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A Spatial Contrast Retina With On-Chip Calibration
for Neuromorphic Spike-Based AER Vision Systems

Jesús Costas-Santos, Teresa Serrano-Gotarredona, Rafael Serrano-Gotarredona, and Bernabé Linares-Barranco

Abstract—We present a 32 32 pixels contrast retina microchip
that provides its output as an address event representation (AER)
stream. Spatial contrast is computed as the ratio between pixel
photocurrent and a local average between neighboring pixels ob-
tained with a diffuser network. This current-based computation
produces an important amount of mismatch between neighboring
pixels, because the currents can be as low as a few pico-amperes.
Consequently, a compact calibration circuitry has been included
to trimm each pixel. Measurements show a reduction in mismatch
standard deviation from 57% to 6.6% (indoor light). The paper de-
scribes the design of the pixel with its spatial contrast computation
and calibration sections. About one third of pixel area is used for a
5-bit calibration circuit. Area of pixel is 58 m 56 m, while its
current consumption is about 20 nA at 1-kHz event rate. Extensive
experimental results are provided for a prototype fabricated in a
standard 0.35- m CMOS process.

Index Terms—Address-event representation (AER), analog cir-
cuits, artifical retina, calibration, contrast computation, current-
mode circuits, imagers, low-power circuits and systems, mismatch,
neuromorphic circuits, sensory systems, trimming, vision systems,
weak inversion circuits.

I. INTRODUCTION

T
RADITIONAL CMOS imagers operate under a
frame-based philosophy. That is, the image information

(intensity, contrast, ) of each pixel is sequentially scanned
out with a constant periodicity. After a complete period, the
whole image has been read. For consumer video systems, the
whole image is usually scanned out in a 20–30-ms period. This
restriction becomes a problem when image resolution increases,
as the time allocated to read each pixel decreases. The problem
of this scanning approach is that the communication bandwidth
is equally allocated for each pixel regardless of its relevance.
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Thus, communication bandwidth (and power) is wasted on
nonrelevant or little relevant pixels.

The retina presented in this paper follows an address-event-
representation (AER) communication strategy. AER was first
introduced in [1]–[5] as a communication strategy for neuro-
morphic chips, where a large population of neurons inside a
chip have to transmit their state to another population of neu-
rons located in another chip. A common output digital bus is
multiplexed and shared by all the chip neurons. Each neuron is
coded with a particular address. When a particular neuron ac-
cesses the output bus, it identifies itself in the bus by writing its
address on the bus. There are many ways to code information
(like intensity, contrast, motion, or any feature) into a sequence
of spiking events [6]. The most widely used so far, specially for
hardware systems, is the so-called rate-coding scheme. In this
scheme the density of spikes per unit time produced by a pixel
is proportional to the information to be transmitted (intensity,
contrast, ). The spatial contrast retina described in this paper
uses this rate coding principle to transform the continuous time
spatial contrast information computed at each pixel into a se-
quence of spikes. Consequently, the activation level (contrast)
of each neuron is coded as the time interval between two con-
secutive appearances of that neuron address on the output AER
bus. This way, a relevant pixel uses more communication band-
width than a less relevant one.

In traditional integration-based CMOS imagers, a photo gen-
erated current is integrated on a capacitor during a fixed integra-
tion time. After that time, the capacitor voltage is read out and
the pixel capacitor is reset to its initial value. In rate-coded AER-
based imagers, the current representing the image information
(intensity, contrast, etc.) is integrated on a capacitor not during a
fixed time but until a certain voltage reference is reached (vari-
able integration time). Thus, the image information is coded
as the time needed to charge the capacitor up to the threshold
voltage level. When the threshold voltage is reached, an output
address event or “spike” is sent out for that pixel, and the pixel
capacitor is reset to its initial value. That way, the image infor-
mation is not coded using the pixel voltage read (as for tradi-
tional imagers) but using the time between consecutive spikes
of each particular pixel.

This AER approach has the advantage that the output band-
width is assigned to each pixel according to its demand of
information transmission. That way, nonactive pixels do not
demand transmission bandwidth, thus, saving bandwidth and
power. Furthermore, after a change of scene, the more active
pixels will spike first, so that the more relevant information is
transmitted first. It has been demonstrated that for this scheme,
object recognition is possible when only a small portion of
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events have been transmitted, both for a software system [7]

and a hardware one [8], [9].

Since its introduction in 1991 [1]–[5] AER has been used

by a wide community of neuromorphic hardware engineers.

Unarbitrated event read-out has been used [10], [11], and more

elaborate and efficient arbitrated versions have also been pro-

posed, based on winner-takes-all [12], or the use of arbiter trees

[13], which have evolved to row parallel [14] and burst-mode

word-serial [15]–[17] read-out schemes. AER has been used

fundamentally in image sensors, for simple light intensity to

frequency transformations [18], time-to-first-spike codings

[8], [9], [19], [20], foveated sensors [21], [22], and more

elaborate transient detectors [23]–[25] and motion sensing

and computation systems [26]–[30]. But AER has also been

used for auditory systems [3], [31]–[33], competition and

winner-takes-all networks [34]–[36], and even for systems

distributed over wireless networks [37]. A very interesting and

emerging AER research line is its exploitation for complex pro-

cessing of sensory information, in a way similar to biological

brain cortex [38]–[48].

Concentrating on spatial contrast computation AER retinae,

there have been several prototypes published in the literature.

The original concept proposed by Mahowald and Mead [49]

was based on a diffuser grid for computing a local average with

respect which compute spatial contrast. Boahen and Andreou

developed further this concept using more elaborate biological

models [50], using two coupled diffuser grids. At CSEM [8],

[9] a very interesting work has been reported recently on spa-

tial contrast (vector) computation retinae (among other func-

tionalities). However, spatial contrast computation is based on

nearest neighbor pixels only. It is not a fully AER device, but

rather a mixture between event and frame based vision sensor.

There is a frame time, but within each frame, pixel information

is sent out as ordered event representation. Recently, Zaghloul

and Boahen have reported an AER retina which performs spatial

and temporal filtering that adapts to illumination and spatiotem-

poral contrast [51], [52].

The main problem limiting the performance of CMOS

spatial contrast retinae is the time-independent fixed pattern

noise (FPN) or mismatch due to random variations of the elec-

trical parameters of CMOS transistors. In traditional CMOS

imagers (where there is no contrast computation), this FPN

is mainly due to random variations in the threshold voltages

of the read out transistors that cause random variations in the

output voltage read [53]. Some compensation mechanisms have

been proposed in the literature for the correction of the output

voltage [53]–[56]. AER-based spatial contrast retinae share this

FPN problem, and is the main cause limiting its performance

[9], [52]. In this paper, we propose a calibration mechanism,

adapted from earlier work [46], [57], to compensate for these

random variations.

Some retinae have been reported in the literature which have

succeeded in providing low mismatch performance, without

using trimming/calibration. For example, Ruedi [8] minimizes

mismatch by comparing large voltage integrations of uncopied

photocurrents between nearest neighbor pixels. Culurciello’s
retina [18] operates similarly, although it codes directly light

intensity. In the case of Lichtsteiner [24], [25] mismatch is

cleverly minimized by accurately amplifying changes to a large

voltage before quantizing. However, in all these three exam-

ples, where mismatch is reduced by a smart design, none of the

retinae computes spatial contrast over a larger-than-one-pixel

neighborhood. Surprisingly, such retinae were one of the first

ones to be conceived and reported [63], but seem to present an

inherent difficulty for reduced mismatch. In the present paper

we provide a viable solution.

The visual information transmitted in the implementation

presented here is the local spatial contrast. This contrast

contains the most relevant information for object recognition,

because the relevant information of an object is in the difference

of luminance between its different regions and surroundings.

It is known that a spatial contrast extraction operation is done

in the human retina. This optimizes information transmission

through the optic nerve between the retina and the visual

cortex area [58], [59]. This contrast can be safely coded with

a dynamic range of 4–5 bits (around 20–25 levels), while

image intensity is usually transmitted with 8 bits (256 levels)

[53]–[55] in present day image and video consumer electronics.

Consequently, for artificial vision systems, it is much more

efficient to transmit directly spatial contrast information rather

than intensity. This is what the brain does [59] and many

artificial vision algorithms [60].

The paper is structured as follows. The contrast extraction op-

eration is explained in Section II. The implemented calibration

mechanism is contained in Section III. Experimental results are

provided in Section IV. Section V describes an experimental

setup to reduce AER activity while maintaining the contrast in-

formation. Finally, Section VI concludes the paper.

II. SPATIAL CONTRAST EXTRACTION

Let us call the local photocurrent sensed by the

detector at position , which is proportional to the abso-

lute light intensity incident at that spot at any time. Let us call

the representation of the local average of the pho-

tocurrent over a certain region centered at position . We

will define a measurement of the local image contrast as1 [58]

(1)

where is a global reference current level common for all the

retina pixels. The contrast is defined as the ratio between the

background average intensity and the local intensity value. The

inverse of this relation is used by physiologists to fit responses

of the retina cones [59]. In other more mathematical models for

image processing, contrast is expressed using subtractions. For

example, Michelson contrast is defined as

(2)

1The inverse can also be defined, equivalently. For example, consider a step
in light I ! I . If we define the average as the geometric mean I =

I I , then (1) or its inverse would provide symmetric contrast outputs.
However, in our circuit implementation I approximates more an arithmetic
average. Consequently, (1) and its inverse will not be perfectly symmetric, al-
though the behavior is similar. We chose to use (1) because this way the output
tends to be larger.
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Fig. 1. Electrical circuit simulation of contrast computation in a region with
two contrast edges: a step in light intensity of a factor 5 and another step of
factor 10. Vertical axis represents current (circles are photocurrents, crosses are
computed local average currents, triangles are output contrast currents which
vary around global bias I ). Horizontal axis represents pixel position.

or Weber contrast as

(3)

For these models, zero contrast results in zero output current,

and the output current includes a sign depending on whether

is larger or smaller than the local average . In the

retina described in this paper and others reported previously in

the literature [58], the contrast follows the computation of (1)

or its inverse. This will simplify our calibration circuitry, as will

be explained later in Section III. Under these circumstances, the

output contrast current will have a dc level equal to for zero

contrast, and it will be always positive. At the end of the paper,

in Section V, we will show an AER-based post-processing setup

to provide a signed contrast output that corresponds better to the

definition in (3).

For the contrast definition of (1), consider first a region of uni-

form illumination. Since all the neighborhood pixels are evenly

illuminated, the average illumination equals the local illumina-

tion value, . Thus, all the pixels in

that region exhibit the same contrast measurement

. Now consider a region where a contrast exists. The local

current average near the contrast edge will differ from

the locally sensed current . Thus, the output of the

contrast measurement will depart form the reference

level . Output will be higher than at one side

of the edge, whereas will be lower than at the

other side of the edge. Fig. 1 shows circuit simulation results

of the contrast computation in a one dimensional region of 64

pixels where two contrast edges exist. The trace marked with cir-

cles plots the distribution of photoreceptor input currents. The

smoother curve marked with plus signs is the computed local av-

erage. The upper curve marked with triangles is the computed

contrast according to (1). The output of the flat illuminated re-

gions is a constant current , whereas the output current de-

parts from that level in the neighborhood of the contrast edges.

Fig. 2(a) depicts the schematic of the pixel circuitry doing

the contrast computation. The photodiode is a diffusion

n-well diode with its well connected to the positive supply. The

Fig. 2. (a) Schematic of the pixel circuitry for contrast computation. (b)
Schematic of the diffuser network. (c) Schematic of the translinear circuit. (d)
Simplified schematic of pixel output.

photocurrent is replicated 3 times through an nMOS-type

sub-pico-ampere current mirror formed by transistors

[61], [62]. This current mirror is able to reliably replicate input

currents below the pico-ampere range. Three (mismatched)

replicas of current are delivered through the three output

transistors .

The third output branch (the branch) is disabled during

the normal computation of the contrast. During the normal con-

trast operation mode of the retina, switch is open and switch

is closed, so that no current flows through transistor .

The retina can also be operated in a mode where no contrast
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extraction is performed. In that mode, is closed and

is open, so that a replica of the photocurrent is delivered

through transistor . As we will see below, in that noncontrast

extraction mode the output of the translinear multiplier block

(see Fig. 2) is cut off, so that the output of the pixel is only

the copy of the photocurrent delivered by .

The replica of delivered by transistor flows into

a diffuser network whose schematic is shown in Fig. 2(b)

[63]–[67]. The transistors in the diffuser network operate in the

subthreshold region. Each diffuser cell receives an input current

and produces as output a current . The

operation of the diffuser network has been described in terms

of “pseudo-conductances” [65]. The current diffused through

each “pseudo-conductance” transistor [ in Fig. 2(b)]

verifies a nonlinear exponential relation in the node voltages,

but a linear relation between the currents (as long as devices

operate in subthreshold). As a consequence, the linear range

of operation of the diffuser network extends to several orders

of magnitude in the current domain. The diffuser network

implements the discrete approximation of the following current

diffusion equation in an exact manner [67]:

(4)

Parameter is a tunable “horizontal diffusion length”
given by , which can be

tuned through voltage difference . Parameter

is a tunable “vertical diffu-

sion length” which can be controlled independently through

voltage difference .

For a step type input image ( for ,

and for ) the solution of (4) yields

(5)

Parameter defines the diffusion length. Large values of

imply diffusion length is large, and the local

average will be computed for a large neighborhood. For small

values of , diffusion length is small, and the local

average will be computed for a small neighborhood.

Instead of computing the solution to the continuous time

equation approximation of (4), one can compute directly the

discrete solution to the finite difference equation, using the

Z-transform. The solution would be given by

(6)

where , which is always greater

than “1” because . For large values of ,

will be slightly larger than “1” but close to “1,” which according

to (6) will produce long diffusion lengths. For small values of

, will be much greater than “1,” which results

in small diffusion lengths. According to our circuit simulations,

the diffuser circuit of Fig. 2(b) can provide a spatial range of

over 30 pixels. However, in practice, we found this range lim-

ited to about 10 pixels. Discrepancies between (5) and (6) are

noticeable only for and short diffusion lengths (less or

equal than 2 pixels). Consequently, in practice, the continuous

and discrete solutions are equivalent.

As depicted in Fig. 2(a), the average current is fed

to a translinear circuit. Fig. 2(c) shows the schematics of the

translinear circuit. The translinear circuit also receives a copy

of the locally photo generated current and delivers

an output current . Transistors in Fig. 2(c)

form the translinear loop, so that their currents verify the rela-

tion defined by (1) for contrast computation [66]. As explained

previously, switches and in Fig. 2(c) have been added

to allow the pixel to have two operation modes. During the

contrast extraction mode switches [in Fig. 2(a) and (c)]

are closed and switches [in Fig. 2(a) and (c)] are open,

so that the output of the pixel is the current deliv-

ered by the translinear multiplier. During the photodiode mode

switches [in Fig. 2(a) and (c)] are closed and switches

[in Fig. 2(a) and (c)] are open,2 so that the output of the

pixel is directly a copy of the locally photo generated current

.

In order to be able to stack the translinear circuit of Fig. 2(c),

the diffuser network of Fig. 2(b), and photocurrent mirroring

transistors and , voltage in Fig. 2(c) has to be tied to a

higher voltage than ground. The optimum value for depends

on the biases used for , , and in Fig. 2(b). This stacking

arrangement allows to reduce the number of current mirrors, and

therefore, mismatch.

The pixel output current is integrated on a capac-

itor as shown in Fig. 2(d), which shows a simplified schematic

of the pixel integrate and fire block. Initially, the pixel capac-

itor is reset to a high voltage level . The pixel output cur-

rent integrated on the capacitor decreases its voltage

until a certain voltage level is reached. When the capacitor

voltage goes below that level, an event is sent to the periphery

by activating the pixel request signal . Upon reception of

the corresponding acknowledge from the periphery ( signal

gets active low) the capacitor is reset to the initial level .

Assume that the delay caused by the periphery (in the order of

nanoseconds) is negligible compared to the pixel operation pe-

riod (in the order of micro or milli seconds), then the frequency

of the events generated by a given pixel is

(7)

which is directly proportional to the pixel output current.

2Note that for proper sub-pico-ampere operation [61], [62] switches sw1 in
Fig. 2(c) and sw2 in Fig. 2(a) should connect the respective gates to ground in-
stead of to the transistor sources. However, this is not necessary in this particular
case and we can make a more compact layout by connecting to the sources. In
Fig. 2(a) when transistor M is cut off, the output current I is usually sev-
eral hundreds of nano-amperes. And in Fig. 2(c), since voltage V is far from
ground, the off current for transistor M is several femto-amperes for this par-
ticular transistor size and technology.
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Fig. 3. Compact calibration mini-DACs included in each pixel.

III. CALIBRATION

In this AER-based retina the fixed pattern noise appears as

a random variation of the pixels output frequencies under uni-

form illumination conditions. Several sources of fixed pattern

noise can be discerned in the present design. One source is the

random offset voltage of the pixel output comparator in the

integrate and fire circuit. The second source is the mismatch

due to the variations of the integrating capacitors. Another

source of mismatch is the one generated by the sub-pico-am-

pere current mirror that reflects the photo generated current.

The current mismatch of this reflection is going to be of the

order , as this current mirror is designed with

m m nMOS transistors operating with extremely low

currents [68]. The diffuser network and the translinear multi-

plier are also designed with reduced area transistors operating

with low currents. The current domain operations/replications

are the dominant mismatch sources. Experimental results of

the retina operating under uniform illumination in the contrast

extraction operation mode when no calibration technique is

applied show that the precision is well below one bit. The

measured output frequency spread is about 25.

Thus, system calibration is essential for any application.

A calibration technique is designed that equalizes all the pixel

frequencies under flat illumination conditions. Rewriting (7), we

can express a pixel output frequency in the contrast extraction

mode as

(8)

Considering that all the terms in the above equation are affected

by some deviation from their nominal values due to mismatch,

and doing a first-order Taylor expansion we can re-express the

equation in the following terms:

(9)

where is the mismatch introduced by transistors

of the translinear circuit in Fig. 2(c). We observe that doing a

first-order approximation, all the error terms combine in an ad-

ditive way. This is because in (8) they appear either multiplying

or dividing, but without additions nor subtractions. The calibra-

tion technique proposed here consists of adding a term

in (9) independently tunable for each pixel.3 This term has to

compensate independently for each pixel its random total devi-

ation . A tunable current

for each pixel is added in parallel to current in such a way

that we equalize all the pixel firing frequencies under flat illu-

mination conditions

(10)

The generation of the tunable calibration current is based

on the mini-DACs calibration technique proposed in [57], which

exploits the linear current division technique of MOS transistors

[69], [70]. Fig. 3 plots the schematic of the compact mini-DACs

used to generate the calibration current for each pixel. A

careful compromise has to be made between precision after

calibration, calibration circuitry area, and calibration circuitry

power consumption. Following the suggestions in [57], and after

performing extensive simulations, we reached the conclusion to

use five calibration bits with mini-DACs unit transistors of

size m m for the current ranges we needed.

Trying to achieve extra bits in precision would result in an ex-

ponential growth in area.

Voltage is applied from the periphery to generate a copy

of , which controls the calibration range of the mini-DACs.

Each successive mini-DAC branch generates a current which

equals the current of the preceding branch divided by 2. Each

mini-DAC is controlled by a 5-bit calibration word

, which is stored locally in each pixel using

static latches. Calibration words are loaded row by row. A pe-

ripheral shift register with 33 5-bit registers is loaded serially

from an outside port using a 10-kHz clock. 32 5-bit words are

copied in parallel into the registers of the selected array row,

and the 33rd register indicates this selected row. The current

generated in each branch of the pixel mini-DAC goes either to a

dummy node common to all the pixels or is summed to the pixel

3If we had implemented the contrast definition of (2) or (3), then we would
need to include two independent calibration currents per pixel.
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calibration current depending on the state of the stored bit

. Thus, the calibration current can be expressed as,

(11)

After introducing a calibration current in parallel with

the current, each pixel frequency becomes a function not

only of the pixel but also of its calibration word. That is,

. The calibration procedure consists of identifying

for each pixel the optimum calibration word ,

such that the frequency dispersion among the pixels is mini-

mized under a condition of uniform illumination.

During calibration, it is also important to tune properly the

global bias current . This current has to be comparable to the

maximum pixels dispersion .

If is set to a very low current (compared to the maximum

pixels dispersion ) the calibration range is very small

compared to the pixels dispersion range. On the contrary, if

is set to a high value (compared to the maximum pixel deviation

), then the granularity of the calibration gets very coarse.

In (10), if varies between a maximum positive value

of and a minimum negative value of , then pixels are

equalized by setting

(12)

If then for this pixel we set . On the

other hand, if , then is set such that

(13)

According to (11), for a 5-bit mini-DACs,

. An example procedure for proper selection of is il-

lustrated in the next section.

IV. EXPERIMENTAL RESULTS

A test prototype retina of 32 32 pixels has been fabri-

cated in the AMS-0.35- m double-poly triple-metal CMOS

technology. The whole system occupies an area of 2.88 mm

2.88 mm. Fig. 4 shows a microphotograph of the fabricated

retina. Table I summarizes chip specifications.

Chip power consumption is basically determined by the

output event rate. If no output events are produced by the

retina, standby current consumption is around 10 A for the

biasing conditions we set. However, current consumption grows

quickly with output event rate, and reaches 3 mA at 1.6 Meps.

Fig. 5 shows the measured retina current consumption as func-

tion of its output event rate. For the AER out circuit we used

Boahen’s row parallel burst mode circuits [14]. When shorting

and , we measured handshaking cycles of 30 ns per

event outside bursts and 15 ns per event within bursts.

The area of each pixel is m m. The layout

of an assemble of four pixels is shown in Fig. 6. The dif-

ferent pixel parts are highlighted in one of the pixels: pho-

todiode (100 m —3% of pixel area), contrast computation

Fig. 4. Microphotograph of the 32 � 32 retina.

TABLE I

Fig. 5. Retina current consumption as function of its output event rate (in eps).

circuitry (300 m —9%), mini-DAC (300 m —9%), cali-

bration registers (500 m —15%), integrate-and-fire circuit

(600 m —18%), AER-out circuit (300 m —9%). The rest

of the area goes to routing. The routing channels are shared

by contiguous pixels. The digital input and output signals
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Fig. 6. Layout of an assemble of 2� 2 pixels. In one of the pixels we show the
area of the photodiode, the contrast computation circuitry, the mini-DACs and
calibration registers, the i&f circuit, and the AER-out event generation circuit
for communication with chip periphery.

for the transmission of the pixel events are laid out as far as

possible from the pixel analog parts (i.e., integrating capacitors,

sub-pico-ampere current mirrors, etc.).

The fabricated retina has been extensively tested. In the fol-

lowing, we provide results of different experiments that we de-

signed to investigate the performance of the retina under dif-

ferent conditions.

A. Calibration Experiments

We have calibrated our contrast retina under three different

illumination conditions: darkness, ambient laboratory illumina-

tion, and bright illumination. The retina bias currents and volt-

ages were kept the same in the three cases. In the three cases,

we obtained a great improvement in the performance after doing

calibration. Fig. 7 summarizes the performance of the retina be-

fore and after optimum calibration in the three experiments. In

Fig. 7, the histograms of the pixels output frequencies under

uniform illumination are represented. Each row in Fig. 7 cor-

responds to a different illumination condition. The left column

represents the output frequencies before calibrating the retina,

while the right column represents the pixels output frequencies

after optimum calibration. We can observe that the performance

of the retina is very similar for the indoor illumination and for

the illumination under a bright light source. However, the mis-

match is higher for darkness. The reason is that in dark condi-

tions the in (9) contains the mismatch due to

the sub-pico-ampere current mirrors plus the mismatch of the

photodiodes dark currents which becomes significant under this

condition. When light shines on the retina, the denomi-

nator increases and the mismatch due to dark current becomes

negligible. From our experiments, we have also verified that the

retina performance is not severely degraded when the retina is

calibrated under a given light condition and that illumination

Fig. 7. Frequency histograms of the retina before and after calibration under
different illumination conditions. Separate calibration is done for each row. Hor-
izontal axes represent pixel frequency, and vertical axes number of pixels per
bin.

condition changes. However, the retina performance is severely

degraded if the calibration was done for darkness.

Fig. 8(a) plots the measured output frequencies of all the

retina pixels before calibration when the retina is under uniform

ambient laboratory light. The maximum measured output fre-

quency is Hz and the minimum measured output

frequency is Hz. As explained in Section III, it is

important to appropriately set the value of current to optimize

the performance of the calibrated chip. We did this optimiza-

tion in two stages.

In the first stage, we followed the following procedure.

1) For the uncalibrated retina, we identified the slowest pixel

(the pixel with the lowest output frequency).

2) We adjusted current so that the frequency of the slowest

pixel for the maximum calibration word

equals the frequency of the fastest pixel , when its

calibration is disabled .

3) For the determined value, we measured all the pixels

calibration curves. That is, we measured for each pixel its

output frequency as a function of the calibration word .

4) We computed the optimum calibration words. That is, we

determined the optimum pixels calibration words

that minimize the dispersion in the output fre-

quencies.

Calibration tries to set all pixel frequencies equal to the max-

imum pixel frequency. Consequently, before calibration, the
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Fig. 8. (a) Measured pixels output frequencies of the uncalibrated retina under
uniform indoor illumination. (b) Calibration curve of the slowest pixel for I =

0:3 nA. (c) calibration curves for all the retina pixels for I = 0:3 nA. (d)
Detail of the region of fitted frequencies.

global bias current should be adjusted such that the fastest

pixel frequency is the one desired for the whole array (after

calibration).

Fig. 8 shows some plots that illustrate the first stage of this

calibration procedure. Fig. 8(b) plots the output frequency of

the slowest pixel as a function of the calibration word for cur-

rent nA. As can be observed, its maximum frequency

Fig. 9. (a) Calibration curves of all the retina pixels for current I = 0:25 nA.
(b) Detail of the optimum fitted frequency region. (c) Measured pixels frequen-
cies before and after calibration divided by the mean output frequency in each
case.

equals approximately the frequency of the fastest uncalibrated

pixel . Fig. 8(c) plots superimposed the calibration curves

for all the pixels. In these measurements, current is set to 0.3

nA and the output frequency of each pixel is measured versus

the calibration word. Fig. 8(d) shows a detail of Fig. 8(c). The

asterisks show the selected optimum calibration word and op-

timum output frequency for each retina pixel. The upper and

lower horizontal lines mark the maximum and minimum se-

lected frequencies. The middle horizontal line marks the target

optimum output frequency which in this case is 400 Hz.

The precision achieved after calibration is . We can

observe in Fig. 8(d) that the upper range of calibration words

remained unused after the optimization. Thus, we can increase

the precision after calibration by reducing current .
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To optimize the setting of current , we take a second cali-

bration stage. In this second calibration, we reduce current so

that the maximum output frequency of the slowest pixel (with

) equals the optimum frequency of the previous cal-

ibration stage. After that, current was reduced to 0.25 nA.

Then, we go to step 3 of the previous calibration stage. Fig. 9(a)

plots superimposed the calibration curves of all retina pixels for

nA. Fig. 9(b) shows a detail of Fig. 9(a). The aster-

isks show the fitted optimum calibration words and fitted output

frequencies. The upper and lower horizontal lines mark the max-

imum and minimum fitted output frequencies. The middle hori-

zontal line signals the target optimum frequency Hz.

In this case, the precision achieved after calibration has been im-

proved to . We can observe, that now we are making

use of the whole range of calibration words. Fig. 9(c) repre-

sents with circles the output frequencies of all retina pixels be-

fore calibration. The output frequencies of the same pixels after

calibration are represented with asterisks. The frequency spread

before calibration is , while after calibration is

.

An interesting issue is how long can it take in production

to calibrate a retina. The slowest step is to characterize all

pixels for all calibration words. Calibration words are loaded at

10-kHz clock rate. This implies about 0.1 s to load all of them.

To read out the pixel frequencies, one should take a minimum

of ten events per pixels. This will take around 1 s before first

calibration [since minimum pixel frequency can be as low as

10 Hz—see Fig. 7 and Fig. 8(b)] and about 50 ms after first

calibration (since minimum frequency is easily above 200 Hz).

All this has to be repeated 32 times. Then one also needs to

add the computation time to calculate the optimum calibration

words. Under optimized conditions in production, calibrating

one single retina can take around one minute.

B. Contrast Extraction Experiments

We have done experiments where we presented to the retina a

sheet of printed paper (laser printer) composed of half black and

half white/gray regions separated vertically. The relative con-

trast between the two regions varied from a 100% contrast (for

half black and half white) to a 10% contrast (half black and half

dark gray). For the left half we used always full black

while for the right half we changed from full white

to dark gray . In this experiment we define “rela-

tive contrast between the two regions” as .

The pieces of paper of about 5 cm 5 cm were hold 3–5 cm

away from the lens, which was a wide angle one. Illumination

was based on conventional fluorescent ambient laboratory light.

The input images presented to the retina are plotted on the first

column of Fig. 10. We captured the image with the retina set to

its contrast extraction mode but with different calibration con-

ditions: uncalibrated retina, retina with the optimum calibration

weights and current obtained for the indoor light conditions,

retina with the calibration weights and current optimized for

the illumination with a bright light source.

Fig. 10 shows some of the images obtained from these

experiments. In Fig. 10, the pixels output frequencies were

mapped linearly to a gray scale. These images are reconstructed

by capturing timestamped events from the retina using a

Fig. 10. Images acquired by the contrast extraction retina when an image of
half white and half black regions separated vertically is presented to the retina
with different levels of contrast between the two regions. The different rows cor-
respond to images presented with different contrast levels, while the different
columns correspond to different settings of the retina. The first column shows
the input stimulus. The second column shows directly the photocurrents. The
third column shows the uncalibrated retina output. In the fourth column, the
retina was calibrated under indoor light. In the fifth column, the retina was cali-
brated under a bright light source. All the images were acquired under the same
illumination conditions, which correspond to the calibration conditions of the
last column.

special purpose hardware [72], which stores them into computer

memory for later analysis. From these captured timestamped

events, we can determine for each pixel its average frequency

and jitter. On average, frequency jitter standard deviation was

around 6% of the mean frequency. Each row in Fig. 10

corresponds to a different input image presented to the retina.

The first row are the reconstructed output images when the

retina sees an image with 100% contrast. The contrast is

reduced progressively. The last row corresponds to the retina

seeing an image with low (10%) contrast. The first column

plots the input stimulus printed on the papers. The second

column shows the acquired photocurrents, when setting retina

pixels and in Fig. 2 to integrate directly the mirrored

photocurrents. In this case, there is no calibration. The third

column in Fig. 10 plots the output images obtained with

the uncalibrated retina. The fourth column plots the images

obtained with the retina calibrated for indoor light conditions.

And the fifth column shows the images obtained with the retina

calibrated for bright illumination. All the images in Fig. 10

were obtained under bright illumination conditions, so that

the illumination conditions match the calibration conditions

of the last column of images.

We can make the following observations. Images acquired

with the uncalibrated retina have high fixed pattern noise

(FPN), as can be expected from the measurements shown

in Section IV-A. Calibration not only reduces FPN but also

allows to clearly recognize edges when low contrast images are
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Fig. 11. Numerical representation of the output images shown in Fig. 10. Each row is the output obtained for different contrast input images. The four columns
correspond to the right most columns in Fig. 10. For each subplot, horizontal axes represent the pixel column number in a row (from 1 to 32). Vertical axes represent
the pixel output frequency. Circles indicate the average computed for all rows.

presented to the retina. In the 10% contrast image, edge recog-

nition is impossible with the uncalibrated retina. Finally, as

we already claimed in Section IV-A, resolution is not severely

degraded when the illumination conditions do not match the

calibration conditions (except when calibrating in darkness).

Fig. 11 represents the same information plotted in Fig. 10.

However, in this case, we have represented numerically the

output frequency of each retina pixel as a function of its position

along a row. The output frequencies of the pixels located in the

same retina columns are superimposed.

The minimum contrast we could measure without calibration

was 30%, while with calibration it was4 10%. In Fig. 11, we also

show the average contrast frequency computed among all rows.

At the regions without contrast, the standby output frequency is

about 400 Hz (after calibration). By looking at the difference be-

tween the central pixel frequencies and the standby frequency,

as a function of input image relative contrast, we can estimate

the contrast sensitivity of the retina. This sensitivity is approxi-

4Note that this 10% contrast limit is estimated with a “by-eye” judgement
using a stimulus with an extended edge covering the whole imaging area.
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Fig. 12. Retina output acquired: (a) by the uncalibrated retina under indoor
illumination, (b) by the calibrated retina under indoor illumination, (c) by the
uncalibrated retina under bright illumination, and (d) by the calibrated retina
under bright illumination. For (b) and (d) retina was calibrated only once, under
indoor illumination.

mately independent of illumination conditions, and has a value

of around 10 Hz for every percentage change of input image

“relative contrast between the two regions.” In the upper range,

output frequency tends to saturate.

C. Performance Under Different Illuminations

To examine the retina performance under different illumi-

nation conditions, we acquired the same static input under

different illumination conditions. These results are shown in

Fig. 12. Fig. 12(a) and (b) were acquired under indoor illumina-

tion. Fig. 12(a) was acquired by the uncalibrated retina, while

in Fig. 12(b) the retina was calibrated. The calibration used in

Fig. 12(b) was the optimum for indoor illumination conditions.

Fig. 12(c) and (d) were acquired under bright illumination. In

Fig. 12(c), the retina was uncalibrated, and in Fig. 12(d) we

were using the same calibration than for Fig. 12(b).

D. Photosensor Optical Characterization

In order to characterize the pixel photo sensing p-diffusion

n-well diode, we mounted the retina chip without lenses on an

optical characterization bench. The retina was exposed to uni-

form light of controlled illumination power and wavelength. The

retina was configured to operate in its direct photosensing mode

( ON and OFF in Fig. 2), and the pixels events were

recorded. For each measurement, a total of retina events

were recorded, and the average pixel event frequency was com-

puted. This way, the effect of current mirrors mismatch, ca-

pacitors mismatch, and comparators voltage mismatch is aver-

aged out over all pixels in the array. The average total capaci-

tance of the integrate-and-fire node in Fig. 2(d) was estimated,

using layout extraction, to be around 280 fF. This way, photocur-

rent can be directly estimated from the average pixel frequency.

Fig. 13. Measure photodiode quantum efficiency as function of light wave-
length.

Fig. 14. Pixel photocurrent as function of incident light power at � = 55 nm.

Knowing the average pixel photocurrent and the incident

light power per unit surface at a given wavelength , the

quantum efficiency QE of the photosensor is given by

(14)

where Js is the Plank constant,

ms is light speed, C is the electron

charge, and m is the photodiode area. This QE is

shown in Fig. 13 as function of incident light wavelength. As

expected, this photodiode is more sensitive to light in the blue

range [71]. Its peak QE is 0.34 at 450-nm wavelength.

Similarly, the pixel average frequency was obtained for dif-

ferent light intensities at a fixed wavelength nm .

Fig. 14 shows the measured photocurrent as function of incident

light power. When there is no light, we obtained a dark current

of approximately 500 fA. By exposing the retina directly to sun-

light we obtained an average photodiode current of 1.3 nA.
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Fig. 15. Setup used to convert the unsigned AER retina output with dc level to
a signed AER stream with no dc level.

V. TRUE CONTRAST AER OUTPUT

The retina chip presented in this paper suffers from a funda-

mental limitation, also present in other contrast retinae chips

[58]: when the input is uniform there is a nonzero output.

This means that there is an output dc level around which the

output changes. If contrast is negative, the output goes below

this dc level, while when contrast is positive the output goes

above it. In our case, since the retina output is given as an

AER signal, this is an inconvenience because the retina will

consume communication bandwidth even when there is no

output signal (zero contrast). A true AER contrast retina should

provide a zero event frequency output for those pixels with

zero contrast, and a signed nonzero event frequency for those

pixels with a nonzero contrast. This is specially important if the

output of the retina is going to be fed to an AER-based spike

event processing system composed of several AER transceiver

stages, each with many chips working in parallel. In this case,

a significant amount of energy and communication bandwidth

would be consumed when no signal (contrast) is present at the

sensor output. Consequently, this plays against the AER scheme

fundamental advantage. To overcome this problem, we use

the setup illustrated in Fig. 15. This setup includes four AER

independent point-to-point channels. These channels are signed

AER channels, which means that the event address includes a

sign bit. Our AER retina output goes to AER channel-1, for

which we set the sign bit constant and negative for all events.

This channel goes to a merger block [72]. A merger block is a

simple logic circuit, easy to program on a field-programmable

gate array (FPGA), which takes input events from several

AER channels, arbitrates them and manages their handshaking

signals, and copies every input event coming from any input

channel to its output channel while generating conveniently

its handshaking signals. The second AER input of the merger,

channel-2, comes from a uniform image generator. This is an

AER sender with 32 32 pixels, all generating output events

of constant frequency. Their event frequency is set to the same

than the dc level of the retina, and the sign bit is set positive

for all pixels. A uniform AER image generator can easily be

implemented on an FPGA using any of the algorithms reported

elsewhere [73]. At the output of the merger, at AER channel-3,

there will be all events generated by the retina and all events

generated by the uniform image generator, conveniently ar-

bitrated. The event activity on channel-3 will be high. Note

that for a pixel with zero contrast in the retina there will be a

number of negative events per second (eps) which corresponds

to the retina output frequency dc level, plus the same number

of positive events. Those events can be subtracted by proper

Fig. 16. Experimentally obtained outputs from the setup of Fig. 15. (a) Image
reconstructed from the AER flow at channel-1, and (b) Image reconstructed from
the AER flow at channel-4. Vertical sidebar indicates gray level coding of pixel
frequency.

integration for each pixel. This is accomplished by the AER

convolution chip [38], [74] receiving events from channel-3.

This convolution chip has been programmed with a convolution

kernel of size 1 1. This way, its operation will be equivalent

to a simple array of integrators. Consequently, it will just copy

the input visual flow to its output. Since each pixel of the

convolution chip includes an integrate-and-fire pixel capable

of handling signed events, each pixel will produce output

events with a frequency proportional to the difference of the

event frequencies between channel 1 and 2. Therefore, the

AER output of the convolution chip, channel-4, will show zero

event frequency for those pixels with zero contrast, and signed

events for those pixels with nonzero contrast, while reducing

significantly the overall event flow in channel-4 with respect to

channel-1 (and channels 2 and 3).

The setup of Fig. 15 was assembled in our lab using the

present AER retina, a 32 32 convolution chip developed in our

labs [38], [74], the FPGA-based synthetic AER image generator

reported in [73] and the FPGA-based AER merger and splitter

reported in [72]. The results are shown in Fig. 16. Fig. 16(a)

shows the image reconstructed from the events coming out di-

rectly from the AER contrast retina (events on channel-1). The

contrast retina produces unsigned events. Therefore, the sign bit

at the channel-1 input of the merger was shorted to ground (neg-

ative sign) permanently. The total event rate at channel-1 was

384 keps (kilo eps). The event rate spread for the retina pixels

varied between 160 eps and 1300 eps. The dc level (zero con-

trast) of the pixels was 368 eps. Consequently, the synthetically

generated AER stream at channel-2 was such that for all pixels

its constant event rate was 368eps, with its sign bit set to “1”
(positive). The total event rate at channel-2 was 377 keps. At

channel-3, the total event rate was 761 keps. The reconstruc-

tion of the convolution chip AER output, channel-4, is shown in

Fig. 16(b). As one can see, the information content difference

between the images in Fig. 16(a) and Fig. 16(b) is negligible.

However, the total event rate at channel-4 has been significantly

reduced, down to 9.89 keps. The signed event rate of the pixels

varied between 27 eps and 110 eps. The average absolute

value event rate of the pixels was 9.66 eps, while the average

signed event rate of the pixels was 0.88 eps. Consequently,

this setup allows to reduce the total retina event rate by a factor

of approximately 40 while adding a sign at the same time, and

without eliminating any (contrast) information. This is of crucial

importance for assembling multi-layer event-based bio-inspired

processing systems, since this allows to reduce significantly the
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information flow and energy budget at all subsequent stages, and

allows to separate positive and negative information flow which

is characteristic of many bio-inspired processing systems [60]

and biology itself [59].

VI. CONCLUSION

We have presented a contrast retina chip that provides its

output as an AER stream. The contrast is computed as a result of

multiplying and dividing currents at each pixel. This fact allows

to calibrate mismatch by using one unique trimmable current

per pixel. The drawback however is that such approach results

in a contrast output with a nonzero dc level. This is particu-

larly negative for AER-based systems, since this introduces a

significant extra event flow when information is absent. How-

ever, this drawback can be overcome by adding an extra pro-

cessing before sending contrast information to a more complex

AER-based processing system. This also shows the great power

and potential of AER processing when one has available a small

set of AER blocks (such as synthetic generators, mergers, split-

ters, and convolution processors) and connects them in an ap-

propriate configuration. In the present paper we have provided

detailed descriptions of the design of the retina pixel and how

calibration capability has been included. We have also provided

extensive experimental results illustrating the correct operation

of the retina and how it benefits from its calibration capability.

Presently, we are working in the development of a new contrast

retina that directly provides signed events and zero output ac-

tivity when there is zero contrast.
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