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A Spatial Modeling Framework
for Monitoring Surveys with Different

Sampling Protocols with a Case Study for Bird
Abundance in Mid-Scandinavia

JorgeSicacha-Parada , DiegoPavon-Jordan, IngelinSteinsland,
Roel May, Bård Stokke, and Ingar Jostein ØIEN

Quantifying the total number of individuals (abundance) of species is the basis for spa-
tial ecology and biodiversity conservation. Abundance data are mostly collected through
professional surveys as part of monitoring programs, often at a national level. These
surveys rarely follow exactly the same sampling protocol in different countries, which
represents a challenge for producing biogeographical abundance maps based on the
transboundary information available covering more than one country. Moreover, not all
species are properly covered by a single monitoring scheme, and countries typically col-
lect abundance data for target species through different monitoring schemes. We present
a new methodology to model total abundance by merging count data information from
surveys with different sampling protocols. The proposed methods are used for data from
national breeding birdmonitoring programs inNorway andSweden. Each census collects
abundance data following two different sampling protocols in each country, i.e., these
protocols provide data from four different sampling processes. The modeling frame-
work assumes a common Gaussian Random Field shared by both the observed and true
abundance with either a linear or a relaxed linear association between them. The models
account for particularities of each sampling protocol by including terms that affect each
observation process, i.e., accounting for differences in observation units and detectabil-
ity. Bayesian inference is performed using the Integrated Nested Laplace Approximation
(INLA) and the Stochastic Partial Differential Equation (SPDE) approach for spatial
modeling. We also present the results of a simulation study based on the empirical cen-
sus data from mid-Scandinavia to assess the performance of the models under model
misspecification. Finally, maps of the expected abundance of birds in our study region in
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mid-Scandinavia are presented with uncertainty estimates. We found that the framework
allows for consistent integration of data from surveys with different sampling protocols.
Further, the simulation study showed that models with a relaxed linear specification are
less sensitive to misspecification, compared to the model that assumes linear association
between counts. Relaxed linear specifications of total bird abundance inmid-Scandinavia
improved both goodness of fit and the predictive performance of the models.

Supplementary materials accompanying this paper appear on-line.

Key Words: Data integration; Joint species distribution models; Bayesian statistics;
Latent Gaussian Models; Gaussian Random Fields.

1. INTRODUCTION

Understanding why organisms are where they are and what drives changes in their abun-
dances is one of the main pillars of spatial ecology (Brodie et al. 2020) and is critical
to propose effective measures to preserve biodiversity. In this regard, species distribution
models (SDMs) have typically been used to gain a better understanding of species–habitat
relationships (Brodie et al. 2020; Bradter et al. 2021) and to guide conservation practition-
ers and policy makers (Araujo et al. 2019). Previous SDMs using abundance data have
revealed higher predictive performance in comparison with those using occurrence data
(Howard et al. 2014; Johnston et al. 2015). Yet, the majority of SDMs published to date
used presence/absence (i.e., occurrence) data (Araujo et al. 2019; Yu et al. 2020), rather than
abundance data (count of individuals), especially in large-scale studies (Miller et al. 2019).
This limits our ability to robustly infer, for example, regions with high density of individ-
uals (Johnston et al. 2015), which is of paramount importance in conservation (Massimino
et al. 2017). For example, estimating abundance hotspots can inform and help authorities
to select sites that may qualify to be included in the network of protected areas. Indeed,
one of the main criteria to identify important areas for conservation under the European
Union’s Bird Directive (i.e., Special Protection Areas; SPA) is that a site accommodates
regularly 1% of the total biogeographical population of a species of conservation concern or
more than 20,000 individuals of wetland birds (EU’s Birds Directive, 2009/147/EC 2009).
Moreover, this Directive states that ”The measures to be taken must apply to various factors
which may affect the numbers of birds, namely the repercussions of man’s activities and
in particular the destruction and pollution of their habitats[...]”. Abundance data can also
be useful to detect and predict areas where human-wildlife conflicts may arise (e.g., May
et al. 2020), informing the corresponding authorities that infrastructure and further human
development such as siting of powerlines and wind farms must be planned carefully (e.g.,
De Lucas et al. 2008; May et al. 2020). Information about abundance is ultimately requested
by national (e.g., Directorates, Environmental Agencies) and international (e.g. European
Commission) authorities as basis to propose biodiversity conservation policies at different
scales. This information should be based on all available count data.

Most countries have monitoring programs following national law and as signatories of
international biodiversity conservation Directives and Conventions. These different national
monitoring schemes may cover the same taxon (e.g., most countries have a national mon-
itoring scheme for breeding birds) but can differ in the species recorded (different set
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of species may occur in different countries and at different densities) and, most impor-
tantly, they usually follow different sampling protocols, which makes the information
obtained by different schemes not directly comparable. Furthermore, not all species are
well represented in the data gathered within a single ‘general’ protocol. For this reason,
many countries have, for example, additional targeted monitoring schemes that comple-
ment the information for species that are considered poorly represented in the more general
monitoring scheme, for example, colonial birds such as herons in Greece, raptors and water-
birds in Finland, nocturnal birds in Spain; see also Buckland and Johnston (2017). National
common bird monitoring schemes and those targeting particular (groups of) species provide
together the largest datasets known on species abundance in time and space. However, at
the (sub)national level, these datasets have mainly been used independently (Kålås 2010;
Bevanger et al. 2014; Kéry and Royle 2009; Soykan et al. 2016) and multi-country stud-
ies have mostly analyzed these data either independently for each country to later draw
common conclusions from the country-specific estimates (Lehikoinen et al. 2019) or com-
bining the raw data with limited account for sampling differences (e.g., total abundance of
waders; Lindström et al. 2019). Thus, overlooking the potential of integrating such a large
amount of standardized data seems like an under usage of the effort and resources spent
in collecting these data, especially when the taxa included in such monitoring schemes are
very diverse, allowing not only to carry out species-specific analyses but also, potentially,
community-level studies. This study was motivated by the need for estimates of the total
abundance of birds in mid-Scandinavia based on high quality (i.e., standardized surveys)
localized data on bird abundances from the common breeding bird monitoring programs in
Norway (TOV-E) and Sweden (BBS). An estimate of the total abundance of birds can be
used as an input for models that inform on the risk of infrastructure development (e.g., new
powerlines and wind farms) for birds. The TOV-E and the BBS both provide standardized
count data, but they differ in their sampling protocols. Both countries collect observations
in point counts and transect surveys. In Norway, the main point counts (all species recorded)
are complemented with line transects (only a subset of ‘rare’ species also included in point
counts are recorded—see further details in Sect. 2). However, in Sweden, the line transects
and the point counts can be regarded as two different censuses (i.e., all species are counted
in both census methods). These differences present the challenge of integrating the four
sources of spatial information (points and transects in both Norway and Sweden) with dif-
ferent sampling protocols into one estimate for the spatial distribution of bird abundance
for the entire region of interest (Brodie et al. 2020; Gruss and Thorson 2019).

The scarcity of studies applying large-scale abundance SDMs is likely related to (i)
the generally lower availability of abundance data compared to occurrence data for most
species (Miller et al. 2019; Buckland and Johnston 2017 and references therein) and (ii)
statistical and computational challenges of modeling abundance data. Great methodolog-
ical advancements to overcome some of these problems have been developed in the past
decade, especially for integrating different data types, see Miller et al. (2019) and refer-
ences therein. Most of these efforts have focused on enabling the use of casually collected
(non-standardized) presence-only data to increase spatial coverage and data points of certain
species (see also Buckland and Johnston 2017). The possibility of improving SDMs by inte-
grating abundance (count) data collected under different standardized monitoring schemes
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is most often neglected. Thus, in addition to the integration of data from different countries,
merging data from different schemes (from one or several countries) can thus improve the
estimates of abundance obtained from all available count data.

Given the existing gap in methodology for proper integration of standardized count data,
we here propose a generic modeling framework that integrates standardized count data
from various monitoring schemes (i.e., designed surveys) with different sampling protocols.
The models can ultimately produce one single estimate of abundance (total abundance of
birds in our case study) and its uncertainty based in data from different sampling protocols.
In addition, it also gives interpretable estimates of the ecological parameters driving this
abundance. Our methodology, thus, analyzes these data in a unique, single framework to
produce models that account for different sampling processes, and describe and predict the
spatial distribution of abundance.

Spatial modeling ofmultiple data sources has been approached for example in the context
of coregionalization models (Banerjee et al. 2015; Blangiardo and Cameletti 2015; Krainski
2019) and recently reviewed in Miller et al. (2019). These are multivariate models for
measurements that vary jointly over a region and have been defined through a hierarchical
structure and fitted using Markov Chain Monte Carlo (MCMC) techniques (Banerjee et al.
2015). For the family of Spatial Latent Gaussian Models (Rue and Held 2005), the INLA-
SPDE approach (Rue et al. 2009; Lindgren et al. 2011) and its easy implementation in the
INLA library of R have emerged as a faster alternative to jointly model multiple sources of
information. Suchmethod has been applied tomultivariatemodels relatedwith, for example,
air pollution data (Cameletti et al. 2019), and hydrology (Roksvåg et al. 2020). The proposed
framework framework assumes the existence of a latent process, underlying all the observed
abundances, that represents the true expected abundances. The true expected abundance
varies in space through spatial covariates as well as a spatial random effect. Given the true
expected abundance, we assume that the observed abundances follow Poisson distributions.
For each observation process a linear relation between the expected counts and the true
expected abundances is assumed. Further, we assume the existence of a common spatial
random effect that drives the observed counts (cf. Miller et al. 2019) for all the observation
processes. Given that the linear assumption may not depict the true relationship between
the expected counts and the true expected abundances, we also propose models that allow
deviations from this assumption. The proposed models are suitable doing computational
fast inference using the INLA-SPDE approach, which approximates the posterior densities
of parameters and hyperparameters.

To the best of our knowledge, methodologies for jointly modeling spatial abundance
using data from multi-country standardized biodiversity monitoring programs with differ-
ent sampling protocols have not been published before. By properly integrating data from
different monitoring schemes, our method can be part of solving some of the issues inherent
to monitoring data raised in Buckland and Johnston (2017), such as the scarcity of data,
low representability, and small geographical scale. This opens new possibilities for more
robust international assessments of species distributions and abundance using count data
from diverse national monitoring programs, which is of paramount importance for under-
standing global change impacts on biodiversity (Buckland and Johnston 2017; Massimino
et al. 2017). We validate this framework with a case study aiming at estimating total bird
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abundance in mid-Scandinavia and a simulation study that explores the effects of misspec-
ification on the proposed models.

This paper is organized as follows: InSect. 2,wedescribe the data from theNorwegian and
Swedish monitoring programs in detail. Moreover, we explain how we preprocessed these
census data, present an exploratory analysis and introduce the set of candidate explanatory
variables for our models. In Sect. 3, models as well as inference methodology and measures
for evaluating and comparing models are presented. In Sect. 4, we set up a simulation study
to explore how the proposed models perform in scenarios with different relation between
the observed and the true abundances. In Sect. 5, results of both the simulation study and
the case study using bird counts in mid-Scandinavia are presented. The paper finishes in
Sect. 6 with the discussion of the results and concluding remarks.

2. BIRD MONITORING SURVEYS DATA

2.1. TOV-E AND BBS DATA

The Norwegian common bird monitoring scheme (TOV-E), coordinated by the Nor-
wegian Institute for Nature Research (NINA) and the Norwegian Ornithological Society
(NOF) since 2006, was established to monitor population variation for common breeding
terrestrial birds on a national scale in a representative way. Surveys (i.e., count of pairs of
birds of all observed species) are carried out by experienced ornithologists that follow a
standardized protocol (Kålås 2002). Each census route (n = 492) contains between 12 and
20 (average = 18.8) point counts 300 m apart describing a square (see Fig. 1) with side =
1.5km (deviation of this shape are allowed and recorded when the geographic/topographic
conditions do not allow the observer to walk, e.g., sea/lakes, glaciers, rough mountainous
terrain). A total of 229 species are heard or seen at the entirety of the point counts of TOV-E
during 5 minutes. Approximately 121 of the species are less abundant and/or difficult to
detect, so observers are asked to record these species during a line transect between point
counts (see Fig. 1—figure with the configuration of a census site with the twenty points).
A random selection of 370 census routes (out of a total of 492 routes across Norway) is
visited once a year during the period 20th May to 10th June. TOV-E is designed to cover all
relevant habitats throughout the altitudinal and latitudinal gradient in Norway and reports
‘pairs of individuals’ as sampling unit. The Swedish breeding bird survey (hereafter BBS)
has been coordinated by Lund University since 1996 and consists of 716 fixed sites across
Sweden within a 25-km grid (one route per grid cell, see Lindstrom et al. 2013). These sites
are surveyed once a year between mid-May and mid-June (the breeding period for most
bird species in Sweden) though not all sites are surveyed every year (mean = 353 sites per
year). The 25-km grid makes sure that the habitats of Sweden are monitored in proportion to
their abundance in the country as well as the entire altitudinal and latitudinal gradient where
birds are present. At each site, the observer walks an 8-km transect describing a 2 × 2km
square and records all bird species heard and/or seen within 8 h. In addition, the observer
has eight 5-min point counts where all birds seen or heard must also be recorded. The point
counts take place at each of the corners of the square and at the middle point of the transect
(see Fig. 1). Of the circa 250 species breeding in Sweden, 244 are reported in BBS, thus
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Figure 1. Spatial location of census sites and sampling points and line transects according to each sampling
protocol. Left: graphical display of sampling protocol of TOV-E census. Blue points: 20 locations for point counts
(the number of points vary between 12 and 20 in different sites). Red lines: line transects. Yellow point: centroid
associated with each census site (see Sect. 2.2). Center: spatial distribution of census sites across Norway (blue
sites) and Sweden (green sites). The red polygon represents the study area described in Sect. 2.1. Right: graphical
display of sampling protocol of BBS census. Green points: 8 locations for point counts. Red lines: line transects.
Yellow point: centroid associated with each census site (see Sect. 2.2).

ensuring a good coverage of the breeding birds (Lindstrom et al. 2013). The BBS reports
‘individuals’ as sampling unit, which differs from TOV-E’s reporting unit (pairs; see above).

Although these monitoring programs are designed to cover a large part of both countries
(Fig. 1), for our case study, we only selected census sites that lie within a polygon defined
to produce an approximation of a Gaussian Random Field and make inference about a
point pattern in Trøndelag Country, central Norway (see red polygon in Fig. 1, (Lindgren
et al. 2011; Simpson et al. 2016)). This polygon covers a total area of 173.634 km2 and
contains 113 census sites in Norway and 70 in Sweden. The main motivation to reduce the
study region from the entire country to a smaller area (defined by the polygon) was strictly
computational and for an easier compilation of covariate information. In addition, this region,
which is basically within Trøndelag County in central Norway, is largely representative of
habitat types, topography and biodiversity found elsewhere in Norway.

2.2. EXPLORATORY ANALYSIS

Our main goal was to develop and validate a new modeling framework to integrate abun-
dance data from standardized monitoring schemes with different sampling protocols. Such
a framework can ultimately be used, for example, to detect hotspots of abundance of birds,
as in the case we illustrate here (note: we are not interested in the distribution of particular
species, but in the distribution of total abundance of birds regardless of the species). In other
words, we apply our modeling framework to producemaps of total abundance of birds based
on count data from multiple sources—information gathered as part of standardized national
bird monitoring schemes in Norway and Sweden that differ in the sampling protocols. The
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data preparation consisted in averaging across all years (2006–2019) the total count of all
individuals (regardless of the species) found at each survey site. That is, we first added
up the counts of all individual birds recorded in the points or lines of a given census site
and assigned this total count of individuals (regardless of the species present) to the site’s
centroid (see Fig. 1) so that each census site will have one single value of total abundance
of birds per year. Next, for each site, we averaged the yearly total abundance of birds across
all years that the site was sampled (note: not all sites are censused every year) in the period
between 2006 and 2019, so thatwe ended upwith one single value of total abundance of birds
per site (temporal average). Although estimating single-species abundance and distribution
maps are commonly used to inform about species of conservation concern, here we wanted
to report the total abundance of birds across the region (note: our methodology can also
be used to estimate single-species abundances). Estimating total abundance of individuals
across a region (as opposed to single-species abundance) has clear implications in spatial
conservation planning and prioritization (Lehtomäki and Moilanen 2013). For example, De
Lucas et al. (2008) estimated the total abundance of raptors in a region to assess the impacts
of wind farms on this group of birds. Lindström et al. (2019) attempted to estimate total den-
sity of wading birds across Fennoscandia by combining count data from Norway, Sweden
and Finland. However, they did not account for many differences in the sampling proto-
cols. Our modeling framework thus can be applied to account for such differences. Another
example of potential use of our method is to get more robust estimates of total abundance
of birds to inform authorities and stakeholders where powerlines (Bevanger et al. 2014)
or wind farms (De Lucas et al. 2008) may cause large mortality rates. Although here we
present a simplified and more generic analysis (all species have weight = 1, and thus their
abundance has the same influence in the resulting map), each species abundance can be
multiplied (weighted) by a factor relative to their sensitivity to e.g., powerlines (D’Amico
et al. 2019) so that the resulting map will highlight total abundance hotspots in relation to
their sensitivity to the particular issue. Since we include data from both Norway and Swe-

Figure 2. Scatterplots of line vs point counts inNorway (number of pairs, left) and Sweden (number of individuals,
right) .
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den, we explore how the relation of point and line counts differ between surveys from both
countries. In Fig. 2, we display a scatterplot with the points and line counts at each of the
TOV-E (n=113) and BBS (n=70) sites.

These scatterplots show a linear relation between point and line counts in Sweden,
whereas in Norway there is no clear linear association between the counts in points and
lines. This is somehow expected due to the census design in Norway, where the line counts
are meant to record a reduced subset of species compared to the point counts. This is a
common issue highlighted by Buckland and Johnston (2017) and is often found in many
countries when certain species aremonitored with special censuses in addition to the general
monitoring scheme. Therefore, this is not only an issue when integrating between-countries
datasets (e.g., to increase the geographical extent), but also within-country datasets (to
increase the representability and number of data points).

2.3. EXPLANATORY VARIABLES

In our case study, we want to apply our new methodology not only to estimate total
abundance of birds, but also to produce interpretable estimates of ecological factors asso-
ciated with it across the region. We have selected three candidate ecological factors that
are commonly used in SDMs to explain distribution of birds (e.g. Bradter et al. 2021;
Lissovsky et al. 2021; Soultan et al. 2022): (i) climatic variables—temperature (average
daily temperature from April to July over 2006–2019, downloaded from seNorge.no) and
precipitation (average daily precipitation from April to July over 2006–2019, downloaded
from seNorge.no), (ii) topography - elevation (Digital Elevation Model at a 10m resolution,
DEM10, downloaded from https://kartkatalog.geonorge.no/), and (iii) the land cover sur-
rounding each location expressed as the percentage of each of the following six land covers
(urban, mountains, rocky area, water body, forest, and open area) in a square neighborhood
of 2km × 2km. Land cover information was depicted from the N50 layer (downloaded
from https://kartkatalog.geonorge.no/). All rasters files have resolution of 1km × 1km (the
elevation data from DEM10 was aggregated to this resolution prior analysis) and are shown
in the Supplementary Information. As a first stage of model selection, we computed the
correlation coefficient between all the candidate covariates on a fine grid of about 600.000
points. Only one variable in those pairs with |ρ| > 0.7 was left as a candidate. Those pairs
with high correlation were: 1) elevation and temperature (ρ = −0.81). Temperature was
discarded; 2) % of open area and % of forest (ρ = −0.83). % of open area was discarded.

3. MODELING AND INFERENCE APPROACH

The specification of our models relies on the assumption that our four sources of obser-
vations are obtained from a common underlying ecological process (Miller et al. 2019). This
assumption arguably makes sense if we consider the fact that national borders of neighbor-
ing countries are not, in general, a key factor for natural changes in biodiversity, although
there might be slight differences in conservation policies and governance. Hence, we can
assume that a common nonzero mean Gaussian Random Field (GRF) is involved in the
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generation of the number of individuals at each census site. However, the two different
sampling protocols (points and lines), which also differ between the two countries (com-
plementary surveys in Norway and independent surveys in Sweden), result in four groups
of counts observed. Moreover, TOV-E counts (Norway) are reported as ‘number of pairs’
of each species, whereas BBS counts (Sweden) are reported as ‘number of individuals’
of each species. Therefore, direct inference and comparisons between these four response
variables should be made with caution. The true total bird counts random variable, Ytrue(s)
with s ∈ D ⊂ R

2, is assumed to follow a Poisson distribution with expected value λtrue(s),
expressed as

log(λtrue(s)) = XT (s)β + ω1(s) (1)

with XT (s) a set of spatial covariates andω1(s) a zero-mean GRF that aims at accounting
for residual spatial dependency. Both XT (s) and ω1(s) can include well-established factors
that influence variation in the total abundance of birds; in our case study these factors are
precipitation and elevation. We assume a Matérn covariance function for ω1(s)

σ 2

�(ν)2ν−1 (κ‖si − s j‖)νKν(κ‖si − s j‖) (2)

with ‖si − s j‖ the Euclidean distance between two locations si , s j ∈ D. σ 2 stands for
the marginal variance, and Kν represents the modified Bessel function of the second kind
and order ν > 0. ν is the parameter that determines the degree of smoothness of the process,
while κ > 0 is a scaling parameter. For ω1(s), let κ = κ1,ν = ν1 and σ 2 = σ 2

1 . We assume
that the observed counts for each sampling protocol are realizations of four random variables
conditionally independent given the true abundance, λtrue(s). That is, we assume the four
groups of observed counts are realizations of the Poisson random variables:

Y1(s) ∼ Poisson(λ1(s)) (Point counts in Norway)

Y2(s) ∼ Poisson(λ2(s)) (Line counts in Norway)

Y3(s) ∼ Poisson(λ3(s)) (Point counts in Sweden)

Y4(s) ∼ Poisson(λ4(s)) (Line counts in Sweden)

where λ j (s), j = {1, 2, 3, 4} are the expected values of the random variables Y j (s).
Additionally, we assume Y1(s) + Y2(s) ≈ YNO(s) as a proxy for total abundance since the
line transects are complementary to the point counts in Norway. This assumption does not
hold for Sweden since, as mentioned in Sect. 1, line transects and point counts are regarded
as two different independent censuses. In case we wanted to suggest a proxy for the total
abundance in Sweden usingY3(s) andY4(s), wewould need to account for a potential overlap
(double counting) between the counts observed in points and line transects. Given that we
assume a common latent process underlying all the observed abundances, Y1(s) + Y2(s)
works also as a proxy for total abundance of birds in Sweden. This variable is used to
produce the predicted total abundance of birds in Sect. 3. Our final assumption is that there
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are no differences in observer skills between countries since the census are performed by
experienced ornithologists.

3.1. MODELS

In this section, we introduce three model specifications for integrating data from the four
sampling protocols introduced in Sect. 2. Model 1 (see Sect. 3.1.1) is a model that assumes a
linear relation between the expected counts of the four sampling protocols. This is achieved
by the introduction of a unique intercept for each sampling scheme. In Sect. 3.1.2, model 2
is presented. This model allows for a relaxation of the assumption of linear relation between
expected counts by incorporating terms that allow to explain any deviation from this assump-
tion through theGRFω1(s). Finally, model 3 (see Sect. 3.1.3) is introduced. Thismodel adds
a second GRF, ω2(s), which aims to account for spatial sources of variation not accounted
for in the other parts of the model and not explained by known covariates, (Simmonds et al.
2020; Selle et al. 2020). It is worth noting that as each of the models proposed depend on
λtrue(s), they explicitly account for the factors that influence the variation in abundance.

3.1.1. Model 1

Based on our exploratory analysis and the four sampling processes present in our dataset,
in model 1 we assumed a linear relation between the expected values of the four random
variables representing each sampling protocol and λtrue(s). That is,

λ1(s) = ζ ∗
1 · λtrue(s); log(ζ ∗

1 ) ∼ N (0, τ ∗
1 )

λ2(s) = ζ ∗
2 · λtrue(s); log(ζ ∗

2 ) ∼ N (0, τ ∗
2 )

λ3(s) = ζ ∗
3 · λtrue(s); log(ζ ∗

3 ) ∼ N (0, τ ∗
3 )

λ4(s) = ζ ∗
4 · λtrue(s); log(ζ ∗

4 ) ∼ N (0, τ ∗
4 ) (3)

with ζ ∗
j ≥ 0, j = 1, . . . , 4 the factors that determine the association between the observed

and the true counts for each protocol. In real-life problems, ζ ∗
j can explain multiple sources

of variation that are common to sampling of bird species such as observer differences,
observed units, differences in detection probability, among others. The inclusion of this
term is also useful to deal with overdispersion (Gomez-Rubio 2020), a common issue when
working with count data. In order to avoid identifiability issues, we restate the model in (3)
in terms of λ1(s). That is,

λ2(s) = ζ2 · λ1(s); log(ζ2) ∼ N (0, τ2)

λ3(s) = ζ3 · λ1(s); log(ζ3) ∼ N (0, τ3)

λ4(s) = ζ4 · λ1(s); log(ζ4) ∼ N (0, τ4) (4)

where ζ j ≥ 0 and ζ j = ζ ∗
j

ζ ∗
1
, j = {2, 3, 4}.
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3.1.2. Model 2

In model 2, we relax the assumption of linear relation between the expected value of
the number of observed individuals with protocol j, λ j (s), and the true intensity, λtrue(s),
by including spatial varying terms (ψ∗

j − 1) · ω1(s), j = {1, 2, 3, 4}. These terms aim to
explain any deviation from a linear relation between expected values as a function of a GRF
ω1(s). It is worth noting that model 1 (see above) is a special case of model 2 with ψ∗

j = 1.
We define model 2 as:

λ1(s) = ζ ∗
1 · λtrue(s) · exp{(ψ∗

1 − 1) · ω1(s)}; log(ζ ∗
1 ) ∼ N (0, τ ∗

1 )

λ2(s) = ζ ∗
2 · λtrue(s) · exp{(ψ∗

2 − 1) · ω1(s)}; log(ζ ∗
2 ) ∼ N (0, τ ∗

2 )

λ3(s) = ζ ∗
3 · λtrue(s) · exp{(ψ∗

3 − 1) · ω1(s)}; log(ζ ∗
3 ) ∼ N (0, τ ∗

3 )

λ4(s) = ζ ∗
4 · λtrue(s) · exp{(ψ∗

4 − 1) · ω1(s)}; log(ζ ∗
4 ) ∼ N (0, τ ∗

4 ) (5)

Again, to avoid identifiability issues, we restate the model in (5) in terms of λ1(s) as:

λ2(s) = ζ2 · λ1(s) · exp{(ψ2 − 1) · ω1(s)}; log(ζ2) ∼ N (0, τ2)

λ3(s) = ζ3 · λ1(s) · exp{(ψ3 − 1) · ω1(s)}; log(ζ3) ∼ N (0, τ3)

λ4(s) = ζ4 · λ1(s) · exp{(ψ4 − 1) · ω1(s)}; log(ζ4) ∼ N (0, τ4) (6)

In the scales of the linear predictors in (5) , ψ j = ψ∗
j −ψ∗

1 + 1, j = {2, 3, 4} are scaling
coefficients for the common GRF, ω1(s), in each likelihood. They quantify to what extent
the departure of the assumption of linearity is explained by (ψ∗

j − 1) · ω1(s). In real-life
scenarios, this departure can be related with sources of variation with spatial structure such
as differences in detectability, among others. Therefore, we would expect posterior densities
for ψ3 and ψ4 to be around 1 in our case study, while for ψ2 we expect different results
because line and point counts in Norway do not seem to follow a linear relation (see Sect. 2;
Fig. 2). Due to different characteristics of line transect surveys in Norway, we propose
model 3.

3.1.3. Model 3

In addition to causing departure from a linear relation between true and observed counts,
species detectability may also change with the census technique used (i.e., one of our data
sources, the line transects in TOV-E, targeted only a subset of species as it is regarded as a
complementary survey to the point counts). Hence, in model 3 we included a second GRF,
ω2(s) to try to account for the characteristics of this observation process. In case that no
explanatory variable that explains the particular characteristics of the sampling protocol is
available, a second GRF can be added as a way to account for them, (Simmonds et al. 2020).
This is included as an additive term in the linear predictor, as follows:

λ2(s) = ζ2 · λ1(s) · exp{(ψ2 − 1)ω1(s)} · exp{ω2(s)}
λ3(s) = ζ3 · λ1(s) · exp{(ψ3 − 1)ω1(s)}
λ4(s) = ζ4 · λ1(s) · exp{(ψ4 − 1)ω1(s)} (7)
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We assume a Matérn covariance function as in (2) for ω2(s), with parameters κ = κ2,
ν = ν2 and σ 2 = σ 2

2

3.1.4. Prior Specification

For the GRFs ωk(s), k = {1, 2}, the parameters νk in the Matérn covariance function are
fixed to be 1. The interest is put on the spatial ranges ρk , and on the standard deviation of
the GRFs, σk . ρk are related to κk through ρk = √

8/κk . The prior distributions of these
two parameters are specified by making use of Penalized Complexity (PC) priors, (Fuglstad
et al. 2019). In this case, we set P(ρ1 < 20000) = 0.1 and P(σ1 > 1) = 0.1 for ω1(s),
while P(ρ2 < 2000) = 0.1 and P(σ2 > 3) = 0.1 for ω2(s). This means, for example, that
under this prior specification, a standard deviation greater than 1 is regarded as large, while
a spatial range below 20 kilometers is considered unlikely for ω1(s). The parameters in β

have Normal prior with mean 0 and precision 0.01. Let log(ζ j ) ∼ N (0, τ j ), j = {2, 3, 4},
where the logarithm of each τ j has a log-Gamma prior with parameters 1 and 0.00005. For
the parameters ψ j , j = 2, 3, 4 in models 2 and 3, we set a normal prior with mean 1 and
precision 0.1. We have now defined a group of three candidate models. In the upcoming
subsections, we introduce the methodological approach for fitting them and for selecting a
model that suits best for our problem.

3.2. INFERENCE AND COMPUTATIONAL APPROACH

The models introduced in Sect. 3.1 were fitted making use of the Integrated Nested
Laplace Approximation (INLA), (Rue et al. 2009) and the Stochastic Partial Differential
Equation (SPDE) approach (Lindgren et al. 2011). INLA is a faster alternative toMonteCarlo
Markov Chains (MCMC) for performing Bayesian inference for latent Gaussian models.
INLA aims at producing a numerical approximation of the marginal posterior distribution
of the parameters and hyperparameters of the model. Further details can be found in Rue
et al. (2009) and Blangiardo and Cameletti (2015). Since we deal with continuous spatial
processes in our models, the SPDE approach emerges as an efficient representation of ω1(s)
and ω2(s). It is based on the solution of a SPDE which can be approximated through a basis
function representation defined on a triangulation of the spatial domain. More details are
available in Lindgren et al. (2011) and Blangiardo and Cameletti (2015).

3.3. ASSUMPTIONS AND POSSIBLE EXTENSIONS

This new modeling framework is developed to integrate count data collected in designed
surveys that follow different standardized protocols. Particularly, in the case study presented
here, the bird surveys introduced in Sect. 2 are designed to minimize biases due to variation
in the time of sampling or observer expertise. For this reason, the models presented in our
case study assume, in principle, that these external sources of variation that could affect
the observation process are constant across sites or negligible. However, these models are
flexible enough to explicitly account for factors that may affect the observation process
of each sampling protocol, and can thus be accounted for. There may be, however, other
potential sources of variation when working with monitoring data, which also depend on the
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taxon being surveyed. Hence, as mentioned in Sect. 3, our method includes relevant terms
for quantifying the effect of potential sources of noise in the observation process. Ourmodels
incorporate the terms ζ to explain what proportion of the true abundance is explained by
each of the observation processes. That is, ζ j quantifies the effect of each sampling protocol
on the observed abundances. This effect comprises sources of variation such as differences
in the observed units, differences in detectability, and potential differences in the expertise of
the observers. In many real-life scenarios, these terms do not provide enough quantification
of the effect of the sampling protocols as there are sources of variation in the sampling
process that have spatial variation that cannot be summarized in one term. Therefore, the
GaussianRandomField that drives the true abundance (in our case study, the total abundance
of birds) or a second GRF is also used to account for sources of variation that have a spatial
behavior. This modeling framework also allows to explicitly account for factors that affect
the observation process of each sampling protocol. To show how this can be done, we take
model 2 as our reference to explicitly account for a factor that influences the observed
number of individuals. We now assume that unlike our case study, there are several factors
affecting the observed total abundance of birds. As seen in equation (6) in Sect. 3.1.2, the

term ζ j · exp
{
(ψ j − 1)ω1(s)

}
accounts for the effect the sampling protocol j has on the

observed abundance. In addition to the spatial effect driven by ω1(s), the term ζ j can be
further explained, for example, by a fixed effect z as follows:

ζ j = α0 j + α1 j z (8)

This is a straightforward way to explicitly account for multiple factors that may influence
the observation process of the sampling protocol j . Factors with a spatial or temporal
structure can be accounted for through random effects with these structures. Given the
additional parameters to be estimated and the increased complexity of the model when the
effect of these factors is accounted for explicitly, structural identifiability issues may arise.
Therefore, in order to overcome these issues, it is recommended to constrain the parameters
in (8). This can be achieved by either having additional data that inform on these factors or
informative prior information of the parameters involved in (8). Acquiring additional data
to account for factors that affect the observation process of each sampling protocol might be
possible by integrating data, for example, from schemes with sampling protocols designed
to gather information on species detection probabilities through repeated visits to the sites
or distance sampling (Järvinen and Väisänen 1983; Miller et al. 2019). In our case study, the
temporal variation in birds is not considered to compute the total abundance of birds across
the study region. Rather, this temporal variation is removed by averaging the total count of
birds at each site over the 14 years (2006–2019). This is also a convenient assumption as
we do not have information (counts) at every census site every year (i.e., not all sites are
surveyed every year). Furthermore, we believe that the overall state of important sites for
birds has remained similar in the past 14 years (i.e. bird-rich areas in 2006, at the beginning
of the monitoring scheme are still bird-rich areas in 2019, even if the species composition
might have changed slightly).
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3.4. MODEL ASSESSMENT

In order to assess and compare competing models such as the ones we are fitting in
upcoming sections, we employed the Deviance Information Criterion (DIC), (Spiegelhalter
et al. 2002), the Watanabe–Akaike Information Criterion (WAIC), (Watanabe 2010), the
logarithm of the pseudo marginal likelihood (LPML) (Blangiardo and Cameletti 2015) and
the Continuous Rank Probability Score (CRPS) (Gneiting and Raftery 2007).

DIC makes use of the deviance of the model

D(θ) = −2 log(p(y|θ))

to compute the posterior mean deviance D̄ = Eθ |y(D(θ)). In order to penalize the
complexity of the model, the effective number of parameters

pD = Eθ |y(D(θ)) − D(Eθ |y(θ)) = D̄ − D(θ̄)

is added to D̄. Thus,

DIC = D̄ + pD.

The Watanabe–Akaike Information Criterion is based on the posterior predictive den-
sity, which makes it preferable to the Akaike and the deviance information criteria, since
according to Gelman et al. (2014) it averages over the posterior distribution rather than
conditioning on a point estimate. It is empirically computed as

−2

[ n∑
i=1

log

(
1

S

S∑
s=1

p(yi |θ s)
)

+
n∑

i=1

V S
s=1(log p(yi |θ s))

]

with θ s a sample of the posterior distribution and V S
s=1 the sample variance. Another

criterion to compare the models is LMPL,defined as:

LPML =
n∑

i=1

log(CPOi )

It depends on CPOi , the Conditional Predictive Ordinate at location si , (Pettit 1990), a
measure that assesses the model performance by means of leave-one-out cross validation.
It is defined as:

CPOi = p(y∗
i |y f )

with y∗
i the prediction of y at location si and y f = y−i . Lastly, we will compare the

predictive performance of ourmodels using the Continuous Rank Probability Score (CRPS).
It makes possible to compare the estimated posterior mean and our observed values while
accounting for the uncertainty of the estimation, (Gneiting and Raftery 2007; Selle et al.
2019). It is defined as:
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CRPS(F, y) =
∫ ∞

−∞
(F(u) − 1{y ≤ u})2du

with F , the cumulative distribution of the estimated posterior mean, and y is the observed
value. The smaller CRPS is, the closer the estimated value is to the observed one.

4. SIMULATION STUDIES

We set up three simulation studies based on the case study of total abundance of birds
in mid-Scandinavia that allow us to assess the performance of the models proposed in
Sect. 3, when the true data generatingmodel either assume linear relation between the counts
(Scenario 1), deviate from this assumption due to some spatial factor explained by a GRF
(Scenario 2) or when one group of observed counts is considerably affected by additional
spatial sources of variation (Scenario 3). We used the same sites as the observations in the
TOV-E and BBS surveys (Fig. 1). To start, we simulated the true intensity, λtrue(s) as:

log(λtrue(s)) = β0 + β1PREC(s) + ω1(s)

with PREC(s), the precipitation at location s in the study region (see Figure S.1.), and
ω1(s) a GRF with range ρ = 15km and σ 2 = 0.14. Further, we specified β0 = 4.70 and
β1 = −0.20. These values were chosen based on the posterior marginal distribution of these
parameters in the real-data application.Next,we simulated observations representing the sur-
veys, i.e., using four different Poisson models with parameters λ j (s), j = {1, . . . , 4}.Table
1 summarizes the two simulation scenarios proposed for λ j (s)

For each scenario, we simulated 100 datasets with ζ ∗
1 = 0.91, ζ ∗

2 = 0.04, ζ ∗
3 = 0.57

and ζ ∗
4 = 1.72. While we assume a linear relation between λ j (s) and λtrue(s) in Scenario

1, in Scenarios 2 and 3 the relation between λ j (s) and λtrue(s) is assumed to follow (5)
with ψ∗

1 = 1, ψ∗
2 = 1.57, ψ∗

3 = 1.09 and ψ∗
4 = 1.21. These settings are based on the

posterior marginal distribution of the parameters in the real data case study (presented in
Sect. 5.2). The three simulation scenarios closely mimicked real data application by making
two of the simulated counts only observed in Norway and the other two only observed
in Sweden. For each simulated dataset, we fitted the three models proposed in Sect. 3. A
second group of simulation scenarios was proposed by taking more extreme values of the
posterior marginal distributions. The results and more details on this simulation scenario
are discussed in Sect. 5.1 and the supplementary information.

Table 1. Simulation scenarios

Scenario Simulated λ j (s)

1 λ j (s) = ζ∗
j · λtrue(s)

2 λ j (s) = ζ∗
j · λtrue(s) · exp((ψ∗

j − 1) · ω1(s))
3 λ j (s) = ζ∗

j · λtrue(s) · exp((ψ∗
j − 1) · ω1(s)); j = {1, 3, 4}

λ2(s) = ζ∗
2 · λtrue(s) · exp((ψ∗

2 − 1) · ω1(s) + ω2(s))
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To assess the performance of each model in each scenario, we simulated 10000 real-
izations {θ p

jkl}, j =, 1 . . . , 10000, from the posterior distribution of each parameter θ for
dataset k = 1, . . . , 100 in scenario l = 1, 2, 3. Thus, the mean bias and the Root Mean
Square Error (RMSE) for dataset k in scenario l are computed as:

biaskl = 1

10000

10000∑
j=1

(
θ
p
jkl − θ̃

)

RMSEkl =
√√√√ 1

10000

10000∑
j=1

(
θ
p
jkl − θ̃

)2

with θ̃ the true value of the parameter θ .

5. RESULTS

5.1. SIMULATION STUDIES

The 100 datasets generated in each of the proposed scenarios were fitted using the three
proposed models in Sect. 3 and the results summarized here using the measures of perfor-
mance introduced in Sect. 4. We only show the mean bias and RMSE for the parameters ζ ∗

2 ,
ζ ∗
3 and ζ ∗

4 as they are key to understand how different response variables interact with each
other (Fig. 3).

Figure 3. Mean bias (left) and RMSE (right) for parameters ζ∗
2 (upper panels), ζ∗

3 (central panels) and ζ∗
4 (lower

panels) for each model in simulation scenario 1 (assumption of linear relationship between expected abundances),
scenario 2 (non-linear relation between expected abundances explained by ω1(s)) and scenario 3 (an extra spatial
source of variation affecting only one of the groups of observed counts).



578 J. Sicacha- Parada et al.

Table 2. Mean bias and RMSE for parameters β0, β1, ρ and σ in simulation scenario 1 (assumption of linear
relationship between expected abundances), scenario 2 (non-linear relationbetween expected abundances
explained by ω1(s)) and scenario 3 (an extra spatial source of variation affecting only one of the groups
of observed counts)

Scenario Model β0 β1 ρ (km) σ

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 1 −0.112 0.120 1.62 · 10−3 0.040 −1.567 4.729 0.076 0.097
(0.037) (0.035) (0.028) (0.011) (3.982) (1.946) (0.080) (0.076)

2 −0.116 0.125 2.74 · 10−3 0.043 −1.380 4.812 0.115 0.129
(0.036) (0.034) (0.028) (0.011) (4.330) (2.267) (0.096) (0.099)

3 −0.120 0.129 1.48 · 10−4 0.044 −1.497 4.762 0.122 0.135
(0.038) (0.035) (0.030) (0.011) (3.978) (2.021) (0.088) (0.093)

2 1 −0.112 0.119 1.37 · 10−3 0.040 −1.132 4.681 0.066 0.089
(0.037) (0.035) (0.028) (0.011) (4.152) (2.057) (0.070) (0.065)

2 −0.111 0.120 1.05 · 10−4 0.038 −0.880 4.704 0.069 0.091
(0.036) (0.034) (0.024) (0.009) (4.160) (2.148) (0.070) (0.065)

3 −0.104 0.113 − 1.92 · 10−3 0.048 −0.952 4.629 0.058 0.082
(0.038) (0.035) (0.049) (0.025) (4.013) (1.981) (0.067) (0.060)

3 1 −0.112 0.120 1.42 · 10−3 0.040 −1.056 4.652 0.063 0.087
(0.037) (0.035) (0.028) (0.011) (3.927) (1.972) (0.069) (0.065)

2 −0.111 0.120 5.06 · 10−5 0.038 −0.596 4.783 0.069 0.089
(0.036) (0.034) (0.024) (0.009) (4.288) (2.139) (0.070) (0.065)

3 −0.112 0.119 −2.05 · 10−4 0.040 −1.837 5.024 0.088 0.107
(0.037) (0.035) (0.028) (0.011) (4.240) (2.064) (0.079) (0.076)

In parentheses, the standard error of each performance measurement

Figure 3 shows that the estimation of the proportional relation between the four likeli-
hoods performed similarly for the three models when the truth is that the four likelihoods
are linearly related (Scenario 1). Model 1 (which assumes linear relationship between the
expected counts) performed, as expected, slightly better than the other two models as this is
the model that generated the datasets. However, when we introduced some deviation from
the assumption of linearity in our data generating process (Scenario 2), model 1 underper-
formed relative to the other two models. This is true for the three parameters of interest
(Fig. 3). Models 2 and 3 performed better in terms of bias and RMSE, whereas the estimates
produced by model 1 were biased and showed higher variability. Lastly, when an additional
source of variation affected only one of the likelihoods (Scenario 3), the three models per-
formed similarly as in Scenario 2, except for the hyperparameter ζ ∗

3 , which is part of the
likelihood affected by the extra source of variation. For this hyperparameter, the differences
in performance between the three models increased considerably as model 3 produced less
biased and variable estimates of this hyperparameter.

Our results show that there are only marginal differences in the fixed effects β0 and β1

between the three models in all the scenarios. However, larger differences are observed for
the hyperparameters of ω1(s). For example, in the three scenarios the bias of ρ was smaller
for model 2 compared to the other two models, but at the same time it produced estimates
of ρ with larger RMSE than the other two models. In this simulation study, we have also
explored the selection of the best model according to the comparison criteria DIC, WAIC
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Figure 4. Differences in DIC, WAIC and LMPL between the model that generated the observed counts in each
simulation scenario (Scenario 1, generated according to model 1; scenario 2, generated according to model 2 and
scenario 3, generated according to model 3) and the other two models proposed in Sect. 3.

and LMPL (See Sect. 3.4). For each scenario, we computed the differences in each criterion
between the model that generated the 100 datasets of the scenario and the other two models.
The summaries of these differences are displayed in Fig. 4.

Figure 4 shows small differences in DIC and WAIC between the three models when
model 1 generates the observed counts (Scenario 1). In Scenario 1, the predictive perfor-
mance, measured by LMPL, was similar for model 1 (the one that generated that data) and
model 2, while model 3 underperformed. In Scenario 2, model 2 (generating model) and
model 3 performed similarly based on all performance comparisons, but model 1 underper-
formed considerably. In scenario 3, where the observed counts are generated according to a
more complex specification (i.e., one sampling protocol is affected by an additional source
of variation), model 3 had better goodness of fit and predictive performance with large dif-
ferences in DIC, WAIC and LMPL with respect to the other two models. The difference
in performance between models increases as the complexity of the data generating process
increases (Fig. 4).

The results for the second group of simulations can be found in the Supplementary
Information. Results match those obtained with the first group of simulations above. In
Scenario 1, all three models perform similarly. As in the first simulation study, when the
complexity of the model that generates the data increases, models 2 and 3 outperform
model 1. Nevertheless, unlike in the first simulation study, model 2 outperformed model 3
in Scenario 3 (generated by model 3) for ζ3 as it produced less biased estimates.
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5.2. RESULTS OF THE CASE STUDY ON TOTAL ABUNDANCE OF BIRDS IN

MID-SCANDINAVIA

We fitted our three models (see Sect. 3) to count data from the common bird monitoring
schemes in Norway and Sweden (see Sect. 2) to estimate total abundance of birds across
mid-Scandinavia with precipitation and elevation as explanatory variables. These two were
selected from all the variables considered a priori, as it was the subset of candidate variables
that produced the best results in terms of goodness of fit (see Supplementary Information for
an overview of the performance of other competing models). The most demanding model
in terms of computation time was model 3, which run in 60 seconds. In Table 3, we report
the posterior mean, standard deviation and quartiles of the most relevant parameters from
the three models.

Table 3 shows the associations between precipitation (PREC) and elevation (ELEV) with
the expected counts are negative for all the models. The posterior means of the parameters
of these two variables have small differences, model 2 estimated stronger association of the
explanatory variables (precipitation and elevation) and the response variable (total abun-
dance of birds). The posterior summarizes of PREC and ELEV suggest that those locations
with higher levels of precipitation and high elevation are expected to have lower total bird
counts. The variability and range of the Gaussian field have right skewed posterior distribu-
tions based on their posterior medians and means.

Figure 5 and Table 3 show that the posterior densities of ζ2 are different between models,
with higher posterior mean for model 1 compared to the other models. This result agrees
with the exploratory analysis of Sect. 2, which suggested the necessity of specifying a
relaxed linear relationship between the line and point counts in Norway (linearity was met
in Sweden, but not in Norway, see Fig. 2). However, the posterior densities of ζ3 and ζ4 are
almost identical for models 1 and 3, whereas model 2 estimated posterior distributions for
ζ3 and ζ4 that are shifted toward lower values (Fig. 5). Large differences in the posterior
mean of ψ2 in models 2 and 3 are observed when ω2(s) is introduced to account for the
particularities of the sampling protocol of the line counts in Norway (i.e., in general terms,
to account for added complexity due to one of the data collecting protocols considered).
While model 2 gives high prevalence toω1(s) (posterior mean ofψ2 = 1.90) as determinant
of the departure from linear association, model 3 reduces this prevalence (posterior mean
of ψ2 = 0.63). It arguably means that ω2(s) accounts for what is particular of this sampling
protocol (the added complexity) and what at the same time reduces the leverage of what is
shared between this sampling protocol (the line transect inNorway in this case study) and the
other protocols.We expect these differences in contribution ofω1(s) acrossmodels to impact
their predictive performance. In Figure S.2, we show the posterior mean of Y1(s) + Y2(s),
understood as a proxy for the total abundance of birds in our study region (see Sect. 3).
Given the high similarity across mid-Scandinavia, hereafter, we explore the differences
in the predicted mean of Y1(s) + Y2(s) between the three models in a smaller sub-region
(highlighted with a red square in Fig. 6), which encompasses the locations surrounding
Trondheimsfjorden and the Norwegian Sea.

Our three models predicted high total bird counts along the eastern coast of Trondheims-
fjorden and on the islands of Hitra and Frøya (Fig. S.9) and low counts at higher elevations
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Table 3. Posterior mean, standard deviation and quartiles of the most relevant parameters of the models proposed
in Sect. 3

Model
Model 1

Parameter Mean SD 0.025q 0.50q 0.975q
Intercept 4.69 0.04 4.61 4.69 4.77
PREC −0.12 0.04 −0.19 −0.12 −0.04
ELEV −0.29 0.04 −0.38 −0.29 −0.21
ζ2 0.05 0.00 0.04 0.05 0.05
ζ3 0.51 0.03 0.45 0.51 0.57
ζ4 1.50 0.09 1.33 1.50 1.68
ψ2
ψ3
ψ4
ρ(m) 1.80 · 104 4.00 · 103 1.11 · 104 1.77 · 104 2.68 · 104
σ 0.36 0.02 0.32 0.36 0.41

Model
Model 2

Parameter Mean SD 0.025q 0.50q 0.975q
Intercept 4.68 0.03 4.62 4.68 4.75
PREC −0.20 0.03 −0.26 −0.20 −0.14
ELEV −0.39 0.04 −0.46 −0.39 −0.32
ζ2 0.04 0.00 0.04 0.04 0.05
ζ3 0.48 0.03 0.43 0.48 0.54
ζ4 1.42 0.08 1.27 1.42 1.58
ψ2 1.86 0.14 1.59 1.86 2.13
ψ3 1.26 0.13 1.00 1.26 1.52
ψ4 1.30 0.12 1.07 1.30 1.54
ρ(m) 1.80 · 104 3.88 · 103 1.17 · 104 1.75 · 104 2.69 · 104
σ 0.31 0.02 0.27 0.31 0.36

Model
Model 3

Parameter Mean SD 0.025q 0.50q 0.975q
Intercept 4.69 0.04 4.61 4.69 4.77
PREC −0.11 0.04 −0.18 −0.11 −0.04
ELEV −0.27 0.04 −0.35 −0.27 −0.19
ζ2 0.04 0.00 0.04 0.04 0.05
ζ3 0.51 0.03 0.45 0.51 0.57
ζ4 1.50 0.09 1.32 1.49 1.69
ψ2 0.61 0.16 0.30 0.61 0.91
ψ3 1.09 0.12 0.86 1.09 1.34
ψ4 1.18 0.12 0.96 1.18 1.42
ρ(m) 2.01 · 104 4.12 · 103 1.29 · 104 1.98 · 104 2.90 · 104
σ 0.34 0.03 0.29 0.34 0.39
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Figure 5. Posterior densities of ζ2 (left), ζ3 (center) and ζ4 (right) for each model.

Figure 6. Top(small): Study region with the red square that encloses the zone chosen for analyzing differences
betweenmodels. Bottom: differences in the posterior mean of Y1(s)+Y2(s) (i.e. total abundance of birds) between:
model 1 - model 2 (left), model 3 - model 2 (center) and model 1 - model 3 (right).

such as in the mountainous in the southwest and the north of the study region (Fig S.9.).
Model 2 estimates higher counts compared to the other two models along the fjord’s coast
(dark blue) and lower abundance inland (mainly in the mountains; light brown; Fig. 6).
The differences in predicted counts between model 1 and model 3 are smaller (Fig. 6, right
panel) compared to those with model 2. However, larger predicted counts are produced by
model 3 around the island of Linesøya. Our modeling framework allows for computing
the uncertainty of our predictions. Here, we assess this by computing the standard error of
Y1(s) + Y2(s) (see Fig. 7 for the standard error of the sub-region highlighted in Fig. 6, and
see Fig. S.10 for the standard errors across the entire study region).

The standard error of model 1 is larger than the other two models in most regions (see
brown colors, left and right panels in Fig. 7). In the zones with higher predicted counts
(the coast on the Norwegian Sea and Trondheimsfjorden), model 2 produced predictions
with higher uncertainty (dark blue in the central panel), while on the mountains the uncer-
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Figure 7. Differences in the posterior standard error of Y1(s) + Y2(s) for: model 1 and model 2 (left), model 3
and model 2 (center) and model 1 and model 3 (right).

tainty produced by model 3 was larger (light brown in the central panel). As a way to
better appreciate the numerical differences between models, we explored the total predicted
counts at the 113 sampling sites in Norway by comparing them against the observed counts
(Fig. 8).

Figure 8 shows the comparison between the predicted and the observed values of total
abundance of birds (Y1(s) + Y2(s)). Model 1 and model 3 predict very similar values, and
thus, we also compared the observed and predicted values of the counts gathered via point
counts Y1(s) and line transects Y2(s) separately. Although model 1 and model 3 produce
very similar predictions of total abundance of birds, model 3 predicted Y1 and Y2 separately
more accurately. This is due to the inclusion of the GRF ω2(s), as it makes it possible to
better distribute the abundance between likelihoods and is flexible enough to capture more
complex relationships between the census processes. We have highlighted the predicted and
observed counts of the site located in the island of Linesøya (in red in Fig. 8) as this is a site
where big discrepancies are observed between all the models. Model 1 and model 2 are not

Figure 8. Comparison of observed vs predicted counts for: total abundance(Y1(s) + Y2(s); top row), counts
produced via point counts Y1(s) (middle row) and counts produced via line transect counts Y2(s) (bottom row).
The performance of model 1, model 2 and model 3 is displayed in the first, second and third columns, respectively.
A particular site with high total abundance of birds due to presence of gregarious species (in this case) that is only
captured by one (the line transect in Norway) of the four census protocols is highlighted in red to allow for a quick
assessment of discrepancies between the three models.
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able to accurately predict the counts reported in this site by the line transect survey inNorway.
This site is a special location where gregarious geese belonging to several species aggregate
and form large gaggles (similar examples elsewhere might be sites with (multi-species)
colonies, roosting sites or wetlands hosting thousands of waterbirds). Such information is
only available if data from several census protocols are combined and properly analyzed—
our new modeling framework can account for these differences, as our model 3 does in
comparison with model 1 that assumes a linear relation.

Figure 9 shows the posterior mean of ω1(s) for the three models, as well as ω2(s) for
model 3. ω1(s) is, in general, similar for the three models. The largest difference occurs in
ω1(s) for model 2, which has a shorter spatial range in comparison to the other two models.
In addition, the highest contribution of ω2(s) occurs in Linesøya, an island where high total
abundance of birds can be recorded during the line transects, due to high concentrations
of geese from several species (see above). Such species form large groups of individuals
(so called, gaggles) in some of the islands along the Norwegian coast. Lastly, we compared
our three models in terms of goodness of fit and predictive performance (Table 4) using the
measures of performance introduced in Sect. 3.4 and out-of-sample predictive performance
measures such as RMSE after brute-force Leave-One-Out Cross Validation (CV), (Vehtari
et al. 2016) and Leave-One-Site-Out CV. In the former CV scheme, we removed one data
point at a time, while for the other we removed both the point and line transect counts. This
procedures were computationally demanding, but feasible for our problem as it took 1.76
hours for model 1, 4.2 hours for model 2 and 4.1 hours for model 3.

Figure 9. Posterior mean of ω1(s) for model 1 (upper left), model 2 (upper right) and model 3 (bottom left).
Posterior mean of ω2(s) for model 3 (bottom right).
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Table 4. Measures of performance (see Sect. 3.3) for models 1, 2 and 3

Measure of performance Model 1 Model 2 Model 3

DIC 2728.79 2751.04 2603.82
WAIC 2876.19 2876.96 2593.69
RMSE 165.60 145.00 38.63
LMPL −1673.50 −1656.35 −1425.04
Mean CRPS 27.21 25.93 20.95
RMSE (Leave-one-site-out CV) 45.70 46.39 45.88

In bold, the model with the best performance

The results show a considerable improvement in the goodness of fit when a second GRF
to account for the particular characteristics in one of the observed data sources (line transects
in Norway) is added. Moreover, the improvement in predictive performance of model 3 is
exemplified by its low values of RMSE for the point count surveys in Norway, its high
value of LMPL and its low CRPS for the point transect counts in Norway. The result of
the leave-on-site-out CV shows small differences, but model 1 outperformed the other two
models.

6. DISCUSSION AND CONCLUSIONS

The main goal of this paper was to introduce a modeling framework that allows us to
model jointly multiple sources of information (count data) that are collected under different
sampling protocols. We also presented a simple case study where we used this new method-
ology to estimate the total abundance of birds in mid-Scandinavia using bird counts in
Norway and Sweden. These two countries have well-established bird monitoring programs,
but differ in the sampling protocols. Therefore, we proposed a set of models that assumed
the same coefficients for the fixed effects in each likelihood and a common GRF. The only
difference between the different likelihoods is random intercepts in the linear predictor that
aim at accounting for differences in the sampling protocols. For example, while the observed
point counts in Norway have pairs of birds as the unit reported, Sweden reports individu-
als. Having different random intercepts makes possible to establish a proportional relation
between the observed counts in the data sources. This is arguably a sensible choice since the
biological processes that determine the abundance of species do not generally depend on
national borders. Although the assumption of linear relation is reasonable for this case, it is
also true that when working with real data allowing for some flexibility with respect to this
assumptionmay correspond better to reality inmost cases. This is why, we proposed amodel
that has a common GRF, but with a coefficient that explains how far we are from a linear
relation. As seen in the exploratory analysis (Sect. 2), one of our data sources did not seem to
follow the assumption of linear association with the other likelihoods. Hence, we suggested
the inclusion of a second GRF to account for the differences of this likelihood. The inclusion
of the second GRF, ω2(s), was especially useful in our case as we do not have variables at
the spatial point level that explicitly inform on the differences of the line count surveys in
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Norway with respect to the other likelihoods. Simmonds et al. (2020) show the benefits of
including an extra GRF to account for sources of bias in the sampling process of Citizen
Science data. We assessed the performance of the three models when the key assumptions
in the specification of each of them were not met in two simulation studies. The results of
these simulations showed that a flexible specification performed similarly to the model that
assumed a linear relation (model 1) when the latter model was used to generate the data.
On the other hand, when the linear assumption was not met by the data generating model,
the gap in performance between models became more evident. This suggests that using the
models with flexible specification is always advised, regardless of the nature of the data. The
estimates of the parameters in model 1 (the model assuming a linear relation between the
observed counts) were biased and more uncertain than the estimates of the same parameters
in the other two models. When a more complex scenario was proposed, model 3 (the model
with two GRFs) clearly outperformed model 1 and model 2 in every comparison criteria.
From the two simulation studies, we can conclude that model 3 is more robust than the
other two models to misspecification of the functional form of the model. The parameters
that showed higher differences in terms of bias and mean RMSE in the simulation study
were the hyperparameters ζ j . This might be caused by caused by the fact that these param-
eters are the only ones that are not constrained to be the same for all the likelihoods, and
therefore, they are more sensitive to misspecification. A biased estimate of these hyperpa-
rameters might have an impact on the predictions of our models (total abundance of birds,
in our case study) as these coefficients can be used as weighting of different likelihoods
when computing the total abundance. The data of the simulation studies were also used to
show why integrating the four sources of information is better for predicting the total counts
of birds in more than one country (See Section S.1.2. of the Supplementary Information).
We compared the predictive performance of a set of models that include (i) only one of
the four sources of information, (ii) two sources of information (from the same country to
predict abundance in a given location within the corresponding country—e.g., points and
lines from Norway to predict within Norway), and (iii) the four sources of information
(points and lines from both countries) (see Table S.2.). The results show that if the goal of
the study is to produce predictions in more than one country, then integrating sources of
information from both countries is recommended. If the goal of the study is to only produce
within-country predictions, then integrating information for more than one country would
not provide any additional benefit as the models with two sources of information performs
as well as the models with the four sampling protocols. When we applied this methodology
to the case study of estimating total bird abundance in mid-Scandinavia, we found some
very high counts on the island of Linesøya (compared to elsewhere in the region). This
count was recorded during a line transect sampling, which model 1 and model 2 failed
to explicitly account for. This is arguably why the differences in goodness of fit between
model 1 and model 2 were negligible. The inclusion of a second GRF in model 3 to explain
extra complexity (in this case, the line counts in Norway that may produce large number
of birds) made sense for our research problem since it was able to explain the large counts
in Linesøya, when a large number of geese congregate around these islands. Adding GRFs
to the likelihoods in order to account for particularities of each observed response seemed
useful and practical in other cases when researchers need to account for complexity that
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can not be explained with available covariate information. However, this addition should
have a clear justification and be applied with caution since giving an ecological interpreta-
tion to this random effect may not be a trivial task. Our modeling framework offers, thus,
advantages to integrate data from surveys with different sampling protocols and disjoint
spatial locations. In its most simple parametrization, it does not explicitly account for any
factor that affects the observed total abundance (i.e., detection). For example, in our case
study, we have assumed these factors are negligible. However, this modeling framework
is flexible enough to explicitly account for factors that influence the observed abundance.
As shown in Sect. 3, these factors can be accounted for by explaining each of the terms
ζ j in the models proposed as a function of fixed and random effects that affect the obser-
vation process. Given the complexity of the models, identifiability issues may arise if the
parameters that explain the effect of the factors related to the observation process are not
constrained. This issue can be overcome by integrating data that inform on these parameters,
or informative prior knowledge about them. The proposed framework does not explicitly
accommodate species-specific characteristics. In our case study, it was not necessary as we
assumed all the species have the same weight on the estimated total abundance. However,
this modeling framework can work for a broader range of goals. For example, if one or a
group of species are of interest when studying anthropogenic impacts on birds (e.g., total
raptor counts (De Lucas et al. 2008)), the raw data can be preprocessed according to the
purpose of the study. If the goal is to model one species of concern, then getting the subset of
the raw data that belong to this species would suffice to apply our methodology and obtain
satisfactory results. If, in another case, the question we want to solve is linked to the risk
of collision of birds with powerlines (e.g., D’Amico et al. 2019) or rotor blades in wind
farms (see De Lucas et al. 2008), we can account for the differences in sensitivity between
species (for example soaring raptors, which are proportionally scarce in common bird moni-
toring schemes, are more sensitive than other bird species). Thus, one would multiply (apply
weights) the count of each species in the dataset by a ’species-specific sensitivity factor’
to that particular human impact (in this case, counts of raptor species would have a larger
weight than other species). Then, one would proceed by summing up the new weighted
counts to obtain a ’total weighted abundance of birds’ at each census site. Our methodology,
thus, can provide estimates of such a total weighted abundance across the entire region of
interest and maps of ’sensitivity-adjusted hotspots.’ An open question would be then, how
to decide the values of these weights, which might be decided based on, for example, expert
opinion, traits databases (Tobias et al. 2022) and published literature (D’Amico et al. 2019).
A limitation of this modeling framework is that it lies in the category of purely spatial
SDMs and thus it is not possible to explicitly account for any potential temporal variation
at small (e.g., within a day) or large (e.g., across years) scale. In our case study, this was
not a major concern as the temporal span of our data (14 years) is not considered a period
in which the distribution of the total abundance of birds has varied a lot in the study region.
The ultimate goal of developing this methodology is to integrate the different sources of
bird count data to predict total abundance of birds across Norway, information that will be
used in further studies of human impact on biodiversity, including predicting bird mortality
hotspots due to powerlines and wind farms (Bernardino et al. 2018; Bevanger 1995, 2001;
Serrano et al. 2020). Therefore, achieving a good predictive performance of our models is
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of paramount importance to properly assess the vulnerability of different regions to human
development based on the total local abundance of birds. Although we found differences in
goodness of fit between the three models, the differences in predictive performance were
small. However, a flexible model specification seemed the best choice for ensuring good
predictions. For example, model 3 (which included ω2(s) to account for particularities of
the line counts in Norway) yields the most accurate predictions at the observed locations
in Norway. This is associated with the extra complexity found between line transects and
point counts in Norway, which unlike the two sampling protocols in Sweden did not have
a clear linear relation, as they are only complementary to one another. In conclusion, in
this paper we propose models to integrate multiple professional surveys with differences in
their sampling protocols. These differences are usually determined by the country of origin
of the data (sampling protocol) or by the specific targets of each monitoring scheme. The
INLA-SPDE approach implemented in the R-INLA package makes it straightforward to
perform full Bayesian inference for models that integrate multiple sources of information,
even if they are not standardized or report the observed counts in different units. A natu-
ral extension of this work is the application of the proposed modeling framework to solve
a broader range of ecological questions at larger geographical scales or for species with
poor data (Buckland and Johnston) that incorporate more sources of information given its
convenience and simple implementation.
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