
A Spatial Mapping Algorithm for Heterogeneous Coarse-
Grained Reconfigurable Architectures

Minwook Ahn, Jonghee W. Yoon, Yunheung Paek

Software Optimization & Restructuring Laboratory, School of
EE/CS, Center for SoC Design Technology

Seoul National University, South Korea

{mwahn, jhyoon}@compiler.snu.ac.kr, ypaek@ee.snu.ac.kr

Yoonjin Kim, Mary Kiemb, Kiyoung Choi

Design Automation Laboratory, School of EE/CS

Seoul National University, South Korea

ykim@poppy.snu.ac.kr, kiemb@marykiemb.net,
kchoi@azalea.snu.ac.kr

Abstract*
In this work, we investigate the problem of automatically
mapping applications onto a coarse-grained reconfigurable
architecture and propose an efficient algorithm to solve the
problem. We formalize the mapping problem and show that
it is NP-complete. To solve the problem within a reasonable
amount of time, we divide it into three subproblems:
covering, partitioning and layout. Our empirical results
demonstrate that our technique produces nearly as good
performance as hand-optimized outputs for many kernels.
1. Introduction and previous work
Most popular embedded applications such as MPEG, AC3
and AAC contain repetitive computations. Also we can
often discover considerable diversity in their code where
many different code patterns are interweaved. To more
effectively handle these characteristics, coarse-grained
reconfigurable architectures (CRAs) [7] have been studied.
The CRA can not only boost performance by exploiting the
features of repetitive computations, but also adapt itself to
diverse computations by dynamically changing
configurations of an array of its internal processing elements
(PEs) and their interconnections

Many conventional CRAs are specialized for SIMD-style
computations. They are efficient for data parallelism since
they save configuration and cache storage by sharing an
instruction for multiple data. But their execution models are
limited in that each individual PE cannot execute different
instructions independently at the same time. To overcome
this limitation, researchers have studied multiple instruction
multiple data (MIMD)-style CRAs in which each PE can be
configured separately to facilitate processing its own
instructions. Since they allow more flexible configurations,
they can efficiently cope with a more general form of loop
pipelining and loop parallelism [8] through simultaneous
execution of multiple iterations of a loop in a pipeline.

Traditionally, PEs in a CRA have been homogeneous; that is,
the PEs have regular structures supporting the same

* This research was supported by the MIC(Ministry of Information and

Communication), Korea, under the ITRC(Inofrmation Technology
Research Center) support program supervised by the IITA(Institute of
Information Technology Assessment) (IITA-2005-C1090-0502-0031),
KRF contract D00191, and the Korea Ministry of Information and
Communication under Grant A1100-0501-0004

computational primitives for parallel execution of multiple
instructions with flexible operation scheduling. Such
flexibility, however, comes at a price because homogeneous
architectures normally require many hardware resources
regardless of the characteristics of the application domain.
To alleviate this problem, several CRAs with heterogeneous
PEs, which we call heterogeneous CRAs (HCRAs), have
been proposed [10]. Earlier study [2]] demonstrated
empirically that the HCRA may improve performance
through reduction of chip size and cycle time with an extra
effort of pipelining shared resources.

In this work, we investigate the problem of automatically
mapping applications onto a MIMD-style HCRA. Like other
CRAs, the performance of a HCRA hinges heavily on a
strategy that maps target application onto the PE array so as
to exploit the parallelism embedded in an application and
computation resources of the hardware. Unfortunately, to
the best of our knowledge, little work has been reported in
the literature on efficient algorithms to automatically solve
the mapping problem for MIMD-style HCRAs. Probably
our work is the most closely related to an earlier work on a
CRA, called the resource sharing and pipelining
architecture (RSPA) [2], because we also target the RSPA.
However, this work is different from ours since they used an
ad-hoc approach in which they computed optimal mappings
manually for their target machine. Manual mapping is quite
time-consuming and error-prone. But, in our work we
propose an algorithm to automate the mapping process.

[4], [3], and [5] are another noticeable works related to ours.
However, their target machines are different from ours in
that our RSPA model supports common resource sharing for
heavy computation like multiplication and increase
performance using loop pipelining, so their mapping
algorithms are not able to be directly applied to our RSPA
for maximized performance.

This paper is organized as follows. Section 2 explains the
target architecture. Section 3 describes our mapping
problem. Section 4 discusses the details of our mapping
method. Sections 5 and 6 report experiments and conclude.

2. Target architecture
In this work, we choose the RSPA as our target machine. It
has a mesh-based coarse-grained reconfigurable array (RA)
of PEs. Each PE is a basic reconfigurable element composed

3-9810801-0-6/DATE06 © 2006 EDAA

of an ALU and a barrel shifter. The configuration of a PE is
controlled by its own configuration cache. Each row of the
PE array shares read/write-buses. When kernels − time-
consuming sections of code mostly nested in important
loops in the application − are mapped onto an RA, loop
pipelining is used for performance enhancement. Because
loop pipelining distributes the same operations over several
cycles, we do not need all PEs to have the same functional
resource at the same time. This allows the PEs in the same
row or column to share area-critical resources. From a
runtime profile, it can be known how area-dominant and
time-critical heavy resources like multipliers are separated
as independent PEs, and shared by other PEs in the same
row or column array within the CRA. Figure 1 shows the
details of connections for multiplier sharing. The two n-bit
operands of a PE are connected to the bus switch. At run
time, the mapping control signal from every configuration
cache is fed to the switch which decides where to route the
operands. After a multiplication, the 2n-bit output is
transferred from the multiplier to the original issuing PE via
the bus switch.

Figure 1. 4x4 Reconfigurable Array with 8 shared resources

Although the number of multipliers can be reduced through
sharing, it may increase the critical path delay, hence
degrading the overall performance. To curtail the delay, the
RSPA architects employed the resource pipelining
technique. In this work, we use the same architecture
configuration as in Figure 1 with multipliers in each side of
row.

In general, mapping algorithms can be classified largely into
two categories: temporal and spatial mapping. The
effectiveness of mapping strategies varies depending on the
architectural characteristics of the target machine as well as
target applications. Figure 2 compares the two mapping
strategies. In temporal mapping, necessary configurations
are piled on each configuration cache and the configuration
of each PE is dynamically changed with time. In Figure 2,
only one PE has four configurations and with time its
configuration is changed from A to D. In spatial mapping,
each PE has a fixed configuration during whole computation,
and the data to be processed are flowed through PEs. If (a)
in Figure 2 is loop body and there is no loop carried
dependency from D to A, we can issue next iteration every
single cycle by loop pipelining.

Temporal mapping may reduce the number of PEs required
for mapping in comparison with spatial mapping, so

relatively large kernels can be mapped onto the RA. Even in
this case the maximum number of instructions in an
application is bound by the size of configuration cache and
the RA. In spatial mapping, the mapping is limited by the
topology and size of the RA. Therefore, relatively small or
medium-sized kernels should be mapped onto the RA. But it
has fixed configuration, so it has no overhead due to
dynamic configuration and saves the storage for
configuration cache. Capitalizing on these advantages, the
spatial mapping strategy is effective for certain types of
loops found in many embedded applications.

Figure 2. Spatial mapping (b) and temporal mapping (c) for
processing application code (a)

The above observation motivated us to conduct a study
where we evaluate the effectiveness of spatial mapping on
our reconfigurable architecture. For this study, we have
developed an algorithm for spatial mapping and obtained the
performance results. These results were compared with
those obtained by hand. In subsequent sections, we will
describe our algorithm and report the comparison results.

3. Spatial mapping on the PE array
Spatial mapping onto a 2-D mesh-structured PE array starts
from analyzing an application code. To maximize the
utilization of the PE array, we use a runtime profile to select
a kernel to be executed on the PE array. For the spatial
mapping, each kernel is represented in a tree form, called
kernel tree. Kernel tree K is a binary tree where each node is
an atomic operation such as + and *, and an edge (u,v) in K
represents a dependence between u and v. Figure 6 shows an
example of the kernel tree where L denotes a load operation.

One or more operations in K can be scheduled together on a
PE. This scheduling is directed by a configuration which is a
set of signals consisting of selection signals of mux and
control signals of ALU, shifter and multiplier in the PE.
Figure 3 shows the internal structure of a PE and the
possible configurations. Configuration 5, LL-ALU-SHT in
Figure 3 (b) directs which load operations read values from
the frame buffer and how ALU and shift operations serially
process these values. To map kernel operations on the PE
array, we determine the configuration of each PE in the
array by specifying how operations in K are grouped and
scheduled to PEs. To explain this, consider Figure 4 (a)
where we can see that three operations (1 multiplication and
2 loads) directed by Configuration 7 are scheduled to PE1.
In our work, we summarize all configurations for a given
kernel in another binary tree form, called the configuration
tree, In a configuration tree, each node represents a
configuration for each PE which can cover and execute
more than one operations in the kernel, and an edge (p,q)

represents the dependence between the two PEs covering p
and q, respectively. Figure 4 (b) shows an example of a
configuration tree built from the kernel tree in Figure 6.

Figure 3 Internal structure of PE and a set of configurations

Figure 4 Kernel tree covered by a set of configuration (a) and
configuration tree generated from the kernel tree (a) (b)
Once a configuration tree is constructed, each node PEi is
now mapped to a physical PE Mjk located at the j-th row and
k-th column of the 2-dimensional PE array. Figure 5 shows
how the eight nodes in a configuration tree in Figure 4 (b) is
laid onto a 5×4 array. For instance, two nodes PE4 and PE6
are respectively scheduled to M12 and M11 in the PE array;
thus forming an execution path (M12,M11). Note in Figure 5
that all PEs included in the layout are either white- or gray-
colored. We call the white PE a computation PE because it
is involved in actual data computation for a kernel. We call
the gray one a channel PE because it is not participated in
actual computation but used as a communication channel for
data transfer between its neighboring PEs. For example, see
the computation PE1 PE5 PE6 in Figure 4 (b) that was
originally mapped onto the PE array, forming the execution
path (M41,M21,M11). To transfer data from PE1 to PE5, we
must pass through M31. So we add it as a channel PE in the
execution path; thus, forming (M41,M31,M21,M11) in Figure 5.

When multiple nodes are laid, their interdependences are
preserved by allocating them to the PEs that have direct or
indirect data paths in the array. There are also additional
constraints that should be satisfied to correctly lay nodes in
the PE array. We list them in Definitions 1, 2 and 3. These
constraints collectively called the RA constraints.

Definition 1. [Bus constraint] Configurations of n PEs in
one row or one column share a fixed number of memory
buses. Let PEjk be the k-th PE in the j-th row. Then we

denote cjk to be a configuration for a PEjk, and mj the
number of atomic memory operations in cjk. Then, we have

∑ −≤
n

k
jk rowthjinbusesmemoryofm #

Definition 2. [Resource constraint] Heavy computation
resources like multipliers are shared by configurations of n
PEs in one row, as explained in section 2. Let cjk be a
configuration for PEjk, and sjk the number of atomic shared
operations in cjk.. Then, we have

∑ −≤
n

k
jk rowthjinresourcesncomputatiosharedofs #

Definition 3. [Mesh size constraint] Let’s assume that the
PE array of target architecture has a dimension of m×n.
The number of PEs to which a configuration is assigned in
the same row is bound by n. Likewise the number of PEs to
which a configuration is assigned in the same column is
bound by m.

Figure 5 Configuration tree layout on PE array for
configuration tree in Figure 5

Figure 6. the kernel from n_complex_update.c in DSPStone
and its kernel tree

We define the latency of Mjk in the PE array, denoted by ljk,
to be the number of cycles within which Mjk completes a
processing directed by a configuration cjk. Then, the latency
of an execution path P can be defined

∑
∈∀ PA

jk
jk

l

The total cycle time that takes to complete an execution of a
kernel is proportional to the length of longest execution path
in a configuration tree layout for the kernel. In Figure 5, we
see that the longest execution path for the kernel in Figure 6
(a) would be (M41,M31,M21,M11) with latency of five cycles
since l11 = l21 = l31 = 1 and l41 = 2. We call this longest path,
the critical path of the tree layout. To goal of our spatial
mapping problem (SMP) is, given a kernel code, to find its

configuration tree layout on the PE array whose the length
of critical execution path (Scritical) is minimized subject to the
RA constraints.

Definition 4. Given a SMP instance (Scritical) and constant k,
the problem decision–SMP problem determines whether or
not there is a configuration tree layout on PE array that
produce Scritical such that Scritical ≤ k.

Shields [6] proved that the problem of deciding if an
arbitrary binary tree can be laid out in a 2-D grid with fixed
dimensions is NP-Complete. From this, we have learned that
SMP is NP-complete. Therefore, we simplify the original
problem into three sub problems, covering, partitioning, and
layout, each of which will be tackled individually in a
separate phase, as discussed in the following section.

4. Solving SMP in three phases
4.1 Covering
Covering groups the nodes of a kernel tree into a set of
configurations, and generates a configuration tree C. To
minimize Scritical, we attempt to minimize the number of
nodes in C based on the intuition that there would be more
likely a chance to have a shorter critical path with a less
number of nodes in C. From this observation, we found that
the covering problem is in fact to analogous to the widely-
known instruction selection problem [1]. So, in this work,
we have implemented a compiler that builds a kernel tree
from the source code and applies dynamic programming to
find an optimal solution to the covering problem. Figure 6
and Figure 4 actually display the input and output of our
compiler. That is, our compiler takes as input the kernel
code in Figure 6 (a), computes the covers for nodes in the
kernel tree as shown in Figure 4 (a), and produces as output
the configuration tree in Figure 4 (b).

4.2 Partitioning
In this phase, we partition the nodes in a configuration tree
into different clusters each of which will be scheduled later
to each column of the PE array. In this partitioning process,
we enforce the RA constraints. As the result of this process,
we generate a partition graph.

Definition 5. A partition graph P=(NP,EP) is an undirected
weighted graph built from configuration tree C=(NC,EC).
Node p ∈ NP is a set of configurations satisfying the RA
constraints. P has an edge (p,q) if (u,v)∈EC for any node u
∈ p and v ∈ q. The weight on (p,q) is the total number of
edges in C between nodes in p and nodes in q.

Note that in the partition graph, the weight of an edge (p,q)
represents the total amount of data traffic between every
node in p and every node in q.
The goal of this phase is to find an optimal partition graph
P*that minimize the size of NP subject to the RA constraints.
Since there are O(2n) possible partitions from C with n
nodes, we use an integer linear programming (ILP) solver

to find P*. Notice that P* does not guarantee to minimize
Scritical. But, we believe that P* will helps to reduce Scritical
since |NP| is roughly proportional to Scritical. Figure 7 shows
our formula for the ILP solver glpk 4.8. Figure 7 (a) shows
the objective function. Figure 7 (b) shows the must-schedule
constraint that all configurations should be located on PE
array just once. Figure 7 (g) shows the ordering constraint
that all configurations are enforced to be located from the
first row. All the other constraints are the RA constraints.
Figure 7 (h) is the constraint which enforces the maximum
number of configured PE in one row to the number of PEs
in one row.
Figure 8 (a) shows how the configuration tree in Figure 4 (a)
is partitioned by our ILP formula. The figure shows that we
have five partitions as the result, producing the partition
graph in Figure 8 (b). We can see that each edge is labeled
with weights. For instance, the weight of edge (C,D) is 1
since there is only one dependence edge between the node
PE3 in C and PE4 in D, meaning that one word of data
should be transferred from C to D.

Figure 7. ILP Formula for partitioning

Figure 8. Partitioned PE tree (a) and partition graph (b)

4.3 Laying-out
In this phase, we schedule every node in the configuration
tree onto the 2-D PE array and build interconnections
between the configured PEs. In this process, we attempt to
minimize Scritical. This phase is performed in two steps:
vertical assignment and horizontal assignment. In the
vertical assignment, every single partition p in the partition
graph P is assigned to each row r of the PE array. Then, in
the horizontal assignment, all configuration nodes in p are
scheduled to each PE within the row r.
We can view an m×n PE array (Mjk) as a vertical linear list
of m rows (r1,r2,…,rm)T. Therefore, in order to assign the m′
partitions (p1,p2,…,pm′) in P to each row in the linear list, we

should consider approximately Ω(m′!) possible assignments
subject to the constraint m′ ≤ m. Luckily, m is in practice no
larger than 6 for most applications which is appropriate to
spatial mapping method. Thus, we decide to find an optimal
assignment using the ILP solver.
Suppose that partition pi is assigned to row ri′, and pj to pj′.
Then, we define the distance dij between pi and pj to be |j′-i′|.
Let wij be the weight on edge (pi,pj) in P. Now, we define the
data transfer cost tij between pi and pj to be dij × wij. The goal
of our ILP solver for vertical assignment is to minimize

∑∑ ×
i j

ijij wd

where wij = 0 if i = j or there exists no edge (pi,pj) in P. To
compute this with the ILP solver, we define two variables xij
and yij for ILP formulation as follows.

⎩
⎨
⎧

=
otherwise

ronispif
x ki

ik 0
1

⎩
⎨
⎧ ∃

=
otherwise

ppofweightedgeiswppifw
y jiijjiij

ij 0
),(),,(

Using these variables, we formulate the objective function
with a constraint that enforces a partition to be assigned into
only one row.

)(1

)(

1

),(1 1

bxi

aylxkx

m

k
ik

ij
pp

m

k

m

l
jlik

ji

=∀

×−

∑

∑ ∑ ∑

=

∀ = =

From this formula, the ILP solver finds an optimal vertical
assignment that minimizes the total data transfer cost among
the rows in the PE array. For instance, given the partition
graph in Figure 8 as input, the solver would output the
optimal assignment {A=r1,E=r2,D=r3,C=r4,B=r5}, as shown
in Figure 9 (a).

Figure 9 Enumerated PE tree by partition information

Note from Figure 9 (a) that we create in the graph two
channel PEs, CPE1 and CPE2, to make data transfer paths
respectively thru the row r2 between PE2 and PE8, and thru
the row r4 between PE1 and PE5. Our ILP decision always
tends to assign two partitions with heavy data traffic as close
as possible, which usually leads to minimizing the number
of channel PEs that are to be newly introduced in the PE
array. Consequently, this decision would help to reduce
Scritical. In this example, the latency of the critical execution
path PE1 PE5 PE6 is increased by one due to the
intervening node CPE2. However, this result would be still
better than other naïve assignments such as {A=r1, B=r2,
C=r3, D=r4, E=r5}.

Figure 10. Deleting edge crossing and placing PE tree onto RA

After every partition is assigned to each row in the PE array,
we start horizontal assignment. To explain this procedure,
consider the initial PE layout in Figure 9 (b). Since the PE
array has a mesh structure, the two PEs wanting to transfer
data must be located adjacent to each other in the array.
However in the example, we can see that PE5 and PE6 are
not adjacent and, as a result they cannot transfer data under
the current assignment. To remedy this problem, we realign
the two PEs to the same column by shifting them within
their current residing rows, as demonstrated in Figure 10.
Likewise, we need to realign PE2 and CPE1. Aligning all
misaligned PEs within their residing rows is often
complicated because when a pair of PEs is aligned they may
most likely interfere with the communication channels
between other PEs. This interference occurs between two
pairs of PEs if they have an edge crossing in the graph for
their initial layout. For example, there is an edge crossing
between pairs (PE5,PE6) and (CPE1,PE8) in Figure 9 (b). To
find an alignment that can eliminate all edge crossings in the
layout, we use the Sugiyama method [11]. That is, initially
we assign all PEs of each partition randomly to the columns
in their residing rows. Then, we use the Sugiyama method to
find new relatively-aligned positions for all nodes in the
configuration graph, as shown in Figure 10 (a). From this
result, it is trivial to determine the right column in the PE
array for each node shown in Figure 10 (b).

5. Experiment
In our experiment, we target the 6×6 RSPA with 36 PEs
where pair-wise connections and cross connections are
inserted between not-neighboring PEs. Also, as in Figure 1,
two multipliers (thus, 12 multipliers in total) are attached to
each row as shared computation resources. Detailed
parameters for the target RSPA are listed in Table 1.

 Parameter Value
Bit width 16
Register file (# of registers) 1(4×16bits)

PE structure

Latency 1 cycle
Operation multiplier
Latency 2 cycles

Shared
Computation (SC)
resource # of SC resources per row 2

of read bus 2
of write bus 1

Memory access
resources per row

Latency 1 cycle
Table 1. Architectural parameters of the target architecture

Table 2 shows common operation types and frequencies of
certain operations encountered in each kernel for our

experiment. The performance of our algorithm is compared
with hand optimized spatial mappings. Because most kernel
codes are loops, we first measured the one-iteration latency.
Table 3 indicates that our algorithm produces almost optimal
results for most cases.

Table 2 Kernel codes in the experiments

Table 3 One iteration latency in cycle

Table 4 Area in mesh of PEs
Now, we compare the total loop latency taken to run each
kernel completely. Figure 11 shows the relative execution
time of our outputs as compared to hand optimized outputs.
For both hand and algorithm versions, we stripmined [12]
the loops whenever it is possible. For instance, if a kernel is
mapped onto the PE array and a half of the PE array is still
free, then we use the free space by duplicating the loop
iteration space to run each half of the loop iterations
simultaneously on the PE array., As an example, see the two
kernels in Table 4: inner_product and hydro. They only take
up about a sixth and a third of the 6×6 PE array, respectively.
Therefore, we were able to stripmine inner_product six
times and hydro three times and achieve speedup for both
kernels. Overall, Figure 11 shows that our technique
produces near-optimal quality mappings for all our kernel
codes. Although the performance of kernel mapping is
deeply related to the feature of the kernel codes, we
conclude that our algorithm performs fairly well for many
embedded applications.

6. Conclusion
We showed that finding an optimal spatial mapping of
applications onto a HCRA is an extremely complex problem.
To circumvent this complexity, we split the original problem

problem into three subproblems each of which is attacked
step-by-step in a separate phase. As can be expected, we
discover that our algorithm produces comparable
performance when being compared to hand optimizations.

Figure 11 Relative execution times of our outputs for the whole
loop iteration, normalized by execution times of hand
optimized outputs

7. References
[1] A. Aho, S. Tjiang, Code Generation Using Tree Matching and

Dynamic Programming, ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 11 Issue 4, 1989

[2] Y. Kim, et. al., Resource Sharing and Pipelining in Coarse
Grained Reconfigurable Architecture for Domain-Specific
Optimization, Design, Automation, and Test in Europe
(DATE 2005), 2005

[3] Venkataramani, G., et al., A Compiler Framework for
Mapping Applications to a Coarse-grained Reconfigurable
Computer Architecture. Conf. on Compiler, Architecture and
Synthesis for Embedded Systems (CASES 2001), 2001

[4] B. Mei, et. Al.,. DRESC: A retargetable compiler for coarse-
grained reconfigurable architectures. In International
Conference on Field Programmable Technology, 2002

[5] H. Singh, at. el., Morphosys: an integrated reconfigurable
system for data parallel and computation-intensive
applications, IEEE Trans. On Computers, vol. 59, no. 5, pp
465-481, May 2000

[6] C. Shields, Area efficient layouts of binary trees in grids,
Thesis, University of Texas at Dallas, 2001

[7] R.Hartenstein, A decade of reconfigurable computing: a
visionary retrospective, in Proc. of DATE, 2001

[8] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE Trans.
CAD, 20:234-248, Feb, 2001

[9] R. Hartenstein et al., KressArray Xplorer: A new CAD
environment to optimize reconfigurable datapath array
architectures, in ASP-DAC, pp 163-168, 2000

[10] E. Waingold et. al. Baring it all to Software: RAW machines,
IEEE Computer, Sep 1997, pp. 86-93

[11] K. Sugiyama, et. al.,. On planarization algorithms of 2-level
graphs. IEEE Trans. on Systems, Man and Cybernetics, SMC-
11:109-125, 1981

[12] Corinna G. Lee, Mark G. Stoodley, Simple Vector
Microprocessors for Multimedia Applications,
International Symposium on Microarchitecture, 1998.

kernels operation type # mult # load/store
n_complex_update add/sub/mul 4 6/2

FFT add/sub/mul 4 12/4
state mul/add 8 9/1
hydro mul/add 3 3/1

inner_product mul/add 1 4/2
mpeg2enc(dist2) mul/add/sht 1 6/1
motion(bdist2) add/sub/sht 1 10/1

kernels hand opt algorithm
n_complex_update 6 5

FFT 4 6
state 12 12
hydro 6 7

inner_product 3 3
mpeg2enc(dist2) 7 7

motion(bdist) 9 10

kernels hand opt algorithm
n_complex_update 4×5 5×4

FFT 4×5 6×5
state 5×4 5×5
hydro 2×4 2×4

inner_product 1×2 1×2
mpeg2enc(dist2) 3×3 3×3

motion(bdist) 6×5 6×5

