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Abstract

One of the most important indicators of dental caries prevalence is the total count of decayed,
missing or filled (DMF) surfaces in a tooth. These count data are often clustered in nature (several
count responses clustered within a subject), over-dispersed, as well as spatially referenced (a
diseased tooth might be positively influencing the decay process of a set of neighboring teeth). In
this paper, we develop a multivariate spatial Beta-Binomial (BB) model for these data that
accommodates both over-dispersion as well as latent spatial associations. Using a Bayesian
paradigm, the re-parameterized marginal mean (as well as variance) under the BB framework are
modeled using a regression on subject/tooth-specific co-variables and a conditionally
autoregressive (CAR) prior that models the latent spatial process. The necessity of exploiting
spatial associations to model count data arising in dental caries research is demonstrated using a
small simulation study. Real data confirms that our spatial BB model provides a superior
estimation and model fit as compared to other sub-models that do not consider modeling spatial
associations.
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1 Introduction

Dental caries, otherwise known as tooth decay, is an infectious localized disease and is one
of the most prevalent chronic diseases of people worldwide (affecting around 80% of the
world population) and is the primary cause of oral pain and tooth loss, as described in the
US Surgeon General's report!, Fejerskov and Kidd2, Kidd ez al.3. Its impact on individuals
and communities as a result of pain and suffering, impairment of function and reduced
quality of life is considerable®. In the USA, caries is the most common chronic disease of
childhood, and is five times more common than asthma!. Caries is primarily influenced by
poor oral hygiene (brushing/flossing habits), frequent consumption of sugar based products
as well as socio-economic factors such as poverty status, access to care, etc. Despite the
widespread decline in caries prevalence and severity in high-income countries over the past
few decades, disparities still remain and many children and adults still develop caries>-°.

Caries is caused by organic acids that originates from the microbial fermentation of
carbohydrates’ which affects the mineral constitution of teeth. Primarily, three essential
interactive factors causes caries: the host, represented by teeth and saliva; the oral microbial

" Address of correspondence: Division of Biostatistics and Epidemiology, Department of Medicine, 135 Cannon Street Suite 303,
Charleston, SC 29425, U.S.A. bandyopd @musc.edu.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuepy Joyiny Yd-HIN

Bandyopadhyay et al.

Page 2

flora; and poor dietary habits®:?. The destroyed tooth surfaces can never fully regenerate,
though remineralization of very small carious lesions is possible by an optimal level of
dental hygiene. Personal hygiene care involves daily proper brushing and flossing, dietary
modifications (reduced consumption of sugar), etc. Use of dental sealants and fluoride
therapy is recommended to provide protection against dental caries. The cost of treatment of
caries is extremely costly, representing the fourth most expensive disease to treat in most of
the industralized world’. For further details on dental caries, the interested reader is referred
to the very interesting seminar article by Selwitz er al. 0.

In this paper, we analyze data on 100 subjects from a clinical study!! conducted at the
Medical University of South Carolina (MUSC) among Type-2 diabetic Gullah-speaking
African-Americans, whose dental caries status remains highly unexplored. Clinical studies
examining dental caries status produces a clustered multivariate set-up!2 where measures are
taken for tooth surfaces (whether a particular tooth surface is decayed, or missing or filled),
clustered within a tooth, which in turn, remains clustered within the oral cavity of that
subject. The total count of decayed, missing and filled surfaces per tooth, also known as the
‘DMFS’ index, is recorded per tooth. There are 32 teeth in total for the adult dentition) for
each subject as a measure of caries status. The DMFS index!3 is the most popular caries
marker and is indicative of the cumulative severity of caries status for that particular tooth.

Figure 1 shows the density histogram of tooth level raw DMFS counts (ng, s = 1,...,32) for
our study subjects. Because the ‘maximum’ tooth level DMFS count can be either 4 or 5
(depending on the tooth location, see Section 2 for more details), we have a discrete
‘Binomial’ count setup. The raw plot reveals a somewhat U-shaped structure, indicating
some over-dispersion (extra-Binomial variation) in the form of excessive observed DMFS
counts of 0 and 5. This raises the question of whether a considerable number of subjects
truly have caries-free (DMFS=0) or advanced carious (DMFS=5) teeth, or whether this large
number of 0 and 5 is a result of some ‘latent heterogeneity’, with many subjects simply
having a low/high ‘true’ caries index. Also, the observed (raw) DMEFS index of a tooth
might be influenced (spatially) by the caries status of a set of neighboring teeth. Here, we
develop a spatial Beta-Binomial (BB) model for multivariate count data to address two
broad questions related to the dental caries status of this Gullah-speaking study sample: (a)
How do the potential covariates like age, gender, smoking habit, brush-floss habits, poverty
status, etc influence caries status at the tooth-level after accounting for spatial association?
and (b) How does spatial association influence development of caries lesions in a group of
neighboring teeth? The BB model has been highly explored in the statistical literature,
particularly in toxicology!#13, disease incidence!6-!7 and radiation!® to model binomial data
with excess unobserved heterogeneity. In the area of disease mapping, interest often lies in
identification of ‘extreme areas’, which may arise in proximity to one another either in a
smooth spatial surface, or as isolated ‘hot spots’ or ‘low spots’ which are quite distinct from
the neighboring teeth!. It is presumed that a particular tooth within the oral cavity
experiencing caries lesions tends to affect a set of neighboring teeth of the same subject.
Also, the responses are ‘clustered’ in nature, i.e. a group of 32 teeth within the oral cavity of
a subject seem to share similar subject-level characteristics and can be considered
‘stochastically’ independent of the set of teeth for another subject. To analyze these
correlated (and possibly over-dispersed) count data with latent spatial autocorrelation, we
use a conditionally autoregressive (CAR) specification for the spatial random effects,
pioneered by Besag?". Using a convenient re-parametrization!# of the BB parameters, we
use a CAR logistic regression model to determine the effect of subject/tooth specific
covariables on DMFS outcomes. The CAR specification assumes a Markov Random Field
(MRF)2! model such that the conditional distribution of a spatial unit (tooth) depends on
only the outcomes of a pre-defined set of neighboring teeth. The (latent) spatial model thus
borrows strength across neighboring teeth to provide smoothing and improve estimates of
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true caries status for each tooth. MRF's include a wide class of spatial models such as auto-
Gaussian models for spatial Gaussian processes, auto-logistic models for binary spatial
processes, auto-Gamma models for non-negative continuous processes and auto-Poisson
models for spatial count processes. The CAR specification is actually an auto-Gaussian
model analogous to an auto-regressive time series model'®. However, some practical
questions associated with incorporating spatial dependencies include proper quantification
of spatial autocorrelation through defining a proper neighborhood structure, its impact on
covariate assessments and enhancement of statistical efficiency through standard errors
reduction. The monograph by Lawson ef al.22 provides a comprehensive review of CAR
models in the context of disease mapping while Banerjee er al.2? details recent advances in
hierarchical Bayesian methodologies for spatial/spatio-temporal data.

Though CAR models have been widely explored in the context of disease mapping, their
application for analysis of multivariate dental caries data is relatively sparse and comes with
unique challenges. First, there is clustering induced at the subject level. Also, unlike many
applications where the spatial structure is clearly defined by a grid or geopolitical
boundaries, the spatial structure within a mouth must be carefully chosen. Applications of
spatial models for dental disease outcomes are relatively new. Very recently, various CAR
specifications within the mouth in the context of periodontal (gum) disease modeling has
been explored in2*23, To the best of our knowledge, there had been no previous exploration
of the CAR specification to model spatially correlated count data on dental caries. The
spatial nature of caries progression within a mouth is not established; we adopt a
neighborhood structure accomodating adjacent teeth as well as (some) contacting teeth on
opposite jaws. We show that accounting for this neighborhood spatial association structure
dramatically improves the predictive performance of our model. Our approach is Bayesian,
which has the ability to incorporate background (prior) information about the unknown
parameters in the model, both for subject/tooth level covariates as well as for spatial
dependencies. Bayesian inference with proper prior elicitations, powered by Markov chain
Monte Carlo (MCMC) steps provides inference and does not depend on asymptotic
calculations. Our models allow us to determine the degree of extra-binomial variation in the
data. We also compare our spatial CAR models to alternative models that do not distinguish
the effect of spatial associations among teeth using a Bayesian model choice criterionZ® and

cross-validatory techniques?’.

The outline of the paper is as follows. Section 2 describes the DMFS count data that
motivated this research. In Section 3, we propose our spatial BB model and explore the
association structures needed to develop the spatial model. Section 4 proposes Bayesian
inference based on the data likelihood, prior and hyperprior specifications as well as various
model selection/assessment tools. In Section 5, we apply our spatial model to the dental
caries data, use model selection and assessments tools to determine the best model and
summarize findings. We explore a small simulation study in Section 6 to study the effect of

accounting for spatial associations on estimating covariate effects. Conclusions and future
developments are in Section 7.

2 Motivating Data

The motivating data were collected from a clinical study!! conducted by the Center for Oral
Health Research (COHR) of the Medical University of South Carolina (MUSC) as part of
the South Carolina Center for Biomedical Research Excellence (COBRE) Program for Oral
Health. The study assessed caries status among Type-2 diabetic Gullah-speaking (or simply
Gullah) African-Americans (13 years or older) residing in the coastal sea-islands of South
Carolina. All subjects answered a detailed questionnaire focussed on their social, medical
and dental history and underwent an oral exam. To develop our methods, we selected a
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random sample of 100 subjects with complete covariate information and DMFS counts for
all the 32 teeth within a subject. Each quadrant of teeth (consisting of a cluster of § teeth, 2
in each jaw) in a human mouth?8 is made up of (a) the non-anterior teeth (3 molars and 2
pre-molars) and (b) the anterior teeth (1 incisor and 2 canines). For measuring caries, each
non-anterior tooth contributes 5 surfaces (occlusal, mesial, distal, facial and lingual) while
an anterior tooth contributes 4 surfaces (the occlusal not being recorded) to the response.
Figure 2 illustrates the different surfaces for permanent dentition within a mouth. Handling
the M part of the DMFS index varies2” because the extracted/missing tooth calls for an
arbitrary allocation of the number of decayed surfaces for that tooth. In this paper, we use
the DM;sFS convention, i.e. assign 4 surfaces for an extracted anterior tooth and 5 for an
extracted non-anterior tooth when extraction is reported due to caries. If the subject reports a
tooth loss due to a cause other than caries, this tooth does not contribute to the data analysis.
Additionally, several subject level covariates were collected including Age (in years),
Gender (0=Male, 1=Female), Smoking status (O=Never, 1=Smoker), Brush-Floss (1 =
Brushed twice and flossed once every day, O= otherwise) and Poverty (1=Below poverty
line, 0=Above poverty line). The mean age of the subjects in the sample is 53 years with a
range of 27-73 years. Although study recruitment was gender blind, females participated at a
higher rate (75%) than males and this is not unusual among Gullah-speaking African
Americans3?. There are only about 8% ‘former smokers’ in our sample. Thus, in order to
avoid a separate category for ‘smokers’ and keep our autologistic model relatively simple,
we collapsed the groups of ‘former smokers’ and ‘present smokers’ into ‘smokers’, which
comprises about 36% of the study sample. The poverty status was determined according to
family per capita income level, i.e. total income generated by the family divided by the
number of family members. If this value was less than $5000, the subject was classified as
below the poverty line. About 34% of the subjects in the sample live below the poverty line
and 24% reported to have brushed twice and flossed once every day. All the above
covariates are subject-level and do not vary within a mouth. We also included a tooth-level
covariate, i.e. Molar Indicator (1=Tooth is molar, 0=Otherwise) to allow assessment of the
severity of caries among the molars as compared to non-molars for this sample. In this
paper, we explore the degree of tooth-level spatial association influencing DMFS counts
while controlling for the effects of the subject/tooth-level covariates.

3 Statistical Model

S(pi($)ai(s), bi(s))=

Let {Y;(s) : (i, s) € D} be the DMFS count collected for tooth s of subject i, where D denotes
the set of indices for the observed data, i = 1,...,{m =100} and s = 1,..., {n =32} and let
pi(s) be the probability of having a diseased (D/M/F) surface in the sth tooth. We assume
that there is an equal probability of experiencing a D, M or F surface in a particular tooth.
Conditional on p;(s), we model Y;(s) as Binomial(n, p;(s)), where ng = 4 where s references
on incisors and canines and ng = 5 for pre-molars and molars. To account for over-
dispersion, the random variable p;(s) follows a Beta distribution with parameters a;(s) and
bi(s), with density function is given by

[(ai(s)+bi(s)) ai(s)-1 Bi(s)-1
—_——— P i l _ i i I ] ;
T(a(s)I i)’ () (1= pi(s) ©.n(pi(s)) o

where a;(s), bi(s) > 0, I4(x) denotes the indicator function of the event x € A, and I'(.)
denotes the gamma3! function. Different choices of a;(s) and b;(s) lead to a variety of shapes
of the density of p;(s), viz. U-shaped, J-shaped, reverse-J shaped, as well as constant (i.e.
Uniform(0,1), when a;(s) = bi(s) = 1). The use of a Beta distribution to model variability in
the binomial probability parameter was first proposed by Skellam32, however its extension
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to unequal r, (as in our case) was first considered by Williams!# in toxicological
applications. Then, Y;(s) is Beta-Binomial (BB) on the support {O0,...,n,} with the
distribution given by

P(Yi(5)=yi(5)lai(s), bi(5)= ( " ) Baloy 39, nethito) 2 3its)

yi(s) B(a;(s), bi(s)) (2

where B(., .) is the beta3! function. Conditional on a;(s) and b;(s), the mean and variance of

a;i(s) nsq;i(5)bi(5)(ns+a;(5)+bi(5))
Yi(s) are respectively ”fm and (. (s)+bi(5))*(1+a;(s)+bi(5))- Our goal is to
determine how the subject/tooth-level covariates are predictive of DMFS responses,
controlling for spatial associations. Looking into the mean and variance expression above, it
is not clear how a regression framework can be developed to model a;(s) and b,(s)
separately, or forcing dependence between them which will eventually determine Y;(s). To
have meaningful interpretation of the parameters of the Beta density, we re-parameterize!’

ail s
a;(s) and by(s) as Hi(5)= %S)), where y(s) = a;(s) + bi(s). Thus, the original parameters can
now be written as a;(s) = y(s)u;(s) and b;(s) = y(s)(1—u;(s)). Note that E(p;(s)ly(s), ui(s)) =
_ o () = pri(s) o _
11i(s) and Yar (Pi(s)ly(s), pi(s))= (s)y+1 - Given the new parametrization, z,(s) is the
mean of the probability p;(s) distributed as Beta, whereas y(s) denotes the shape of the
distribution of p;(s). Thus, the mean and variance of the BB distribution becomes ngu;(s) and
. y(s)+ng
nspti($)(1 = pri(s )]W respectively. Note that the overdispersion parameter for the BB
Y(s)+n;
model is given by Y(s)+1 and the marginal variance of the BB distribution
approaches the Binomial variance when ng = 1 or y(s) — ©0. However in our case, n; € {4,
5}. Using this formulation allows one to add overdispersion directly without perturbing
E(Y{(5)!.)33, thus matching a BB model when there is an excess of ‘Binomial’ samples
collected at some specified level of a covariate X.

€ (1, ny)

Under a generalized linear mixed model (GLMM) framework3*, a regression incorporating
heterogeneity at the subject and tooth level is defined as

pi($)=F (Bo+Xuis” B+U1i(s)) ©)

where the inverse link F(.) can be specified as the symmetric ‘logit’ link, i.e. F(x) = exp(x)/
(1 + exp(x)), however other choices like probit and complimentary log-log are also possible,
Xjis denotes the vector of subject/tooth-level covariates (including the intercept term) with
the corresponding fixed-effects parameter vector f3, B is the intercept term and Uy(s) is the
(spatial) random effect corresponding to the count response of the (i, s) tooth. Choices for
y(s) are discussed in Section 4.1. Under a Markov Random Field (MRF) assumption, the full
conditional distributions of Uj;(s) are specified as,

,
Wss' n Tsp ,

§ —ui(s’),— .5 5=1,....n
Wy Wy

55" ~5

(4)
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independently for each i, where s ~ 5" denotes that tooth s is a neighbor of tooth s', wgy = 1 if

s ~ s" and = 0 otherwise, m; = Xy w,y is the total number of neighbors of tooth s and O‘fp>0
controls the magnitude of spatial variation. By Brook's LemmaZ3, full conditionals in (4) are

uniquely determined by the joint density Uyilo, o3, ~ MVN(0, Variance=07,0(0) '), i.e.
(unconditionally) the latent vector Uy; follows a zero-mean multivariate normal prior with a
‘CAR’ covariance structure. Here, Q(p) = Diag(m,) — pW, W = (wgy) is the adjacency matrix
of the graph representing our region and p is the smoothing parameter controling the degree
of spatial dependence. Because the population is homogenous, the spatial effects U1i for the
m subjects are modelled as independently and identically distributed (i.i.d) according to this

CARUJ.CFEPJ prior distribution. Requiring p € (0, 1) ensures propriety of the CAR
distribution. Because one of our motivations is to estimate the degree of spatial association
in the data, we did not use the intrinsic autoregressive (IAR) formulation (choosing p = 1)
based on pairwise differences?, as the IAR is improper and does not have a parameter to
control the strength of spatial dependence. To avoid the computation of eigenvalues in order
to guarantee propriety as pointed out in Cressie3®, we work with the scaled adjacency matrix
B defined by B = D™'W, where D = Diag(m;) as suggested in Carlin and Banerjee®’. The
‘adjacency’ map for dental caries outcomes is constructed in Table 1. The tooth numbering
starts with the ‘third molar’ on the mandibular (upper jaw) left quadrant and goes clock-
wise, till the 32nd tooth, i.e. the ‘third molar’ in the maxillary (lower jaw) left quadrant. The
neighborhood structure for each tooth consists of at most 2 teeth on each sides within the
same jaw. In addition, the non-anterior teeth (molars and pre-molars) with an occlusal
surface also have the opposing non-anterior tooth on the other jaw as a neighbor. Thus, m €
{3, 4, 5}, i.e. total number of neighbors for any tooth can be at most 5.

4 Bayesian Inference

4.1 Likelihood, choice of priors and posterior distributions

' B ns k=0
L(Q,Ul,x‘}’)— ]—] ( yi(s) ) 1

Considering Q=(89.8. p, O',:.p, (s)) as the parameter vector in our spatial BB regression
model the primary goal is to estimate € and draw inference on these parameters controlling
for spatial association. Then from (2) and (3), the joint data-likelihood (conditional on the
(spatial) random-effects Uy = {U;(s) : (i, s) € D}) is given by

Cwils)-1

[1 (v(pi(s)+k)

Hs—yi(5)-1

Al'lf (y(s)(1 = pi(s))+k)
=0

(i.5)cl) ]_I ()’(S_)+k)
k=0

(5)

-1

where I_[ k:O(”’ka = 1 Clearly, the likelihood in (5) does not belong to the exponential
family and is computationally awkward; moreover frequentist maximum likelihood (ML)
based estimation using quasi-likelihood®, or other methods in our spatial set-up is quite
complicated, specially for an applied audience, requiring situation specific computer code.
This motivates a Bayesian inference for this problem, relying on MCMC techniques which
is straightforward to implement using available freeware WinBUGS3°. The Bayesian
method provides the entire posterior distribution of the parameters and any arbitrary
parameter functionals considering both the data likelihood and the priors assigned to the
parameters. Next, we investigate the choice of prior and hyperprior distributions for the
model parameters.
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Since we have no prior information from historical data or experiment, we specify weakly-
informative prior opinions on the fixed effects regression parameters f to obtain well-
defined (proper) posteriors. We assume the elements of the parameter space Q are
independently distributed. Specifically, we assign weakly informative i.i.d. Normal(0,
precision = 0.25) priors on the elements of £. This implies that the density of the associated
odds-ratio centered at 1 with 95% intervals (674, e4), will include a sufficiently wide range
of prior guesses*0. For the intercept term 3y, we use a flat prior (dflat() option in
WinBUGS). For prior choices on the spatial CAR parameters, we proceed as follows. We
take p ~ Beta(5, 1) with mean 0.83 to elicit our prior belief of a reasonably high spatial

association in the data and a hyperprior on the spatial precision parameter 0;1,2 ~
Gamma(0.1, 0.1) (with mean 1, variance 10) to represent a significantly less vague belief*!,
often used in spatial modeling practice. We consider three different scenarios for prior on

y(s)(> 0). Case (a): log(y(s)) = yg + Ua(s), such that Ua(s) ~ CAR(p, O";p] and yg ~ N(O,
Precision = 0.001); Case (b): y(s) = y; ~ diffuse Gamma(0.1, 0.01) and Case (c): y(s) ~
diffuse Gamma(0.1, 0.01), where Gamma(a, b) denote a Gamma density with mean a/b and
variance a/b%. While (a) is primarily motivated by the fact that y(s) can be spatially
dependent, (b) and (c) considers a much simple model for y(s) by putting a diffuse Gamma
prior.

The posterior conclusions from our Bayesian analysis will be based on the joint posterior
distribution of all the model parameters conditional on the data which is obtained by
combining the likelihood given in (5) and the joint prior densities using Bayes' theorem:

P UX,y) o LIQ:U L, X, y)x{ [—[ To(U1i($)|0: T X1 (0)XT2(075, ) X3 (7)X74(B0) X5 (B)

(i.5)ely (6)

where (), j = 0,..., 5 denote the prior/hyperprior distributions on the model parameters as
described above.

The relevant MCMC steps were implemented readily using freeware package WinBUGS.
To improve convergence, we used hierarchical centering?, i.e. all covariates were centered
around the mean and divided by their standard deviation. We used 15000 iterations with an
initial burn-in of 10000, with 2 different chains with arbitrary starting values to ensure
convergence. Based on examination of the trace plots, auto-correlation plots and Gelman-
Rubin diagnostic R*3, convergence was excellent with proper mixing of the 2 chains.
Posterior inference is based on 5000 MC samples after discarding the initial burn-in
samples.

4.2 Model Selection and assessment

Our initial model selection was performed using the Deviance Information Criterion (DIC)
of Spiegelhalter ef al.2°. DIC reflects the goodness of fit as well as the complexity of the
hierarchical model within the Bayesian paradigm and is considered to be a Bayesian version
of the Akaike Information Criterion (AIC). It is defined as DIC = D + p», where D = E(D(©®)
ly) is the posterior mean of the deviance, O is the full set of model parameters and po is the
effective number of parameters in the model. Spiegelhalter et al.2® showed that p» can be
approximated as po = D — D(0), where @ is a suitable ‘plug-in’ estimate of ©, viz. the
posterior mean or median. DIC is essentially a single-number summary (lower is better) of
the relative fit between the model and the ‘true model’ generating the data for the purpose of
prediction.

Stat Methods Med Res. Author manuscript; available in PMC 2011 May 5.
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Although the DIC provides a measure of relative goodness-of-fit among competing models,
it does not provide information on model adequacy. After selecting the best model using
DIC, we also perform model assessments through conditional predictive ordinate (CPO)
statistics2’ and the associated ‘log pseudo-marginal likelihood’ (LPML). The CPO is a
cross-validation approach and based on the posterior predictive distribution (p.p.d)*? of the
observed data. If @ denotes the entire parameter space and y,, denotes the predictive data
vector, then the p.p.d is given by:

P lY)=[ Py, 1©)p(Oly)dO. o

One can obtain predictive data easily from a converged posterior sample and samples from
the p.p.d are replicates of the observed model generated data. For our observed response
vi(s) from subject i at tooth s with covariate vector Xy;s, the CPO statistic for observation (i,
s) is defined as CPO;; = f{y,(s)ID(—;5)) = Sfyi(s)O X1is)m(OID —5))d® where n(OID—;y)) is
the posterior density of parameter vector @ given D(—;y), the cross-validated data without the
(i, s)th observation. Using a harmonic mean approximation result?’, the CPO; can be easily
computed with MCMC samples from the full posterior z(®ID). Typically, the { CPO;,}
behave as Bayesian residuals and are plotted against any covariate values xj;; (or observed
Yi(s)'s) to determine patterns of covariate dependence and to identify possible outliers.
Larger values of CPO;, indicate better support for the model. A summary measure based on
the CPO is the logarithm of the psuedo-marginal likelihood (LPML) defined as LPML =

2 s)ep 10g(CPOyy), where a higher value of the LPML means better support of the model
from the observed data.

5 Data Analysis and findings

We now apply our proposed model to our dental caries data as described in Section 2.
Including all subject/tooth-specific covariates (i.e. age, gender, smoking status, brush-floss
habits, poverty status and molar indicator), we posit 6 competing models to fit our data and
discuss model selection and assessment procedures for these competing models. The models
under consideration are:

Model-1 : Simple Binomial regression model with Uy;(s) = U; ~ i.i.d N(O, precision =
0.001)

Model-2 : Simple Binomial regression model with CAR spatial random effects term
U1i(s);
Model-3 : BB regression model with Uy;(s) = U; ~ i.i.d N (0, precision = 0.001)

Model-4 : BB regression model with spatial components Uy;(s), considering y(s) =y (a
constant) ~ Gamma(0.1, 0.01).

Model-5 : BB regression model with spatial components Uy;(s), considering log(y(s)) =

90 + Ups, With the intercept term yg ~ N(0, precision = 0.001) and Us(s) ~ CAR(p, G’fp],
as described earlier;

Model-6 : BB regression model with spatial components Uj;(s), considering y(s) ~
Gamma(0.1, 0.01).

Table 2 presents the model comparison using the Bayesian model choice criteria described
in Section 4.2. With the increase in model complexity using a BB model (instead of a
Binomial model) and adding spatial CAR components, we find a substantial improvement in
model fit with decreasing DIC and increasing LPML values. The DIC values for Models 3
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(BB without CAR, DIC=6560.5) and 4 (BB with CAR, DIC=5198.8) as well as their LPML
values differ sufficiently to indicate the superiority of Model 4. Adding the spatial
component (Model 4) to the BB structure improves ‘leave-one-out’ cross validation, as
demonstrated by the overall LPML.

Both DIC and LPML favor Model 4 over Models 5 and 6 (which assume different structures
for y(s)), indicating that a simple ‘constant’ structure for y(s) fits the data well. To assess
model validation in terms of predictive performance, we use the box-plots of log(CPO)
statistics to compare between Models 1, 3 and 4 in Figure 3. The median value of log(CPO)
for Model 4 is indicated by the horizontal line. The median log(CPO) for Models 3 and 4 are
respectively -1.301 and -1.073 and are considerably apart. The cumulative log(CPO), i.e.
LPML values are quite different. To summarize, both DIC and LPML favor Model 4 (which
assumes y(s) = y) among these six models. To determine an ‘overall’ goodness of fit of
Model 4, we also computed the Bayesian p-value*3, which measures the discrepancy
between the data and the model by comparing a summary Pearson statistic of the p.p.d to the
true distribution of the data. The test quantity for categorical (count) response is a function
yil s —E\','S' 2
of data and model parameters and is given as T(y.9) :Z S %, where the
expectation is taken over the p.p.d of the model parameters. Let y*”* denote a simulated
sample from the p.p.d and 7(y, ®) denote the test quantity used. The Bayesian p-value of the
test quantity is defined as p-value = P(T(y*"™, @) > T(y, ®)ly) and measures whether the
variation in the data is consistent with the predicted variation by the model*3. For Model 4,
the mean (for post burn-in MCMC runs) of the Bayesian p-value obtained using 1000 draws
of the posterior samples for each MCMC iteration is 0.723, indicating a reasonable overall
fit. Henceforth, we discuss our data analysis results related to fixed-effects and spatial
parameter estimates based on Model 4. Figure 1 displays the posterior predictive density
obtained by fitting both Models 3 and 4, overlayed on the raw data density histogram.
Although both the models tend to capture the shape of the density histogram, visual
inspection reveals that Model 4 (our spatial BB model) provides a more adequate fit.

Table 3 reports the posterior estimates of the mean, standard deviation and 95% credible
intervals (C.I.) of the model parameters for Model 4. Note that the interpretation of spatial

association parameters (i.e. p and O'gp) is highly dependent on the structure of the pre-
specified adjacency map as in Table 3. There is a high degree of spatial association (estimate

of p = 0.93) in our data. The posterior mean estimate of the spatial-variance component (Tgp
is 0.113 with 95% C.I. = (0.081, 0.146), which is clearly separated from zero and explains
moderate amount of spatial variation. The estimate of y is 1.37 which estimates the over-
ytng
dispersion parameter W to be 2.25 (for ng = 4) or 2.67 (for ny = 5). Both of the values
indicates evidence of some Binomial over-dispersion in the data. The fixed-effects
parameters can be interpreted in terms of increase/decrease in odds of the mean probability
of having an additional diseased (D/M/F) surface within a tooth, controlling for the spatial
random effects. Age (Odds Ratio (OR) = %92 =1.02, 95% CI of OR = (1.01, 1.03)) is
found to be associated with caries, such that there is a 2% increase in the odds of the (mean)
probability of having an additional carious surface with one unit increase in age, and so on.
Females and smokers are found to have more diseased teeth, although we admit that our
sample has a predominantly high proportion of females, a characteristic common for this
population. We did not find any effect of brushing/flossing habits and poverty status on
DMES response for our sample. Molars (OR= 3.26, 95% CI of OR = (2.91, 3.65)) are found
to be highly diseased as compared to the non-molar teeth. Specifically in our sample, we
have a substantial number of molar teeth missing due to caries, which describes the excess
of 5 counts in Figure 1. We conclude that based on the sample of 100 Gullah-speaking
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subjects, there is a significant amount of spatial association contributing to dental caries, as
determined by the DMFS index. Controlling for spatial association, we also found that age,
gender and smoking are associated with caries prevalence.

We also conducted a sensitivity analysis to determine whether there is any significant effect
on fixed-effects posteriors with changes in the prior choice for O_;P:’ the spatial precision
parameter. We assume (J';p2 ~ Gamma(k, k), where k € {0.01, 0.001, 1}. Although some

changes are noticed for the posterior of 0';1,2 with various choices of k, the posterior estimates
of mean and 95% credible interval of the fixed-effects remain similar to those for the
weakly-informative k = 0.1. Our observation agrees with previous findings in the
literature**, that changes in prior assumptions for the (spatial) scale parameter in Bayesian
hierarchical models might lead to substantial changes in posterior estimates of the scale
parameter, however the fixed-effects' posteriors remain largely unaffected.

6 Simulation study

In this section we conduct a brief simulation study to illustrate the effect of properly
accounting for within- and between-tooth associations on subject-level covariate effect
estimation. Each simulated data set consists of N = 40 subjects on the same spatial grid
defined in Section 3. There are p = 3 subject-level covariates, generated as X; ~ N(0,/,,). The
regression coefficients are S = 0 and S = (81, b2, f3) = (0, 1, 2)/3. For subject i, we simulate
data as

(Ui(D),....Ui(n))  ~CAR(p,03,)
logit(ui(s)) =XB+Ui(s)
pi(s) ~ Beta(tu(s), T[1 = pi(s)])
Yi(s) ~ Binomial(n;. p;(s)) (8)

We generate S = 100 data sets from each of three simulation designs:
1. Design 1: ‘Basic model’ with z=1.2, p = 0.99, and g, = 1
2. Design 2: ‘Near-binomial model” with t =50, p = 0.99, and o), = 1
3. Design 3: ‘Moderate spatial association model’ with 7=1.2, p=0.4, and g5, = 1

For Design 1, the data have a fairly strong spatial association as well as overdispersion that
is constant across space. The model selection criteria in Section 5's analysis of caries data
suggest that these features are present for the caries data. Design 2 maintains the strong
spatial association, but has a near-binomial likelihood with 7 = 50. The final design is similar
to Design 1, except with weak spatial association.

For each simulated data set, we fit four models: the spatial BB model as in Model 4 and
termed ‘SpaBB’, the non-spatial BB model as in Model 3 and termed ‘NonSpaBB’, the
spatial binomial model as in Model 2 and termed ‘SpaBin’ and non-spatial binomial model

as in Model 1 and termed ‘NonSpaBin’. For all models we take p ~ Beta(5,1), 0';"[, ~
InvGamma(0.1,0.1),  ~ Gamma(0.1,0.01), and $; ~ N(0, Precision = 0.25). Similar to the
data analysis, we used 15000 iterations with a burn-in of 10000 and used the remaining 5000
samples to calculate posterior estimates. For each model we compute the posterior mean of

i
;, denoted ﬂ'-s " for data set number sim, and compute mean square error (MSE):
J i p q
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; 1 s “SAsin) 2
MS Ej= gzs,-m=1(ﬁ-f -B;" ¥, where 3 is the true value used to generate the data. In
addition, we report the proportion of data sets for which the posterior 95% interval excludes

zero (i.e. empirical power), for each method and each regression coefficient.

The results are given in Table 4. For all simulation designs, the non-spatial models have
considerably larger MSE than the spatial models, illustrating the importance of accounting
for spatial structure when estimating subject-level covariates. The non-spatial models also
have inflated empirical Type-I error (power for f5]), and smaller power for 3. The spatial
BB model has the smallest MSE for all covariates for the first design with strong spatial
correlations and BB likelihood. The spatial BB model also gives similar performance to the
binomial model for Design 2's near-binomial data, however the spatial binomial model
outperforms the spatial BB model for Design 3 with moderate spatial association. In this
case, the spatial random effects in the spatial binomial model may be sufficient to account
for the extra-binomial variation for the BB likelihood.

7 Conclusion

In this paper, we develop a Beta-Binomial model for multivariate spatial count data on
dental caries that accommodates extra-Binomial variation (heterogeneity) as well as possible
spatial clustering. We show, using both simulation studies and real data, that accounting for
spatial clustering and over-dispersion in the same model provides a substantial improvement
for estimating covariate effects as compared to other standard count data models that do not
make this accommodations.

In this study, the total random variation could also be decomposed into both spatially
correlated as well as uncorrelated heterogeneities, often referred to as the ‘convolution
prior’®, i.e. ui(s) = F(Bo + X1is B + Uy (s) + E;). However, using this model for z;(s) leads to
convergence issues, specially for the fixed-effects parameters even when a high burn-in
period (like 50000) is used. However while fitting separate i.i.d CAR models to each subject
(Model 4 in this paper), we find no such problems for the fixed-effects. This issue is
currently under investigation. To check whether we need to fit separate i.i.d CAR to each
subject, we modeled 1(s) as u;(s) = F(fy + X1is.f + U;(s)). Because the DIC for this model
was 5228.72 (far away from Model 4 but closer to Model 6), we did not proceed with this
model.

Our inference is strictly based on (a) the DMsFS convention?® for measuring DMFS, (b) a
specified spatial model, i.e. conditionally-autoregressive, and (c) a pre-defined adjacency
structure. A number of areas can be identified for future work. Whether our inference is
robust to various definitions of DMFS, other spatial models (viz. geostatistical, etc) as well
as some other adjacency structure needs investigation. Also, because subjects with poor
caries status are likely to have fewer teeth than subjects with a ‘good’ caries status and a
tooth missing and located at the back of the mouth might be surrounded with teeth that are
also missing, one can also consider ‘jointly’ modeling the location and presence/absence of
a tooth together with its caries status in the spirit of Reich and Bandyopadhyay?> for discrete
count responses using shared (latent) spatial random effects. Additionally, one can also
consider modeling the DMFS counts as ordinal data and develop spatial random effects
models. Our study population is homogenous (Gullah-speaking African Americans
diagnosed with type-2 diabetes) which primarily motivated our prior choice on j.
Generalization of our proposed methods to analyzing dental caries data collected for other
groups/races or population would be relatively straightforward, however one needs to re-
consider proper parameterizations of the BB likelihood as well as the spatial adjacency
structure to accommodate spatial heterogeneity and (possible) over-dispersion.
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Figure 1.

Density histogram of raw DMFS counts (packed over teeth and subject) overlayed with
posterior predictive densities generated using Beta-Binomial models (with and without
spatial components)
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Figure 2.

Classification of tooth surfaces for permanent dentition within a human mouth. This figure
was published in ‘Dental Hygiene: Theory and Practice’, 3rd edition, Michele L. Darby and
Margaret M. Walsh, Chapter 14 Page 237, Copyright Saunders (Elsevier) (2010). Adapted
from ‘The Art of Dental Scaling” by D. Wotton, 1991, University of Vermont, Burlington
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Figure 3.

Box-plots of log(CPO) for Models 1,3 and 4. Larger values of log(CPO) indicate more
support for the model. The horizontal line is the median log(CPO) value for Model 4 (the
best model).
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Adjacency map for the dental caries data. Neighbors are denoted by tooth numbers

Table 1

Tooth number Neighbors Tooth number Neighbors
1 2,3,32 17 16, 18, 19
2 1,3,4,31 18 17,19, 20, 15
3 1,2,4,5,30 19 17, 18, 20, 21, 14
4 2,3,5,6,29 20 18,19,21,22,13
5 3,4,6,7,28 21 19, 20, 22,23, 12
6 4,5,7,8 22 20, 21, 23,24
7 5,6,8,9 23 21,22,24,25
8 6,7,9,10 24 22,23,25,26
9 7,8,10, 11 25 23,24,26,27
10 8,9,11,12 26 24,25,27,28
11 9,10, 12,13 27 25, 26, 28,29
12 10, 11, 13, 14, 21 28 26,27,29,30,5
13 11,12, 14, 15,20 29 27,28,30,31,4
14 12,13, 15, 16, 19 30 28,29,31,32,3
15 13, 14, 16, 18 31 29, 30, 32,2
16 14, 15,17 32 30,31, 1
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Model comparison using DIC and LPML

Model | D | pp | DIC | LPML
Model 1 | 14945.0 7.4 14952.4 | -7485.9
Model 2 | 13764.6 | 299.3 | 14063.9 | -6270.8
Model 3 | 5875.6 | 6849 | 6560.5 | -4319.2
Model 4 | 4528.0 | 670.8 | 5198.8 | -3686.1
Model 5 | 4593.7 | 704.6 | 5298.3 | -3758.1
Model 6 | 45479 | 6769 | 5224.8 | -3739.3
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Table 3

(Conditional) Posterior estimates of fixed-effects and other model parameters with 95% credible intervals
(C.I) for Model 4

Parameter | Mean | Std. Dev. | 95% C.I.

Intercept -2.099 0.155 (-2.425, -1.796)
Age 0.021 0.005 (0.011, 0.031)
Gender 0.313 0.093 (0.11, 0.476)
Smoker 0.434 0.101 (0.201, 0.583)
Brush-Floss | 0.109 0.088 (-0.061, 0.275)
Poverty 0.009 0.097 (-0.176, 0.187)

Molar 1182 | 0.057 (1.067, 1.294)
p 0935 | 0.021 (0.887, 0.961)
y 1371 | 0.044 (1.286, 1.461)
5 0.113 | 0.017 (0.081, 0.146)
T
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