choice of l1 norm in regularization term was due to prior information that f̂ should be sparse,

since discontinuities in the object are very small, near to point-like reflectors. The desired image

should have the lowest possible quantity of nonzero elements. The l0 norm counts nonzero elements
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in a vector [45], although it is nonconvex. The l1 is in some sense the convex relaxation of the l0

norm [44], keeping the convexity of Equation (26). The choice of L depends on what should be

sparse. When L = I, the regularization term simply forces the image to be sparse. When L is the

gradient operator (TV regularization), which accentuates the edges, the image tends to be piece-wise

constant, with sparse edges [42]. Since we are searching for point-like reflectors, the choice L = I

is more reasonable. Henceforth, this image reconstruction method is referred to as ultrasonic sparse

reconstruction (UTSR) algorithm.

3.3. Algorithm Implementation

There exists a myriad of algorithms to solve quadratic problems [46]. However, mixed-norm

problems have only recently attracted researchers’ attention [28,47]. A widely used algorithm for solving

minimization problems with lq norms for 1 ≤ q < 2 is the IRLS [46]. It is an iterative algorithm based

on the approximation of a lq norm in a sequence of easily-solvable weighted least squares problems. The

pseudocode of the UTSR algorithm based on IRLS is shown in Algorithm 1.

Algorithm 1. Pseudocode of UTSR algorithm using IRLS.

UTSR(v(u,t), H, α, β, ǫ)

begin

v←− vec [v(u, t)]

f
(0) ←− H

†
v

foreach j=0,1,2,... do

W
(j)
R = diag

(

1

|f
(j)
m |+β

)

f
(j+1) ←− pcg

(

H
†
H+ α2

W
(j)
R ,H†

v

)

if ||f (j+1) − f
(j)|| ≤ ǫ then

fUTSR ←− f
(j+1)

finished
end

end

The parameters β and ǫ are respectively a small constant to avoid zero division and an update tolerance

used as stop criterion. We used the CG method [48] to solve the weighted least squares problem in each

iteration of the IRLS (line 7 of Algorithm 1).

In other works that use regularization methods to reconstruct ultrasonic NDT images [14,39–41,49],

the system model H is implemented as a true matrix. The drawback of this approach is the storage of

large matrices, e.g., in a linear scanning with 30 A-scan signals, each having 500 samples, the H matrix

has 15,000 × 15,000 elements. We have implemented H and H
† as MATLAB R© functions, thus avoiding

this inconvenience.

The choice of α is critical for a good reconstruction [35]. Whereas small values approximate

a LS solution, which may be unstable, large values may oversmooth the solution due to excessive

regularization. There are several methods to choose α such as visual inspection, the discrepancy
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principle, the L-curve criterion and generalized cross-validation [28,35]. In this work, we use the method

described in Zibetti et al. [50] which is similar to the L-curve criterion. The α obtained was 0.0212.

4. Simulations

The UTSR algorithm is implemented in MATLAB
R©, being tested and compared with other four

algorithms: B-scan, SAFT [14], ω-k SAFT [19] and RLS—with L = I. For this, an image of a point-like

reflector is reconstructed from A-scan signals simulated by Equation (15). The parameters used in the

model follow exactly the UIS specifications described in Section 2.1. A-scan signals are generated like

signals acquired by the UIS (Section 2.2) with spatial sampling period of 1 mm. Gaussian white noise is

added to A-scan signals with SNR of 20 dB. The simulation considers a point-like reflector inside a steel

block (c = 5860 m/s). This point is located at x = 30 mm and z = 40 mm. The ROI is 15 mm ≤ x ≤ 45 mm

and 18 mm ≤ z ≤ 58 mm. Both RLS and UTSR algorithms use α = 0.0212.

(a) (b) (c)

(d) (e)

Figure 3. Reconstructed images of a point-like reflector from simulated data. The algorithms

used in the reconstruction are: (a) B-scan; (b) SAFT; (c) ω-k SAFT; (d) RLS and (e) UTSR.

Amplitude scale is normalized to maximum absolute value.

Figure 3 shows the images reconstructed by the five algorithms. The point-like reflector appeared at

correct position of ROI in all images. However, the lateral spread—due to the diffraction effect—was

clearly different in the five algorithms. The greatest spread occurred in the B-scan algorithm because

it does not have any kill to compensate diffraction effects. In SAFT, the delay-and-sum (DAS) process

carried out a partial compensation for diffraction effects, resulting in a reduction of lateral spread. The

lateral spread was decreased by ω-k SAFT due to inclusion of a Wiener filter to compensate diffraction
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effects [19]. However, none of them presented a significant decrease in vertical spread. This occurred

because they do not have any compensation for limited frequency response of the transducer. The spread

produced by the RLS algorithm was smaller than the one by ω-k SAFT. However, this reduction occurred

only in vertical spread. The inclusion of the transducer frequency response in the UIS model—used by

the RLS algorithm—caused a compensation for limited transducer bandwidth. In the lateral direction,

the compensation for diffraction effects in the RLS algorithm was equivalent to a Wiener filter [35].

The UTSR algorithm also uses the UIS model, therefore it also has compensation for diffraction effects

and limited frequency response of the transducer. However, the spread was narrower, both laterally and

vertically, because the l1 norm regularization has a tendency to prefer sparse solutions [44,45].

A quantitative way to assess reconstruction quality is through array performance indicator (API) [21].

API is a dimensionless measure of the spatial dimension of the spread of a point. It is defined by

Holmes et al., as:

API =
A50%

λ2
(27)

where A50% is the area within which the spread of a point is greater than a half from its maximum

value and λ is the wavelength. Table 1 presents API values calculated on the images reconstructed by

each algorithm. For comparison, the API value for the TFM image obtained by Holmes et al.—using

simulated data—is included in Table 1.

Table 1. API for images reconstructed from simulated data. Point-like reflector at

z = 40 mm.

Algorithm API Difference from B-scan

B-scan 4.08 0%

SAFT 2.09 −48.8%

ω-k SAFT 1.81 −55.6%

RLS 0.40 −90.2%

UTSR proposed 0.18 −95.6%

TFM [21] 0.46 −88.7%

If the B-scan image is taken as the baseline, API was reduced by 90.2% in the RLS image and by

95.6% in the UTSR image. Furthermore, the API for the UTSR image was reduced when compared with

the API for the TFM image.

5. Experimental Validation

The experimental validation of the UTSR algorithm was carried out reconstructing images from

A-scan signals acquired by the UIS described in Section 2.1. The UIS performed a linear scanning,

by moving the contact transducer on the upper surface of specimens (plane X-Y), along the X axis. The

spatial sampling period was 1 mm. The A-scan signals were collected from two different objects: (I) a

steel block with a single side-drilled hole (SDH) and (II) a steel block with four SDHs at different depths.
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5.1. First Object Reconstruction

The first inspected object was a steel block with dimensions shown in Figure 4. The discontinuity in

the object is a SDH with 1 mm of diameter, centered at position x = 40 mm and z = 40 mm. The ROI is

25 mm ≤ x ≤ 55 mm and 18 mm ≤ z ≤ 58 mm. Both RLS and UTSR algorithms used α = 0.0212.

Figure 4. Geometry of the first inspected object. It was manufactured of steel and has a

SDH with 1 mm of diameter, centered at x = 40 mm and z = 40 mm.

Figure 5 shows images reconstructed by the five algorithms using data from the UIS. Those images

show good consistency between the simulated and real data. This demonstrated that the UIS model is

valid. We can see some vestigial noise in reconstructed images of Figure 5. Visually, the ω-k SAFT

and the UTSR algorithms had reconstructed images with a higher SNR than others. Figure 6 presents

the lateral (X axis) and depth (Z axis) profiles graphs showing maximum amplitudes—in dB—for each

image. The lateral profile graph (Figure 6a) shows that images reconstructed by B-scan, SAFT and RLS

algorithms had SNR about 7 dB. The image reconstructed by the ω-k SAFT algorithm had SNR about

12 dB. The SNR of reconstructed image by UTSR algorithm was about 19 dB. This noise reduction was

also improved by the l1 norm regularization. The sparse solution has fewer nonzero elements, therefore

image noise is noticed only around the SDH. The depth profile graph (Figure 6b) shows how narrower

is the spread of a point for the UTSR reconstruction.

Table 2 shows the API calculated for the images of Figure 5 and the API for TFM image obtained

by Holmes et al. with real data. Although the reflector used by Holmes et al. is different in relation

to this work, the reflections caused by both are similar and a fair comparison is possible. As it can be

seen, the experimentally obtained APIs were consistently higher than the simulated values. This is due

to two issues: (I) the difference between the bandwidth of the simulated and experimental data caused

by approximations in UIS model; and (II) the misalignment between the acquisition grid and the ROI.

Nevertheless, the API value obtained for the UTSR algorithm was better than the API value for TFM

algorithm obtained with data collected by FMC [21].
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(a) (b) (c)

(d) (e)

Figure 5. Reconstructed images of a SDH with 1 mm of diameter from real data acquired

by UIS. The algorithms used in the reconstruction are: (a) B-scan; (b) SAFT; (c) ω-k SAFT;

(d) RLS and (e) UTSR. Amplitude scale was normalized to maximum absolute value.

(a) (b)

Figure 6. (a) Lateral and (b) depth profile graphs comparing maximum amplitudes (in dB) of

reconstructed images for each image position on the X and Z axes. These profile graph shows

SNR of reconstructed images by B-scan, SAFT, ω-k SAFT, RLS and UTSR algorithms.
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Table 2. API for images reconstructed from experimental data. SDH geometrical center at

z = 40 mm.

Algorithm API Difference from B-scan

B-scan 5.38 0%

SAFT 3.16 −41.3%

ω-k SAFT 1.92 −64.3%

RLS 0.81 −84.9%

UTSR proposed 0.47 −91.3%

TFM [21] 0.77 −85.7%

5.2. Second Object Reconstruction

The second object inspected was also a steel block with dimensions shown in Figure 7. This

object has four SDHs with 1 mm of diameter, centered in positions x ={16,32,48,64} mm and

z = {20,30,40,50} mm, respectively. The ROI is 3 mm ≤ x ≤ 77 mm and 18 mm ≤ z ≤ 58 mm.

RLS and UTSR algorithms use both α = 0.0212.

Figure 7. Geometry of the second inspected object. It was manufactured of steel and it

has four SDHs with 1 mm of diameter centered at positions x ={16,32,48,64} mm and

z = {20,30,40,50} mm.

Figure 8 presents five reconstructed images. As noted by Schmitz et al. [5], we can see in Figure 8a

that the spreading of the points gets wider as depth increases. In all reconstruction algorithms, this

problem was corrected. It is also visible in Figure 8a–d the occurrence of “artifacts” due to: (I) multiple

reflections from discontinuities at shallow depths—20 mm—and (II) reflections of transversal waves

generated on discontinuities by mode conversion in a solid medium [3]. However, due to the use of a

sparsity-promoting norm in regularization term, these “artifacts” were eliminated in the reconstruction

carried out by the UTSR algorithm.
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Among the images of Figure 8, the reconstructed by ω-k SAFT algorithm (Figure 8c) is visually closer

to the inspected object. However, this result is misleading. Only the incident waves that reflect on a small

area on the surface of the SDH returns to the transducer. In a lateral cross section, this area approaches

a point. Thus, the image reconstructed by UTSR algorithm (Figure 8e) represents better the acoustic

reflectivity of the SDHs in the second object. In the image reconstructed by ω-k SAFT algorithm, the

spreading of these points is wider.

(a) (b) (c)

(d) (e)

Figure 8. Reconstructed images of a steel block with four SDHs with 1 mm of diameter from

real data acquired by the UIS. The algorithms used in the reconstruction are: (a) B-scan;

(b) SAFT; (c) ω-k SAFT; (d) RLS and (e) UTSR. Amplitude scale was normalized to

maximum absolute value.

6. Conclusions

This paper presented a new image reconstruction algorithm for ultrasonic NDT. A-scan signals

acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration were

used. The proposed method, referred to as UTSR algorithm, is based on a regularized least squares

problem resolution using the l1 norm in regularizer and L = I. This problem is solved with IRLS and

CG algorithms.

Using API as quality metric, we assessed ability of the algorithms to reconstruct an image of a

point-like reflector. The reconstruction quality of the UTSR algorithm was tested using both simulated

and real data. Same input data were also used with four traditional ultrasonic imaging reconstruction

algorithms: B-scan, SAFT, ω-k SAFT and RLS. Simulated data were generated by an analytical model of
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ultrasonic imaging system. This model was also used by both RLS and UTSR algorithms. Experimental

validation was carried out using the reflection from a SHD with 1 mm of diameter—first object—and

four SDHs with 1 mm of diameter at different depths—second object.

The proposed UTSR algorithm demonstrated a significant improvement in the reconstruction quality

compared to the traditional algorithms. If the B-scan is taken as the baseline, the API was reduced from

4.08 to 0.18 using simulated data and from 5.38 to 0.47 using real data. Those API were also finer

than presented by Holmes et al., [21] for the TFM algorithm using FMC data from a UIS with a phased

array transducer. The UTSR algorithm had also demonstrated an improvement in SNR of reconstructed

images. These were due to (I) compensations of the diffraction effect and limited frequency response

of ultrasound transducer, that are included in algorithm by the system model; and (II) the l1 norm in

regularization term that it has a tendency to promote sparse solutions.

The UTSR algorithm demonstrated a great potential in finding small defects, mainly by resolution

and SNR improvement of reconstructed images. An advantage of using this algorithm is that it can be

applied to A-scan signals acquired by conventional UISs without the need of phased array transducers.

However, its extension to phased array UISs is straightforward by simply modifying the system model.

Future work are driving in this direction.
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