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Abstract* 
In this work, we investigate the problem of automatically 
mapping applications onto a coarse-grained reconfigurable 
architecture and propose an efficient algorithm to solve the 
problem. We formalize the mapping problem and show that 
it is NP-complete. To solve the problem within a reasonable 
amount of time, we divide it into three subproblems: 
covering, partitioning and layout. Our empirical results 
demonstrate that our technique produces nearly as good 
performance as hand-optimized outputs for many kernels. 
1. Introduction and previous work 
Most popular embedded applications such as MPEG, AC3 
and AAC contain repetitive computations. Also we can 
often discover considerable diversity in their code where 
many different code patterns are interweaved. To more 
effectively handle these characteristics, coarse-grained 
reconfigurable architectures (CRAs) [7] have been studied. 
The CRA can not only boost performance by exploiting the 
features of repetitive computations, but also adapt itself to 
diverse computations by dynamically changing 
configurations of an array of its internal processing elements 
(PEs) and their interconnections  

Many conventional CRAs are specialized for SIMD-style 
computations. They are efficient for data parallelism since 
they save configuration and cache storage by sharing an 
instruction for multiple data. But their execution models are 
limited in that each individual PE cannot execute different 
instructions independently at the same time. To overcome 
this limitation, researchers have studied multiple instruction 
multiple data (MIMD)-style CRAs in which each PE can be 
configured separately to facilitate processing its own 
instructions. Since they allow more flexible configurations, 
they can efficiently cope with a more general form of loop 
pipelining and loop parallelism [8] through simultaneous 
execution of multiple iterations of a loop in a pipeline. 

Traditionally, PEs in a CRA have been homogeneous; that is, 
the PEs have regular structures supporting the same 
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computational primitives for parallel execution of multiple 
instructions with flexible operation scheduling. Such 
flexibility, however, comes at a price because homogeneous 
architectures normally require many hardware resources 
regardless of the characteristics of the application domain. 
To alleviate this problem, several CRAs with heterogeneous 
PEs, which we call heterogeneous CRAs (HCRAs), have 
been proposed [10]. Earlier study [2]] demonstrated 
empirically that the HCRA may improve performance 
through reduction of chip size and cycle time with an extra 
effort of pipelining shared resources. 

In this work, we investigate the problem of automatically 
mapping applications onto a MIMD-style HCRA. Like other 
CRAs, the performance of a HCRA hinges heavily on a 
strategy that maps target application onto the PE array so as 
to exploit the parallelism embedded in an application and 
computation resources of the hardware. Unfortunately, to 
the best of our knowledge, little work has been reported in 
the literature on efficient algorithms to automatically solve 
the mapping problem for MIMD-style HCRAs. Probably 
our work is the most closely related to an earlier work on a 
CRA, called the resource sharing and pipelining 
architecture (RSPA) [2], because we also target the RSPA. 
However, this work is different from ours since they used an 
ad-hoc approach in which they computed optimal mappings 
manually for their target machine. Manual mapping is quite 
time-consuming and error-prone. But, in our work we 
propose an algorithm to automate the mapping process. 

[4], [3], and [5] are another noticeable works related to ours. 
However, their target machines are different from ours in 
that our RSPA model supports common resource sharing for 
heavy computation like multiplication and increase 
performance using loop pipelining, so their mapping 
algorithms are not able to be directly applied to our RSPA 
for maximized performance. 

This paper is organized as follows. Section 2 explains the 
target architecture. Section 3 describes our mapping 
problem. Section 4 discusses the details of our mapping 
method. Sections 5 and 6 report experiments and conclude. 

2. Target architecture 
In this work, we choose the RSPA as our target machine. It 
has a mesh-based coarse-grained reconfigurable array (RA) 
of PEs. Each PE is a basic reconfigurable element composed 
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of an ALU and a barrel shifter. The configuration of a PE is 
controlled by its own configuration cache. Each row of the 
PE array shares read/write-buses. When kernels − time-
consuming sections of code mostly nested in important 
loops in the application − are mapped onto an RA, loop 
pipelining is used for performance enhancement. Because 
loop pipelining distributes the same operations over several 
cycles, we do not need all PEs to have the same functional 
resource at the same time. This allows the PEs in the same 
row or column to share area-critical resources. From a 
runtime profile, it can be known how area-dominant and 
time-critical heavy resources like multipliers are separated 
as independent PEs, and shared by other PEs in the same 
row or column array within the CRA. Figure 1 shows the 
details of connections for multiplier sharing. The two n-bit 
operands of a PE are connected to the bus switch. At run 
time, the mapping control signal from every configuration 
cache is fed to the switch which decides where to route the 
operands. After a multiplication, the 2n-bit output is 
transferred from the multiplier to the original issuing PE via 
the bus switch. 

 
Figure 1. 4x4 Reconfigurable Array with 8 shared resources 

Although the number of multipliers can be reduced through 
sharing, it may increase the critical path delay, hence 
degrading the overall performance. To curtail the delay, the 
RSPA architects employed the resource pipelining 
technique. In this work, we use the same architecture 
configuration as in Figure 1 with multipliers in each side of 
row. 

In general, mapping algorithms can be classified largely into 
two categories: temporal and spatial mapping. The 
effectiveness of mapping strategies varies depending on the 
architectural characteristics of the target machine as well as 
target applications. Figure 2 compares the two mapping 
strategies. In temporal mapping, necessary configurations 
are piled on each configuration cache and the configuration 
of each PE is dynamically changed with time. In Figure 2, 
only one PE has four configurations and with time its 
configuration is changed from A to D. In spatial mapping, 
each PE has a fixed configuration during whole computation, 
and the data to be processed are flowed through PEs. If (a) 
in Figure 2 is loop body and there is no loop carried 
dependency from D to A, we can issue next iteration every 
single cycle by loop pipelining. 

Temporal mapping may reduce the number of PEs required 
for mapping in comparison with spatial mapping, so 

relatively large kernels can be mapped onto the RA. Even in 
this case the maximum number of instructions in an 
application is bound by the size of configuration cache and 
the RA. In spatial mapping, the mapping is limited by the 
topology and size of the RA. Therefore, relatively small or 
medium-sized kernels should be mapped onto the RA. But it 
has fixed configuration, so it has no overhead due to 
dynamic configuration and saves the storage for 
configuration cache. Capitalizing on these advantages, the 
spatial mapping strategy is effective for certain types of 
loops found in many embedded applications. 

 
Figure 2. Spatial mapping (b) and temporal mapping (c) for 
processing application code (a) 

The above observation motivated us to conduct a study 
where we evaluate the effectiveness of spatial mapping on 
our reconfigurable architecture. For this study, we have 
developed an algorithm for spatial mapping and obtained the 
performance results. These results were compared with 
those obtained by hand. In subsequent sections, we will 
describe our algorithm and report the comparison results.  

3. Spatial mapping on the PE array 
Spatial mapping onto a 2-D mesh-structured PE array starts 
from analyzing an application code. To maximize the 
utilization of the PE array, we use a runtime profile to select 
a kernel to be executed on the PE array. For the spatial 
mapping, each kernel is represented in a tree form, called 
kernel tree. Kernel tree K is a binary tree where each node is 
an atomic operation such as + and *, and an edge (u,v) in  K 
represents a dependence between u and v. Figure 6 shows an 
example of the kernel tree where L denotes a load operation. 

One or more operations in K can be scheduled together on a 
PE. This scheduling is directed by a configuration which is a 
set of signals consisting of selection signals of mux and 
control signals of ALU, shifter and multiplier in the PE. 
Figure 3 shows the internal structure of a PE and the 
possible configurations. Configuration 5, LL-ALU-SHT in 
Figure 3 (b) directs which load operations read values from 
the frame buffer and how ALU and shift operations serially 
process these values. To map kernel operations on the PE 
array, we determine the configuration of each PE in the 
array by specifying how operations in K are grouped and 
scheduled to PEs. To explain this, consider Figure 4 (a) 
where we can see that three operations (1 multiplication and 
2 loads) directed by Configuration 7 are scheduled to PE1. 
In our work, we summarize all configurations for a given 
kernel in another binary tree form, called the configuration 
tree, In a configuration tree, each node represents a 
configuration for each PE which can cover and execute 
more than one operations in the kernel, and an edge (p,q) 



represents the dependence between the two PEs covering p 
and q, respectively. Figure 4 (b) shows an example of a 
configuration tree built from the kernel tree in Figure 6. 

 
Figure 3 Internal structure of PE and a set of configurations 

 
Figure 4 Kernel tree covered by a set of configuration (a) and 
configuration tree generated from the kernel tree (a) (b) 
Once a configuration tree is constructed, each node PEi is 
now mapped to a physical PE Mjk located at the j-th row and 
k-th column of the 2-dimensional PE array. Figure 5 shows 
how the eight nodes in a configuration tree in Figure 4 (b) is 
laid onto a 5×4 array. For instance, two nodes PE4 and PE6 
are respectively scheduled to M12 and M11 in the PE array; 
thus forming an execution path (M12,M11). Note in Figure 5 
that all PEs included in the layout are either white- or gray-
colored. We call the white PE a computation PE because it 
is involved in actual data computation for a kernel. We call 
the gray one a channel PE because it is not participated in 
actual computation but used as a communication channel for 
data transfer between its neighboring PEs. For example, see 
the computation PE1 PE5 PE6 in Figure 4 (b) that was 
originally mapped onto the PE array, forming the execution 
path (M41,M21,M11). To transfer data from PE1 to PE5, we 
must pass through M31. So we add it as a channel PE in the 
execution path; thus, forming (M41,M31,M21,M11) in Figure 5. 

When multiple nodes are laid, their interdependences are 
preserved by allocating them to the PEs that have direct or 
indirect data paths in the array. There are also additional 
constraints that should be satisfied to correctly lay nodes in 
the PE array. We list them in Definitions 1, 2 and 3. These 
constraints collectively called the RA constraints. 

Definition 1. [Bus constraint] Configurations of n PEs in 
one row or one column share a fixed number of memory 
buses. Let PEjk be the k-th PE in the j-th row. Then we 

denote cjk to be a configuration for a PEjk, and mj the 
number of atomic memory operations in cjk. Then, we have 

∑ −≤
n

k
jk rowthjinbusesmemoryofm #  

Definition 2. [Resource constraint] Heavy computation 
resources like multipliers are shared by configurations of n 
PEs in one row, as explained in section 2. Let cjk be a 
configuration for PEjk, and sjk  the number of atomic shared 
operations in cjk.. Then, we have 

∑ −≤
n

k
jk rowthjinresourcesncomputatiosharedofs #  

Definition 3. [Mesh size constraint] Let’s assume that the 
PE array of target architecture has a dimension of m×n. 
The number of PEs to which a configuration is assigned in 
the same row is bound by n. Likewise the number of PEs to 
which a configuration is assigned in the same column is 
bound by m. 

 
Figure 5 Configuration tree layout on PE array for 
configuration tree in Figure 5 

 
Figure 6. the kernel from n_complex_update.c in DSPStone 
and its kernel tree 

We define the latency of Mjk in the PE array, denoted by ljk, 
to be the number of cycles within which Mjk completes a 
processing directed by a configuration cjk. Then, the latency 
of an execution path P can be defined 

∑
∈∀ PA

jk
jk

l
 

The total cycle time that takes to complete an execution of a 
kernel is proportional to the length of longest execution path 
in a configuration tree layout for the kernel. In Figure 5, we 
see that the longest execution path for the kernel in Figure 6 
(a) would be (M41,M31,M21,M11)  with latency of five cycles 
since l11 = l21 = l31 = 1 and l41 = 2. We call this longest path, 
the critical path of the tree layout. To goal of our spatial 
mapping problem (SMP) is, given a kernel code, to find its 



configuration tree layout on the PE array whose the length 
of critical execution path (Scritical) is minimized subject to the 
RA constraints. 

Definition 4. Given a SMP instance (Scritical) and constant k, 
the problem decision–SMP problem determines whether or 
not there is a configuration tree layout on PE array that 
produce Scritical such that Scritical ≤ k. 

Shields [6] proved that the problem of deciding if an 
arbitrary binary tree can be laid out in a 2-D grid with fixed 
dimensions is NP-Complete. From this, we have learned that 
SMP is NP-complete. Therefore, we simplify the original 
problem into three sub problems, covering, partitioning, and 
layout, each of which will be tackled individually in a 
separate phase, as discussed in the following section. 

4. Solving SMP in three phases 
4.1 Covering 
Covering groups the nodes of a kernel tree into a set of 
configurations, and generates a configuration tree C. To 
minimize Scritical, we attempt to minimize the number of 
nodes in C based on the intuition that there would be more 
likely a chance to have a shorter critical path with a less 
number of nodes in C. From this observation, we found that 
the covering problem is in fact to analogous to the widely-
known instruction selection problem [1]. So, in this work, 
we have implemented a compiler that builds a kernel tree 
from the source code and applies dynamic programming to 
find an optimal solution to the covering problem. Figure 6 
and Figure 4 actually display the input and output of our 
compiler. That is, our compiler takes as input the kernel 
code in Figure 6 (a), computes the covers for nodes in the 
kernel tree as shown in Figure 4 (a), and produces as output 
the configuration tree in Figure 4 (b). 

4.2 Partitioning 
In this phase, we partition the nodes in a configuration tree 
into different clusters each of which will be scheduled later 
to each column of the PE array. In this partitioning process, 
we enforce the RA constraints. As the result of this process, 
we generate a partition graph. 

Definition 5. A partition graph P=(NP,EP)  is an undirected 
weighted graph built from configuration tree C=(NC,EC). 
Node p ∈ NP is a set of configurations satisfying the RA 
constraints. P has an edge (p,q) if (u,v)∈EC for any node u 
∈ p and v ∈ q. The weight on (p,q) is the total number of 
edges in C between nodes in p and nodes in q. 

Note that in the partition graph, the weight of an edge (p,q) 
represents the total amount of data traffic between every 
node in p and every node in q. 
The goal of this phase is to find an optimal partition graph 
P*that minimize the size of NP subject to the RA constraints. 
Since there are O(2n) possible partitions from C with n 
nodes, we use an integer linear programming (ILP) solver 

to find P*. Notice that P* does not guarantee to minimize 
Scritical. But, we believe that P* will helps to reduce Scritical 
since |NP| is roughly proportional to Scritical. Figure 7 shows 
our formula for the ILP solver glpk 4.8. Figure 7 (a) shows 
the objective function. Figure 7 (b) shows the must-schedule 
constraint that all configurations should be located on PE 
array just once. Figure 7 (g) shows the ordering constraint 
that all configurations are enforced to be located from the 
first row. All the other constraints are the RA constraints. 
Figure 7 (h) is the constraint which enforces the maximum 
number of configured PE in one row to the number of PEs 
in one row. 
Figure 8 (a) shows how the configuration tree in Figure 4 (a) 
is partitioned by our ILP formula. The figure shows that we 
have five partitions as the result, producing the partition 
graph in Figure 8 (b). We can see that each edge is labeled 
with weights. For instance, the weight of edge (C,D) is 1 
since there is only one dependence edge between the node 
PE3 in C and PE4 in D, meaning that one word of data 
should be transferred from C to D. 

 
Figure 7. ILP Formula for partitioning 

 
Figure 8. Partitioned PE tree (a) and partition graph (b) 

4.3 Laying-out 
In this phase, we schedule every node in the configuration 
tree onto the 2-D PE array and build interconnections 
between the configured PEs. In this process, we attempt to 
minimize Scritical. This phase is performed in two steps: 
vertical assignment and horizontal assignment. In the 
vertical assignment, every single partition p in the partition 
graph P is assigned to each row r of the PE array. Then, in 
the horizontal assignment, all configuration nodes in p are 
scheduled to each PE within the row r. 
We can view an m×n PE array (Mjk) as a vertical linear list 
of m rows (r1,r2,…,rm)T. Therefore, in order to assign the m′ 
partitions (p1,p2,…,pm′) in P to each row in the linear list, we 



should consider approximately Ω(m′!) possible assignments 
subject to the constraint m′ ≤ m. Luckily, m is in practice no 
larger than 6 for most applications which is appropriate to 
spatial mapping method. Thus, we decide to find an optimal 
assignment using the ILP solver. 
Suppose that partition pi is assigned to row ri′, and pj to pj′. 
Then, we define the distance dij between pi and pj to be |j′-i′|. 
Let wij be the weight on edge (pi,pj) in P. Now, we define the 
data transfer cost tij between pi and pj to be dij × wij. The goal 
of our ILP solver for vertical assignment is to minimize 

∑∑ ×
i j

ijij wd  

where wij = 0 if i = j or there exists no edge (pi,pj) in P. To 
compute this with the ILP solver, we define two variables xij 
and yij for ILP formulation as follows. 

⎩
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Using these variables, we formulate the objective function 
with a constraint that enforces a partition to be assigned into 
only one row. 
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From this formula, the ILP solver finds an optimal vertical 
assignment that minimizes the total data transfer cost among 
the rows in the PE array. For instance, given the partition 
graph in Figure 8 as input, the solver would output the 
optimal assignment {A=r1,E=r2,D=r3,C=r4,B=r5}, as shown 
in Figure 9 (a).  

 
Figure 9 Enumerated PE tree by partition information 

Note from Figure 9 (a) that we create in the graph two 
channel PEs, CPE1 and CPE2, to make data transfer paths 
respectively thru the row r2 between PE2 and PE8, and thru 
the row r4 between PE1 and PE5. Our ILP decision always 
tends to assign two partitions with heavy data traffic as close 
as possible, which usually leads to minimizing the number 
of channel PEs that are to be newly introduced in the PE 
array. Consequently, this decision would help to reduce 
Scritical. In this example, the latency of the critical execution 
path PE1 PE5 PE6 is increased by one due to the 
intervening node CPE2. However, this result would be still 
better than other naïve assignments such as {A=r1, B=r2, 
C=r3, D=r4, E=r5}. 

 
Figure 10. Deleting edge crossing and placing PE tree onto RA 

After every partition is assigned to each row in the PE array, 
we start horizontal assignment. To explain this procedure, 
consider the initial PE layout in Figure 9 (b). Since the PE 
array has a mesh structure, the two PEs wanting to transfer 
data must be located adjacent to each other in the array. 
However in the example, we can see that PE5 and PE6 are 
not adjacent and, as a result they cannot transfer data under 
the current assignment. To remedy this problem, we realign 
the two PEs to the same column by shifting them within 
their current residing rows, as demonstrated in Figure 10. 
Likewise, we need to realign PE2 and CPE1. Aligning all 
misaligned PEs within their residing rows is often 
complicated because when a pair of PEs is aligned they may 
most likely interfere with the communication channels 
between other PEs. This interference occurs between two 
pairs of PEs if they have an edge crossing in the graph for 
their initial layout. For example, there is an edge crossing 
between pairs (PE5,PE6) and (CPE1,PE8) in Figure 9 (b). To 
find an alignment that can eliminate all edge crossings in the 
layout, we use the Sugiyama method [11]. That is, initially 
we assign all PEs of each partition randomly to the columns 
in their residing rows. Then, we use the Sugiyama method to 
find new relatively-aligned positions for all nodes in the 
configuration graph, as shown in Figure 10 (a). From this 
result, it is trivial to determine the right column in the PE 
array for each node shown in Figure 10 (b). 

5. Experiment 
In our experiment, we target the 6×6 RSPA with 36 PEs 
where pair-wise connections and cross connections are 
inserted between not-neighboring PEs. Also, as in Figure 1, 
two multipliers (thus, 12 multipliers in total) are attached to 
each row as shared computation resources. Detailed 
parameters for the target RSPA are listed in Table 1. 

 Parameter Value 
Bit width 16 
Register file (# of registers) 1(4×16bits)

 
PE structure 

Latency 1 cycle 
Operation multiplier 
Latency 2 cycles 

Shared 
Computation (SC) 
resource # of SC resources per row 2 

# of read bus 2 
# of write bus 1 

Memory access 
resources per row 

Latency 1 cycle 
Table 1. Architectural parameters of the target architecture 

Table 2 shows common operation types and frequencies of 
certain operations encountered in each kernel for our 



experiment. The performance of our algorithm is compared 
with hand optimized spatial mappings. Because most kernel 
codes are loops, we first measured the one-iteration latency. 
Table 3 indicates that our algorithm produces almost optimal 
results for most cases. 

Table 2 Kernel codes in the experiments 

Table 3 One iteration latency in cycle 

Table 4 Area in mesh of PEs 
Now, we compare the total loop latency taken to run each 
kernel completely. Figure 11 shows the relative execution 
time of our outputs as compared to hand optimized outputs. 
For both hand and algorithm versions, we stripmined [12] 
the loops whenever it is possible. For instance, if a kernel is 
mapped onto the PE array and a half of the PE array is still 
free, then we use the free space by duplicating the loop 
iteration space to run each half of the loop iterations 
simultaneously on the PE array., As an example, see the two 
kernels in Table 4: inner_product and hydro. They only take 
up about a sixth and a third of the 6×6 PE array, respectively. 
Therefore, we were able to stripmine inner_product six 
times and hydro three times and achieve speedup for both 
kernels. Overall, Figure 11 shows that our technique 
produces near-optimal quality mappings for all our kernel 
codes. Although the performance of kernel mapping is 
deeply related to the feature of the kernel codes, we 
conclude that our algorithm performs fairly well for many 
embedded applications. 

6. Conclusion 
We showed that finding an optimal spatial mapping of 
applications onto a HCRA is an extremely complex problem. 
To circumvent this complexity, we split the original problem 

problem into three subproblems each of which is attacked 
step-by-step in a separate phase. As can be expected, we 
discover that our algorithm produces comparable 
performance when being compared to hand optimizations. 

 
Figure 11 Relative execution times of our outputs for the whole 
loop iteration, normalized by execution times of hand 
optimized outputs 
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kernels operation type # mult # load/store 
n_complex_update add/sub/mul 4 6/2 

FFT add/sub/mul 4 12/4 
state mul/add 8 9/1 
hydro mul/add 3 3/1 

inner_product mul/add 1 4/2 
mpeg2enc(dist2) mul/add/sht 1 6/1 
motion(bdist2) add/sub/sht 1 10/1 

kernels hand opt algorithm 
n_complex_update 6 5 

FFT 4 6 
state 12 12 
hydro 6 7 

inner_product 3 3 
mpeg2enc(dist2) 7 7 

motion(bdist) 9 10 

kernels hand opt algorithm 
n_complex_update 4×5 5×4 

FFT 4×5 6×5 
state 5×4 5×5 
hydro 2×4 2×4 

inner_product 1×2 1×2 
mpeg2enc(dist2) 3×3 3×3 

motion(bdist) 6×5 6×5 


