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Abstract

One of the most important indicators of dental caries prevalence is the total count of decayed,

missing or filled (DMF) surfaces in a tooth. These count data are often clustered in nature (several

count responses clustered within a subject), over-dispersed, as well as spatially referenced (a

diseased tooth might be positively influencing the decay process of a set of neighboring teeth). In

this paper, we develop a multivariate spatial Beta-Binomial (BB) model for these data that

accommodates both over-dispersion as well as latent spatial associations. Using a Bayesian

paradigm, the re-parameterized marginal mean (as well as variance) under the BB framework are

modeled using a regression on subject/tooth-specific co-variables and a conditionally

autoregressive (CAR) prior that models the latent spatial process. The necessity of exploiting

spatial associations to model count data arising in dental caries research is demonstrated using a

small simulation study. Real data confirms that our spatial BB model provides a superior

estimation and model fit as compared to other sub-models that do not consider modeling spatial

associations.
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1 Introduction

Dental caries, otherwise known as tooth decay, is an infectious localized disease and is one

of the most prevalent chronic diseases of people worldwide (affecting around 80% of the

world population) and is the primary cause of oral pain and tooth loss, as described in the

US Surgeon General's report1, Fejerskov and Kidd2, Kidd et al.3. Its impact on individuals

and communities as a result of pain and suffering, impairment of function and reduced

quality of life is considerable4. In the USA, caries is the most common chronic disease of

childhood, and is five times more common than asthma1. Caries is primarily influenced by

poor oral hygiene (brushing/flossing habits), frequent consumption of sugar based products

as well as socio-economic factors such as poverty status, access to care, etc. Despite the

widespread decline in caries prevalence and severity in high-income countries over the past

few decades, disparities still remain and many children and adults still develop caries5,6.

Caries is caused by organic acids that originates from the microbial fermentation of

carbohydrates7 which affects the mineral constitution of teeth. Primarily, three essential

interactive factors causes caries: the host, represented by teeth and saliva; the oral microbial
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flora; and poor dietary habits8,9. The destroyed tooth surfaces can never fully regenerate,

though remineralization of very small carious lesions is possible by an optimal level of

dental hygiene. Personal hygiene care involves daily proper brushing and flossing, dietary

modifications (reduced consumption of sugar), etc. Use of dental sealants and fluoride

therapy is recommended to provide protection against dental caries. The cost of treatment of

caries is extremely costly, representing the fourth most expensive disease to treat in most of

the industralized world7. For further details on dental caries, the interested reader is referred

to the very interesting seminar article by Selwitz et al.10.

In this paper, we analyze data on 100 subjects from a clinical study11 conducted at the

Medical University of South Carolina (MUSC) among Type-2 diabetic Gullah-speaking

African-Americans, whose dental caries status remains highly unexplored. Clinical studies

examining dental caries status produces a clustered multivariate set-up12 where measures are

taken for tooth surfaces (whether a particular tooth surface is decayed, or missing or filled),

clustered within a tooth, which in turn, remains clustered within the oral cavity of that

subject. The total count of decayed, missing and filled surfaces per tooth, also known as the

‘DMFS’ index, is recorded per tooth. There are 32 teeth in total for the adult dentition) for

each subject as a measure of caries status. The DMFS index13 is the most popular caries

marker and is indicative of the cumulative severity of caries status for that particular tooth.

Figure 1 shows the density histogram of tooth level raw DMFS counts (ns, s = 1,…,32) for

our study subjects. Because the ‘maximum’ tooth level DMFS count can be either 4 or 5

(depending on the tooth location, see Section 2 for more details), we have a discrete

‘Binomial’ count setup. The raw plot reveals a somewhat U-shaped structure, indicating

some over-dispersion (extra-Binomial variation) in the form of excessive observed DMFS

counts of 0 and 5. This raises the question of whether a considerable number of subjects

truly have caries-free (DMFS=0) or advanced carious (DMFS=5) teeth, or whether this large

number of 0 and 5 is a result of some ‘latent heterogeneity’, with many subjects simply

having a low/high ‘true’ caries index. Also, the observed (raw) DMFS index of a tooth

might be influenced (spatially) by the caries status of a set of neighboring teeth. Here, we

develop a spatial Beta-Binomial (BB) model for multivariate count data to address two

broad questions related to the dental caries status of this Gullah-speaking study sample: (a)

How do the potential covariates like age, gender, smoking habit, brush-floss habits, poverty

status, etc influence caries status at the tooth-level after accounting for spatial association?

and (b) How does spatial association influence development of caries lesions in a group of

neighboring teeth? The BB model has been highly explored in the statistical literature,

particularly in toxicology14,15, disease incidence16,17 and radiation18 to model binomial data

with excess unobserved heterogeneity. In the area of disease mapping, interest often lies in

identification of ‘extreme areas’, which may arise in proximity to one another either in a

smooth spatial surface, or as isolated ‘hot spots’ or ‘low spots’ which are quite distinct from

the neighboring teeth19. It is presumed that a particular tooth within the oral cavity

experiencing caries lesions tends to affect a set of neighboring teeth of the same subject.

Also, the responses are ‘clustered’ in nature, i.e. a group of 32 teeth within the oral cavity of

a subject seem to share similar subject-level characteristics and can be considered

‘stochastically’ independent of the set of teeth for another subject. To analyze these

correlated (and possibly over-dispersed) count data with latent spatial autocorrelation, we

use a conditionally autoregressive (CAR) specification for the spatial random effects,

pioneered by Besag20. Using a convenient re-parametrization14 of the BB parameters, we

use a CAR logistic regression model to determine the effect of subject/tooth specific

covariables on DMFS outcomes. The CAR specification assumes a Markov Random Field

(MRF)21 model such that the conditional distribution of a spatial unit (tooth) depends on

only the outcomes of a pre-defined set of neighboring teeth. The (latent) spatial model thus

borrows strength across neighboring teeth to provide smoothing and improve estimates of
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true caries status for each tooth. MRF's include a wide class of spatial models such as auto-

Gaussian models for spatial Gaussian processes, auto-logistic models for binary spatial

processes, auto-Gamma models for non-negative continuous processes and auto-Poisson

models for spatial count processes. The CAR specification is actually an auto-Gaussian

model analogous to an auto-regressive time series model19. However, some practical

questions associated with incorporating spatial dependencies include proper quantification

of spatial autocorrelation through defining a proper neighborhood structure, its impact on

covariate assessments and enhancement of statistical efficiency through standard errors

reduction. The monograph by Lawson et al.22 provides a comprehensive review of CAR

models in the context of disease mapping while Banerjee et al.23 details recent advances in

hierarchical Bayesian methodologies for spatial/spatio-temporal data.

Though CAR models have been widely explored in the context of disease mapping, their

application for analysis of multivariate dental caries data is relatively sparse and comes with

unique challenges. First, there is clustering induced at the subject level. Also, unlike many

applications where the spatial structure is clearly defined by a grid or geopolitical

boundaries, the spatial structure within a mouth must be carefully chosen. Applications of

spatial models for dental disease outcomes are relatively new. Very recently, various CAR

specifications within the mouth in the context of periodontal (gum) disease modeling has

been explored in24,25. To the best of our knowledge, there had been no previous exploration

of the CAR specification to model spatially correlated count data on dental caries. The

spatial nature of caries progression within a mouth is not established; we adopt a

neighborhood structure accomodating adjacent teeth as well as (some) contacting teeth on

opposite jaws. We show that accounting for this neighborhood spatial association structure

dramatically improves the predictive performance of our model. Our approach is Bayesian,

which has the ability to incorporate background (prior) information about the unknown

parameters in the model, both for subject/tooth level covariates as well as for spatial

dependencies. Bayesian inference with proper prior elicitations, powered by Markov chain

Monte Carlo (MCMC) steps provides inference and does not depend on asymptotic

calculations. Our models allow us to determine the degree of extra-binomial variation in the

data. We also compare our spatial CAR models to alternative models that do not distinguish

the effect of spatial associations among teeth using a Bayesian model choice criterion26 and

cross-validatory techniques27.

The outline of the paper is as follows. Section 2 describes the DMFS count data that

motivated this research. In Section 3, we propose our spatial BB model and explore the

association structures needed to develop the spatial model. Section 4 proposes Bayesian

inference based on the data likelihood, prior and hyperprior specifications as well as various

model selection/assessment tools. In Section 5, we apply our spatial model to the dental

caries data, use model selection and assessments tools to determine the best model and

summarize findings. We explore a small simulation study in Section 6 to study the effect of

accounting for spatial associations on estimating covariate effects. Conclusions and future

developments are in Section 7.

2 Motivating Data

The motivating data were collected from a clinical study11 conducted by the Center for Oral

Health Research (COHR) of the Medical University of South Carolina (MUSC) as part of

the South Carolina Center for Biomedical Research Excellence (COBRE) Program for Oral

Health. The study assessed caries status among Type-2 diabetic Gullah-speaking (or simply

Gullah) African-Americans (13 years or older) residing in the coastal sea-islands of South

Carolina. All subjects answered a detailed questionnaire focussed on their social, medical

and dental history and underwent an oral exam. To develop our methods, we selected a
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random sample of 100 subjects with complete covariate information and DMFS counts for

all the 32 teeth within a subject. Each quadrant of teeth (consisting of a cluster of 8 teeth, 2

in each jaw) in a human mouth28 is made up of (a) the non-anterior teeth (3 molars and 2

pre-molars) and (b) the anterior teeth (1 incisor and 2 canines). For measuring caries, each

non-anterior tooth contributes 5 surfaces (occlusal, mesial, distal, facial and lingual) while

an anterior tooth contributes 4 surfaces (the occlusal not being recorded) to the response.

Figure 2 illustrates the different surfaces for permanent dentition within a mouth. Handling

the M part of the DMFS index varies29 because the extracted/missing tooth calls for an

arbitrary allocation of the number of decayed surfaces for that tooth. In this paper, we use

the DM5FS convention, i.e. assign 4 surfaces for an extracted anterior tooth and 5 for an

extracted non-anterior tooth when extraction is reported due to caries. If the subject reports a

tooth loss due to a cause other than caries, this tooth does not contribute to the data analysis.

Additionally, several subject level covariates were collected including Age (in years),

Gender (0=Male, 1=Female), Smoking status (0=Never, 1=Smoker), Brush-Floss (1 =

Brushed twice and flossed once every day, 0= otherwise) and Poverty (1=Below poverty

line, 0=Above poverty line). The mean age of the subjects in the sample is 53 years with a

range of 27-73 years. Although study recruitment was gender blind, females participated at a

higher rate (75%) than males and this is not unusual among Gullah-speaking African

Americans30. There are only about 8% ‘former smokers’ in our sample. Thus, in order to

avoid a separate category for ‘smokers’ and keep our autologistic model relatively simple,

we collapsed the groups of ‘former smokers’ and ‘present smokers’ into ‘smokers’, which

comprises about 36% of the study sample. The poverty status was determined according to

family per capita income level, i.e. total income generated by the family divided by the

number of family members. If this value was less than $5000, the subject was classified as

below the poverty line. About 34% of the subjects in the sample live below the poverty line

and 24% reported to have brushed twice and flossed once every day. All the above

covariates are subject-level and do not vary within a mouth. We also included a tooth-level

covariate, i.e. Molar Indicator (1=Tooth is molar, 0=Otherwise) to allow assessment of the

severity of caries among the molars as compared to non-molars for this sample. In this

paper, we explore the degree of tooth-level spatial association influencing DMFS counts

while controlling for the effects of the subject/tooth-level covariates.

3 Statistical Model

Let {Yi(s) : (i, s) ∈ D} be the DMFS count collected for tooth s of subject i, where D denotes

the set of indices for the observed data, i = 1,…,{m = 100} and s = 1,…, {n = 32} and let

pi(s) be the probability of having a diseased (D/M/F) surface in the sth tooth. We assume

that there is an equal probability of experiencing a D, M or F surface in a particular tooth.

Conditional on pi(s), we model Yi(s) as Binomial(ns, pi(s)), where ns = 4 where s references

on incisors and canines and ns = 5 for pre-molars and molars. To account for over-

dispersion, the random variable pi(s) follows a Beta distribution with parameters ai(s) and

bi(s), with density function is given by

(1)

where ai(s), bi(s) > 0, IA(x) denotes the indicator function of the event x ∈ A, and Γ(.)

denotes the gamma31 function. Different choices of ai(s) and bi(s) lead to a variety of shapes

of the density of pi(s), viz. U-shaped, J-shaped, reverse-J shaped, as well as constant (i.e.

Uniform(0,1), when ai(s) = bi(s) = 1). The use of a Beta distribution to model variability in

the binomial probability parameter was first proposed by Skellam32, however its extension
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to unequal ns (as in our case) was first considered by Williams14 in toxicological

applications. Then, Yi(s) is Beta-Binomial (BB) on the support {0,…,ns} with the

distribution given by

(2)

where B(., .) is the beta31 function. Conditional on ai(s) and bi(s), the mean and variance of

Yi(s) are respectively  and . Our goal is to

determine how the subject/tooth-level covariates are predictive of DMFS responses,

controlling for spatial associations. Looking into the mean and variance expression above, it

is not clear how a regression framework can be developed to model ai(s) and bi(s)

separately, or forcing dependence between them which will eventually determine Yi(s). To

have meaningful interpretation of the parameters of the Beta density, we re-parameterize17

ai(s) and bi(s) as , where γ(s) = ai(s) + bi(s). Thus, the original parameters can

now be written as ai(s) = γ(s)μi(s) and bi(s) = γ(s)(1−μi(s)). Note that E(pi(s)∣γ(s), μi(s)) =

μi(s) and . Given the new parametrization, μi(s) is the

mean of the probability pi(s) distributed as Beta, whereas γ(s) denotes the shape of the

distribution of pi(s). Thus, the mean and variance of the BB distribution becomes nsμi(s) and

 respectively. Note that the overdispersion parameter for the BB

model is given by  and the marginal variance of the BB distribution

approaches the Binomial variance when ns = 1 or γ(s) → ∞. However in our case, ns ∈ {4,

5}. Using this formulation allows one to add overdispersion directly without perturbing

E(Yi(s)∣.)33, thus matching a BB model when there is an excess of ‘Binomial’ samples

collected at some specified level of a covariate X.

Under a generalized linear mixed model (GLMM) framework34, a regression incorporating

heterogeneity at the subject and tooth level is defined as

(3)

where the inverse link F(.) can be specified as the symmetric ‘logit’ link, i.e. F(x) = exp(x)/

(1 + exp(x)), however other choices like probit and complimentary log-log are also possible,

X1is denotes the vector of subject/tooth-level covariates (including the intercept term) with

the corresponding fixed-effects parameter vector β, β0 is the intercept term and U1i(s) is the

(spatial) random effect corresponding to the count response of the (i, s)th tooth. Choices for

γ(s) are discussed in Section 4.1. Under a Markov Random Field (MRF) assumption, the full

conditional distributions of U1i(s) are specified as,

(4)
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independently for each i, where s ∼ s′ denotes that tooth s is a neighbor of tooth s′, wss′ = 1 if

s ∼ s′ and = 0 otherwise, ms = Σs′ wss′ is the total number of neighbors of tooth s and 

controls the magnitude of spatial variation. By Brook's Lemma23, full conditionals in (4) are

uniquely determined by the joint density , i.e.

(unconditionally) the latent vector U1i follows a zero-mean multivariate normal prior with a

‘CAR’ covariance structure. Here, Q(ρ) = Diag(ms) − ρW, W = (wss′) is the adjacency matrix

of the graph representing our region and ρ is the smoothing parameter controling the degree

of spatial dependence. Because the population is homogenous, the spatial effects U1i for the

m subjects are modelled as independently and identically distributed (i.i.d) according to this

 prior distribution. Requiring ρ ∈ (0, 1) ensures propriety of the CAR

distribution. Because one of our motivations is to estimate the degree of spatial association

in the data, we did not use the intrinsic autoregressive (IAR) formulation (choosing ρ = 1)

based on pairwise differences35, as the IAR is improper and does not have a parameter to

control the strength of spatial dependence. To avoid the computation of eigenvalues in order

to guarantee propriety as pointed out in Cressie36, we work with the scaled adjacency matrix

B defined by B = D−1W, where D = Diag(ms) as suggested in Carlin and Banerjee37. The

‘adjacency’ map for dental caries outcomes is constructed in Table 1. The tooth numbering

starts with the ‘third molar’ on the mandibular (upper jaw) left quadrant and goes clock-

wise, till the 32nd tooth, i.e. the ‘third molar’ in the maxillary (lower jaw) left quadrant. The

neighborhood structure for each tooth consists of at most 2 teeth on each sides within the

same jaw. In addition, the non-anterior teeth (molars and pre-molars) with an occlusal

surface also have the opposing non-anterior tooth on the other jaw as a neighbor. Thus, ms ∈
{3, 4, 5}, i.e. total number of neighbors for any tooth can be at most 5.

4 Bayesian Inference

4.1 Likelihood, choice of priors and posterior distributions

Considering  as the parameter vector in our spatial BB regression

model the primary goal is to estimate Ω and draw inference on these parameters controlling

for spatial association. Then from (2) and (3), the joint data-likelihood (conditional on the

(spatial) random-effects U1 = {Ui(s) : (i, s) ∈ D}) is given by

(5)

where . Clearly, the likelihood in (5) does not belong to the exponential

family and is computationally awkward; moreover frequentist maximum likelihood (ML)

based estimation using quasi-likelihood38, or other methods in our spatial set-up is quite

complicated, specially for an applied audience, requiring situation specific computer code.

This motivates a Bayesian inference for this problem, relying on MCMC techniques which

is straightforward to implement using available freeware WinBUGS39. The Bayesian

method provides the entire posterior distribution of the parameters and any arbitrary

parameter functionals considering both the data likelihood and the priors assigned to the

parameters. Next, we investigate the choice of prior and hyperprior distributions for the

model parameters.
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Since we have no prior information from historical data or experiment, we specify weakly-

informative prior opinions on the fixed effects regression parameters β to obtain well-

defined (proper) posteriors. We assume the elements of the parameter space Ω are

independently distributed. Specifically, we assign weakly informative i.i.d. Normal(0,

precision = 0.25) priors on the elements of β. This implies that the density of the associated

odds-ratio centered at 1 with 95% intervals (e−4, e4), will include a sufficiently wide range

of prior guesses40. For the intercept term β0, we use a flat prior (dflat() option in

WinBUGS). For prior choices on the spatial CAR parameters, we proceed as follows. We

take ρ ∼ Beta(5, 1) with mean 0.83 to elicit our prior belief of a reasonably high spatial

association in the data and a hyperprior on the spatial precision parameter  ∼
Gamma(0.1, 0.1) (with mean 1, variance 10) to represent a significantly less vague belief41,

often used in spatial modeling practice. We consider three different scenarios for prior on

γ(s)(> 0). Case (a): log(γ(s)) = γ0 + U2(s), such that  and γ0 ∼ N(0,

Precision = 0.001); Case (b): γ(s) = γ1 ∼ diffuse Gamma(0.1, 0.01) and Case (c): γ(s) ∼
diffuse Gamma(0.1, 0.01), where Gamma(a, b) denote a Gamma density with mean a/b and

variance a/b2. While (a) is primarily motivated by the fact that γ(s) can be spatially

dependent, (b) and (c) considers a much simple model for γ(s) by putting a diffuse Gamma

prior.

The posterior conclusions from our Bayesian analysis will be based on the joint posterior

distribution of all the model parameters conditional on the data which is obtained by

combining the likelihood given in (5) and the joint prior densities using Bayes' theorem:

(6)

where πj(.), j = 0,…, 5 denote the prior/hyperprior distributions on the model parameters as

described above.

The relevant MCMC steps were implemented readily using freeware package WinBUGS.

To improve convergence, we used hierarchical centering42, i.e. all covariates were centered

around the mean and divided by their standard deviation. We used 15000 iterations with an

initial burn-in of 10000, with 2 different chains with arbitrary starting values to ensure

convergence. Based on examination of the trace plots, auto-correlation plots and Gelman-

Rubin diagnostic R̂43, convergence was excellent with proper mixing of the 2 chains.

Posterior inference is based on 5000 MC samples after discarding the initial burn-in

samples.

4.2 Model Selection and assessment

Our initial model selection was performed using the Deviance Information Criterion (DIC)

of Spiegelhalter et al.26. DIC reflects the goodness of fit as well as the complexity of the

hierarchical model within the Bayesian paradigm and is considered to be a Bayesian version

of the Akaike Information Criterion (AIC). It is defined as DIC = D ̅ + pD, where D ̅ = E(D(Θ)

∣y) is the posterior mean of the deviance, Θ is the full set of model parameters and pD is the

effective number of parameters in the model. Spiegelhalter et al.26 showed that pD can be

approximated as pD = D ̅ − D(Θ̂), where Θ̂ is a suitable ‘plug-in’ estimate of Θ, viz. the

posterior mean or median. DIC is essentially a single-number summary (lower is better) of

the relative fit between the model and the ‘true model’ generating the data for the purpose of

prediction.
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Although the DIC provides a measure of relative goodness-of-fit among competing models,

it does not provide information on model adequacy. After selecting the best model using

DIC, we also perform model assessments through conditional predictive ordinate (CPO)

statistics27 and the associated ‘log pseudo-marginal likelihood’ (LPML). The CPO is a

cross-validation approach and based on the posterior predictive distribution (p.p.d)43 of the

observed data. If Θ denotes the entire parameter space and ypr denotes the predictive data

vector, then the p.p.d is given by:

(7)

One can obtain predictive data easily from a converged posterior sample and samples from

the p.p.d are replicates of the observed model generated data. For our observed response

yi(s) from subject i at tooth s with covariate vector X1is, the CPO statistic for observation (i,

s) is defined as CPOis = f(yi(s)∣D(−is)) = ∫ f(yi(s)∣Θ X1is)π(Θ∣D(−is))dΘ where π(Θ∣D(−is)) is

the posterior density of parameter vector Θ given D(−is), the cross-validated data without the

(i, s)th observation. Using a harmonic mean approximation result27, the CPOis can be easily

computed with MCMC samples from the full posterior π(Θ∣D). Typically, the {CPOis}

behave as Bayesian residuals and are plotted against any covariate values x1is (or observed

Yi(s)'s) to determine patterns of covariate dependence and to identify possible outliers.

Larger values of CPOis indicate better support for the model. A summary measure based on

the CPO is the logarithm of the psuedo-marginal likelihood (LPML) defined as LPML =

Σ(i,s)∈D log(CPOis), where a higher value of the LPML means better support of the model

from the observed data.

5 Data Analysis and findings

We now apply our proposed model to our dental caries data as described in Section 2.

Including all subject/tooth-specific covariates (i.e. age, gender, smoking status, brush-floss

habits, poverty status and molar indicator), we posit 6 competing models to fit our data and

discuss model selection and assessment procedures for these competing models. The models

under consideration are:

Model-1 : Simple Binomial regression model with U1i(s) = Ui ∼ i.i.d N(0, precision =

0.001)

Model-2 : Simple Binomial regression model with CAR spatial random effects term

U1i(s);

Model-3 : BB regression model with U1i(s) = Ui ∼ i.i.d N (0, precision = 0.001)

Model-4 : BB regression model with spatial components U1i(s), considering γ(s) = γ (a
constant) ∼ Gamma(0.1, 0.01).

Model-5 : BB regression model with spatial components U1i(s), considering log(γ(s)) =

γ0 + U2s, with the intercept term γ0 ∼ N(0, precision = 0.001) and ,

as described earlier;

Model-6 : BB regression model with spatial components U1i(s), considering γ(s) ∼
Gamma(0.1, 0.01).

Table 2 presents the model comparison using the Bayesian model choice criteria described

in Section 4.2. With the increase in model complexity using a BB model (instead of a

Binomial model) and adding spatial CAR components, we find a substantial improvement in

model fit with decreasing DIC and increasing LPML values. The DIC values for Models 3
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(BB without CAR, DIC=6560.5) and 4 (BB with CAR, DIC=5198.8) as well as their LPML

values differ sufficiently to indicate the superiority of Model 4. Adding the spatial

component (Model 4) to the BB structure improves ‘leave-one-out’ cross validation, as

demonstrated by the overall LPML.

Both DIC and LPML favor Model 4 over Models 5 and 6 (which assume different structures

for γ(s)), indicating that a simple ‘constant’ structure for γ(s) fits the data well. To assess

model validation in terms of predictive performance, we use the box-plots of log(CPO)

statistics to compare between Models 1, 3 and 4 in Figure 3. The median value of log(CPO)

for Model 4 is indicated by the horizontal line. The median log(CPO) for Models 3 and 4 are

respectively -1.301 and -1.073 and are considerably apart. The cumulative log(CPO), i.e.

LPML values are quite different. To summarize, both DIC and LPML favor Model 4 (which

assumes γ(s) = γ) among these six models. To determine an ‘overall’ goodness of fit of

Model 4, we also computed the Bayesian p-value43, which measures the discrepancy

between the data and the model by comparing a summary Pearson statistic of the p.p.d to the

true distribution of the data. The test quantity for categorical (count) response is a function

of data and model parameters and is given as , where the

expectation is taken over the p.p.d of the model parameters. Let ysim denote a simulated

sample from the p.p.d and T(y, Θ) denote the test quantity used. The Bayesian p-value of the

test quantity is defined as p-value = P(T(ysim, Θ) ≥ T(y, Θ)∣y) and measures whether the

variation in the data is consistent with the predicted variation by the model43. For Model 4,

the mean (for post burn-in MCMC runs) of the Bayesian p-value obtained using 1000 draws

of the posterior samples for each MCMC iteration is 0.723, indicating a reasonable overall

fit. Henceforth, we discuss our data analysis results related to fixed-effects and spatial

parameter estimates based on Model 4. Figure 1 displays the posterior predictive density

obtained by fitting both Models 3 and 4, overlayed on the raw data density histogram.

Although both the models tend to capture the shape of the density histogram, visual

inspection reveals that Model 4 (our spatial BB model) provides a more adequate fit.

Table 3 reports the posterior estimates of the mean, standard deviation and 95% credible

intervals (C.I.) of the model parameters for Model 4. Note that the interpretation of spatial

association parameters (i.e. ρ and ) is highly dependent on the structure of the pre-

specified adjacency map as in Table 3. There is a high degree of spatial association (estimate

of ρ = 0.93) in our data. The posterior mean estimate of the spatial-variance component 

is 0.113 with 95% C.I. = (0.081, 0.146), which is clearly separated from zero and explains

moderate amount of spatial variation. The estimate of γ is 1.37 which estimates the over-

dispersion parameter  to be 2.25 (for ns = 4) or 2.67 (for ns = 5). Both of the values

indicates evidence of some Binomial over-dispersion in the data. The fixed-effects

parameters can be interpreted in terms of increase/decrease in odds of the mean probability

of having an additional diseased (D/M/F) surface within a tooth, controlling for the spatial

random effects. Age (Odds Ratio (OR) = e0.021 = 1.02, 95% CI of OR = (1.01, 1.03)) is

found to be associated with caries, such that there is a 2% increase in the odds of the (mean)

probability of having an additional carious surface with one unit increase in age, and so on.

Females and smokers are found to have more diseased teeth, although we admit that our

sample has a predominantly high proportion of females, a characteristic common for this

population. We did not find any effect of brushing/flossing habits and poverty status on

DMFS response for our sample. Molars (OR= 3.26, 95% CI of OR = (2.91, 3.65)) are found

to be highly diseased as compared to the non-molar teeth. Specifically in our sample, we

have a substantial number of molar teeth missing due to caries, which describes the excess

of 5 counts in Figure 1. We conclude that based on the sample of 100 Gullah-speaking
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subjects, there is a significant amount of spatial association contributing to dental caries, as

determined by the DMFS index. Controlling for spatial association, we also found that age,

gender and smoking are associated with caries prevalence.

We also conducted a sensitivity analysis to determine whether there is any significant effect

on fixed-effects posteriors with changes in the prior choice for , the spatial precision

parameter. We assume  ∼ Gamma(k, k), where k ∈ {0.01, 0.001, 1}. Although some

changes are noticed for the posterior of  with various choices of k, the posterior estimates

of mean and 95% credible interval of the fixed-effects remain similar to those for the

weakly-informative k = 0.1. Our observation agrees with previous findings in the

literature44, that changes in prior assumptions for the (spatial) scale parameter in Bayesian

hierarchical models might lead to substantial changes in posterior estimates of the scale

parameter, however the fixed-effects' posteriors remain largely unaffected.

6 Simulation study

In this section we conduct a brief simulation study to illustrate the effect of properly

accounting for within- and between-tooth associations on subject-level covariate effect

estimation. Each simulated data set consists of N = 40 subjects on the same spatial grid

defined in Section 3. There are p = 3 subject-level covariates, generated as Xi ∼ N(0,Ip). The

regression coefficients are β0 = 0 and β = (β1, β2, β3)′ = (0, 1, 2)/3. For subject i, we simulate

data as

(8)

We generate S = 100 data sets from each of three simulation designs:

1. Design 1: ‘Basic model’ with τ = 1.2, ρ = 0.99, and σsp = 1

2. Design 2: ‘Near-binomial model’ with τ = 50, ρ = 0.99, and σsp = 1

3. Design 3: ‘Moderate spatial association model’ with τ = 1.2, ρ = 0.4, and σsp = 1

For Design 1, the data have a fairly strong spatial association as well as overdispersion that

is constant across space. The model selection criteria in Section 5's analysis of caries data

suggest that these features are present for the caries data. Design 2 maintains the strong

spatial association, but has a near-binomial likelihood with τ = 50. The final design is similar

to Design 1, except with weak spatial association.

For each simulated data set, we fit four models: the spatial BB model as in Model 4 and

termed ‘SpaBB’, the non-spatial BB model as in Model 3 and termed ‘NonSpaBB’, the

spatial binomial model as in Model 2 and termed ‘SpaBin’ and non-spatial binomial model

as in Model 1 and termed ‘NonSpaBin’. For all models we take ρ ∼ Beta(5,1),  ∼
InvGamma(0.1,0.1), τ ∼ Gamma(0.1,0.01), and βj ∼ N(0, Precision = 0.25). Similar to the

data analysis, we used 15000 iterations with a burn-in of 10000 and used the remaining 5000

samples to calculate posterior estimates. For each model we compute the posterior mean of

βj, denoted  for data set number sim, and compute mean square error (MSE):
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, where βj is the true value used to generate the data. In

addition, we report the proportion of data sets for which the posterior 95% interval excludes

zero (i.e. empirical power), for each method and each regression coefficient.

The results are given in Table 4. For all simulation designs, the non-spatial models have

considerably larger MSE than the spatial models, illustrating the importance of accounting

for spatial structure when estimating subject-level covariates. The non-spatial models also

have inflated empirical Type-I error (power for β1), and smaller power for β3. The spatial

BB model has the smallest MSE for all covariates for the first design with strong spatial

correlations and BB likelihood. The spatial BB model also gives similar performance to the

binomial model for Design 2's near-binomial data, however the spatial binomial model

outperforms the spatial BB model for Design 3 with moderate spatial association. In this

case, the spatial random effects in the spatial binomial model may be sufficient to account

for the extra-binomial variation for the BB likelihood.

7 Conclusion

In this paper, we develop a Beta-Binomial model for multivariate spatial count data on

dental caries that accommodates extra-Binomial variation (heterogeneity) as well as possible

spatial clustering. We show, using both simulation studies and real data, that accounting for

spatial clustering and over-dispersion in the same model provides a substantial improvement

for estimating covariate effects as compared to other standard count data models that do not

make this accommodations.

In this study, the total random variation could also be decomposed into both spatially

correlated as well as uncorrelated heterogeneities, often referred to as the ‘convolution

prior’45, i.e. μi(s) = F(β0 + X1is
Tβ + U1(s) + Ei). However, using this model for μi(s) leads to

convergence issues, specially for the fixed-effects parameters even when a high burn-in

period (like 50000) is used. However while fitting separate i.i.d CAR models to each subject

(Model 4 in this paper), we find no such problems for the fixed-effects. This issue is

currently under investigation. To check whether we need to fit separate i.i.d CAR to each

subject, we modeled μi(s) as μi(s) = F(β0 + X1is
Tβ + U1(s)). Because the DIC for this model

was 5228.72 (far away from Model 4 but closer to Model 6), we did not proceed with this

model.

Our inference is strictly based on (a) the DM5FS convention29 for measuring DMFS, (b) a

specified spatial model, i.e. conditionally-autoregressive, and (c) a pre-defined adjacency

structure. A number of areas can be identified for future work. Whether our inference is

robust to various definitions of DMFS, other spatial models (viz. geostatistical, etc) as well

as some other adjacency structure needs investigation. Also, because subjects with poor

caries status are likely to have fewer teeth than subjects with a ‘good’ caries status and a

tooth missing and located at the back of the mouth might be surrounded with teeth that are

also missing, one can also consider ‘jointly’ modeling the location and presence/absence of

a tooth together with its caries status in the spirit of Reich and Bandyopadhyay25 for discrete

count responses using shared (latent) spatial random effects. Additionally, one can also

consider modeling the DMFS counts as ordinal data and develop spatial random effects

models. Our study population is homogenous (Gullah-speaking African Americans

diagnosed with type-2 diabetes) which primarily motivated our prior choice on γ.
Generalization of our proposed methods to analyzing dental caries data collected for other

groups/races or population would be relatively straightforward, however one needs to re-

consider proper parameterizations of the BB likelihood as well as the spatial adjacency

structure to accommodate spatial heterogeneity and (possible) over-dispersion.
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Figure 1.

Density histogram of raw DMFS counts (packed over teeth and subject) overlayed with

posterior predictive densities generated using Beta-Binomial models (with and without

spatial components)
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Figure 2.

Classification of tooth surfaces for permanent dentition within a human mouth. This figure

was published in ‘Dental Hygiene: Theory and Practice’, 3rd edition, Michele L. Darby and

Margaret M. Walsh, Chapter 14 Page 237, Copyright Saunders (Elsevier) (2010). Adapted

from ‘The Art of Dental Scaling’ by D. Wotton, 1991, University of Vermont, Burlington
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Figure 3.

Box-plots of log(CPO) for Models 1,3 and 4. Larger values of log(CPO) indicate more

support for the model. The horizontal line is the median log(CPO) value for Model 4 (the

best model).
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Table 1

Adjacency map for the dental caries data. Neighbors are denoted by tooth numbers

Tooth number Neighbors Tooth number Neighbors

1 2, 3, 32 17 16, 18, 19

2 1, 3, 4, 31 18 17, 19, 20, 15

3 1, 2, 4, 5, 30 19 17, 18, 20, 21, 14

4 2, 3, 5, 6, 29 20 18, 19, 21, 22, 13

5 3, 4, 6, 7, 28 21 19, 20, 22, 23, 12

6 4, 5, 7, 8 22 20, 21, 23, 24

7 5, 6, 8, 9 23 21, 22, 24, 25

8 6, 7, 9, 10 24 22, 23, 25, 26

9 7, 8, 10, 11 25 23, 24, 26, 27

10 8, 9, 11, 12 26 24, 25, 27, 28

11 9, 10, 12, 13 27 25, 26, 28, 29

12 10, 11, 13, 14, 21 28 26, 27, 29, 30, 5

13 11, 12, 14, 15, 20 29 27, 28, 30, 31, 4

14 12, 13, 15, 16, 19 30 28, 29, 31, 32, 3

15 13, 14, 16, 18 31 29, 30, 32, 2

16 14, 15, 17 32 30, 31, 1

Stat Methods Med Res. Author manuscript; available in PMC 2011 May 5.
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Table 2

Model comparison using DIC and LPML

Model D ̅ pD DIC LPML

Model 1 14945.0 7.4 14952.4 -7485.9

Model 2 13764.6 299.3 14063.9 -6270.8

Model 3 5875.6 684.9 6560.5 -4319.2

Model 4 4528.0 670.8 5198.8 -3686.1

Model 5 4593.7 704.6 5298.3 -3758.1

Model 6 4547.9 676.9 5224.8 -3739.3

Stat Methods Med Res. Author manuscript; available in PMC 2011 May 5.
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Table 3

(Conditional) Posterior estimates of fixed-effects and other model parameters with 95% credible intervals

(C.I.) for Model 4

Parameter Mean Std. Dev. 95% C.I.

Intercept -2.099 0.155 (-2.425, -1.796)

Age 0.021 0.005 (0.011, 0.031)

Gender 0.313 0.093 (0.11, 0.476)

Smoker 0.434 0.101 (0.201, 0.583)

Brush-Floss 0.109 0.088 (-0.061, 0.275)

Poverty 0.009 0.097 (-0.176, 0.187)

Molar 1.182 0.057 (1.067, 1.294)

ρ 0.935 0.021 (0.887, 0.961)

γ 1.371 0.044 (1.286, 1.461)

0.113 0.017 (0.081, 0.146)
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