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Abstract: Currently, much of the manual labor needed 

to generate as-built Building Information Models (BIMs) of 

existing facilities is spent converting raw Point Cloud 

Datasets (PCDs) to BIMs descriptions. Automating the 

PCD conversion process can drastically reduce the cost of 

generating as-built BIMs. Due to the widespread existence 

of planar structures in civil infrastructures, detecting and 

extracting planar patches from raw PCDs is a fundamental 

step in the conversion pipeline from PCDs to BIMs. 

However, existing methods cannot effectively address both 

automatically detecting and extracting planar patches from 

infrastructure PCDs. The existing methods cannot resolve 

the problem due to the large scale and model complexity of 

civil infrastructure, or due to the requirements of extra 

constraints or known information. To address the problem, 

this paper presents a novel framework for automatically 

detecting and extracting planar patches from large-scale 

and noisy raw PCDs. The proposed method automatically 

detects planar structures, estimates the parametric plane 

models, and determines the boundaries of the planar 

patches. The first step recovers existing linear dependence 

relationships amongst points in the PCD by solving a 

group-sparsity inducing optimization problem. Next, a 

spectral clustering procedure based on the recovered linear 

dependence relationships segments the PCD. Then, for 

each segmented group, model parameters of the extracted 

planes are estimated via Singular Value Decomposition 

(SVD) and Maximum Likelihood Estimation Sample 

Consensus (MLESAC). Finally, the  -shape algorithm 

detects the boundaries of planar structures based on a 

projection of the data to the planar model. The proposed 

approach is evaluated comprehensively by experiments on 

two types of PCDs from real-world infrastructures, one 

captured directly by laser scanners and the other 

reconstructed from video using structure-from-motion 

techniques. In order to evaluate the performance 

comprehensively, five evaluation metrics are proposed 

which measure different aspects of performance. 

Experimental results reveal that the proposed method 

outperforms the existing methods, in the sense that the 

method automatically and accurately extracts planar 

patches from large-scaled raw PCDs without any extra 

constraints nor user assistance. 

1 INTRODUCTION 

Traditional Building Information Models (BIMs) 

represent the conditions under which a facility is designed. 

However, the reality of the facility's construction can differ 

from the nominal design. Furthermore, changes in facility's 

conditions may happen during the life span of the facility. 

Hence, generating as-built BIMs, which aim to capture the 

as-built conditions of facilities, have been a recent topic of 

interest in the literature (Huber et al., 2011). Generating as-

built BIMs usually consists of two phases (Goedert et al., 

2005): (1) data collection; and (2) objects identification, 

extraction, and modeling. Current developments in 

technologies and techniques for remote spatial sensing, e.g. 

high density LiDAR (Deshpande 2013), image-based 3D 

reconstruction (Seitz et al., 2006; Furukawa et al., 2010) 

and video-based structure-from-motion (Zhang et al, 2012; 

Davison et al., 2007; Pollefeys et al., 2008), have largely 

simplified and facilitated the data collection process such 

that generating dense point clouds with color information of 

target objects is quickly becoming standard. Nevertheless, 

fully and simply automating the phase of objects 

identification, extraction and modeling remains an open 

problem.  
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The difficulty of automating "objects identification, 

extraction, and modeling" lies in that a raw Point Cloud 

Dataset (PCD) provides only Cartesian measurements and 

no knowledge of the elements contained therein (i.e. which 

parts of the PCD belong to which entities? which parts are 

from which geometric shapes?), nor does it immediately 

provide any other as-built information (i.e. changes in 

building conditions, etc.). To automate the process of 

generating as-built BIMs, recognition of infrastructure 

elements needs to be automated during the conversion from 

raw PCDs to 3D models, as shown in Figure 1. 

Because of the widespread existence of planar structures 

in civil infrastructures, automatic extraction and modeling 

of planar structures are fundamental steps in automating the 

conversion process. Automatic extraction and modeling of 

3D planar structure methods requires detecting planes, 

estimating planar model parameters, and determining planar 

patch boundaries. Exisiting software, e.g., AutoCAD, 

Paraview, Kubit-Pointcloud, is not able to achieve all of 

these steps fully automatically. Accordingly, this paper 

focuses on developing algorithms to achieve these three 

necessary steps. 

The main motivation for this work is to develop a global, 

complete and accurate algorithm for planar patch modeling 

from PCDs, which will be further used in the generating a 

building information model. However, this algorithm is also 

valuable to many other communities which require 

environment modeling, including robot perception of 3D 

environments, CAD for mechanical engineering, inverse 

engineering, shape modeling in computer graphics 

community, 3D reconstruction in computer vision 

community, etc. 

2 STATE OF THE RESEARCH 

Techniques for 3D surface modeling from point cloud 

data can be found in computer graphics literature. Most of 

the algorithms are based on building meshes from point 

clouds with different explicit representations of surfaces. 

The problem of representing surfaces was partially 

addressed by Farin, G., et al., who proposed triangular 

meshes (Farin, 1992; Farin, 1996). Although modeling 

through surfaces meshes gives an explicit description of the 

object's surfaces, it fails to give information about the 

parameters of the surfaces' geometric models and thus they 

are not suitable to be used in generating as-built BIMs. 

Different from mesh-based 3D surface reconstruction, 

model-based surfaces reconstruction requires the detection 

and extraction of embedded surface models in PCDs. Many 

techniques for shape models extraction are based on 

Random Sample Consensus (RANSAC) algorithm 

(Schnabel et al., 2007). In civil engineering applications, 

Tarsha-Kurdi (Tarsha-Kurdi et al., 2008) applied RANSAC 

to building roof detection. Unfortunately, fully automatic 

RANSAC based methods usually have very high 

computational complexity when applied to large-scale, 

complex PCDs with multiple embedded surface models. To 

overcome the high complexity of RANSAC, Bosché 

(Bosché, 2012) presented a semi-automatic RANSAC 

based method requiring manual plane selection.  

Another approach for extracting planar models from 

PCDs utilizes the Hough transform (Tarsha-Kurdi et al., 

2008). Landes (Landes et al., 2007) compared 3D Hough 

transform based algorithms to RANSAC based algorithms 

for automatic detection of planes from PCDs, and found 

that RANSAC is better than the 3D Hough-transform in 

terms of speed and percentage of successful detections. To 

improve the traditional Hough transform based method, 

Okorn and Huber (Okorn et al., 2010, Huber et al., 2011) 

combined it with 2D image histograms to automatically 

model as-built floor plans. However, the approach is not 

able to achieve very high accuracy because of the 

voxelization step used in generating the 2D 

histograms.Also, it requires proper alignment of the PCD 

wi the coordinate axes. 

Other planar surfaces extraction methods proposed in the 

recent years include the following. The plane-sweep search 

algorithm presented in (Budroni et al., 2009), which utilizes 

the distribution of the 3D points along different directions 

to recognize the parts which contain planes and then further 

extract the planes within each part. The region-growing 

methods proposed in (Hähnel et al., 2003), which extracts 

planes by first picking a seed point and then growing the 

planar region from this point if criteria based on the normal 

deviation and mean square error are satisfied. Adan and 

Huber (Adan et al., 2011; Huber et al., 2011) also presented 

a modified region growing method on a voxelized PCD 

which connects nearby points with similar surface normals 

and that are well described by a planar model when 

aggregated. Another modified region-growing method is 

presented in (Dorninger et al., 2008), which is optimized for 

airborne laser scanned point clouds. This method is 

initialized by seed clusters in the feature space defined by 

local regression planes. (Nevado et al., 2004) also utilized a 

region growing method but with the normal computed from 

adaptive-radius neighboring regions. In a more recent study 

(S.B. Walsh et al., 2013), a modified seeded region-

growing method combined with sharp features is employed 

 
Figure 1: Role of planar patches extraction in the 

automatic conversion from raw PCDs to 3D models 
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for segmenting the PCD.  The paper (Vosselman, G., 2009) 

summarizes the major methods for point cloud processing, 

in which several segmentation methods are discussed, 

including RANSAC, Hough transform, and surface 

growing. Different from the above methods, other methods 

include: machine-learning based methods using the 

Expectation-Maximization (EM) algorithm (Thrun et al., 

2004) or hierarchical EM (Triebel et al., 2005), and a 

geometry-based method using clustering with co-normality 

and co-planarity metrics (Stamos et al., 2000), etc. 

However, the existing methods discussed above do not 

provide a complete and global solution to fulfill the 

requirements of automatically detecting planes, estimating 

plane models and determining the patches boundaries 

without requiring the number the patches as input. For 

example, plane-sweeping algorithms focus on plane 

detection, region growing methods focus on segmentation 

of the PCD, RANSAC based methods do detection and 

estimation but do not extract the boundaries and the 

RANSAC family are intrinsically randomized which cannot 

provide a complete solution. 

3 PROBLEM STATEMENT AND OBJECTIVES 

The objective of this work is to develop an algorithm 

which takes raw point cloud data as input, and outputs a 

collection of planar patch models. The planar patch model 

description consists of the plane model parameters and the 

patch boundary. The planar patches found in the point cloud 

serve as a substitute structure for visualizing the 

infrastructure modeled by the point cloud, and serve as an 

intermediate representation in the PCD to BIM conversion 

pipeline. More specifically, the algorithm should admit as 

input a civil infrastructure PCD, which is typically large 

scale, embedded with multiple shape components, and 

corrupted by noise. The algorithm should admit PCDs 

generated from different sources, e.g., videos, photos, range 

images (LiDAR), laser scanning, etc.  To be agnostic to the 

data source, the algorithm will not exploit additional 

sensor-specific data that may be available (e.g., topology 

information available from range image cameras). In 

addition, the algorithm should not require advanced 

knowledge of the number of planar patches nor any 

assumptions concerning their geometry (such as alignment 

to specific axes). The output should include the parametric 

models and the boundaries of the planar patches.  

The literature and the commercial software to date, do 

not provide a method that can fully automatically detect and 

extract planar patches without requiring the quantity of 

planar patches as input, then estimate plane models and 

determine the patch boundary with high accuracy, although 

some software is able to extract planar patches with user 

interaction. The existing methods cannot resolve the stated 

problem due to one or more of the following reasons: the 

model extraction will be incomplete, civil infrastructure 

consists of multiple joined models to segment and estimate, 

the algorithms rely on specific geometric properties (such 

as the alignment of planar regions to specific coordinate 

axes), or the algorithms require user-provided information 

(such as the quantity of planar patches), etc. The method 

proposed to resolve the stated problem, and detailed in 

subsequent sections, is summarized in Figure 2. The first 

step introduces a segmentation algorithm for PCDs utilizing 

unsupervised subspace learning techniques (Vidal, 2011) 

modified for the case of PCDs (Section 4). This step 

retrieves the embedded linear dependence relationship 

between the points in    space and then segments the 

PCDs w.r.t. this relationship, such that within each 

segmented group there is at most one embedded linear 

subspace. Next, for each segmented part, the application of 

Maximum Likelihood Estimation Sample Consensus 

(MLESAC) (Torr et al., 2000), in conjunction with Singular 

Value Decomposition (SVD) based plane model estimation, 

robustly estimates and verifies the plane models (Section 

5). The points in the PCD are evaluated against the 

estimated models to correct the segmentation. For the last 

step, described in Section 6, the boundaries of the planar 

patches are determined by extracting the boundary points of 

the concave hull of each extracted plane, by utilizing the  -

shape algorithm (Akkiraju et al., 1995). 

Sections 4-6 provide a formal description of each 

algorithm. Furthermore, a synthetic example is processed in 

each section to illustrate the outputs associated to each step 

of the complete algorithm. Section 7 provides analysis of 

 

 
Figure 2 The proposed methodology 
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the memory and computation complexities, evaluation 

metrics, and evaluation of the experiment on the synthetic 

example. The proposed algorithm is comprehensively 

evaluated using data from two real-world infrastructure 

PCDs in Section 8. The two real-world datasets used were 

captured using different sensing methods: one is 

reconstructed from video using structure-from-motion 

techniques and the other is captured directly using a 

professional laser scanner (Leica Scan Station C10). The 

last section of the paper provides a conclusion of our work. 

A previous version of our algorithm was presented in 

(Zhang et al., 2012). However, the algorithm in this paper 

has various improvements over the last one and this paper 

provides more technical details of the algorithm. 

4 POINT CLOUDS SEGMENTATION BY 

CLUSTERING SPARSE LINEAR SUBSPACES 

The proposed algorithm begins with the segmentation of 

a PCD according to the embedded linear subspaces of   . 

The reason to segment PCDs as a first step is that robust 

parametric estimation methods, such as RANSAC, are 

designed for datasets with one dominant underlying model. 

These methods are ineffective for datasets with multiple 

models, i.e., when more than one model can be fit from the 

dataset, or datasets without dominant models. Meanwhile, 

randomized estimation methods like RANSAC are of high 

computational complexity and are impractical when the 

cardinality of the point-set is large. Therefore, segmenting 

PCDs is necessary before extracting and estimating the 

plane models. However, segmentation of PCD may destroy 

the underlying planar structures embedded in the PCD. 

Hence, the segmentation step should preserve the 

underlying planar structures. 

Segmenting PCDs while preserving underlying models is 

a subspace clustering problem (also known as unsupervised 

subspace learning). Given a point-set             

containing a union of    linear or affine subspaces in   , let          be an arrangement of the   subspaces of dimensions         . The subspaces can be expressed as:                               (1) 

where       is an arbitrary point in subspace    that can 

be chosen as      for linear subspaces,          is a 

basis for subspace   , and       is a low-dimensional 

representation for point  . Subspace clustering refers to the 

process of finding the number of subspaces  , their 

dimensions         , the subspace bases         , the points         , and segmenting groups of points according to the 

subspaces. A number of subspace clustering algorithms 

have been proposed, broadly categorized into algebraic 

methods (Costeira et al., 1998; Vidal et al., 2005) iterative 

methods (Agarwal et al., 2004; Lu et al., 2006; Zhang et al., 

2009), statistical methods (Ma et al., 2007; Rao et al., 

2008),and spectral clustering-based methods (Zhang et al., 

2010; Elhamifar et al., 2009; Liu et al., 2010). In (Vidal, 

2011), the author compared different subspace clustering 

methods, and reported that the Sparse Subspace Clustering 

(SSC) method proposed in (Elhamifar et al., 2009) had the 

best performance in terms of misclassification error. In 

(Soltanolkotabi et al., 2012), a geometric analysis of SSC is 

given proving that SSC can correctly cluster data points 

even when subspaces intersect. SSC is based on an    

optimized sparse representation. In the case of PCDs, due to 

the geometric nature of point clouds,   -norm penalties also 

capture the linear dependence relationship, and thus the 

linear dependence problem is formulated as an optimization 

problem to minimize the combined    and    penalties, 

denoted as group-sparsity optimization. 

4.1 Recovering PCD linear subspaces 
This section covers the recovery of linear subspaces in a 

PCD based on sparse optimization programming. Sparse 

optimization programming exploits the self-expressiveness 

property of the data, which presumes that each point of the 

PCD can be expressed by linear combinations of other 

points from its underlying linear subspace. 

4.1.1 Sparse representations in subspaces 

Let the vector      be representable by a basis      ,             as follows:  

  ∑   
         (2) 

If   cannot be measured directly but its   combination   

can be measured, then  

  ∑   
     (∑  

       )           (3) 

where                       ,                      and                       . When   has a 

sparse representation in a basis  , then a sparse 

representation is recoverable through the following convex 

optimization problem, also known as basis-pursuit (BP) 

(Donoho et al., 2006) with the unknown               .                               (4) 

where      is the   -norm. 

4.1.2 Retrieving linear dependence relationships in PCD 

This section describes how to utilize the optimization of 

Equation (4) to generate a sparse representation of the PCD 

         ‖ ‖   ‖    ‖           ∑                        ( )         (7) 
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when it contains several planar subspaces and the data has 

measurement error. Let          be a union of   

independent linear subspaces of dimensions          

embedded in a   dimensional space, and          be a 

collection of   observations from the   dimensional space,      . If    belongs to subspace   , then    is a linear 

combination of the other data points in         . To 

compensate for measurement error, the basis-pursuit 

problem of Equation (4) is modified to be a basis-pursuit 

denoising (BPDN) problem:                                                 (5) 

This program can be written in the following form with a    

regularization term:                                             (6) 

for every point    in         .   is the parameter that 

controls the trade-off between sparsity and reconstruction 

fidelity. To collectively optimize all of the data points, form 

the matrix                  and normalize the recovered 

coefficients. The optimization problem is now 

where        is the matrix of the sparse linear 

dependence coefficients whose  -th column corresponds to 

the sparse representation of   . Different columnes of   are 

independent. Here, the norm ‖ ‖  of a matrix is the sum of 

the    vector norms of the columns. 

Like the   -norm, the   -norm also captures the linear 

dependence relationship since points closer to each other in   -norm sense are more likely to be linearly dependent. 

Combining the two norms into the optimization leads to a 

group-sparsity optimization:           ‖ ‖   ‖ ‖   ‖    ‖ 
          ∑                        ( )          

 (8) 

 In the ideal case, solving the optimization program (8) 

recovers the sparse linear dependence coefficients 

corresponding to the embedded subspaces, which will be 

used for segmentation in the next step. 

4.2 Subspace segmentation via spectral clustering 
Once the data-driven representation for each data point is 

found, identification of the common underlying subspaces 

is the next step. This process of segmenting the linear 

subspaces from the recovered linear dependence 

coefficients involves constructing a weighted similarity 

graph   (     )  capturing the linear dependence 

relationships. The   nodes in   of   correspond to the   

input points; the set of edges   fully connect every two 

nodes    and    with the weight                , where     is an element of the adjacency matrix   and     is an 

element of the sparse linear dependence coefficient matrix  . For robustness to noise in the data, when building the 

similarity graph only the   largest linear dependence 

Algorithm 1: Point cloud segmentation w.r.t. sparse 

linear subspaces 

Data: PCD  , arranged as columns of       , which 

is a union of   linear subspaces  

Result: Partitions              lying in different 

subspaces 

 

Begin: 

  

         ‖ ‖   ‖ ‖   ‖    ‖ 
          ∑                        ( )          

 

1. Solve the group-sparsity optimization program for 

the     matrix   

 

2. Use matrix   to construct a balanced graph   (     ). The vertices   are the   data points, 

and edges (     )    are with weight      . 

Compute the adjacency matrix  

  ( )    ( )    ( )    
with the   largest coefficients. 
 

3. Use   as the adjacency matrix and perform the 

spectral clustering; 

3.1. Construct matrix   with (   )  element be the 

sum of  's  -th row; 

3.2. Compute normalized Laplacian         ( )     ; 

3.3. Perform eigen-decomposition to   and get the 

first   eigenvectors             ;  

3.4. Form                       ; 

3.5. Form the matrix       , such that  

        √∑         
 3.6. Let   ̂                 be the vector in the 

eigen-space corresponding to the  -th row of  ; 

 3.7. Cluster the points  ̂  with the meanshift 

algorithm, and retrieve the segmentations                in    for  .   
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coefficients should be kept for each point. Accordingly, the 

adjacency matrix  ( )  is expressed as  ( )    ( )    ( )  , where  ( ) means the matrix with only the   largest 

coefficients kept for each column with all others set to zero. 

Using the adjacency matrix  ( ), apply the normalized 

spectral clustering algorithm (Ng et al., 2002) to cluster the 

PCD with respect to the linear subspaces. Given the points 

set                     with adjacency matrix  ( ) , 
define   to be the diagonal matrix whose (   )-element is 

the sum of  ( )'s  -th row. Construct the Laplacian         ( )      (9) 

Then perform eigen-decomposition on   and use the   (we 

choose     for PCD in   ) largest eigenvectors              of   to form an eigenspace matrix                       by stacking    in columns. Thirdly 

a matrix        is formed from   by normalizing each 

row to be of unit norm, such that         (∑       )    (10) 

for            . Let       be the vector corresponding 

to the  -th row of  . Lastly, perform meanshift clustering 

(Comaniciu et al., 2002) on the points    to get a 

segmentation result. 

4.3 Illustration of procedure on a synthetic PCD 

The proposed PCD segmentation is summarized in 

Algorithm 1. To illustrate how the algorithm works, this 

section details the procedure for a synthetic PCD. The 

synthetic PCD has 628 points with 588 points from three 

intersecting planes (196 points per plane) and 40 randomly 

scattered points. Moreover, all points are corrupted by 

Gaussian noise with 0.01 variance. The PCD is shown in 

Figure 3(a), and the ground truth for the PCD segmentation 

is shown in Figure 3(b) where points from the distinct 

embedded planes plotted with distinct colors. 

The PCD is processed using the proposed algorithm. 

First, solving the group-sparsity optimization program in 

Equation (8) with       results in the group-sparse 

linear dependence coefficients. The matrix containing the         linear dependence coefficients is visualized in 

Figure 3(c), in which the non-zero coefficients (meaning 

linear dependence) are plotted in white color while the zero 

coefficients (meaning linear independence) are plotted in 

black color. Each row in the coefficient matrix stands for 

one    point, and each      -dimensional row vector 

consists of the linear dependence coefficients (diagonal 

elements of the matrix are zero). Compared to the ideal 

result shown in Figure 3(d), the recovered coefficients 

matrix is 77.87% accurate. The accuracy is computed by 

comparing the two coefficient matrices in Figure 3(c) and 

(d). The white elements are assigned to 1 and black 

elements to 0 for both matrices in 3(c) and 3(d), to give the 

 
(a) Original PCD 

 
(b) Ground truth for PCD 

segmentation 

 
(c) Recovered sparse linear 

dependence coefficients (the   matrix) (black: zero 

values; white: non-zero 

values) 

 
(d) Ideal result of linear 

dependence coefficients 

(black: linearly independent; 

white: linearly dependent) 

 
(e) Linear dependence 

adjacency matrix (with 10 

largest coefficients for each 

point) 

 
(f) Linear dependence 

adjacency matrix (with 20 

largest coefficients for each 

point) 

 
(g) Clustering result in 

eigenspace in spectral 

clustering step 

 
(h) Retrieved segmentation 

result in    

Figure 3 Illustration of Algorithm 1 on a synthetic PCD 
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matrices    and    respectively. Let  ̃         , 

then the accuracy is ∑  ̃        . Compared to the group-

sparsity formulation, the BPDN formulation of Equation (7) 

has a lower accuracy level of 68.71%. 

Rather than use the full matrix, the procedure indicates 

that the matrix with only the first   (     )  largest 

coefficients should be used. In addition to increasing 

robustness to noise, the decimated matrix  ( ) reduces the 

computational complexity of the spectral clustering step. 

Figure 3(e) and Figure 3(f) show  ( )  with      and     , respectively (visualized by displaying non-zero 

value elements as white and zero value elements as black). 

From Figure 3(e) and Figure 3(f), it can be observed that 

the larger coefficients are nearer to the diagonal elements, 

while the smaller coefficients are further from the diagonal 

elements. There is no universal criterion for how many 

coefficients should be used in constructing the adjacency 

matrix, but the observations are: if less coefficients are 

used, then less linear dependence relationships are captured 

but the algorithm is more robust to noise and has lower 

computational complexity. For the following steps of the 

experiment,   is set to be 10, because this is small enough 

to generate a sparse adjacency matrix but large enough to 

capture the linear dependence bases. Further discussion is 

included in Section 7.3. 

By following the remaining steps described in Algorithm 

1, an eigenspace point-set can be obtained, which lies in a 

simplex structure, as shown in Figure 3(g). Cluster the 

eigenspace point-set using mean-shift. The clustering result 

is shown in Figure 3(g) with different clusters plotted in 

different colors. The PCD segmentation step is finished by 

assigning the cluster memberships of each point in the 

eigenspace to the original    points. The final segmentation 

result is plotted in Figure 3(h). The segmentation step 

achieves 89.46% accuracy for the points from the 

underlying planes. Most of the misclassifications occur 

around the intersecting areas of the planes. The 

classification accuracy will be further improved in the 

subsequent steps. 

5 PLANE DETECTION AND MODEL 

ESTIMATION VIA MAXIMUM LIKELIHOOD 

SAMPLE CONSENSUS 

The previous step gives a segmentation of the PCD but 

not the plane model, with some data points potentially 

misclassified. After the segmentation step, ideally within 

each segmented group there is at most one linear subspace, 

meaning that there is one or zero planes in each group. A 

robust detection and estimation step is needed to determine 

whether each segmented group arises from a planar 

subspace, and if so, to estimate the parametric planar 

model. Moreover, after model estimation, all of the plane 

models are used to correct potential false segmentations.  

Because the data is noisy and the segmentation result 

from the previous step may not be accurate, the detection 

and estimation algorithm in this step should be robust to 

both noise and false segmentation, which is traditionally 

done with RANSAC. Traditional RANSAC verifies the 

estimated models by thresholding the number of inliers. 

However, in the case of extracting models from PCDs, the 

cardinality of each segmented point-set varies, meaning that 

a predefined threshold is not suitable for each group. 

Compared to RANSAC, the Maximum Likelihood Sample 

Consensus (MLESAC) algorithm (Torr et al., 2000) adopts 

the same sampling strategy as RANSAC but chooses the 

solution by minimizing the probabilistic loss rather than the 

number of inliers. Minimizing probabilistic loss renders the 

model verification threshold value invariant to the 

cardinality of the model’s data set. MLESAC is reported to 
be of higher accuracy and robustness than RANSAC (Choi 

et al., 2009). Therefore, MLESAC is more suitable for 

model extraction from PCDs. 

Algorithm 2: Plane models extraction from PCD via 

MLESAC 

Data: One segmented group   of PCD  

Result: Estimated plane parametric models with the inlier 

set, or failure to find a fit for the model 

 

Begin: 

  Repeat 

  1. Randomly sample 3 points             with the 

corresponding homogeneous coordinates     . 

Form matrix  

               
 

 2. Perform Singular Value Decomposition       , obtain the parameters vector for the 

plane model as from the last column of    
 

3. Determine the inlier and outlier sets, and the 

corresponding errors  
 

4. Compute the loss of the model  

   (       )    √       (      )  (   )   . 

 

 If  (       )            

   Then Re-fit the model with inlier set. 

 Until iterations >         (       ) 
 

If No verified model extracted 

  Output failure to find a fit for the model 

 else 

  Output the estimated parametric model with the 

smallest        ( ). 
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5.1 Planes detection and estimation from PCDs 

MLESAC first randomly samples a subset of points with 

the minimum cardinality      needed for model estimation, 

then the sampled subset is used to fit a parametric model. 

For plane estimation,       . Denote the three points 

sampled by                 , then the plane parameters 

are obtained from the following steps. First express      in 

homogeneous form as            , then form the matrix                     (11) 

Perform singular value decomposition of  , which 

estimates both the normal and the offset of the plane:         (12) 

The hypothesized parameter vector             of the 

plane is obtained from the fourth column of   with 

normalization by dividing the additive inverse of the last 

element. 

MLESAC evaluates the fitness of the hypothesis using a 

probabilistic model for the errors arising from inliers and 

outliers. The inlier error is modeled as unbiased Gaussian 

distribution while the outlier error as uniform distribution. 

Hence the probability of the error given the estimated 

model is:   (         )    √       (      )  (   )   (13) 

 where   is the inlier error,   is the prior probability of 

being an inlier (the ratio of inlier),   is the size of available 

error space,   is the standard deviation of Gaussian noise. If  (         ) is larger than the threshold, then the model 

will be re-estimated using only the inliers and MLESAC 

terminates. Otherwise, repeat the process with another 

random sample set, compute the loss, and determine if a 

further iteration is needed. The maximum number of 

iterations to perform is  

         (       ) (14) 

where   is the estimated failure probability of picking up 

inlier samples at least once. The MLESAC loop terminates 

when the required iterations have been finished. 

The plane model estimation step is summarized in 

Algorithm 2. The estimation results of this step correct 

erroneously segmented points from the previous step by 

relabeling each point to the model with the minimum 

Euclidean distance between the point and the model. Pairs 

of estimated models are merged togethor if the parametric 

models are close and the point set supports are adjacent.  

5.2 Illustration of Algorithm 2 on the synthetic PCD 

Algorithm 2 is illustrated using the same synthetic PCD 

discussed in Section 4.3. In the plane models extraction 

step, points from each group are processed using Algorithm 

2. For MLESAC, the threshold for the probability  (         )  is set to be 0.5, which is optimized 

empirically. The inlier set and outlier set detected for each 

segmented group are plotted in Figure 4(a), in which black 

‘ ’ signs stand for inliers and red ‘ ’ signs stand for 
outliers. The models extracted for the three groups are 

reported in Table 1 with the absolute errors computed by 

comparing to the ground truth. It can be concluded that the 

planar models extracted are of high accuracy. These 

extracted models are further used as feedback to improve 

the segmentation results by assigning all the points to the 

model to which the perpendicular Euclidean distance is the 

smallest among all the models and smaller than a 

predefined threshold (in this experiment the threshold is 

0.1), and the points whose perpendicular distances are 

larger than the threshold are labeled as noise. The 

segmentation result after this assignment is illustrated in 

Figure 4(b), which has 93.79% accuracy for the whole 

PCD. 

Table 1  
Experiment results, ground truth and absolute errors of the model estimation step in the synthetic PCD experiment (the plane 

models are evaluated using the normalized plane equation             .) 

Planes Item 
Parameters of Plane Models       

Plane 1 

Experiment Result                      

Ground Truth         

Absolute Error                      

Plane 2 

Experiment Result                      

Ground Truth         

Absolute Error                      

Plane 3 

Experiment Result                         

Ground Truth          

Absolute Error                      
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6 Determine Plane Boundaries via QR Decomposition 

based Projected  -Shape  

After the previous two steps, the segmentation of the 

points from different planes and the corresponding planar 

models have been obtained. Generating the final 

representations for the planar patches requires identifying 

the boundary each extracted planar patch. The challenges of 

this step are: (1) the boundary point-sets may not be 

convex; instead they may be concave or even with openings 

inside the outer “ boundary ”; (2) points in each point-set 

may not be uniformly distributed; and (3) the points are 

corrupted with noise. 

6.1 Maximum projected variance  -shape algorithm 

To resolve these problems, some methods have been 

proposed for determining the boundary point-set. (Truong-

Hong et al., 2013) proposed to combine an angle criterion 

and the Flying Voxel method for boundary determination, 

but it works better in less dense point-sets (<175 

points/  ). The  -shape algorithm (Akkiraju et al., 1995) 

is effective at determining the boundary of large point-sets. 

The algorithm has been successfully applied to boundary 

extraction of roof planes from aerial view generated PCDs 

(Dorninger et al., 2008). Because roofs are of small angle 

w.r.t. the ground, 3D points are simply projected onto the 

grouped plane and then  -shape is applied to extract 

boundary. In this method, no selection of projecting plane 

are needed and the projecting plane is simply set as the 

ground plane. In our case the poses (positions and 

orientations) of planes are arbitrary. Prior to applying the 

2D  -shape algorithm to 3D planes in arbitrary poses, the 

3D points of planes should be transformed to a 2D 

coordinate representation. While there are a variety of ways 

to construct an orthogonal frame for the plane, we describe 

here a QR decomposition approach based on the estimated 

plane normal. 

Given a PCD point-set        and its estimated 

normal        , first a      matrix             is 

formed, where            are random column vectors 

generated from the point-set. Then QR decomposition of   

is:       (15) 

where                   is an orthogonal matrix. 

The natural coordinate vectors are given by the three 

column vectors of              . In this work, the        in the natural coordinate frame is defined with    

(the plane normal),        with    and        with   . Then project   onto the natural coordinates by  ̂                             (16) 

where the factor            projects 3D points to 2D 

points. The arrangement of columns in            
performs a   ( )  transformation aligning the normal 

vector of plane in the original frame to the        in the 

projected frame. 

The projected point-set  ̂       is obtained by  ̂   ̂  . 

The overall algorithm for plane projection and boundary 

detection via  -shape is found in Algorithm 3. The  -shape 

algorithm is then performed on  ̂ . Since the boundary 

detected depends on the radius of the circles (or   value), 

here we set the   value as 3 times of the average single-link  

 

 (a) Inlier (black ‘ ’) and outlier
(red ‘ ’) set obtained in 

MLESAC 

(b) PCD segmentation after 

MLESAC re-correction 

Figure 4: Illustration of Algorithm 2 on the synthetic PCD 

Algorithm 3: Plane boundary detection via maximum 

projected variance  -shape algorithm 

Data: A PCD point-set        on a detected plane 

and the estimated plane normal         

Result: 3D boundary point-set    

 

Begin: 
  1. Form a matrix                 ; 

where            are random column vectors  

 

2. Perform QR decomposition on  :                    

 

3. Define the natural coordinate frame with          and project   onto the frame by: 

  ̂                             ;  ̂   ̂  ; 

 where  ̂       is the projected point-set  

 

4. Get  -shape boundary of  ̂ ; 

 

5. Determining the 3D plane boundary point-set    

by retrieving the membership of the 2D boundary 

point-set.  

 



Zhang et al. 10 

point-point distance, which is a conclusion assessed 

experimentally. The boundary detected using this   value is 

shown in Figure 5(a). The 2D boundaries are then projected 

back to the 3D space, shown in Figure 5(b). This outside 

concave boundary is detected without any additional 

boundaries for the openings inside the point set. performs a   ( ) transformation aligning the normal vector of plane 

in the original frame to the        in the projected frame. 

The projected point-set  ̂       is obtained by  ̂   ̂  . The overall algorithm for plane projection and 

boundary detection via  -shape is found in Algorithm 3. 

The  -shape algorithm is then performed on  ̂. Since the 

boundary detected depends on the radius of the circles (or   

value), here we set the   value as 3 times of the average 

single-link point-point distance, which is a conclusion 

assessed experimentally. The boundary detected using this   value is shown in Figure 5(a). The 2D boundaries are 

then projected back to the 3D space, shown in Figure 5(b). 

This outside concave boundary is detected without any 

additional boundaries for the openings inside the point set.  

6.2 Illustration of Algorithm 3 on a synthetic PCD 

As the final step, the boundaries of each extracted planes 

are detected by performing Algorithm 3 on each segmented 

group. The detected boundaries are plotted out in Figure 

6(a). Finally, the planar patches representation is generated 

as shown in Figure 6(b). 

7 EVALUATION OF THE PROPOSED 

ALGORITHM 

7.1 Memory and time complexities 

The complexity of the proposed method is analyzed in 

terms of the memory complexity and computation 

complexity. The most memory consuming part of the 

algorithm is the storage of the adjacency matrix   in 

Algorithm 1. The size of   is at most    , where   is the 

number of points in PCD and   is the number linear 

dependence coefficients kept. Thus, the memory 

complexity is  (  )  with a data structure for sparse 

matrix/graph, e.g. CSR (Compressed Spared Row Graph). 

The time complexity is determined by the most expensive 

steps, which are the group-sparsity optimization 

programming and the eigen-decomposition steps in 

Algorithm 1. These steps both require cubic time of the 

input data size. Since a partitioning strategy is used on the 

PCD before performing the algorithm (see Section 8.1.2), 

the time complexity is reduced. Given   as the number of 

parts the PCD is partitioned into and assume that the PCD 

is quite uniformly distributed in different parts (and for 

simplicity, assume each part has roughly the same number 

of points), the expected running time for each part is  (     ). Assuming the   parts are processed sequentially, 

the final time complexity is  (    ) . If the   parts are 

processed concurrently on a parallel machine with   

processes, the time complexity is further reduced to  (⌈  ⌉      ) for     or  (    ) for    . 

7.2 Evaluation metrics 

To evaluate the complete plane identification and 

extraction algorithm, five different evaluation metrics will 

be computed. These metrics evaluate different aspects of 

the algorithm performance to give a comprehensive 

understanding of how well models detected and extracted. 

These metrics and their purpose are as follows: Root Mean 

Square error measures the model fitting accuracy; Normal 

Deviation measures the orientation accuracy; Unit Volume 

error measures both the orientation and the translation 

accuracy; Detection Percentage measures what percentage 

of the total number of patches were detected; 

Oversegmentation Factor gives the factor by which the 

planar models overrepresent the ground-truth models. 

7.2.1 Root mean square error (RMSE) 

 The RMSE measures the consistency of the model to the 

data. For every point         that belongs to an extracted 

plane with the model  ̂       , where        is 

the normal of the plane with unit length and   is the offset 

of the plane. The point-plane distance is then measured by            ̂         (17) 

 
 

 
 (a) Boundary extracted on 

the projected 2D point set 

 

(b) Boundary back-projected 

to 3D space 

Figure 5 Boundaries found using QR decomposition based 

projected  -Shape algorithm (Radius=     ) 

 
(a) Detected boundaries of 

extracted planes 

 

 
(b) Final planar patches 

representation 

Figure 6: Illustration of Algorithm 3 on synthetic PCD 
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The root mean square error (RMSE) for each extracted 

plane is defined as       √  ∑   ( ̂      )   (18) 

where             is the index of the points that 

associated to the plane. 

7.2.2 Normal deviations 

 The normal deviation measures the accuracy of 

orientation between the extracted plane compared to the 

ground-truth plane. Given the normal vector  ̂  of an 

estimated plane and the corresponding ground-truth normal 

vector  , the normal deviation is:                       ( ̂   ) (19) 

7.2.3 Unit volume error 

 Besides orientation accuracy, the localization accuracy 

of the plane is important. Accordingly, here we define an 

evaluation metric which captures both the orientation and 

translation accuracy, the unit volume error. It is the volume 

generated from the estimated patch and the ground-truth 

patch divided by the area of the ground-truth patch. The 

volume error is illustrated in Figure 7. The volume is 

defined in the direction orthogonal to the ground-truth 

patch. In the calculation of the volume, absolute distances 

are used instead of the signed distances. The units of this 

score are        .                                                               (20) 

 

7.2.4 Detection percentage 

 This metric evaluates how completely the algorithm is 

able to detect all existing planar patches in the PCD. It is 

the percentage of the number of extracted patches, relative 

to the quantity of patches in the ground truth model. The 

number of extracted patches is defined as the number of 

patches in the ground-truth data that are correctly found by 

the algorithm. For example, if there are 20 planar patches in 

the whole ground-truth PCD, and the algorithm is able to 

extract 12 out of the 20 planar patches, then the Detection 

Percentage is 60%. Moreover, if patch A in the ground-

truth data is found but broken into two patches by the 

algorithm, patch A is counted as one patch extracted; or if 

only a part of patch A is found by the algorithm, it is still 

counted as one extracted patch. The ideal value is 100%. 

7.2.5 Oversegmentation factor 

 This metric aims to evaluate for a detected ground-truth 

planar patch, how well the procedure models the patch. For 

each ground-truth planar patch, the number of the 

corresponding extracted planes is counted. Then the 

oversegmentation factor is defined to be the quantity of 

extracted plane models divided by the quantity of unique 

ground-truth models associated to them. For example, 

suppose that the procedure detected six planar patches, two 

Figure 7 Volume between two planar patches 

    

(a) Our method  (b) (Okorn et al., 2010) 

 

(c) (Budroni et al., 2009) (d) (Adan  et al., 2011) 

Figure 8 Final results using different methods on the synthetic PCD 

 

Table 2 
Evaluation results on the synthetic PCD 

Methods our method (Okorn et al., 

2010) 

(Budroni et al., 

2009) 

(Adan  et al., 

2011) 

RMSE (cm) 2.17 0.61 6.91 1.57 7.95 2.12 1.20 1.46 

Unit Volume Err. (     ) 0.13 0.02 0.32 0.08 0.37 0.11 0.13 0.25 

Normal Deviations (      ) 0.14 0.12 0 0 17.98 21.47 

Detection Percentage 100% 100% 100% 100% 

Oversegmentation Factor 1 1 1 1 
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belonging to one ground truth model, and four belonging to 

a second ground truth model. Then the oversegmentation 

factor is (   )    . Combining Detection Factor, the 

ideal case is that the oversegmentation factor equals to 1 

and the detection percentage equals to 100%. In this case, 

there is a one-to-one mapping from the estimated patches to 

the ground-truth patches. 

7.3 Overall performance of the proposed algorithm on 

the synthetic PCD 

Using the evaluation metrics, the proposed algorithm is 

compared to three baseline algorithms. The three baseline 

methods are the Hough transform based algorithm of 

(Okorn et al., 2010), the plane-sweeping algorithm of 

(Budroni et al., 2009), and the region-growing based 

method of (Adan et al., 2011). Some of these algorithms 

only address parts of the pipeline of this problem. In order 

for a fair comparison, the parts in the pipeline which are not 

solved by the compared algorithms will be addressed using 

the corresponding steps of the proposed algorithm. 

Moreover, the final planar patch representations of these 

methods are different. For method (Okorn et al., 2010) and 

method (Budroni et al., 2009) the final results are in solid 

planar patches, while for method (Adan et al., 2011) the 

final results are segmentations of points. The results of 

these three methods on the synthetic PCD are shown in 

Figure 8 respectively. The evaluation results are shown in 

Table 2, which are presented in the format of “mean   

standard deviation”, because there are multiple planes in the 

dataset and the statistics are computed over the planes. This 

simple, synthetic PCD example does not fully reflect real-

world PCDs. For example, the real-world dataset may not 

be oriented precisely, which would introduce errors when 

using methods in (Okorn et al., 2010) and (Budroni et al., 

2009). 

In Table 2, the methods (Okorn et al., 2010) and 

(Budroni et al., 2009) have RMSE>0 but the normal 

deviations are zeros because the extracted planes are of an 

offset compared to the ground-truth planes but they are also 

parallel to the ground-truth planes (and this is why the 

normal deviations are exactly zeros). Note that the normal 

deviations of (Okorn et al., 2010) and (Budroni et al., 2009) 

can be zeros because in this synthetic example all the planes 

are placed perfectly parallel to the coordinate planes. These 

two methods rely on the projection onto coordinate planes 

or plane-sweeping along the direction from rotational 

sweeping. Thus, they have zero normal deviations in this 

synthetic example. However, in reality, the planes in point-

clouds may not perfectly align with the coordinate planes or 

the extracted direction. Therefore in the real-world PCDs 

example, these two methods do not have zero normal 

deviations. It is worthy to note that none of these compared 

methods is able to give estimated plane models or the 

detailed boundaries. Especially, the region-growing based 

methods are only able to give segmentation of point clouds 

that ideally belong to some planes. 

We end the discussion for the synthetic PCD experiment 

by investigating the influence of the number (denoted as  ) 

of linear dependence coefficients used in constructing the 

similarity graph. The misclassification rates of the PCD 

segmentation step w.r.t.   from 2 to 627 are plotted in 

Figure 9. As it can be observed, the mis-classification rate 

varies between        and       . Given that the model 

fitting step corrects this error, the change in performance as 

a function of   is not significant enough to warrant using 

large values of the parameter  . Thus, it is recommended to 

use a relatively small  , one which would correspond to 

selecting a small percentage of the total dataset. 

8 EXPERIMENTS AND EVALUATIONS ON REAL-

WORLD CIVIL INFRASTRUCTURES PCD 

 This section evaluates the performance of the proposed 

algorithm when applied to two real-world infrastructures 

PCDs. The real-world PCDs used were captured using two 

different kinds of methods: a building PCD reconstructed 

from videos using Structure-from-Motion methods, and a 

bridge PCD captured directly using a laser scanner. These 

two real-world PCDs are both of civil infrastructures but 

with different levels of noise.  

When dealing with large-scale PCDs, some pre-

processing and post-processing steps can be added to help 

reduce the processing time. First, the PCD is cut into 

multiple smaller PCDs by partitioning the volume into 

smaller volumes. The proposed procedure is applied to each 

partition. After extracting all planar patch models, the post-

processing step merge the patches that are adjacent and 

have low difference in the model parameters. These pre-

processing and post-processing steps are used in the 

experiments in Section 8. 

8.1 Experiment 1: building dataset from video 

8.1.1 Point cloud dataset  

In this experiment, the PCD of a real building is used. 

The PCD is reconstructed from video using the open-source 

3D reconstruction tool PMVS2 (Furukawa et al., 2010). A 

 
 

Figure 9 Misclassification rate w.r.t. different numbers of 

linear elements in constructing the similarity graph 
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frame from the video is shown in Figure 10. Due to the 

physical constraints of the environment, only three faces of 

the building were captured. Moreover, there are some 

occlusions in the scene, e.g., trees, decorations, etc. The 

reconstructed raw PCD is displayed in Figure 11. The point 

cloud consists of 1,681,634 points, with relatively large 

measurement uncertainty.  

 
 

8.1.2 Experimental results 

The building PCD is processed using the proposed 

algorithm, with parameter settings as listed in Table 3. To 

lower the computational complexity, the PCD is first 

partitioned into           parts. The final result of 

the experiment, after merging the partition results, is shown 

in Figure 12(a), (b). The algorithm extracts 16 planar 

patches from the PCD. 

The raw PCD is also plotted in Figure 12(a), (b) in 

magenta to provide intuitive comparison between the raw 

point cloud and the extracted patches. Note that some open 

parts (for instance, the intersecting part between two roof 

planes in Figure 12 (b)) exist because the point cloud itself 

does not capture the corresponding part due to some 

occlusions. From the experiment it can be observed that the 

extracted patches fit with the point cloud very well. 

 

8.1.3 Comparison to baseline methods 

For (Okorn et al., 2010) method, since proper orientation 

is required, the orientation of the PCD is corrected to align 

the walls to coordinate axes before conducting the 

experiment. The parameters of the compared methods are 

as follows. For (Okorn et al., 2010), we set the grid size of 

the 2D histogram as          . For (Budroni et al., 

 
   

(a) Our method (view 1) (b) Our method (view 2) (c) Method in (Okorn et al., 

2010) (view 1) 

(d) Method in (Okorn et al., 

2010) (view 2) 

    
 (e) Method in (Budroni et 

al., 2009) (view 1) 

(f) Method in ( Budroni et 

al., 2009) (view 2) 

 

(g) Method in (Adan et al., 

2011) (view 1) 

(h) Method in (Adan et al., 

2011) (view 2) 

Figure 12 Extracted planar patches for the building PCD using different methods, plotted with the raw PCD (in magenta) 

 
Figure 10 A sample image from video used to reconstruct 

a building 

 
Figure 11 Raw PCD representation of a building 

 

Table 3 
Parameter configurations for the building PCD 

experiment 

Parameters Value 

optimization parameter   1 

optimization parameter   1 

number of coefficients used in adjacency matrix 10 

MLESAC verification probability threshold 0.5 

MLESAC false alarm rate 

1e-3 (probability a good minimal sample set never 

picked) 

MLESAC assumed noise standard deviation 0.1 

MLESAC minimum iterations 1000 

Point-model distance threshold for Re-

segmentation 

0.1 
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2009) method, the number of the bins used to generate the 

histogram of point numbers for sweeping is 200 and the 

threshold to define a plane in the histogram is set to be half 

of the maximum value in the histogram. For (Adan et al., 

2011) method, the PCD is voxelized into             grids. The number of neighbour points for normal 

estimation is 50; the threshold of maximum angle between 

normal vectors is 2 degrees; the curvature threshold to 

guarantee points are well-described by plane models is set 

as 1. All of these parameter configurations are optimized 

empirically. 

Ground-truth data of the building is collected using a 

professional total station (i.e., SOKKIA 30R). Points are 

measured for each facet of the infrastructures, especially the 

points that define the boundary of each facet of the 

infrastructure. The PCD is obtained by merging the point-

sets from different scan domains using the software of the 

total station. Another method of merging point-sets from 

multiscan domains is proposed in (Sareen et al., 2012) for 

generating more consistent PCDs. After collecting the PCD, 

the measured points belonging to each specific facet are 

selected manually and used to generate the ground-truth 

data for each facet. The planes measured as ground-truth 

are shown in Figure 13. These planes are used to evaluate 

RMSE, unit volume error and normal deviations. For 

detection percentage and oversegmentation factor, in total 

14 planes are considered. The experiment is evaluated using 

the evaluation metrics defined in Section 7.1. 

The evaluation results of the proposed procedure and the 

three baseline procedures are listed in Table 4. Note that in 

Table 4, method (Budroni et al., 2009), no standard 

deviation is given because the method only extracts one 

patch that can be considered corresponding to a ground-

truth plane, which is the largest wall of the building. Since 

only one extracted patch is considered to have a 

corresponding ground-truth patch, we only have one value 

for each metric and undefined standard deviation. 

From Table 4 it can be concluded that the proposed method 

has the best performance among all the comparative 

methods. 

 

8.2 Experiment 2: bridge dataset from laser scanner 

8.2.1 Point cloud dataset 

This section applies the algorithm to the PCD of a bridge 

captured using a professional laser scanner (Leica Laser 

Scan Total Station C10). The bridge span is more than 200 

meters. The raw PCD has 2,005,582 points, which are 

shown in Figure 14. Compared to the building dataset, this 

PCD is of higher accuracy. Moreover, this PCD has more 

planar patch elements then the building PCD. In total, there 

are 40 patches (2 for the road surfaces, 2 for the left and 

right span along the road surface, 9 square columns with 36 

planar patches in total). Since the upper surfaces and the 

lower surfaces coincide with the big upper and lower planes 

of span of the bridge, we decided to only count the planes 

of the span instead of the planes of the beams to avoid 

confusions. The surfaces on the floor and the ramp are not 

considered in this experiment because they are not parts of 

the infrastructure components. The proposed procedure and 

the baseline methods are tested on this PCD.  

 

 

 

 
Figure 13 Planes measured using total stations to 

provide ground truth data 

 

 
Figure 14 Point-cloud representation of the raw 

bridge PCD 

 

Table 4  

Evaluation results on the building PCD 

Methods our method (Okorn et al., 

2010) 

(Budroni et al., 

2009) 

(Adan et al., 2011) 

RMSE (  )                                         

Unit Volume Err. (     )                                           

Normal Deviations (      )                                        

Detection Percentage                 

Oversegmentation Factor               
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8.2.2 Experimental results 

The results on the bridge PCD using the proposed 

algorithm and the same partition strategy as in the previous 

experiment are shown in Figure 15(a), (b). In total there are 

29 planar patches extracted excluding the patches for the 

floor and the ramp. The completeness in terms of the 

number of planar patches is          . The extracted 

patches cover the horizontal and the vertical surfaces of the 

road parts, and most of the surfaces (25 out of 36 patches) 

on all the columns. For the patches of the columns which 

the algorithm fails to extract, it can be observed from the 

raw PCD that the point densities for these patches are lower 

than for the detected column patches, because the positions 

of these patches are blocked in some of the laser scan 

views. The ground-truth data of this PCD is generated 

manually from laser total station data. The performance is 

validated using the metrics in Section 7.1 and the evaluation 

statistics are listed in Table 5 in details. It can be concluded 

from table that the proposed algorithm achieves high 

accuracy in all of these three metrics, and the result on this 

PCD is more accurate than the result on the building PCD.  

8.2.3 Comparison to baseline methods 

The parameters configured are as follows. For (OKorn et 

al, 2010), we set the grid size of the 2D histogram as 0.3m x 

0.3m. For (Budroni et al, 2009), the parameters are the 

same as the previous experiment. For (Adan et al., 2011) 

method, voxel grid size is 3.5              . The 

number of neighbour points for normal estimation is 100; 

the angle threshold is 2 degrees; the curvature threshold is 

1.5. Again, these parameters were optimized empirically 

according multiple trails of experiments.  

The results of the baseline method are also found in 

Figure 15. The result of (Okorn et al., 2010) is shown in 

Figure 15(c) (d), the result of (Budroni et al., 2009) is in 

Figure 15 (e) (f), and the result of (Adan et al., 2011) is in 

Figure 15 (g) (h). 

Evaluation statistics for all the procedures are listed in 

Table 5. The proposed method achieves the best 

performance in terms of all the metrics except for the 

RMSE. For the RMSE, the method in (Adan et al., 2011) 

has the smallest mean value, while the RMSE of the 

proposed method is slightly larger than the method in 

(Adan et al., 2011) but with smaller standard deviation of 

RMSE than method in (Adan et al., 2011) which means the 

RMSEs of all the extracted planes for the proposed method 

are more consistent than that for method in (Adan et al., 

2011). It can also be observed that (Adan et al., 2011) 

method has larger oversegmentation factor compared to the 

proposed method, which is because it breaks the bridge 

surface into several patches. In addition, it is worthy to note 

   
(a) Our method (view 1) (b) Our method (view 2) (c) Method in (Okorn et al., 

2010) (view 1) 

(d) Method in (Okorn et al., 

2010) (view 2) 

  
  

 (e) Method in (Budroni et 

al., 2009) (view 1) 

(f) Method in (Budroni et 

al., 2009) (view 2) 

 

(g) Method in (Adan et al., 

2011) (view 1) 

(h) Method in (Adan et al., 

2011) (view 2) 

Figure 15 Extracted planar patches for the bridge PCD using different methods, plotted with the raw PCD (in magenta) 

  

Table 5  

Evaluation results on the bridge PCD 

Methods our method (Okorn et al., 

2010) 

(Budroni et al., 

2009) 

(Adan  et al., 

2011) 

RMSE (  )                                         

Unit Volume Err. (     )                                         

Normal Deviations (      )                                         

Detection Percentage                 

Oversegmentation Factor                  
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that (Adan et al., 2011) method gives false positives in the 

final result and more importantly the outputs of this method 

are segmentations of the input PCD with no estimates of the 

plane models nor the planar patch boundaries. In general, it 

can be concluded the proposed method has better overall 

performance among all the comparative methods. 

9 CONCLUSION 

 This work focuses on the problem of planar model 

extraction from civil infrastructure PCDs, which requires 

three objectives including the detection of planar structures, 

estimation of planar parametric models and determination 

of the planar model boundaries. In this paper, an innovative 

algorithm is proposed for addressing this problem. The 

proposed procedure is demonstrated to be suitable for large-

scale noisy infrastructure PCDs and able to address all the 

three objectives. One of the most important steps of this 

procedure is that it first recovers the linear dependence 

relationship between each point in the PCD, by solving a 

group-sparsity inducing optimization program. With the 

recovered linear dependence coefficients, the algorithm 

further segments the PCD by clustering the points 

according to the linear subspace. The clustering uses 

spectral clustering with a similarity graph formed from the 

linear dependence coefficients matrix. After PCD 

segmentation, planes are detected and estimated for each 

segmented group via an SVD based approach using 

MLESAC. Finally, the boundary of each plane is detected 

using the  -shape algorithm. The proposed algorithm is 

tested extensively using three types of PCDs: synthetic 

data, a PCD of a real building reconstructed from video, 

and a PCD of a bridge captured directly using laser 

scanners. For the synthetic PCD experiment, detailed 

results are provided to illustrate every step of the procedure. 

To comprehensively evaluate the model extraction 

performance, five different evaluation metrics are applied. 

Furthermore, the proposed algorithm is also compared with 

three baseline methods. The experimental results and the 

evaluation statistics on the real-world PCDs demonstrate 

that the proposed algorithm has the best overall 

performance among the comparative methods on the real-

world PCDs. The future work includes the extension of the 

proposed algorithm for extracting more geometric shapes 

embedded in PCDs, and recognizing the infrastructure 

components after model extraction. 
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