
A sparse resultant based method for efficient minimal solvers

Snehal Bhayani

Center for Machine Vision and Signal Analysis

University of Oulu, Finland

snehal.bhayani@oulu.fi

Zuzana Kukelova

Center for Machine Perception

Czech Technical University, Prague

kukelova@cmp.felk.cvut.cz

Janne Heikkilä

Center for Machine Vision and Signal Analysis

University of Oulu, Finland

janne.heikkila@oulu.fi

Abstract

Many computer vision applications require robust and effi-

cient estimation of camera geometry. The robust estimation

is usually based on solving camera geometry problems from

a minimal number of input data measurements, i.e. solving

minimal problems in a RANSAC framework. Minimal prob-

lems often result in complex systems of polynomial equa-

tions. Many state-of-the-art efficient polynomial solvers to

these problems are based on Gröbner bases and the action-

matrix method that has been automatized and highly opti-

mized in recent years. In this paper we study an alternative

algebraic method for solving systems of polynomial equa-

tions, i.e., the sparse resultant-based method and propose

a novel approach to convert the resultant constraint to an

eigenvalue problem. This technique can significantly im-

prove the efficiency and stability of existing resultant-based

solvers. We applied our new resultant-based method to a

large variety of computer vision problems and show that

for most of the considered problems, the new method leads

to solvers that are the same size as the the best available

Gröbner basis solvers and of similar accuracy. For some

problems the new sparse-resultant based method leads to

even smaller and more stable solvers than the state-of-the-

art Gröbner basis solvers. Our new method can be fully

automatized and incorporated into existing tools for auto-

matic generation of efficient polynomial solvers and as such

it represents a competitive alternative to popular Gröbner

basis methods for minimal problems in computer vision.

1. Introduction

Computing camera geometry is one of the most important

tasks in computer vision [16] with many applications e.g.

in structure from motion [38], visual navigation [37], large

scale 3D reconstruction [18] and image localization [36].

The robust estimation of camera geometry is usually

based on solving so-called minimal problems [34, 23, 22],

i.e. problems that are solved from minimal samples of in-

put data, inside a RANSAC framework [13, 8, 35]. Since

the camera geometry estimation has to be performed many

times in RANSAC [13], fast solvers to minimal problems

are of high importance. Minimal problems often result in

complex systems of polynomial equations in several vari-

ables. A popular approach for solving minimal problems is

to design procedures that can efficiently solve only a spe-

cial class of systems of equations, e.g. systems resulting

from the 5-pt relative pose problem [34], and move as much

computation as possible from the “online” stage of solving

equations to an earlier pre-processing “offline” stage.

Most of the state-of-the-art specific minimal solvers are

based on Gröbner bases and the action-matrix method [9].

The Gröbner basis method was popularized in computer vi-

sion by Stewenius [39]. The first efficient Gröbner basis

solvers were mostly handcrafted [40, 41] and sometimes

very unstable [42]. However, in the last 15 years much ef-

fort has been put into making the process of constructing

the solvers more automatic [23, 28, 29] and the solvers sta-

ble [5, 6] and more efficient [28, 29, 27, 4, 31]. There are

now powerful tools available for the automatic generation

of efficient Gröbner basis solvers [23, 28].

While the Gröbner basis method for generating efficient

minimal solvers was deeply studied in computer vision and

all recently generated Gröbner basis solvers are highly op-

timized in terms of efficiency and stability, little attention

has been paid to an alternative algebraic method for solving

systems of polynomial equations, i.e. the resultant-based

method. The resultant-based method was manually applied

to several computer vision problems [24, 15, 15, 19, 22, 24].

However in contrast to the Gröbner basis method, there is

1

ar
X

iv
:1

91
2.

10
26

8v
1

 [
cs

.C
V

]
 2

1
D

ec
 2

01
9

no general method for automatically generating efficient

resultant-based minimal solvers. The most promising re-

sults in this direction were proposed by Emiris [11] and

Heikkilä [17], where methods based on sparse resultants

were proposed and applied to camera geometry problems.

While these methods can be extended for general minimal

problems that appear in computer vision and can be autom-

atized, they usually lead (due to linearizations) to larger and

less efficient solvers than Gröbner basis solvers.

In this paper, we propose a novel approach to generat-

ing minimal solvers using sparse resultants, which is based

on adding an extra equation of a special form to the in-

put system. Our algorithm is inspired by the ideas ex-

plored in [17, 11], but thanks to the special form of added

equation and by solving the resultant as a small eigenvalue

problem, in contrast to a polynomial eigenvalue problem

in [17], the new approach achieves significant improve-

ments over [17, 11] in terms of efficiency of the generated

solvers. Specifically our contributions include,

• A novel sparse resultant-based approach to generating

polynomial solvers based on adding an extra equation

of a special form and transforming the resultant matrix

constraint to a regular eigenvalue problem.

• Two procedures to reduce the size of resultant matrix

that lead to faster solvers than the best available state-

of-the-art solvers for some minimal problems.

• A general method for automatic generation of efficient

resultant-based polynomial solvers for many impor-

tant minimal problems that achieves competitive per-

formance in terms of speed and stability with respect

to the best available state-of-the-art solvers generated

by highly optimized Gröbner basis techniques [28, 31].

The automatic generator of resultant-based solvers will

be made publicly available.

2. Theoretical background and related work

In this paper we use notation and basic concepts from the

book by Cox et al. [9]. Our objective is to solve m polyno-

mial equations,

{f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0} (1)

in n unknowns, X = {x1, . . . , xn}. Let C[X] denote the

set of all polynomials in unknowns X with coefficients in C.

The ideal I = 〈f1, . . . , fm〉 ⊂ C[X] is the set of all poly-

nomial combinations of our generators f1, . . . , fm. The set

V of all solutions of the system (1) is called the affine va-

riety. Each polynomial f ∈ I vanishes on the solutions of

(1). Here we assume that the ideal I generates a zero di-

mensional variety, i.e. the system (1) has a finite number of

solutions. Using the ideal I we can define the quotient ring

A = C[X]/I which is the set of equivalence classes over

C[X] defined by the relation a ∼ b ⇐⇒ (a − b) ∈ I .

If I has a zero-dimensional variety then the quotient ring

A = C[X]/I is a finite-dimensional vector space over C.

For an ideal I there exist special sets of generators called

Gröbner bases which have the nice property that the remain-

der after division is unique. Using a Gröbner basis we can

define a linear basis for the quotient ring A = C[X]/I .

2.1. Gröbner Basis method

Gröbner bases can be used to solve our system of polyno-

mial equations (1). One of the popular approaches for solv-

ing systems of equations using Gröbner bases is the multi-

plication matrix method, known also as the action matrix

method [9, 43]. This method was recently used to effi-

ciently solve many of the minimal problems in computer

vision [22, 23, 28, 31]. The goal of this method is to trans-

form the problem of finding the solutions to (1) to a prob-

lem of eigendecomposition of a special multiplication ma-

trix [10]. Let us consider the mapping Tf : A → A of the

multiplication by a polynomial f ∈ C[X]. Tf is a linear

mapping for which Tf = Tg iff f − g ∈ I . In our case A is

a finite-dimensional vector space over C and therefore we

can represent Tf by its matrix with respect to some linear

basis B of A. For a basis B = ([b1], . . . , [bk]) consisting of

k monomials, Tf can be represented by k×k multiplication

(action) matrix Mf := (mij) such that Tf ([bj]) = [fbj] =
∑k

i=1 mij [bi]. It can be shown [10] that λ ∈ C is an eigen-

value of the matrix Mf iff λ is a value of the function f on

the variety V . In other words, if f is e.g. xn then the eigen-

values of Mf are the xn-coordinates of the solutions of (1).

The solutions to the remaining variables can be obtained

from the eigenvectors of Mf . This means that after finding

the multiplication matrix Mf , we can recover the solutions

by solving the eigendecompostion of Mf for which efficient

algorithms exist. Moreover, if the ideal I is a radical ideal,

i.e. I =
√
I , [10], then k is equal to the number of solutions

to the system (1). Therefore, Gröbner basis methods usu-

ally solve an eigenvalue problem of a size that is equivalent

to the number of solutions of the problem. For more details

and proofs we refer the reader to [9].

The coefficients of the multiplication matrix Mf are poly-

nomial combinations of coefficients of the input polynomi-

als (1). For computer vision problems these polynomial

combinations are often found “offline“ in a pre-processing

step. In this step, a so-called elimination template is gener-

ated, which is actually an expanded set of equations con-

structed by multiplying original equations with different

monomials. This template matrix is constructed such that

after filling it with coefficients from the input equations and

performing Gauss-Jordan(G-J) elimination of this matrix,

the coefficients of the multiplication matrix Mf can be ob-

tained from this eliminated template matrix.

The first automatic approach for generating elimination

templates and Gröbner basis solvers was presented in [23].

Recently an improvement to the automatic generator [23]

was proposed in [28] to exploit the inherent relations be-

tween the input polynomial equations and it results in more

efficient solvers than [23]. The automatic method from [28]

was later extended by a method for dealing with saturated

ideals [29] and a method for detecting symmetries in poly-

nomial systems [27].

In general, the answer to the question “What is the

smallest elimination template for a given problem?” is not

known. In [31] the authors showed that the method [28],

which is based on the grevlex ordering of monomials and

the so-called standard bases of the quotient ring A is not

optimal in terms of template sizes. The authors of [28]

proposed two methods for generating smaller elimination

templates. The first is based on enumerating and test-

ing all Gröbner bases w.r.t. different monomial order-

ings, i.e., the so-called Gröbner fan. By generating solvers

w.r.t. all these Gröbner bases and using standard bases

of the quotient ring A, smaller solvers were obtained for

many problems. The second method goes “beyond Gröbner

bases” and it uses a manually designed heuristic sampling

scheme for generating “non-standard” monomial bases B
of A = C[X]/I . This heuristic leads to more efficient

solvers than the Gröbner fan method in many cases. While

the Gröbner fan method will provably generate at least as

efficient solvers as the grevlex-based method from [28],

no proof can be in general given for the “heuristic-based”

method. The proposed heuristic sampling scheme uses

only empirical observations on which basis monomials will

likely result in small templates and it samples a fixed num-

ber (1000 in the paper) of candidate bases consisting of

these monomials. Even though, e.g. the standard grevlex

monomial basis will most likely be sampled during the sam-

pling, it is in general not clear how large templates it will

generate for a particular problem. The results will also de-

pend on the number of bases tested inside the heuristic.

2.2. Sparse Resultants

An alternate approach towards solving polynomial equa-

tions is that of using resultants. Simply put, a re-

sultant is an irreducible polynomial constraining co-

efficients of a set of n + 1 polynomials, F =
{f1(x1, . . . , xn), . . . , fn+1(x1, . . . , xn}) in n variables to

have a non-trivial solution. One can refer to Cox et al. [9]

for a more formal theory on resultants. We have n+1 equa-

tions in n variables because resultants were initially devel-

oped to determine whether a system of polynomial equa-

tions has a common root or not. If a coefficient of mono-

mial xα in the ith polynomial of F is denoted as ui,α the

resultant is a polynomial Res([ui,α]) with ui,α as variables.

Using this terminology, the basic idea for a resultant

based method is to expand F to a set of linearly independent

polynomials which can be linearised as M([ui,α])b, where

b is a vector of monomials of form xα and M([ui,α]) has

to be a square matrix that has full rank for generic val-

ues of ui,α, i.e. det M([ui,α]) 6= 0. The determinant of

the matrix M([ui,α]) is a non-trivial multiple of the resultant

Res([ui,α]) [9]. Thus det M([ui,α]) must vanish, if the resul-

tant vanishes, i.e. Res([ui,α]) = 0 =⇒ det M([ui,α]) = 0.

It is known that Res([ui,α]) vanishes iff the polynomial sys-

tem F has a solution [9]. This gives us the necessary condi-

tion for the existence of roots of F = 0. Hence the equation

det M([ui,α]) = 0 gives us those values of ui,α such that

F = 0 have a common root.

Resultants can be used to solve n polynomial equations

in n unknowns. The most common approach used for this

purpose is to hide a variable by considering it as a constant.

By hiding, say xn, we obtain n polynomials in n−1 vari-

ables, so we can use the concept of resultants and compute

Res([ui,α], xn) which now becomes a function of ui,α as

well as xn. Algorithms based on hiding a variable attempt

to expand F to a linearly independent set of polynomials

that can be re-written in a matrix form as

M([ui,m], xn)b = 0, (2)

where M([ui,α], xn) is a square matrix whose elements are

polynomials in xn and coefficients ui,α and b is the vec-

tor of monomials in x1, . . . , xn−1. For simplicity we will

denote the matrix M([ui,α], xn) as M(xn) in the rest of this

section. Here we actually estimate a multiple of the actual

resultant via the determinant of the matrix M(xn) in (2).

This resultant is known as a hidden variable resultant and

it is a polynomial in xn whose roots are the xn-coordinates

of the solutions of the system of polynomial equations. For

theoretical details and proofs see [9]. Such a hidden variable

approach has been used in the past to solve various minimal

problems [15, 19, 22, 24].

The most common way to solve the original system of

polynomial equations is to transform (2) to a polynomial

eigenvalue problem (PEP) [10] that transforms (2) as

(M0 + M1 xn + ...+ Ml x
l
n)b = 0, (3)

where l is the degree of the matrix M(xn) in the hidden vari-

able xn and matrices M0, ..., Ml are matrices that depend only

on the coefficients ui,α of the original system of polynomi-

als. The PEP (3) can be easily converted to a generalized

eigenvalue problem (GEP):

Ay = xnBy, (4)

and solved using standard efficient eigenvalue algorithms.

Basically, the eigenvalues give us the solution to xn and the

rest of the variables can be solved from the corresponding

eigenvectors, y [9]. But this transformation to a GEP re-

laxes the original problem of finding the solutions to our

input system and computes eigenvectors that do not satisfy

the monomial dependencies induced by the monomial vec-

tor b. And many times it also introduces extra parasitic

(zero) eigenvalues leading to slower polynomial solvers.

Alternately, we can add a new polynomial

fn+1 = u0 + u1x1 + · · ·+ unxn (5)

to F and compute a so called u-resultant [9] by hiding

u0, . . . , un. In general random values are assigned to

u1, . . . , un. The u-resultant matrix is computed from these

n+1 polynomials in n variables in a way similar to the one

explored above. For more details about u-resultant one can

refer to [9].

For sparse polynomial systems it is possible to ob-

tain more compact resultants using specialized algorithms.

Such resultants are commonly referred to as Sparse Re-

sultants. A sparse resultant would mostly lead to a more

compact matrix M(xn) and hence a smaller eigendecom-

position problem. Emiris et al. [12, 7] have proposed a

generalised approach for computing sparse resultants using

mixed-subdivision of polytopes. Based on [12, 7] Emiris

proposed a method for generating a resultant-based solver

for sparse systems of polynomial equations, that was di-

vided in “offline” and “online” computations. The resulting

solvers were based either on the hidden-variable trick (2) or

the u-resultant of the general form (5). As such the result-

ing solvers were usually quite large and not very efficient.

More recently Heikkilä [17] have proposed an improved

approach to test and extract smaller M(xn). This method

transforms (2) to a GEP (4) and solves for eigenvalues and

eigenvectors to compute solutions to unknowns. The meth-

ods [7, 11, 12, 17] suffer from the drawback that they re-

quire the input system to have as many polynomials as un-

knowns to be able to compute a resultant. Additionally, the

algorithm [17] suffers from other drawbacks and can not be

directly applied to most of the minimal problems. These

drawbacks can be overcome, as we describe in the supple-

mentary material. However, even with our proposed im-

provements the resultant-based method [17], which is based

on hiding one of the input variables in the coefficient field,

would result in a GEP with unwanted eigenvalues and in

turn unwanted solutions to original system (1). This leads

to slower solvers for most of the studied minimal problems.

Therefore, we investigate an alternate approach where

instead of hiding one of the input variables [11, 17] or us-

ing u-resultant of a general form (5) [11], we introduce an

extra variable λ and a new polynomial of a special form,

i.e., xi − λ. The augmented polynomial system is solved

by hiding λ and reducing a constraint similar to (2) into

a regular eigenvalue problem that leads to smaller solvers

than [11, 17]. Next section lays the theoretical foundation

of our approach and outlines the algorithm along with the

steps for computing a sparse resultant matrix M(λ).

3. Sparse resultants using an extra equation

We start with a set of m polynomials from (1) in n vari-

ables x1, . . . , xn to be solved. Introducing an extra variable

λ we define x′ = [x1, . . . , xn, λ] and an extra polynomial

fm+1(x
′) = xi − λ. Using this, we propose an algorithm

inspired by [17] and [11] to solve the following augmented

polynomial system for x′,

f1(x
′) = 0, . . . , fm(x′) = 0, fm+1(x

′) = 0. (6)

Our idea it to compute its sparse resultant matrix M(= M(λ))
by hiding λ in a way that allows us to solve (6) by reducing

its linearization (similar to (2)) to an eigenvalue problem.

3.1. Sparse resultant and eigenvalue problem

Our algorithm computes the monomial multiples of

the polynomials in (6) in the form of a set T =
{T1, . . . , Tm, Tm+1} where each Ti denotes the set of

monomials to be multiplied by fi(x
′). We may order mono-

mials in each Ti to obtain a vector form, Ti = vec(Ti) and

stack these vectors as T = [T1, . . . ,Tm,Tm+1] . The set

of all monomials present in the resulting extended set of

polynomials {xαifi(x
′), ∀xαi ∈ Ti, i = 1, . . .m + 1} is

called the monomial basis and is denoted as B = {xα |
α ∈ Z

n
≥0}. The vector form of B w.r.t. some monomial

ordering is denoted as b. Then the extended set of polyno-

mials can be written in a matrix form,

M b = 0, (7)

The coefficient matrix M is a function of λ as well as the

coefficients of input polynomials (6). Let ε = |B|. Then

by construction [17] M is a tall matrix with p ≥ ε rows. We

can remove extra rows and form an invertible square matrix

which is the sparse resultant matrix mentioned in previous

section. While Heikkilä [17] solve a problem similar to (7)

as a GEP, we exploit the structure of newly added polyno-

mial fm+1(x
′) and propose a block partition of M to reduce

the matrix equation of (7) to a regular eigenvalue problem.

Proposition 3.1. Let fm+1(x
′) = xi − λ, then there exists

a block partitioning of M in (7) as:

M =

[
M11 M12

M21 M22

]

, (8)

such that (7) can be converted to an eigenvalue problem of

the form X b′ = λb′.

Proof: In order to block partition the columns in (8) we

need to partition B as B = Bλ ⊔Bc where

Bλ = B ∩ Tm+1, Bc = B −Bλ. (9)

Let us order the monomials in B, such that b= vec(B) =
[
vec(Bλ) vec(Bc)

]T
=
[
b1 b2

]T
. Such a partition of b in-

duces a column partition of M (7). We row partition M such

that the lower block is row-indexed by monomial multiples

of fm+1(x
′) which are linear in λ (i.e. xαj(xi − λ),xαj ∈

Tm+1) while the upper block is indexed by monomial mul-

tiples of f1(x
′), . . . , fm(x′). Such a row and column parti-

tion of M gives us a block partition as in (8). As
[
M11 M12

]

contains polynomials independent of the λ and
[
M21 M22

]

contains polynomials of the form xαj(xi − λ) we obtain

M11 = A11, M12 = A12

M21 = A21 + λB21, M22 = A22 + λB22, (10)

where A11, A12, A21 and A22 are matrices dependent only on

the coefficients of input polynomials in (6). We assume here

that A12 has full column rank. Substituting (10) in (8) gives

M =

[
M11 M12

M21 M22

]

=

[
A11 A12

A21 A22

]

+ λ

[
0 0

B21 B22

]

(11)

We can order monomials so that Tm+1 = b1. Now chosen

partition of M implies that M21 is column indexed by b1 and

row indexed by Tm+1. As
[
M21 M22

]
has rows of form

xαj(xi−λ), xαj ∈ Tm+1 =⇒ xαj ∈ Bλ. This gives us,

B21 = −I, where I is an identity matrix of size |Bλ| and

B22 is a zero matrix of size |Bλ| × |Bc|. This also means

that A21 is a square matrix of same size as B21. Thus we

have a decomposition as

M = M0 + λM1 =

[
A11 A12

A21 A22

]

+ λ

[
0 0

−I 0

]

, (12)

where M is a p × ε matrix. If M is a tall matrix, so is A12

from which we can eliminate extra rows to obtain a square

invertible matrix Â12 while preserving the above mentioned

structure, as discussed in Section 3.3. Let b =
[
b1 b2

]T
.

Then from (7) and (12) we have

[
A11 Â12

A21 A22

] [
b1

b2

]

+ λ

[
0 0

−I 0

] [
b1

b2

]

= 0

=⇒ A11b1 + Â12b2 = 0,
A21b1 + A22b2 − λb1 = 0 (13)

Eliminating b2 from the above pair of equations we obtain

X

︷ ︸︸ ︷

(A21 − A22Â
−1
12 A11)b1 = λb1. (14)

If A12 does not have full column rank, we change the par-

titioning of columns of M by changing the partitions, Bλ =
{xm∈Tm+1 | xix

m ∈ B} and Bc=B−Bλ by exploiting

the form of fm+1(x
′). This gives us A21=I and A22=0. It

also results in a different A12 which would have full column

rank. Hence from (12) we have

M = M0 + λM1 =

[
A11 A12

I 0

]

+ λ

[
0 0

B21 B22

]

,(15)

which is substituted in (7) to get A11b1 + A12b2 = 0 and

λ(B21b1 + B22b2)+b1 = 0. Eliminating b2 from these

equations we get an alternate eigenvalue formulation:

(B21 − B22Â
−1
12 A11)b1 = −(1/λ)b1. (16)

We note that (14) defines our proposed solver. Here we can

extract solutions to x1, . . . , xn by computing eigenvectors

of X. If in case Â12 is not invertible, we can use the al-

ternate formulation (16) and extract solutions in a similar

manner. It is worth noting that the speed of execution of

the solver depends on the size of b1(=|Bλ|) as well the size

of Â12 while the accuracy of the solver largely depends on

the matrix to be inverted i.e. Â12. Hence, in next section

we outline a generalized algorithm for computing a set of

monomial multiples T as well as the monomial basis B that

leads to matrix M satisfying Proposition 3.1.

3.2. Computing a monomial basis

Our approach is based on the algorithm explored in [17] for

computing a monomial basis B for a sparse resultant.

We briefly define the basic terms related to convex poly-

topes used for computing a monomial basis B. A New-

ton polytope of a polynomial NP(f) is defined as a con-

vex hull of the exponent vectors of the monomials occur-

ring in the polynomial (also known as the support of the

polynomial). Hence, we have NP(fi) = Conv(Ai) where

Ai = {α|α ∈ Z
n
≥0} is the set of all integer vectors that are

exponents of monomials with non-zero coefficients in fi.
A Minkowski sum of any two convex polytopes P1, P2 is

defined as P1 + P2 = {p1 + p2 | ∀p1 ∈ P1, p2 ∈ P2}.

An extensive treatment of polytopes can be found from

[9]. The algorithm by Heikkilä [17] basically computes the

Minkowski sum of the Newton polytopes of a subset of in-

put polynomials, Q = ΣiNP(fi(x)). The set of integer

points in the interior of Q defined as B = Zn−1 ∩ (Q+ δ),
where δ is a small random displacement vector, can pro-

vide a monomial basis B satisfying the constraint (2). Our

proposed approach computes B as a prospective monomial

basis in a similar way, albeit for a modified polynomial sys-

tem (6). Next we describe our approach and provide a de-

tailed algorithm for the same in the supplementary material.

Given a system of m(≥ n) polynomials (1) in n vari-

ables X = {x1, . . . , xn} we introduce a new variable λ and

create n augmented systems F ′ = {f1, . . . , fm, xi−λ} for

each variable xi ∈ X . Then we compute the support Aj =
supp(fj) and the Newton polytope NP(fj) = conv(Aj) for

each polynomial fj ∈ F ′. The unit simplex NP0 ⊂ Z
n is

also computed. For each polynomial system F ′, we con-

sider each subset of polynomials Fsub ⊂ F ′ and compute its

Minkowski sum, Q = NP0 + Σf∈Fsub
NP(f). Then for var-

ious displacement vectors δ we try to compute a candidate

monomial basis B as the set of integer points inside Q+ δ.

From B we compute Tj = {t ∈ Z
n | t + supp(fj) ⊂

B}, ∀fj ∈ F ′. Assuming T to be the set of monomial

multiples for input polynomials, our approach tests that

Σm+1
j=1 |Tj | ≥ |B|, min

j
|Tj | > 0 and rank(M) = |B|. If

successful, we compute the coefficient matrix M indexed by

B and T as in Section 3.1 and partition B into sets Bλ =
B ∩ Tm+1(or Bλ = {xm ∈Tm+1 | xix

m ∈ B} if we need

to use the alternate formulation (16)) and Bc = B −Bλ. If

the submatrix of M column indexed by Bc and row indexed

by T1 ∪ · · · ∪Tm has full column rank then we add B to the

list of favourable monomial bases.

Our algorithm then goes through all of the favorable

monomial bases so computed and selects the smallest

monomial basis B among them along with the correspond-

ing set of monomial multiples T from which the coefficient

matrix M is constructed as described in Section 3.1.

Next, we list the prominent features of our approach and

how they seek to address the shortcomings of [11, 17]:

1. We attempt to generate the smallest basis B by testing

adding an extra polynomial (5) of a special form xi−λ
for each i in 1, . . . , n.

2. We explicitly test for rank of M for each candidate ba-

sis B to ensure that we have a full rank solver. This

addresses the issue of rank-deficient solvers in [17].

3. The partition of monomial basis, B = Bλ ⊔ Bc (9)(or

the alternate partition of B as described in Propo-

sition 3.1) highlights our approach that leads to a

favourable decomposition of the coefficient matrix M

as in (12), for solving (7) as an eigenvalue problem.

This helps us compute much smaller and more stable

solvers as compared to ones generated in [11, 12, 17].

4. The special form of extra polynomial aids us to con-

struct M that is largely smaller than the one constructed

by general u-resultant approach in [11].

5. Our method can generate solvers for m ≥ n in (1).

3.3. Removing columns from coefficient matrix

The next step in our method is attempt to reduce the size of

the coefficient matrix M computed in the previous section.

For this, we select columns of M one by one in a random

order to test for its removal. For each such column, we se-

lect rows (say r1, . . . , rk) that contain non-zero entries in

the column and also consider all columns (say c1, . . . , cl)
that have non-zero entries in r1, . . . , rk. Then we can re-

move these k rows and l columns from M only if the fol-

lowing conditions hold true for the resulting reduced matrix

Mred. This also means that we would be removing monomi-

als from B that index c1, . . . , cl and removing monomials

from T that index r1, . . . , rk.

1. After eliminating the monomials from T , we require

that there is at least one monomial left in each Ti.

Figure 1. Histograms of (left) Log10 normalized equation residual

error for Rel. pose λ + E + λ 6pt problem, (right) Log10 relative

error in radial distortion for Rel. pose E+fλ 7pt (elimλ) problem.

2. If M is of size p × ε, the reduced matrix Mred would be

of size (p−k)× (ε− l). Then we require p−k ≥ ε− l
and rank(Mred) = ε− l.

3. Mred must be block partitioned and decomposed as in

Proposition 3.1.

We repeat the above process until there are no more

columns that can be removed. We note that the last con-

dition is important as it ensures that at each stage, the re-

duced matrix can still be partitioned and decomposed into

an eigenvalue formulation (14). Now, reusing the notation,

let’s denote M to be the reduced coefficient matrix and de-

note B and T to be reduced monomial basis and set of

monomial multiples, respectively.

If M still has more rows than columns, we transform it

into a square matrix by removing extra rows(say q1, . . . , qj)

and the monomials from T indexing these rows. These rows

are chosen in a way so that the three conditions mentioned

above are still satisfied. Moreover, our proposed approach

first tries to remove as many rows as possible from the lower

block, indexed by Tm+1. This is to reduce |Tm+1|(= |Bλ|)
as much as possible and ensure that the matrix A21 and

hence X (14) for eigenvalue problem has as small size as

possible. Then, if there are more rows still to be removed,

the rest is randomly chosen from the upper block indexed

by {T1, . . . , Tm}. Detailed algorithms for these two steps

of matrix reduction are provided in the supplementary ma-

terial. But we note that at the end of these two steps, we

have the sparse resultant matrix, M satisfying (7) which is

then reduced to the eigenvalue formulation (14).

4. Experiments

We evaluate the performance of our method by compar-

ing the stabilities as well as computational complexities of

the solvers generated using our method with the state-of-art

Gröbner basis solvers for many interesting minimal prob-

lems. The minimal problems selected for comparison rep-

resent a huge variety of relative and absolute pose problems

and correspond to that studied in [31]. Results for additional

problems are provided in the supplementary material.

4.1. Evaluation

The comparison of the computational complexity of min-

imal solvers is based on the sizes of matrix templates to

be solved. E.g. a solver of size 11 × 20 in the table

means inverting a 11×11 matrix and then a computation of

20−11 = 9 eigenvalues and eigenvectors. So in Table 1 we

compare the size of templates in our resultant-based solvers

with the templates used in state-of-the-art Gröbner basis

solvers as well as in the original solvers proposed by the re-

spective authors (see column 3). The Gröbner basis solvers

used for comparison include the solvers generated using the

approach in [28], the Gröbner fan and heuristic-based ap-

proaches in [31]. As we can see from Table 1, our new

resultant-based approach leads to the smallest templates

and hence fastest solvers for most of the minimal prob-

lems while for only a few problems our generated solver

is slightly larger than the state-of-the-art solver based on

the Gröbner fan or the heuristic-based method [31]. For

some solvers though we have a slightly larger eigenvalue

problem, the overall template size is considerably smaller.

E.g. in the problem of estimating the relative pose and ra-

dial distortion parameter from 6pt correspondences [23] we

have an eigenvalue problem of size 56 × 56 and matrix in-

version of size 39 × 39 whereas the heuristic-based solver

has a 52 × 52 eigenvalue problem but inversion of a larger

matrix of size 53× 53. For this problem the resultant-based

solver is slightly faster than the state-of-the-art heuristic-

based solver [31]. Note that for this problem we failed to

generate a Gröbner fan solver [31] in reasonable time. It is

worth noting that here we do not compare our solvers’ sizes

with resultant-based solvers generated by original versions

of [17] and [11]. These methods can not be directly applied

to most of the studied minimal problems as they can not

handle more equations than unknowns. With [17] we also

failed to generate full rank solvers for some problems. Even

after proposing extensions to these methods [17, 11], the

generated solvers were larger than ours, and GEP involved

in [17] led also to many unwanted solutions. We give the

sizes of these solvers in supplementary material along with

a brief description of our proposed improvements to [17].

We evaluate and compare the stabilities of our solvers

from Table 1 with Gröbner basis solvers. As it is not fea-

sible to generate scene setups for all considered problems,

we instead evaluate the stability of minimal solvers using

5K instances of random data points. Stability measures in-

clude mean and median of Log10 of normalized equation

residuals for computed solutions as well as the solvers fail-

ures as a % of 5K instances for which at least one solution

has a normalized residual > 10−3. These measures on ran-

domly generated inputs have been shown to be sufficiently

good indicators of solver stabilities [28]. Table 2 shows sta-

bilities of solvers for seven minimal problems selected from

Table 1. Figure 1 (left) shows histogram of Log10 of nor-

malized equation residuals for the “Rel.pose λ+E+λ” prob-

lem, where our solver is not only faster, but also more sta-

ble than the state-of-the-art solvers. The stabilities for the

Figure 2. Top row: Example of an input image (left). Undistorted

image using the proposed resultant-based P4Pfr solver (middle).

Input 3D point cloud and an example of registered camera (right).

Bottom row: Histograms of errors for 62 images. The measured

errors are (left) the Log10 relative focal length |f − fGT |/fGT ,

radial distortion |k−kGT |/|kGT |, and the relative translation error

‖~t− ~tGT ‖/‖~tGT ‖, and (right) the rotation error in degrees.

remaining problems as well as histograms of residuals are

in the supplementary material. In general, our new method

generates solvers that are stable with only very few failures.

Note that as our new solvers are solving the same formu-

lations of problems as the existing state-of-the-art solvers,

the performance on noisy measurements and real data

would be the same as the performance of the state-of-the-art

solvers. The only difference in the performance comes from

numerical instabilities that already appear in the noise-less

case and are detailed in Table 2 (fail%). For performance

of the solvers in real applications we refer the reader to pa-

pers where the original formulations of the studied prob-

lems were presented (see Table 1, column 3). Here we se-

lect two interesting problems, i.e. one relative and one ab-

solute pose problem, and perform experiments on syntheti-

cally generated scenes and on real images, respectively.

E+fλ solver on synthetic scenes: We study the numer-

ical stability of the new resultant-based solver for the prob-

lem of estimating the relative pose of one calibrated and

one camera with unknown focal length and radial distor-

tion from 7-point correspondences, i.e. the Rel. pose E+fλ
7pt problem from Table 1. We considered the formulation

“elim. λ” proposed in [31] that leads to the smallest solvers.

We studied the performance on noise-free data and com-

pared it to the results of Gröbner basis solvers from Table 1.

We generated 10K scenes with 3D points drawn uni-

formly from a [−10, 10]
3

cube. Each 3D point was pro-

jected by two cameras with random feasible orientation and

position. The focal length of the first camera was randomly

drawn from the interval fgt ∈ [0.5, 2.5] and the focal length

of the second camera was set to 1, i.e., the second camera

was calibrated. The image points in the first camera were

Problem Our Original [28] GFan [31] (#GB) Heuristic [31]

Rel. pose F+λ 8pt(‡) (8 sols.) 7× 16 12× 24 [21] 11× 19 11× 19 (10) 7× 15

Rel. pose E+f 6pt (9 sols.) 11× 20 21× 30 [2] 21× 30 11× 20 (66) 11× 20

Rel. pose f+E+f 6pt (15 sols.) 12× 30 31× 46 [23] 31× 46 31× 46 (218) 21× 36
Rel. pose E+λ 6pt (26 sols.) 14× 40 48× 70 [21] 34× 60 34× 60 (846) 14× 40

Stitching fλ+R+fλ 3pt (18 sols.) 18× 36 54× 77 [33] 48× 66 48× 66 (26) 18× 36

Abs. Pose P4Pfr (16 sols.) 52× 68 136× 152 [3] 140× 156 54× 70 (1745) 54× 70
Abs. Pose P4Pfr (elim. f) (12 sols.) 28× 40 28× 40 [30] 48× 60 28× 40 (699) 28× 40

Rel. pose λ+E+λ 6pt(‡) (52 sols.) 39× 95 238× 290 [23] 149× 201 - ? 53× 105
Rel. pose λ1+F+λ2 9pt (24 sols.) 90× 117 179× 203 [23] 189× 213 87× 111 (6896) 87× 111

Rel. pose E+fλ 7pt (19 sols.) 61× 80 200× 231[21] 181× 200 69× 88 (3190) 69× 88
Rel. pose E+fλ 7pt (elim. λ) (19 sols.) 22× 41 - 52× 71 37× 56 (332) 24× 43
Rel. pose E+fλ 7pt (elim. fλ) (19 sols.) 51× 70 51× 70 [26] 51× 70 51× 70 (3416) 51× 70

Abs. pose quivers(†) (20 sols.) 68× 92 372× 386 [20] 203× 223 - ? 68× 88

Rel. pose E angle+4pt (20 sols.) - 270× 290 [32] 266× 286 - ? 183× 203

Abs. pose refractive P5P(†) (16 sols.) 68× 93 280× 399 [14] 199× 215 112× 128 (8659) 199× 215

Table 1. Comparison of solver sizes for some minimal problems. Missing entries are when we failed to generate a solver. (†): Input

polynomials were eliminated using G-J elimination before generating a solver using our resultant method as well as solvers based on [28],

the Gröbner fan-based solver [31] and the heuristic-based solver [31]. (‡):Solved using the alternate eigenvalue formulation (16).

Problem Our [28] Heuristic [31]

mean med. fail(%) mean med. fail(%) mean med. fail(%)

Rel. pose f+E+f 6pt −12.55 −12.90 0.52 −12.09 −12.53 2.36 −12.05 −12.48 1.44
Abs. Pose P4Pfr (elim. f) −12.86 −13.08 0 −12.59 −12.85 0 −12.73 −13.00 0.02
Rel. pose λ+E+λ 6pt −8.99 −9.33 14.66 −6.92 −7.45 25.9 −8.13 −8.73 26.46
Rel. pose E+fλ 7pt(‡) −11.29 −11.59 0.36 −10.69 −11.13 7.58 - - -

Rel. pose E+fλ 7pt (elim. λ) −12.53 −12.95 2.34 −11.99 −12.35 0.44 −11.05 −11.84 5.70
Abs. pose refractive P5P(†) −13.03 −13.25 0 −12.45 −12.79 0.10 −12.23 −12.53 0.08

Table 2. Stability comparison for solvers generated by our new method, solvers generated using [28] and heuristic-based solvers [31] on

some interesting minimal problems. Mean and median are computed from Log10 of normalized equation residuals. (†): Solvers generated

after Gauss-Jordan(G-J) elimination of input polynomials. (†): Failed to extract solutions to all variables for the heuristic-based solver [31].

corrupted by radial distortion following the one-parameter

division model. The radial distortion parameter λgt was

drawn at random from the interval [−0.7, 0] representing

distortions of cameras with a small distortion up to slightly

more than GoPro-style cameras. Figure 1 (right) shows

Log10 of the relative error of the distortion parameter λ ob-

tained by selecting the real root closest to the ground truth

λgt. All tested solvers provide stable results with only a

small number of runs with larger errors. The new resultant-

based solver (blue) is not only smaller but also slightly more

stable than the heuristic-based solver from [31] (green).

P4Pfr solver on real images: We evaluated the

resultant-based solver for a practical problem of estimat-

ing the absolute pose of camera with unknown focal length

and radial distortion from four 2D-to-3D point correspon-

dences, i.e. the P4Pfr solver, on real data. We consider the

Rotunda dataset, which was proposed in [25] and in [30]

it was used for evaluating P4Pfr solvers. This dataset con-

sists of 62 images captured by a GoPro Hero4 camera. Ex-

ample of an input image from this dataset (left) as well as

undistorted (middle) and registered image (right) using our

new solver, is shown in Figure 2 (top). The Reality Capture

software [1] was used to build a 3D reconstructions of this

scene. We used the 3D model to estimate the pose of each

image using the new P4Pfr resultant-based solver (28× 40)

in a RANSAC framework. Similar to [30], we used the cam-

era and distortion parameters obtained from [1] as ground

truth for the experiment. Figure 2 (bottom) shows the er-

rors for the focal length, radial distortion, and the camera

pose. Overall the errors are quite small, e.g. most of the fo-

cal lengths are within 0.1% of the ground truth and almost

all rotation errors are less than 0.1 degrees, which shows

that our new solver works well for real data. These results

(summarized in the supplementary material) are consistent

with the results of the P4Pfr solver presented in [30], which

was tested on the same dataset. The slightly different results

reported in [30] are due to RANSAC’s random nature and a

slightly different P4Pfr formulation (40x50) used in [30].

5. Conclusion
In this paper, we propose a novel algorithm for generating

efficient minimal solvers based on sparse resultants, com-

puted by adding an extra polynomial of a special form and

reducing the resultant matrix constraint to an eigenvalue

problem. The new approach achieves significant improve-

ments over existing resultant-based methods in terms of ef-

ficiency of the generated solvers. From our experiments

on many minimal problems on real and synthetic scenes,

we show that the new method is a competitive alternative

to the highly optimised Gröbner basis methods. The fact

that new resultant-based solvers have for many problems the

same size as the state-of-the-are heuristic or GFan solvers,

shows that these solvers are maybe already “optimal” w.r.t.

template sizes. On the other hand, there is no one general

method (GFan/heuristic/resultant), which will provably re-

turn the smallest solver for every problem and we believe

that especially for complex problems all methods have to

be tested when trying to generate the “best” solver.

6. Acknowledgement

The authors would like to thank Academy of Finland
for the financial support of this research (grant no. 297732).

References

[1] RealityCapture. www.capturingreality.com. 8

[2] Martin Bujnak, Zuzana Kukelova, and Tomas Pajdla. 3d re-

construction from image collections with a single known fo-

cal length. In International Conference on Computer Vision

(ICCV), pages 1803–1810. IEEE, 2009. 8

[3] Martin Bujnak, Zuzana Kukelova, and Tomas Pajdla. New

efficient solution to the absolute pose problem for cam-

era with unknown focal length and radial distortion. In

Asian Conference on Computer Vision (ACCV), pages 11–

24. Springer, 2010. 8

[4] M. Bujnak, Z. Kukelova, and T. Pajdla. Making minimal

solvers fast. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR 2012), pages 1506–1513, June

2012. 1

[5] Martin Byröd, Klas Josephson, and Kalle Åström. Improv-

ing numerical accuracy of gröbner basis polynomial equa-

tion solvers. In International Conference on Computer Vi-

sion (ICCV). IEEE, 2007. 1

[6] Martin Byröd, Klas Josephson, and Kalle Åström. A

column-pivoting based strategy for monomial ordering in nu-

merical gröbner basis calculations. In European Conference

on Computer Vision (ECCV). Springer Berlin Heidelberg,

2008. 1

[7] John F. Canny and Ioannis Z. Emiris. A subdivision-based

algorithm for the sparse resultant. J. ACM, 47(3):417–451,

2000. 4

[8] Ondřej Chum, Jiřı́ Matas, and Josef Kittler. Locally op-

timized ransac. In Pattern Recognition, pages 236–243.

Springer Berlin Heidelberg, 2003. 1

[9] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry.

Springer, 2nd edition, 2005. 1, 2, 3, 4, 5

[10] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Al-

gorithms: An Introduction to Computational Algebraic Ge-

ometry and Commutative Algebra. Springer, 2015. 2, 3

[11] Ioannis Z. Emiris. A general solver based on sparse resul-

tants. CoRR, abs/1201.5810, 2012. 2, 4, 6, 7

[12] Ioannis Z. Emiris and John F. Canny. A practical method for

the sparse resultant. In Proceedings of the 1993 International

Symposium on Symbolic and Algebraic Computation, ISSAC

’93, Kiev, Ukraine, July 6-8, 1993, pages 183–192, 1993. 4,

6

[13] M. A. Fischler and R. C. Bolles. Random sample consensus:

a paradigm for model fitting with applications to image anal-

ysis and automated cartography. Commun. ACM, 24(6):381–

395, June 1981. 1

[14] Sebastian Haner and Kalle Åström. Absolute pose for cam-

eras under flat refractive interfaces. In Computer Vision and

Pattern Recognition (CVPR), pages 1428–1436, 2015. 8

[15] R. Hartley and Hongdong Li. An efficient hidden variable

approach to minimal-case camera motion estimation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

34(12):2303–2314, 2012. 1, 3

[16] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge, 2nd edition, 2003. 1

[17] Janne Heikkilä. Using sparse elimination for solving min-

imal problems in computer vision. In IEEE International

Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pages 76–84, 2017. 2, 4, 5, 6, 7

[18] J. Heinly, J. L. Schönberger, E. Dunn, and J.-M. Frahm. Re-

constructing the world* in six days. In IEEE Conference

on Computer Vision and Pattern Recognition, (CVPR 2015),

pages 3287–3295, 2015. 1

[19] Yoni Kasten, Meirav Galun, and Ronen Basri. Resultant

based incremental recovery of camera pose from pairwise

matches. In IEEE Winter Conference on Applications of

Computer Vision, WACV 2019, Waikoloa Village, HI, USA,

January 7-11, 2019, pages 1080–1088, 2019. 1, 3

[20] Yubin Kuang and Kalle Åström. Pose estimation with un-

known focal length using points, directions and lines. In In-

ternational Conference on Computer Vision (ICCV), pages

529–536, 2013. 8

[21] Yubin Kuang, Jan Erik Solem, Fredrik Kahl, and Kalle

Åström. Minimal solvers for relative pose with a single un-

known radial distortion. In Computer Vision and Pattern

Recognition (CVPR), pages 33–40. IEEE, 2014. 8

[22] Z. Kukelova. Algebraic Methods in Computer Vision. PhD

thesis, Czech Technical University in Prague, 2013. 1, 2, 3

[23] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic genera-

tor of minimal problem solvers. In European Conference on

Computer Vision (ECCV 2008), Proceedings, Part III, vol-

ume 5304 of Lecture Notes in Computer Science, 2008. 1, 2,

3, 7, 8

[24] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Poly-

nomial eigenvalue solutions to minimal problems in com-

puter vision. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2012. 1, 3

[25] Zuzana Kukelova, Jan Heller, Martin Bujnak, Andrew

Fitzgibbon, and Tomas Pajdla. Efficient solution to the

epipolar geometry for radially distorted cameras. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2309–2317, 2015. 8

[26] Zuzana Kukelova, Joe Kileel, Bernd Sturmfels, and Tomas

Pajdla. A clever elimination strategy for efficient mini-

mal solvers. In Computer Vision and Pattern Recognition

(CVPR). IEEE, 2017. 8

[27] Viktor Larsson and Kalle Åström. Uncovering symmetries in

polynomial systems. In European Conference on Computer

Vision (ECCV). Springer, 2016. 1, 3

[28] Viktor Larsson, Kalle Åström, and Magnus Oskarsson. Effi-

cient solvers for minimal problems by syzygy-based reduc-

tion. In Computer Vision and Pattern Recognition (CVPR),

2017. 1, 2, 3, 7, 8

[29] Viktor Larsson, Kalle Åström, and Magnus Oskarsson. Poly-

nomial solvers for saturated ideals. In International Confer-

ence on Computer Vision (ICCV), 2017. 1, 3

[30] Viktor Larsson, Zuzana Kukelova, and Yinqiang Zheng.

Making minimal solvers for absolute pose estimation com-

pact and robust. In International Conference on Computer

Vision (ICCV), 2017. 8

[31] Viktor Larsson, Magnus Oskarsson, Kalle Åström, Alge

Wallis, Zuzana Kukelova, and Tomás Pajdla. Beyond grob-

ner bases: Basis selection for minimal solvers. In 2018

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,

2018, pages 3945–3954, 2018. 1, 2, 3, 6, 7, 8

[32] Bo Li, Lionel Heng, Gim Hee Lee, and Marc Pollefeys.

A 4-point algorithm for relative pose estimation of a cali-

brated camera with a known relative rotation angle. In 2013

IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 1595–1601. IEEE, 2013. 8

[33] Oleg Naroditsky and Kostas Daniilidis. Optimizing poly-

nomial solvers for minimal geometry problems. In Interna-

tional Conference on Computer Vision (ICCV). IEEE, 2011.

8

[34] D. Nistér. An efficient solution to the five-point relative pose

problem. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 26(6):756–770, June 2004. 1

[35] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M.

Frahm. USAC: A universal framework for random sample

consensus. IEEE Transactions on Pattern Recognition and

Machine Intelligence, 35(8):2022–2038, 2013. 1

[36] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & Effective

Prioritized Matching for Large-Scale Image-Based Localiza-

tion. IEEE Transactions on Pattern Recognition and Ma-

chine Intelligence, 2016. (To appear). 1

[37] D. Scaramuzza and F. Fraundorfer. Visual odometry [tuto-

rial]. IEEE Robot. Automat. Mag., 18(4):80–92, 2011. 1

[38] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world

from internet photo collections. International Journal Com-

puter Vision, 80(2):189–210, Nov. 2008. 1

[39] Henrik Stewenius. Gröbner Basis Methods for Minimal

Problems in Computer Vision. PhD thesis, Lund University,

Sweden, 2005. 1

[40] H. Stewenius, C. Engels, and D. Nistér. Recent develop-

ments on direct relative orientation. ISPRS J. of Photogram-

metry and Remote Sensing, 60:284–294, 2006. 1

[41] H. Stewenius, D. Nister, F. Kahl, and F. Schaffalitzky. A min-

imal solution for relative pose with unknown focal length. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR 2005), 2005. 1

[42] Henrik Stewenius, Frederik Schaffalitzky, and David Nister.

How hard is 3-view triangulation really? In International

Conference on Computer Vision (ICCV). IEEE, 2005. 1

[43] B. Sturmfels. Solving systems of polynomial equations. In

American Mathematical Society, CBMS Regional Confer-

ences Series, No 97, 2002. 2

Supplementary material

A sparse resultant based method for efficient minimal solvers

Snehal Bhayani

Center for Machine Vision and Signal Analysis

University of Oulu, Finland

snehal.bhayani@oulu.fi

Zuzana Kukelova

Center for Machine Perception

Czech Technical University, Prague

kukelova@cmp.felk.cvut.cz

Janne Heikkilä

Center for Machine Vision and Signal Analysis

University of Oulu, Finland

janne.heikkila@oulu.fi

1. Existing sparse resultant based algorithms

In this section we consider the existing sparse resultant

based algorithms [4, 6], where the authors consider a system

of n polynomials,

{f1(x1, ..., xn) = 0, ..., fn(x1, ..., xn) = 0}, (1)

in n unknowns, X = {x1, ..., xn} for computing a sparse

resultant matrix. While Heikkilä [6] propose a method to

hide one variable, Emiris [4] propose two methods, one

where they hide a variable, and another where they add an

extra polynomial of the form u0 + u1x1 + · · ·+ unxn, for

generating a polynomial solver. In each of these methods

the underlying assumption is that there are as many polyno-

mials as there are unknowns. Hence, using their proposed

algorithms we could not generate solvers for those minimal

problems with more polynomials than unknowns. Addition-

ally, the algorithm by [6] suffers from other drawbacks as

well:

1. Heikkilä [6] propose an method of hiding one variable,

say xn, and computing a monomial basis B to linearize

the input polynomial equations to have

M(xn)b = 0, (2)

where b = vec(B) based on some monomial order.

However such a monomial basis can lead to a coef-

ficient matrix M(xn) that is rank deficient and hence

leads to unstable or incorrect solvers.

2. If in case M(xn) is not rank deficient Heikkilä [6] trans-

form (2) into a generalized eigenvalue problem(GEP)

of the form

Ay = xnBy. (3)

as described in (4) of Section 2.2 of our main paper.

But such a conversion leads to large and sparse A and

B that introduces parasitic eigenvalues which are either

0 or ∞. It can also lead to spurious eigenvalues that

correspond to incorrect solutions.

1.1. Proposed extension to Heikkilä’s algorithm

Considering the shortcomings of the method by Heikkilä [6]

we attempted to extend and improve their algorithm,

1. Due to an iterative nature of the algorithm, it is easy

to relax the requirement of having the same number of

equations and unknowns, and hence we assume that

there are m ≥ n polynomial equations with n un-

knowns. Then we perform an exhaustive search across

all polynomial combinations and variables by hiding

each variable xi ∈ X at a time. This usually reduces

the size of the monomial basis leading to a smaller ma-

trix M(xn) than the one generated by Heikkilä’s algo-

rithm [6].

2. The problem of rank deficiency is resolved by test-

ing for rank of the matrix M(xn) for every prospec-

tive monomial basis B so chosen in the algorithm.

This guarantees that the eigenvalues and eigenvectors

of GEP formulation provides correct solutions to the

original polynomial system (1).

3. Additionally, we know that a GEP formulation for

many minimal problems in computer vision has par-

asitic zero(or ∞) eigenvalues due to zero columns in

A(or B) in (3). Hence we extended the the algorithm

by Heikkilä [6] to eliminate a set of rows-columns in

order to reduce the size of GEP we are trying to solve.

1

ar
X

iv
:1

91
2.

10
26

8v
1

 [
cs

.C
V

]
 2

1
D

ec
 2

01
9

Problem Extension to [6] Our u-resultant

GEP Inv Eig. Inv Eig.

Rel. pose F+λ 8pt(8 sols.) 12× 12 11× 11 9× 9 15× 15 9× 9
Stitching fλ+R+fλ 3pt (18 sols.) 24× 24 18× 18 18× 18 31× 31 18× 18
Rel. pose E+λ 6pt (26 sols.) 30× 30 14× 14 26× 26 44× 44 26× 26
Abs. pose quivers (20 sols.) 43× 43 68× 68 24× 24 - -

Rel. pose f+E+f 6pt (15 sols.) 18× 18 12× 12 18× 18 - -

Rel. pose λ1+F+λ2 9pt (24 sols.) 68× 68 90× 90 27× 27 - -

Rel. pose E+fλ 7pt (19 sols.) 36× 36 61× 61 19× 19 105× 105 19× 19
Rel. pose λ+E+λ 6pt (52 sols.) 110× 110 39× 39 56× 56 - -

Triangulation from satellite im.(27 sols.) 52× 52 88× 88 27× 27 93× 93 27× 27
Unsynch. Rel. pose (16 sols.) 128× 128 150× 150 18× 18 - -

Rolling shutter pose (8 sols.) 18× 18 47× 47 8× 8 48× 48 8× 8

Table 1. A comparison of the sizes of important computation steps performed by solvers generated using our new method with that of the

solvers generated based on our attempted extensions of the algorithm by Heikkilä [6] as well as the solvers generated using an u-resultant

based method. Missing entry is for the case where we failed to generate a solver.

The sizes of solvers generated using these extensions to

the algorithm by Heikkilä [6] for some interesting minimal

problems are listed in Table 1(Column 1). If in these solvers

A or B in GEP (3) is an invertible matrix, GEP can be exe-

cuted as a sequence of a matrix inverse and an eigendecom-

position of the resulting matrix. For example, a GEP of size

18 × 18 means an inverse of 18 × 18 matrix and an eigen-

value decomposition of 18 × 18 matrix. We note that this

assumption holds true for all of the minimal problems in

Table 1. In such a case the most computationally expensive

step is the eigenvalue decomposition, since the matrix that is

inverted is usually sparse. Now, it can be seen that for most

of the minimal problems our proposed solvers are solving

substantially smaller eigenvalue problems than the solvers

based on the extended version of [6]. And even though for

few minimal problems the matrices to invert in our proposed

solvers are slightly larger than the inverses in solvers based

on [6], these matrices are usually quite sparse and the size

difference is not as dominating as the difference in size of

eigenvalue problem. Additionally, a GEP would lead to par-

asitic eigenvalues corresponding to incorrect solutions and

extra computation has to be carried out in order to elimi-

nate such eigenvalues, thus slowing down such solvers even

further as compared to the ones based on our method. Ad-

ditionally the number of eigenvalues to be computed for a

GEP still is quite large as compared to the eigenvalues to

be computed by our proposed solver. Hence based on these

considerations, we can conclude that our proposed solvers

for all of the problems in Table 1 would be faster than the

ones generated using our proposed extensions to [6].

1.2. Comparison with Emiris’s u­resultant method

Now we consider the u-resultant based method [4] where

the authors add a polynomial of a general form u0+x1u1+
· · · + xnun with random coefficients, to the original equa-

tion (4). However we note that in general the method

presented in [4] does not work for a system with more

polynomial equations than unknowns. Moreover, there is

no publicly available code for the method [4]. Therefore,

for a fair comparison with our method that based upon

adding a polynomial of a special form, we modified our

resultant-based method to simulate the one from [4]. For

this, we augmented (4) with a polynomial of the form

u0 + x1u1 + · · ·+ xnun by selecting u1, . . . , un randomly

from Z (for more details on u-resultant we refer to [4, 3]).

The column 3 in Table 1 lists the sizes of solvers generated

in this manner and is compared with the sizes of solvers

generated based on our proposed method. We can observe

that for many minimal problems the size of matrix to be

inverted based on general u-resultant method is larger than

that of the matrix to be inverted in our proposed solver. This

indicates that our proposed solver would be faster than the

solvers based on general u-resultant method for such min-

imal problems. Beyond this, for several minimal problems

(5 problems from Table 1), we either failed to generate a

working solver by using the above mentioned general u-

polynomial at all or within a reasonable amount time by

testing polynomial combinations of a reasonable size. We

refer to Algorithm 1 here and Section 3.2 of our main pa-

per for more details about the iterative nature adopted for

testing polynomial combinations of various sizes.

Additionally we also considered the problem from com-

putational biology explored in [4]. We compare the size

of the u-resultant based solver for this problem reported

in [4], with the size of a solver generated using our proposed

method. This problem consists of 3 polynomial equations

in 3 variables with 15 generic coefficients. For more details

of the algebraic problem formulation, we refer to Section

7 in [4]. Now, the mixed volume of the input polynomial

system is 16 which denotes the actual number of solutions

to this polynomial system. The solver considered in [4] is

generated using the u-resultant method by adding an extra

polynomial of the form, f0 = u+31x1−41x2+61x3. The

solver consists of an inverse of matrix of size 56×56 and an

eigenvalue decomposition of 30×30 matrix. We generated a

solver for the same algebraic formulation with our proposed

algorithm. Our new solver includes a matrix inversion of

smaller matix of size 48× 48 as well as smaller eigenvalue

problem of size 16 × 16. This shows that the solver gener-

ated using our proposed algorithm would be faster than the

one considered in [4].

2. Algorithms

Now we consider the main contribution of our main paper

for which we described a three step procedure that leads

to an eigenvalue formulation(Equations (14) or (16) in our

main paper) to be solved for extracting roots to (4). So here

we provide algorithms for each of these three steps. For

the sake of this section, we assume details and notations

of Section 3 of our main paper. We also consider a set of

monomial multiples T to be of form {T1, . . . , Tm} where

each Ti represents the set of monomial multiples for poly-

nomial fi(x1, . . . , xn). Additionally, we shall assume that

wherever required a coefficient matrix M is computed from

a basis B along with a corresponding set of monomial mul-

tiples T , following the lines of Section 3. With these de-

tails in mind, we now outline Algorithm 1 for computing a

monomial B basis from a set of m polynomial equations,

{f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0} (4)

in n variables. The output of the algorithm also contains

a set of monomial multiples, T as well as the coefficient

matrix computed from B and T . For details about the un-

derlying theory, we refer to Section 3.1 in our main paper.

For an alternate eigenvalue formulation(Equation (16) in

our main paper), we need to change Step 14 in Algorithm 1

to B′
λ ← {x

m ∈ T ′
m+1 | xix

m ∈ B′}, B′
c ← B′ −B′

λ.

2.1. Removing columns from M

The next step in our proposed method is to reduce the mono-

mial basis B by removing columns from M along with a cor-

responding set of rows. A brief procedure for this step is

described in Section 3.3 of our main paper, while the Al-

gorithm 2, listed here achieves this. The input is the mono-

mial basis B and the set of monomial multiples T computed

by Algorithm 1 and the output is a reduced monomial ba-

sis Bred and a reduced set of monomial multiples, Tred that

index the columns and rows of the reduced matrix Mred re-

spectively. We note that this algorithm is the same irrespec-

tive of the version of eigenvalue formulation to be consid-

ered(Equations (14) or (15) in our main paper).

Now, it may happen that the reduced matrix Mred still has

more rows than columns. Hence in our main paper, we

Algorithm 1 Extracting favourable monomial basis using

extra equation

Input F = {f1(x), . . . , fm(x)}, x = [x1, . . . , xn]
Output B, T, M

1: B ← φ, T ← φ
2: for i ∈ {1, . . . , n} do

3: F ′ ← {f1, . . . , fm+1}, fm+1 = xi − λ
4: Calculate the support of the input polynomials:

Aj ← supp(fj), j = 1, . . . ,m+ 1
5: Construct newton polytopes:

NPj ← conv(Aj), j = 1, . . . ,m + 1 as well as a

unit simplex NP0 ⊂ Z
n.

6: Enumerate combinations of indices of all possible

sizes:

K ← {{k0, . . . , ki} |∀0≤ i ≤ (m+1); k0, . . . , ki ∈
{0, . . . ,m+ 1}; kj < kj+1}

7: Let ∆ ← {{δ1, . . . , δn+1} | δi ∈ {−ǫ, 0, ǫ}; i =
1, . . . , (n + 1)} denote the set of possible displace-

ment vectors

8: for I ∈ K do

9: Compute the minkowski sum, Q←
∑

j∈I(NPj)
10: for δ ∈ ∆ do

11: B′ ← Z
n ∩ (Q+ δ)

12: T ′
j ←{t ∈ Z

n | t+Aj ⊂ B′}, j=1 . . .m+ 1
13: T ′ ←{T ′

1 . . . T
′
m+1}

14: B′
λ ←B′ ∩ T ′

m+1, B′
c ← B′ −B′

λ

15: Compute M′ from B′ and T ′

16: if Σm+1
j=1 |T

′
j | ≥ |B

′| and min
j
|T ′

j | > 0 and

rank(M′)= |B′| then

17: A12 ← submatrix of M′ column indexed by B′
c

and row indexed by T ′
1 ∪ · · · ∪ T ′

m

18: if rank(A12) = |B
′
c| and |B| ≥ |B′| then

19: B ← B′, T ← T ′

20: end if

21: end if

22: end for

23: end for

24: end for

25: Compute M from B and T

have outlined an idea to remove excess rows so as to trans-

form Mred into a square matrix to facilitate a decomposition

of resultant matrix constraint to an eigenvalue formulation

of equation (14)(or the alternate eigenvalue formulation of

equation (16). For more details we refer to Proposition 3.1

in our main paper). Towards this we provide Algorithm 3 to

remove the extra rows from Mred by removing some mono-

mial multiples from Tred. It accepts Bred and Tred as in-

put and returns a set of monomial multiples, Tsq that along

with the basis Bred, leads to square matrix Msq. For an al-

ternate eigenvalue formulation(Equation (16) in our main

Algorithm 2 Reducing the monomial basis

Input: B, T
Output: Bred, Tred, Mred

1: B′ ← B, T ′ ← T
2: repeat

3: stopflag← True

4: Compute M′ from B′ and T ′

5: for column c in M
′ do

6: Copy M
′ to M

′′

7: Remove rows r1, . . . , rk containing c from M
′′

8: Remove columns c1, . . . , cl of M
′′ present in

r1, . . . , rk
9: if M′′ satisfies Proposition 3.1 then

10: Remove monomials from B′ indexing columns

c1, . . . , cl
11: Remove monomials from T ′ indexing rows

r1, . . . , rk
12: stopflag← False

13: break

14: end if

15: end for

16: until stopflag is True

17: Bred ← B′, Tred ← T ′

18: Compute Mred from Bred and Tred

paper), we just need to change Step 16 in Algorithm 3 to

B′
λ ← {x

m ∈ T ′
m+1 | xix

m ∈ B′}, B′
c ← B′ −B′

λ.

3. Experiments

In Table 2 we provide a comparison of solvers’ sizes for

some additional interesting minimal problems. We can see

from the table, that for all considered minimal problems our

proposed method generates the smallest solvers (sometimes

of the same size as Gröbner basis solvers generated with

methods from [11, 13]). For an interpretation of the solver

sizes, we refer to Section 4.1 of Evaluation in our main

paper. We also note that, for two of the problems in Ta-

ble 2, we failed to generate a solver using the Gröbner fan

method [13] in a reasonable amount of time.

Table 3 performs a stability comparison of the solvers for

minimal problems from Table 2 as well as for the problems

from our main paper that were considered for comparison of

sizes but were left out from the stability comparison due to

the lack of space in the main paper. Just as in our main paper

we measure the mean and median of Log10 of the normal-

ized equation residuals for computed solutions as well as

the solvers failures as a % of 5K instances for which at least

one solution has a normalized residual > 10−3. Then our

observation from the stability comparisons in Table 2 of the

main paper is corroborated with our observations here for

these extra set of minimal problems in Table 3. We notice

Algorithm 3 Removal of excess rows

Input Bred, Tred

Output Tsq, Msq

1: Tred contains {T ′
1, . . . , T

′
m+1}

2: BN ← |Bred|, TN ← Σm+1
j=1 |T

′
j |, tchk ← φ

3: while TN > BN do

4: B′ ← Bred, T
′ ← Tred

5: T ′ contains {T ′
1, . . . , T

′
m+1}

6: Randomly select t ∈ {tm ∈ T ′
m+1 | (tm,m + 1) /∈

tchk}
7: if t then

8: T ′
m+1 ← T ′

m+1 − {t}, T
′ ← {T ′

1, . . . , T
′
m+1}

9: tchk ← tchk ∪ {(t,m+ 1)}
10: else

11: Randomly select i ∈ {1, . . . ,m}
12: Randomly select t ∈ {ti ∈ T ′

i | (ti, i) /∈ tchk}
13: T ′

i ← T ′
i − {t}, T

′ ← {T ′
1, . . . , T

′
m+1}

14: tchk ← tchk ∪ {(t, i)}
15: end if

16: B′
λ ← B′ ∩ T ′

m+1, B′
c ← B′ −B′

λ

17: Compute M′ from B′ and T ′

18: if min
j
|T ′

j | > 0 and rank(M′) = |B′| then

19: A12 ← submatrix of M′ column indexed by B′
c and

row indexed by T ′
1 ∪ · · · ∪ T ′

m

20: if rank(A12) = |B
′
c| then

21: Tred ← T ′, TN ← Σm+1
j=1 |T

′
j |

22: end if

23: end if

24: end while

25: Tsq ← Tred

26: Compute Msq from Bred and Tsq

that here as well, most of the solvers based on our proposed

method are similarly or more stable than the ones based on

Gröbner basis methods [11, 13] and with less failures.

Additionally we provide histograms of residuals in Fig-

ure 2 for an interesting set of minimal problems whose sta-

bility comparisons have been performed either in Table 3

here or in the Table 2 of our main paper. The residuals

have been obtained based on 5K runs on random input data

points. We observe from these histograms that our proposed

solvers have comparable stability w.r.t. the state-of-the-art

solvers based on Gröbner basis [11] and heuristic-based

solvers [13]. However an important measure of stability

for real world applications is the % of failures of a mini-

mal solver. Here, we have measured a solver’s failure as the

number of instances with large values of the equation resid-

ual(say above 10−3) for computed solutions. Using this

failure metric, we observe that our proposed resultant-based

solvers for the four problems, Unsynch. Rel. pose [2], Rel.

pose λ1+F+λ2 9pt [9], Optimal PnP (Cayley) [14] and Abs.

Problem Our Original [11] GFan [13] (#GB) Heuristic [13]

Rolling shutter pose (8 sols.) 47× 55 48× 56 [15] 47× 55 47× 55 (520) 47× 55

Triangulation from satellite im. (27 sols.) 87× 114 93× 120 [17] 88× 115 88× 115 (837) 88× 115
Optimal pose 2pt v2 (24 sols.) 176× 200 192× 216[16] 192× 216 − ? 192× 216
Optimal PnP (Cayley) (40 sols.) 118× 158 118× 158 [14] 118× 158 118× 158 (2244) 118× 158

Optimal PnP (Hesch) (27 sols.) 87× 114 93× 120 [7] 88× 115 88× 115 (837) 88× 115
Unsynch. Rel. pose (16 sols.) 150× 168 633× 649[2] 467× 483 - ? 299× 315

Table 2. Comparison of sizes of solvers for some more minimal problems. Missing entries are when we failed to generate a Gröbner fan

solver in reasonable time.

Problem Our [11] Heuristic [13]

mean med. fail(%) mean med. fail(%) mean med. fail(%)

Rel. pose F+λ 8pt −14.26 −14.43 0 −13.74 −14.26 0.14 −14.18 −14.48 0

Rel. pose E+f 6pt −13.17 −13.44 0 −12.87 −13.17 0 −13.05 −13.34 0

Rel. pose E+λ 6pt −11.65 −11.94 0.34 −11.42 −11.72 0.52 −11.34 −11.68 0.94
Stitching fλ+R+fλ 3pt −13.22 −13.42 0 −13.06 −13.37 0.16 −13.20 −13.46 0.02
Rel. pose λ1+F+λ2 9pt −9.81 −10.08 3.32 −9.81 −10.39 5.14 −9.56 −9.98 6.10
Rel. pose E+fλ 7pt (elim. fλ) −10.71 −10.95 0.38 −10.57 −10.90 0.30 −11.04 −11.32 0.32
Abs. pose quivers(†) −12.39 −12.60 0 −11.18 −11.51 0.32 −12.48 −12.88 0

Rolling shutter pose −12.16 −12.34 0 −12.52 −12.72 0 −12.43 −12.65 0

Triangulation from satellite im. −11.67 −11.80 0 −11.53 −11.83 0.76 −11.61 −11.93 0.5
Optimal pose 2pt v2 −9.85 −10.04 0.1 −10.85 −10.83 0.1 −10.36 −10.61 0.1
Optimal PnP (Cayley) −9.14 −9.45 3.64 −8.38 −8.74 10.28 −8.42 −8.75 7.64
Optimal PnP (Hesch) −11.07 −11.34 0.98 −11.36 −11.72 0.82 −11.05 −11.36 0.1
Unsynch. Rel. pose(‡) −10.26 −10.40 0 −8.13 −8.64 3.84 −9.93 −10.19 0.86

Table 3. A comparison of stability for solvers generated by our proposed resultant-based method, solvers generated using [11] and heuristic-

based solvers [13] on some more minimal problems. Mean and median are computed from Log10 of normalized equation residuals.

Missing entries are when we failed to extract solutions to all variables. (†): Input polynomials were eliminated using G-J elimination

before generating a solver using our resultant method as well as solvers based on [11] and the heuristic-based solver [13]. (‡): Alternate

eigenvalue formulation used for generating the solver based on our proposed method(see Proposition 3.1 in our main paper).

pose refractive P5P [5] clearly have less failures than the

state-of-the-art Gröbner basis and heuristic-based solvers.

We also note that for four problems from Figure 2, i.e. Rel.

pose f+E+f 6pt [9], Abs. pose refractive P5P [5], Rel. pose

E+fλ 7pt [8] and Optimal pose 2pt v2 [16], our proposed

solvers are smaller than the state-of-the-art solvers based on

Gröbner basis [11] and heuristic-based solvers [13]. More-

over, for the problem of Unsynch. Rel. pose [2], our pro-

posed solver is significantly smaller than the competitive

solvers for the same formulation of the problem.

E+fλ solver on synthetic scenes: Here we show addi-

tional results from the synthetic experiment presented in the

main paper. We studied the numerical stability of the new

resultant-based solver for the problem of estimating the rel-

ative pose of one calibrated and one camera with unknown

focal length and radial distortion from 7-point correspon-

dences, i.e. the Rel. pose E+fλ 7pt problem. We considered

the formulation “elim. λ” proposed in [13] that leads to the

smallest solvers. We studied the stability on 10K syntheti-

cally generated scenes as described in the main paper, see

Figure 1. Histograms of Log10 relative error in focal length for

Rel. pose E+fλ 7pt (elimλ) problem for 10K randomly generated

synthetic scenes. These scenes represent cameras with different

radial distortions, poses and focal lengths.

Section 4.1.

Figure 1 shows Log10 of the relative error of the fo-

cal length obtained by selecting the real root closest to

the ground truth fgt. The results for radial distortion are

in the main paper. All tested solvers provide stable re-

sults with only a small number of runs with larger errors.

Figure 2. Histograms of Log10 of normalized equation residual error for nine selected minimal problems.

The new resultant-based solver (blue) is not only smaller

but also slightly more stable than the heuristic-based solver

from [13] (green).

P4Pfr solver on real images: Here we show additional

statistics for the real experiment presented in our main pa-

per where we evaluated our proposed solver for the problem

of estimating the absolute pose of a camera with unknown

focal length and radial distortion from four 2D-to-3D point

correspondences, i.e. the P4Pfr solver. We consider the Ro-

tunda dataset, which was proposed in [10] and in [12] it

was used for evaluating P4Pfr solvers. This dataset consists

of 62 images captured by a GoPro Hero4 camera with sig-

nificant radial distortion. The Rotunda reconstruction con-

tains 170994 3D points and the average reprojection error

was 1.4694 pixels over 549478 image points. We used the

3D model to estimate the pose of each image using our new

P4Pfr resultant-based solver (28×40) in a RANSAC frame-

work. Similar to [12], we used the camera and distortion

parameters obtained from [1] as ground truth for the exper-

iment.

In Table 4 we present the errors for the focal length, ra-

dial distortion, and the camera pose obtained using our pro-

posed solver and for the sake of comparison we also list

the errors, which were reported in [12], where the P4Pfr

(40x50) solver was tested on the same dataset. Overall the

errors are quite small, e.g. most of the focal lengths are

within 0.1% of the ground truth and almost all rotation er-

rors are less than 0.1 degrees, which shows that our new

solver as well as the original solver work well for real data.

The results of both solvers are very similar. However, we

do take note that the slightly different values of errors are

mainly due to RANSAC’s random nature.

References

[1] RealityCapture. www.capturingreality.com. 6

[2] Cenek Albl, Zuzana Kukelova, Andrew W. Fitzgibbon, Jan

Heller, Matej Smı́d, and Tomás Pajdla. On the two-view ge-

ometry of unsynchronized cameras. CoRR, abs/1704.06843,

2017. 4, 5

[3] David A Cox, John Little, and Donal O’Shea. Using alge-

braic geometry, volume 185 of Graduate Texts in Mathemat-

ics. Springer-Verlag New York, 2005. 2

[4] Ioannis Z. Emiris. A general solver based on sparse resul-

tants. CoRR, abs/1201.5810, 2012. 1, 2, 3

Solver Our P4Pfr 28× 40 P4Pfr 40× 50 [12]

avg. med. max avg. med. max

Focal (%) 0.080 0.063 0.266 0.08 0.07 0.29

Distortion (%) 0.522 0.453 1.651 0.51 0.45 1.85

Rotation (degree) 0.031 0.029 0.062 0.03 0.03 0.10

Translation (%) 0.066 0.051 0.210 0.07 0.07 0.26

Table 4. Errors for the real Rotunda dataset. The errors are relative to the ground truth for all except rotation which is shown in degrees.

The results for the P4Pfr solver (40× 50) [12] are taken from [12]

[5] Sebastian Haner and Kalle Åström. Absolute pose for cam-

eras under flat refractive interfaces. In Computer Vision and

Pattern Recognition (CVPR), pages 1428–1436, 2015. 5

[6] Janne Heikkilä. Using sparse elimination for solving min-

imal problems in computer vision. In IEEE International

Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pages 76–84, 2017. 1, 2

[7] J. A. Hesch and S. I. Roumeliotis. A direct least-squares

(dls) method for pnp. In 2011 International Conference on

Computer Vision, pages 383–390, Nov 2011. 5

[8] Yubin Kuang, Jan Erik Solem, Fredrik Kahl, and Kalle

Åström. Minimal solvers for relative pose with a single un-

known radial distortion. In Computer Vision and Pattern

Recognition (CVPR), pages 33–40. IEEE, 2014. 5

[9] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic genera-

tor of minimal problem solvers. In European Conference on

Computer Vision (ECCV 2008), Proceedings, Part III, vol-

ume 5304 of Lecture Notes in Computer Science, 2008. 5

[10] Zuzana Kukelova, Jan Heller, Martin Bujnak, Andrew

Fitzgibbon, and Tomas Pajdla. Efficient solution to the

epipolar geometry for radially distorted cameras. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2309–2317, 2015. 6

[11] Viktor Larsson, Kalle Åström, and Magnus Oskarsson. Effi-

cient solvers for minimal problems by syzygy-based reduc-

tion. In Computer Vision and Pattern Recognition (CVPR),

2017. 4, 5

[12] Viktor Larsson, Zuzana Kukelova, and Yinqiang Zheng.

Making minimal solvers for absolute pose estimation com-

pact and robust. In International Conference on Computer

Vision (ICCV), 2017. 6, 7

[13] Viktor Larsson, Magnus Oskarsson, Kalle Åström, Alge

Wallis, Zuzana Kukelova, and Tomás Pajdla. Beyond grob-

ner bases: Basis selection for minimal solvers. In 2018

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,

2018, pages 3945–3954, 2018. 4, 5, 6

[14] Gaku Nakano. Globally optimal DLS method for pnp

problem with cayley parameterization. In Proceedings of

the British Machine Vision Conference 2015, BMVC 2015,

Swansea, UK, September 7-10, 2015, pages 78.1–78.11,

2015. 5

[15] Olivier Saurer, Marc Pollefeys, and Gim Hee Lee. A mini-

mal solution to the rolling shutter pose estimation problem.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pages 1328–1334. IEEE, 2015.

5

[16] Linus Svärm, Olof Enqvist, Fredrik Kahl, and Magnus Os-

karsson. City-scale localization for cameras with known ver-

tical direction. IEEE transactions on pattern analysis and

machine intelligence, 39(7):1455–1461, 2017. 5

[17] E. Zheng, K. Wang, E. Dunn, and J. Frahm. Minimal solvers

for 3d geometry from satellite imagery. In 2015 IEEE In-

ternational Conference on Computer Vision (ICCV), pages

738–746, Dec 2015. 5

