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Abstract

We investigate solving the electromagnetic inverse scattering problem using the distorted Born
iterative method (DBIM) in conjunction with a variable-selection approach known as the elastic net.
The elastic net applies both  and  penalties to regularize the system of linear equations that result
at each iteration of the DBIM. The elastic net thus incorporates both the stabilizing effect of the 
penalty with the sparsity encouraging effect of the  penalty. The DBIM with the elastic net
outperforms the commonly used  regularizer when the unknown distribution of dielectric properties
is sparse in a known set of basis functions. We consider two very different 3-D examples to
demonstrate the efficacy and applicability of our approach. For both examples, we use a scalar
approximation in the inverse solution. In the first example the actual distribution of dielectric
properties is exactly sparse in a set of 3-D wavelets. The performances of the elastic net and 
approaches are compared to the ideal case where it is known a priori which wavelets are involved
in the true solution. The second example comes from the area of microwave imaging for breast cancer
detection. For a given set of 3-D Gaussian basis functions, we show that the elastic net approach can
produce a more accurate estimate of the distribution of dielectric properties (in particular, the
effective conductivity) within an anatomically realistic 3-D numerical breast phantom. In contrast,
the DBIM with an  penalty produces an estimate which suffers from multiple artifacts.
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I. Introduction

Solving the electromagnetic inverse scattering problem involves estimating the distribution of
dielectric properties within a volume  based upon observations of the scattered
electromagnetic field. It is well known that the inverse scattering problem is both nonlinear
and ill-posed [1]. Given an infinite number of completely precise and noise-free measurements,
the inverse scattering problem has a unique solution [1]. However, in the real world,
measurements will be finite in number and will be limited both in terms of accuracy and
precision. In addition, the dielectric properties are typically discretized in some manner to
simplify computations on digital computers. It is for these reasons that the inverse scattering
problem does not have a unique solution in practice.
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There are a number of methods for solving the inverse scattering problem, including conjugate
gradient methods (e.g., [2]–[6]), the distorted Born iterative method (DBIM) and equivalent
Gauss-Newton methods (e.g. [7]–[12]), contrast source inversion methods (e.g., [13]–[16]),
and various others (e.g., [17], [18]). For reasons that will soon become apparent, the results of
this paper are formulated in terms of the DBIM. The DBIM replaces the nonlinear inverse
scattering problem with a series of linear approximations of the form

(1)

where o is a K × 1 vector containing the discretized estimate of the dielectric properties contrast,
b is an M × 1 vector containing the measurements of the scattered electromagnetic field, and
A is an M × K matrix. In each iteration of the DBIM, A and b are functions of the properties
contrast estimated in the previous iteration. The final solution is given by the summation of
the estimated contrast vectors from each iteration. An important point is that for typical
discretization schemes and realistic measurement systems, M << K, in which case (1) is an
underdetermined set of equations. Hence, the systems of linear equations (1) are typically very
ill-conditioned and directly applying the method of least-squares to (1) at each iteration of the
DBIM results in a solution which bears little resemblance to the true distribution of dielectric
properties. Regularization is necessary to stabilize the problem and to define a unique solution
[1].

A common approach to regularization with the DBIM involves solving the set of linear
equations at each iteration via penalized least-squares [9]. The penalty is chosen to favor a
solution of a particular form, such as those that are continuous or smooth. The relative strength
of the penalty is controlled by a regularization parameter. When the penalty involves the 
norm of o, the approach is referred to as ridge regression [19] (also known as Tikhonov
regularization [20]). Ridge regression achieves reduced overall mean square error through a
bias-variance trade-off [21]. A problem with ridge regression is that every element of o in the
estimated solution will generally be non-zero, even if the true solution only involves a subset
of the elements. Consequently the ridge regression solution may contain artifacts that are not
present in the true distribution of dielectric properties in , and this can decrease the imaging
accuracy. This solution stratedgy is referred to in this paper as DBIM-RR.

Sparse approximation methods have been widely applied in the context of linear inverse
problems of the form (1) (e.g., [22]–[26]). The goal is to find a solution that accounts for the
observed data using only a small subset of the elements of o. If the true distribution of dielectric
properties contrast within  is sparse (that is, only a small number of the elements of o are
non-zero), then applying sparse approximation methods at each iteration of the DBIM should
result in a solution that is free of the artifacts associated with ridge regression. While the contrast
o is not necessarily sparse in general, we assume there exists a set of basis functions that
approximate o in a sparse manner. Let

(2)

where Ψ is a K-by-R real-valued matrix of basis vectors, φ is an R-by-1 complex-valued vector
of coefficients, and R is the number of basis functions in the expansion. If o is sparse with
respect to Ψ, then a small number of the elements of φ are nonzero. Such approximations are
common in other fields. For example, it is well known that wavelets can represent images with
a small number of coefficients [27]. While some bases may lead to more sparse representations
than others, one does not need to know the optimally sparse basis to reap the benefits of sparse
approximation.
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A direct approach to the sparse approximation problem involves penalizing the number of
elements of φ involved in the solution to (1), which requires an exhaustive search among all
combinations of elements and thus is not computationally practical [25]. An indirect approach
known as convex relaxation involves instead penalizing the  norm of φ. A growing body of
research indicates that the minimum  solution is equal to the sparsest solution (or very close
to it) under a variety of circumstances (e.g., [24]–[26], [28], [29]). There are several numerical
approaches for solving the  penalized least-squares problem, including greedy algorithms
[30]–[32], and convex programming [33]–[35]. However, in our experience, applying these
purely  regularized methods within the DBIM leads to numerical difficulties due to the
problem size, ill-conditioning, and iterative aspects of the DBIM.

In this paper we investigate solving the electromagnetic inverse scattering problem using the
DBIM in conjunction with a variable-selection approach known as the elastic net [21]. We
denote this approach as DBIM-EN. The elastic net applies both  and  penalties to (1) in
order to regularize each iteration of the DBIM. The elastic net thus incorporates both the
stabilizing effect of ridge regression and the sparsity encouraging effect of the  penalty. One
advantage of the elastic net is that the solution is computable even for very small 
regularization parameters. We follow [21] and use a modified version of the moderately greedy
algorithm known as Least Angle Regression (LARS) [31] for implementing the elastic net at
each iteration of the DBIM. LARS efficiently produces a sequence of solutions which
simplifies the selection of an  regularization parameter. We consider two very different 3-D
numerical testbeds - a cube with an interior dielectric properties distribution that is exactly
represented by a linear combination of a small number of wavelets, and an anatomically
realistic breast phantom with heterogeneous dielectric properties not exactly sparse in any set
of basis functions. Examples given using these testbeds demonstrate the efficacy and broad
applicability of our elastic net approach to the inverse scattering problem.

We note that Baussard et al. [36] proposed an inverse scattering algorithm which is capable of
producing a sparse solution. However, the algorithm in [36] is presented in the context of a
specific set of multiresolution spline basis functions, and sparsity is achieved via a heuristic
refinement process. In this paper we propose searching for a sparse solution to the inverse
scattering problem for an arbitrary set of basis functions, and we encourage sparsity via the
principle of convex relaxation.

Throughout this paper, electromagnetic field vectors and dyads are denoted by upper case
letters with an overline (e.g., Ē). Position vectors are shown as lower case letters with an arrow

overline (e.g., ), while all other vector quantities are indicated by lowercase boldface type
(e.g., v). Matrices are denoted by uppercase boldface type (e.g., M); the matrix transpose and
complex-conjugate transpose operations are represented by superscripts T and H respectively.
The function notation f(x|y) denotes x as the independent variable and y as a parameter.

II. Methods

We begin this section by introducing the DBIM [9]. The brief review is followed by a discussion
of regularization and sparsity, including descriptions of ridge regression and the elastic net.
We conclude this section by discussing the choice of regularization parameters.

A. Distorted Born Iterative Method

Suppose that data is acquired using an antenna array located outside of , the volume
throughout which the dielectric properties are to be estimated. In sequence, each antenna
transmits an electromagnetic signal into  while the other antennas in the array act as receivers.
Consider the case where the mth antenna is transmitting an electromagnetic signal at angular
frequency ω. The nonlinear integral equation that relates the continuous spatial distribution of
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dielectric properties within  to the scattered electric field at the nth receiving antenna is given
by [9]

(3)

In Equation (3), Ēscat is the mathematically defined scattered field, Ē is the total field (known

at  but unknown inside ), and Ēinc is the known incident field. The position vectors of the

mth transmitting and the nth receiving antennas are given by  and , respectively. Inside
the integral, Ḡb is the dyadic Green's function of the homogeneous background, while ∊ and
∊b are the spatially-varying complex relative permittivity of the object and the spatially
invariant complex relative permittivity of the background, respectively. The difference
between the object and background relative permittivity is known as the contrast function,

which is denoted by  [9].

We solve this nonlinear problem by using a series of simplifying assumptions. Under the Born
approximation [9], the integral in (3) is linearized by replacing the total electric field Ē in the
integral with the known incident field Ēinc. The scalar approximation [3] assumes that only the
z-directed component of the incident field is non-zero

 and only the z-directed component of the electric
field is measured by the receiving antennas. In theory the scalar approximation results in a loss
of information, but in practice it has been shown that it does not significantly impact imaging
performance [37]. These approximations yield the following simplified integral equation:

(4)

where  represents the z-z component of the Green's function dyad.

Equation (4) can be discretized via the Riemann sum under the assumption that all quantities
are constant over volume elements (voxels) of volume V. Applying this discretization scheme
to the set of approximations (4) for all transmit-receive pairs results in the following set of
linear equations:

(5)

In (5), A0 is an M-by-K matrix, where M is the number of transmit-receive pairs in the antenna
array and K denotes the number of voxels. The K-by-1 vector o1 contains the dielectric
properties contrast for the K voxels in , while b0 is an M-by-1 vector and has elements equal

to , for q = 1, . . . , M. We emphasize that b0

does not lie entirely in the span of the columns of A0, due to the linear (Born) approximation.

Solving (5) results in a discrete approximation ô1 of the true distribution of contrast . A
better approximation can be obtained by adding ô1 to the background and using a series of
computational electromagnetics simulations to calculate the new incident electric field and
inhomogeneous Green's function based on ô1 + ∊b1 [11]. The symbol 1 is here used to represent
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a vector of all ones. The following new set of linear equations is obtained upon substituting
these updated field quantities into (4):

(6)

Equation (6) is solved, resulting in an estimate ô2, and the process is repeated for multiple
iterations. Full-wave computational electromagnetics simulations are conducted at every
iteration in order to calculate the updated incident electric field and Green's function. These
simulations are often collectively referred to as the ”forward solver.” We note that the scalar
approximation described above in the context of (4) only applies to the inverse solution; that
is, the z-component of the electric field and the z-z component of the Green's function dyad
are recorded from the full-wave forward solution and incorporated into the linear system of
(6).

The vector bi contains the residual fields after the ith iteration. Once the norm of bi ceases to
decrease significantly from iteration to iteration, the DBIM has converged and the estimated

contrast is given by . The estimated distribution of dielectric properties is thus ∊b1 +
ô.

B. Basis Functions, Regularization and Sparsity

We re-express the vector of dielectric properties contrast at any iteration of the DBIM as a
linear combination of basis functions using (2). The DBIM for this basis function expansion
consists of estimating the coefficients of the basis functions instead of the contrast at each
voxel. The linear problem at each iteration of the DBIM becomes

(7)

While it is assumed that the number of measurements M is less than the number of discrete
samples K, the number of basis functions R can be any size in theory. It is assumed that R is
smaller than the single-precision numerical rank of A, which can be considered the effective
number of measurements. In the examples considered in this paper, the rank of A is always
around 100. Under these assumptions, (7) is an underdetermined system of equations. In
addition, b does not lie entirely in the span of the columns of AΨ due to the linear approximation
involved in obtaining (4). Solving the normal equations [38] results in the least-squares solution

(8)

Owing to the ill-posed nature of the inverse scattering problem, AΨ is almost never full
numerical rank in single precision arithmetic.

Tikhonov regularization and ridge regression stabilize (8) by adding in a fraction of the identity
matrix [19], [20]:

(9)

The statistical interpretation of (9) is that the overall mean square error of  is reduced through
a bias-variance trade-off [21]. In the context of the ill-posed inverse scattering problem, the
addition of γ2I pads the smallest eigenvalues of ΨHAHAΨ and thus improves numerical
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stability. The disadvantage of ridge regression is that in general every element of  will be
non-zero, even if the corresponding basis function plays no part in the true solution. This can
introduce spurious artifacts in the estimated distribution of dielectric properties.

We address this issue by solving (7) via the elastic net [21]. This involves replacing (7) with
the following optimization problem

(10)

We denote the solution to (10) as . The elastic net can be thought of as a generalization of
both ridge regression and of sparse approximation methods. When either γ1 or γ2 become very

large,  will tend to 0. When both γ1 and γ2 go to zero, then  becomes (8) which is not

computable. When just γ1 goes to zero,  approaches (9). As γ2 goes to zero, then (10)
becomes an -based sparse approximation problem. However, we note that the nonlinear and
ill-posed nature of the inverse scattering problem can create numerical difficulties for greedy
and convex optimization algorithms searching for a solution with γ2 = 0. For instance, convex
optimization approaches typically need to be initialized with a solution that already satisfies
the system of linear equations [35]. Finding such an initialization becomes difficult since (8)
is not computable. Greedy algorithms that build up a solution one basis function at a time and
use least-squares to determine the coefficients [31], [32] may be unstable. These difficulties
can be eliminated by using a non-zero value for γ2 in (10).

We follow [21] and use a modified version of the moderately greedy algorithm known as Least
Angle Regression (LARS) [31] for implementing the elastic net at each iteration of the DBIM.
The modified LARS algorithm forms a sequence of solutions with monotonically increasing

 norm, starting with the null solution and ending with . This allows γ1 to be replaced by a
new parameter s which is equal to the desired  norm of the solution [21]; obviously s is

bounded from above and below by  and 0 respectively. A sparse solution is obtained by
selecting an itermediate value for s. An advantage of using LARS is that its greedy nature
simplifies the selection of a suitable value for s. Another advantage is that LARS allows a
previously selected element from φ to be discarded if it is determined not to be suitable for the
solution. This attribute makes LARS more robust than other greedy algorithms such as
orthogonal matching pursuits [31].

C. Selection of Regularization Parameters

We use the L-curve principle [39] to determine the regularization parameters for the DBIM-
EN and DBIM-RR. The L-curve determines a suitable regularization parameter by balancing
the norm of the linearized residual AΨ φ – b and the norm of the solution φ [39]. The L-curve
has been shown to be very robust in practice [39], although it is not optimal in any sense. The
L-curve applied to ridge regression balances the  norms of the linearized residual and of the
solution. There are two regularization parameters to determine for the elastic net: γ2 and s. We
first determine γ2 by applying the L-curve to all of the basis functions at once. With this choice
for γ2, we again use the L-curve to choose s by balancing the  norms of the linearized residual
and of the solution. We justify the use of this two step procedure based upon the empirical
observation that the shape of the  L-curves do not change appreciably for a wide range of
values of γ2. We choose all regularization parameters using the point on the L-curve closest to
the intersection of lines that are fit to points from the initial and tail regions of the L-curve.
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III. Examples

We apply the DBIM-EN and the DBIM-RR to data simulated using two different 3-D
computational testbeds. The first testbed consists of a generic object - a simple cube - whose
distribution of dielectric properties is exactly represented by a linear combination of a small
number of wavelet basis functions. We compare the DBIM-EN with those obtained using the
DBIM-RR for ten different distributions of dielectric properties within the object. The second
testbed consists of an anatomically realistic breast phantom with dielectric properties that
correspond to the microwave frequency range. A previously reported inverse scattering
algorithm also based upon the DBIM [40] is applied to the simulated data for the purpose of
generating a low-resolution estimate of the distribution of dielectric properties within the breast
phantom. The DBIM-EN and DBIM-RR estimate higher-resolution details within the breast
phantom using this low-resolution estimate as an initial guess. For both examples we use a fast
implementation of the modified LARS algorithm available at [41].

A. Microwave Imaging of a Heterogeneous Lossy Dielectric Cube

The purpose of the first testbed is to demonstrate the performance of our sparsity approach to
inverse scattering for the ideal case where the distribution of dielectric properties is sparse in
a known set of basis functions. We first describe the computational testbed, which is shown in
Fig. 1. Then we present qualitative and quantitative results which indicate that the elastic net
outperforms the ridge regression approach for this scenario.

1) Testbed—The testbed consists of a 6.4 × 6.4 × 6.4 cm3 lossy dielectric cube. The
distribution of dielectric properties within the cube is an exact linear combination of 13 3-D
Haar wavelets [42]. The cube is immersed in a coupling medium (relative permittivity: ∊r =
2.6, conductivity: σ = 0.0 S/m) and is surrounded, as shown in Fig. 1, by a 40-element
cylindrical antenna array consisting of five elliptical rings (10.4 × 11.6 cm) of eight electrically-
small z-directed dipole antennas. The ring spacing in the z-dimension is 1 cm. Each dipole
antenna is modeled by two segments of 6-mm-long copper wire separated by a 2 mm gap.
Physical interaction between any of the 1.4-cm-long array elements is minimized by offsetting
the placement of the dipoles in each ring by 22.5° from the placements in the neighboring rings.

A finite-difference time-domain (FDTD) computational electromagnetics simulation [43] is
conducted to acquire microwave signals measured at all recording antennas for every
transmitting antenna in the array. The spatial grid cell size in these simulations is 2 mm. In
each simulation, a different antenna array element is excited with a modulated Gaussian pulse
(−20 dB bandwidth: 500 MHz to 3.5 GHz) applied at the feed point. The bandwidth of the
radiated signal 5 cm away in the coupling medium is 875 MHz to 3.75 GHz. The z-directed
electric fields at the feed point of the other antennas in the array are recorded and transformed
to phasors at 2.1 GHz.

The distribution of dielectric properties within the cube is given by a 3-D Haar wavelet
expansion consisting of a scaling function and 3 levels of wavelets (R = 512 basis functions).
The scaling function and the first level of wavelets have support over the entire cube, while
the wavelets from the second and third levels have support over sub-volumes of 3.2 × 3.2 ×
3.2 cm3 and 1.6 × 1.6 × 1.6 cm3, respectively. Each of the orthonormal basis functions in the
expansion is normalized by the amplitude of the scaling function.

We conduct a study consisting of ten trials, where in each trial the scaling function and 12 of
the Haar wavelets are randomly chosen to represent the true distribution of dielectric properties
within the cube. The complex coefficient for the scaling function is chosen in each trial so that
the baseline dielectric properties within the cube are ∊r = 10.0 and σ = 0.125 S/m. Four wavelets
are then randomly selected from each of the three levels in the Haar expansion. The coefficients
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for these randomly selected wavelets are ±(0.25 – j0.0535), where the sign is chosen randomly.

For each of the ten trials, ∊r ranges from 7.04 to 12.96, and σ ranges from 0.0511 to 0.199 S/

m. An x-y cross section (z = 2.0 cm) of the distribution of ∊r within the cube for one of the ten

trials is shown in Fig. 2(a).

2) Results—We use FDTD with a spatial grid cell size of 2 mm as the forward solver for the

DBIM. Note that this is the same spatial grid cell size used for the “measurement” FDTD

simulations. Committing this so-called inverse crime [1] allows the field residual (the

measurement error, discussed later) to be driven to zero, which is desirable from the point of

view of being able to set an upper bound on performance. This, together with the lack of

measurement noise, allows the impact of ridge regression and the elastic net to be isolated. The

example in Section III-B considers the case where the inverse crime is not committed. In these

ten trials we make use of some a priori information about the cubic object. We use the DBIM

to optimize just over the set of the 512 Haar wavelets; this implies knowledge of the location

of the cube boundary. We also assume knowledge of the baseline dielectric properties of the

cube, which are used as an initial guess by the DBIM to speed up convergence of the DBIM.

We consider the performances of the DBIM-EN and DBIM-RR and compare them to the ideal

solution calculated with what is known as the oracle [42]. The oracle involves solving (7) by

considering only the Haar wavelets which are known to be present in the true solution. Since

this knowledge will never be available in practice, the oracle provides a lower bound on the

error in the estimated coefficients ( ). We simulate data acquisition with FDTD and then

apply the DBIM to data collected for each of the ten trials using the oracle, ridge regression,

and the elastic net. The DBIM converges in six iterations for all trials and approaches. The

oracle approach produces solutions which involve only 13 of the 512 Haar wavelets. In contrast,

the ridge regression solutions involve all 512 Haar wavelets. The elastic net solutions involve

between 132 and 208 wavelets at each iteration with a mean of 162.

The results of the ten trials for all three approaches are summarized in Table I. The normalized

field residual  indicates how well the three approaches fit the scattered

electromagnetic field data. The normalized coefficient error  measures how close

the estimates are to the true solution. Table I lists the mean values and standard deviations for

these two metrics. All three approaches achieve similar levels of performance with regards to

fitting the scattered electromagnetic field data. The slightly lower field residuals for the

approaches using ridge regression and the elastic net can be explained by the extra degrees of

freedom afforded those solution strategies and the ill-posed nature of the nonlinear inverse

scattering problem. As expected, the oracle performs the best in terms of coefficient error since

it only optimizes over the 13 Haar wavelets that are actually involved in the true solution. The

mean coefficient error for the elastic net is approximately four standard deviations lower than

the corresponding value for ridge regression. This indicates that the DBIM-EN results in a

significant improvement over the DBIM-RR. The improved performance is evident in Fig. 2,

which shows x-y cross sections of estimated ∊r at 2100 MHz for one of the ten trials.

B. Microwave Imaging of a Heterogeneous Breast Phantom

The purpose of the second testbed is to demonstrate the performance of our sparsity approach

to the inverse scattering problem for a more realistic situation where the distribution of

dielectric properties is not exactly sparse in a chosen set of basis functions. We consider an

example from the field of microwave breast imaging [44]–[47]. Interest in this field has been

fueled by data suggesting that the dielectric properties of breast tissue at microwave frequencies

[48]–[52] are sensitive to certain physiological factors of clinical interest, such as water content,

temperature, and vascularization. Consequently microwave tomography has the potential for

characterizing normal breast tissue density - an important factor in assessing a patient's risk of
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breast cancer [53] - as well as detecting and monitoring malignancies - the focus of this
example. We first describe the testbed containing the breast phantom shown in Fig. 3 and then
present results which show that the elastic net approach again outperforms ridge regression.

1) Testbed—The numerical breast phantom shown in Fig. 3 is derived using a 3-D MRI
dataset from a patient with “scattered fibroglandular” breast tissue, based on the American
College of Radiology's BI-RAD system [54]. The scattered fibroglandular breast tissue is
evident in the three cross sections of Fig. 4(a), (c), and (e). These orthogonal cross sections
pass through the center of a 1-cm-diameter inclusion that has been added to the phantom to
represent a malignant lesion.

Data is acquired using FDTD as with the testbed of Fig. 1, save for a few differences. The
spatial grid cell size in this testbed is 0.5 mm; this smaller grid cell size is required to resolve
the fine geometrical features of the breast phantom. The phantom testbed uses an antenna array
whose elliptical rings have dimensions 9.6 × 12.4 cm. These array dimensions ensure that no
antenna is closer than 1 cm to the surface of the breast phantom.

The numerical breast phantom is created following a procedure similar to those reported in
[55], [56]. The intensity of the voxels in the MRI dataset is converted to dielectric properties
via a piecewise linear mapping [6], [57]. The interior of the breast phantom is segmented into
three distinct regions: adipose, fibroglandular, and transition. We adopt the dielectric properties
reported in a recent large scale dielectric spectroscopy study [52] for the adipose and
fibroglandular regions in the breast phantom.

Lazebnik et al. [52] reported the microwave-frequency dielectric properties for three breast
tissue groups (Groups 1, 2, and 3) defined by their adipose content. Samples from Group 3
were composed primarily of adipose tissue with relatively low dielectric properties, and so we
assign the dielectric properties reported for Group 3 to the adipose regions of the phantom.
Groups 1 and 2 were comprised of samples with smaller amounts of adipose tissue and
correspondingly higher dielectric properties, with samples from Group 1 having the least
amount of adipose tissue and the highest average dielectric properties [52]. We choose to assign
the properties from Group 2 to the fibroglandular region of the phantom, although using the
properties from Group 1 would constitute a more challenging problem. We note that the
combined use of Group 2 and Group 3 properties is still much more realistic than those
considered in any other previous theoretical study of microwave imaging for breast cancer
detection.

MRI voxel intensities in the adipose and fibroglandular regions are mapped to +/− 40% ranges
about the mean properties assigned to each tissue type. Voxels in the transition region are
mapped to the range spanning the maximum of the adipose range to the minimum of the
fibroglandular range. The 2-mm-thick skin layer is modeled using the dielectric properties for
dry skin [58]. The dielectric properties assigned to the spherical inclusion are adapted from
[59] and are representative of malignant breast tissue properties in our frequency range of
interest. Table II gives the dielectric properties used in the FDTD model at 2.1 GHz (the
frequency at which the scattered signals are recorded).

2) Results—Note that in this example the spatial resolutions of the data-generation and the
DBIM forward-solver FDTD simulations are not the same. The grid cell size is 0.5 mm for the
data-generation FDTD simulations and 2 mm for the forward solver. This results in an inherent
mismatch between the two sets of simulations and produces as much as 15% difference even
when the exact same distribution of dielectric properties is simulated. The mismatch is partially
corrected through the use of the calibration procedure proposed by Meaney et al. [44], but
because this calibration procedure is not perfect, the inverse crime is not being committed in
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this example. The data-generation FDTD simulations are run in parallel on a computing cluster,
while the forward solver is run on a desktop computer utilizing Acceleware hardware
acceleration technology [60]. The forward solver simulations require about 30 seconds per
antenna, or approximately 20 minutes per DBIM iteration.

Figure 4(b),(d),(f) shows the low-resolution estimate of the relative permittivity distribution at
2.1 GHz that we use as the initial guess in the DBIM-RR and DBIM-EN. The initial estimate
of the conductivity is similar in appearance, except the grayscale spans 0 - 1.9 S/m. These
estimates are obtained using the low-resolution inverse scattering algorithm reported in [40].
This algorithm, which is also based upon the DBIM, estimates the properties using a smooth
set of basis functions with a nominal resolution of about 1 cm. The presence of the spherical
inclusion is apparent in Fig. 4, although we note that the estimated contrast of the scatterer is
less than the true contrast.

We investigate the feasibility of generating a higher-resolution image of the interior of the
breast phantom using the DBIM-RR and DBIM-EN with a set of 3-D Gaussian basis functions,
constructed as follows. A cuboidal volume (7.2 × 11.2 × 6.8 cm3) enclosing the breast phantom
is first defined. Fifteen 1-D Gaussians are defined along each of the axes of the cuboidal
volume. The standard deviations for these 1-D Gaussians are 3.6, 5.6, and 3.4 mm for the x,
y, and z axes, respectively; the 1-D Gaussians are spaced along each axis of the cuboidal volume
by 4/3 standard deviations. Three-dimensional Gaussian basis functions are defined using all
3375 combinations of the 1-D Gaussians and the Kronecker product [42]. For simplicity, we
only include basis functions which have at least 95% of their support within the breast phantom
interior; these chosen basis functions are truncated so that they are entirely supported within
the breast phantom interior. This reduces the number of 3-D Gaussian basis functions from
3375 to 737. These 3-D Gaussian basis functions are not optimal for this example in any sense;
they are selected for simplicity and to demonstrate that our sparsity approach to inverse
scattering can be successful even when the true distribution of dielectric properties is not
exactly sparse in the chosen set of basis functions.

Figures 5 and 6 show the results from applying the DBIM-RR and DBIM-EN using these 737
3-D Gaussian basis functions and the low-resolution initial guess of Fig. 4(b),(d),(f). The elastic
net approach takes six iterations to converge, while the ridge regression approach converges
after three iterations. The two sets of images of estimated relative permittivity at 2100 MHz
(Fig. 5) appear similar, although we note that the contrast of the spherical inclusion is slightly
higher in the elastic net estimate. The two sets of images of estimated effective conductivity
(Fig. 6) are very different from each other. The elastic net estimate is sharper and has higher
contrast, while the ridge regression estimate falsely indicates the presence of additional high
contrast scatterers. These artifacts are suppressed in the elastic net estimate since on average
only 234 of the 737 3-D Gaussian basis functions are involved in the solution at each iteration
of the DBIM-EN.

IV. Summary and Conclusion

We demonstrated the feasibility of solving the electromagnetic inverse scattering problem
using a basis function formulation of the DBIM in conjunction with a variable-selection
approach known as the elastic net. The elastic net applies both  and  penalties to the system
of linear equations that result at each iteration of the DBIM. The combined  and 
regularizations stabilize the inverse problem and promote sparsity in the solution. A more
typical approach known as ridge regression only involves the  penalty. We applied the DBIM-
EN to data simulated using two different 3-D computational testbeds, and compared results
with those obtained using the DBIM-RR.
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First we presented reconstructions of a geometrically simple object whose heterogeneous
dieletric properties distribution is exactly represented by a linear combination of a small
number of wavelet basis functions (13 out of a possible 512). The DBIM-RR solution made
use of all 512 basis functions, while the DBIM-EN solution made use of a subset of the basis
functions. We used a representative set of reconstruction cross-sections to illustrate that the
DBIM-EN performance is qualitatively closer than the DBIM-RR to that of the ideal approach,
namely the DBIM with an oracle. We also conducted quantitative comparisons and
demonstrated that the DBIM-EN consistently performed better than the DBIM-RR across ten
trials involving different dielectric properties distributions within the object.

Second we presented reconstructions of a geometrically complex object - an anatomically
realistic breast phantom - to demonstrate the feasibility of using the DBIM-EN for microwave
breast imaging. We initialized the DBIM-EN as well as the DBIM-RR with a low-resolution
estimate of the dielectric properties distribution within the breast phantom obtained using the
inverse scattering algorithm reported in [40]. The DBIM-RR solution made use of the entire
set of 737 3-D Gaussian basis functions chosen for this formulation, while the DBIM-EN
solution made use of less than one third of the basis functions. The DBIM-EN produced an
enhanced contrast image of a 1-cm-diameter inclusion, while DBIM-RR reconstructions
falsely indicated the presence of additional scatterers.
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Fig. 1.

The first computational testbed consists of a 6.4 × 6.4 × 6.4 cm3 cubic object surrounded by a
40-element antenna array of 1.4-cm-long dipoles. The dielectric properties distribution within
the cube is generated by a linear combination of 13 3-D Haar wavelets.
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Fig. 2.

Cross sections in the x-y plane (z = 2 cm) showing the results for one of the ten trials for the
first computational testbed shown in Fig. 1. (a) The true distribution of relative permittivity;
(b) Estimated permittivity using the DBIM in conjunction with the oracle; (c) Estimated
permittivity for DBIM-RR; (d) Estimated permittivity for DBIM-EN. Although (a) and (b)
appear identical, Table I shows that there is some error in the oracle estimate.
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Fig. 3.

The computational testbed for the second example consists of an anatomically realistic
numerical breast phantom surrounded by a 40-element antenna array of 1.4-cm-long dipoles.
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Fig. 4.

Three orthogonal cross sections of relative permittivity at 2100 MHz for the breast phantom
testbed. The left column [(a),(c),(e)] shows the true distribution of relative permittivity at a
spatial resolution of 0.5 mm. The right column [(b),(d),(f)] shows the low-resolution estimated
relative permittivity used as the initial guess in the DBIM-EN and DBIM-RR. Note that the
estimate uses a much coarser spatial resolution (2 mm).
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Fig. 5.

Three cross sections of the estimated relative permittivity at 2100 MHz obtained using the
DBIM-RR [(a),(c),(e)] and the DBIM-EN [(b),(d),(f)]. The output of a low-resolution inverse
scattering algorithm [40], shown in Fig. 4(b),(d),(f), is used as an initial guess for both
algorithms.
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Fig. 6.

Three cross sections of the estimated effective conductivity at 2100 MHz obtained using the
DBIM-RR [(a),(c),(e)] and the DBIM-EN [(b),(d),(f)]. The output of a low-resolution inverse
scattering algorithm [40] is used as an initial guess for both algorithms.
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TABLE I

A summary of the results from the ten trials with the heterogeneous lossy dielectric cube testbed shown in Fig.
1. The performances of the DBIM using the oracle, ridge regression, and the elastic net are compared. The metrics
shown are the normalized field residual after six iterations and the corresponding normalized coefficient error.

∣ b6 ∣
2
∣ b0 ∣

2
−1 ∣ φ − φ^ ∣ 2 ∣ φ ∣ 2

−1

Mean Std. Dev. Mean Std. Dev.

Method (×10–2) (×10–2) (×l0–2) (×l0–2)

Oracle 7.92 0.699 2.72 0.303

Ridge Regression 7.16 0.893 9.55 0.774

Elastic Net 7.03 0.851 6.47 0.725
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TABLE II

Dielectric properties (at 2.1 GHz) of the various media present in the heterogeneous breast phantom testbed of
Fig. 3.

Material ∊ r σ (S/m)

Adipose tissue (mean) 7.73 0.170

Fibroglandular tissue (mean) 35.7 1.03

Dry skin 39.2 1.30

Spherical inclusion 50.0 1.45

Coupling medium 2.60 0.00
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