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Abstract

A recently developed spatial operator algebra, useful for modeling, control and trajectory design of ma-

nipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces
consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial

recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques

of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the

dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpre-

tation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding

of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immedi-

ately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract

problem formulation and solution to the detailed mechanization of specific algorithms is greatly simplified.

This paper discusses the analytical formulation of the operator algebra, as well as its implementation in the

Ada programming language.

1. Introduction: A Spatial Operator Algebra

A new approach to the modeling and analysis of systems of rigid bodies interacting among themselves

and their environment has recently been developed in [1-10]. This work develops a framework for clearly

understanding issues relating to the kinematics, dynamics and control of manipulators in dynamic interaction

with each other, while keeping the complexity involved in analyzing such systems to manageable proportions.

The analysis of robot arms given in [1-10] has shown that certain linear operators are always present in

the equations describing the dynamical and kinematical behavior of such arms. As a class, these operators are

called "spatial operators" since they show how forces, velocities, and accelerations propagate through space

from one rigid body to the next. Not only do such operators have obvious physical interpretations, but they

are implicitly equivalent to tip-to-base or base-to-tip recursions which, if needed, can be immediately turned

into implementable algorithms by projecting them onto appropriate coordinate frames.

Compositions of spatial operators, when allowed to operate on functions of the joint velocities and ac-

celerations, result in exactly the dynamical equations of motion which arise from a Lagrangian analysis. The

fact that the operators have equivalent recursive algorithms is a generalization of the well-known equiva-

lence between the Lagrangian and recursive Newton-Euler approaches to manipulator dynamics [17]. The

operator-based formulation of robot dynamics leads to a complete integration of these two approaches, so that

analytical expressions can be shown to almost always have implicit, and obvious, recursive equivalents which

are straightforward to mechanize.

The essential ingredients of the operator algebra are the operations of addition and multiplication [11,

12]. There is also an "adjoint," or "*", operator which can operate on elements of the spatial algebra. If a

spatial operator A is "causal," in a sense to be described below, then its adjoint A* is "anticausal." Operator

inversion is also defined in the spatial operator algebra. For an arbitrary finite dimensional linear operator,

inversion is achieved by the traditional techniques of linear algebra. However, many important spatial operators

encountered in multibody dynamics belong to a class that can be factored as the product of a causal operator,

a diagonal operator, and an anticausal operator. For these operators, inversion can often be achieved using the

inward/outward sweep solutions of spatially recursive Kalman filtering and smoothing described in [1,3,6,8].



Thattheequationsof multibodydynamicscanbecompletelydescribedbyanalgebraofspatialoperators
is certainlyof mathematicalinterest.However,thesignificanceof thisresultgoesbeyondthe mathematics
andis usefulin a verypracticalsense.Thespatialalgebraprovidesa convenientmeansto manipulatethe
equationsdescribingmultibodybehaviorat averyhighlevelofabstraction.This liberatestheuserfromthe
excruciatingdetail involvedin moretraditionalapproachesto multibodydynamicswhereoftenone"can't
seetheforestfor the trees." _rthermore,at anystageof anabstractmanipulationof equations,spatially
recursivealgorithmsto implementtheoperatorexpressionscanbereadilyobtainedbyinspection.Therefore
the transitionfrom abstractoperatormathematicsto practicalimplementationis trivial to performand
requiresonly a simplementalexercise.Although,whenappliedto the dynamicalanalysisof an N link

manipulator the algebra typically leads to O(N) recursive algorithms, numerical efficiency is not the main

motivation for its development. What the algebra primarily offers is a powerful mathematical framework that
because of its simplicity is believed to be superior for addressing advanced control issues.

Another characteristic of the spatial algebra is that it is closed, in the sense that it completely describes

the dynamics of multiple rigid bodies. There are no situations (at least none have been found to date) in which

it is necessary to go outside the algebra in order to solve rigid multibody dynamics problems. This implies

that the user can reliably use the algebra knowing that the language of discourse can cover all problems that

can be modeled as a "world" of multiple rigid bodies dynamically interacting. The algebra therefore puts a

mathematical wrapping around this world. It provides a self-contained framework to formulate, analyze, and

understand higher-level modeling and control issues.

To show the power and use of the spatial operator algebra, several applications of the algebra to robotics

will be presented: 1) An operator representation of the manipulator Jacobian matrix; 2) The robot dynamical

equations formulated in terms of the spatial algebra, showing the equivalence between the recursive Newton-
Euler formulations to robot dynamics in a far more transparent way than [17]; 3) The operator factorization

and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics

algorithms; 4) The joint accelerations of a manipulator due to a tip contact force; 5) The recursive computation
of the equivalent mass matrix as seen at the tip of a manipulator (the operational space mass matrix of

Khatib [13]); 6) Recursive forward dynamics of a closed chain system. Finally, we will discuss in general terms

additional applications and current research involving the application of the spatial operator algebra.

2. The Jacobian Operator

After defining a link spatial velocity to be V(k) - col[w(k), v(k)], the recursion which describes the
relationship between joint angle rates, 0 = col[O(1),... , 0(N)], and link velocities, V = col[V(1),..., V(N)],

is [81
V(N + 1) = 0

LOOP k = N,-.- , 1;

END LOOP;

V(k) = CW(k + 1, k)V(k + 1) + HT(k)O(k)

V(0) -- CT(1,0)V(1)

HT(k) = h(k) where h(k) E R 6 is the unit vector in the direction of the k th joint axis, and CT(k + 1, k) is

the Jacobian which transforms velocities across a rigid link. This recursion represents a base-to-tip recursion

which shows how link velocities propagate outward to the tip, point "0" on link 1, from the base "link N + 1,"

assuming that the base has zero velocity. Note that the link numbering convention used here, and in [1-10],

increases from the tip to the base unlike the numbering convention described in most robotics textbooks [14].

Summation of the above recursion leads to

N

V(k) -- _ cT(i, k)HT(i)O(i)
i=k
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wherethefactsthat¢(i, i) = 7: and ¢(i,j)-¢(j, k) = ¢(i, k) have been used• Also note that ¢-1(i,j) = ¢(j, i).
This naturally suggests that we define the "operators" H* = diag[HT(1),...,HT(N)],

B* = [¢w(1,0),0,'-" ,0] and

This results in V(0) = B*¢*H*_ or

_ 0 0 ... !)
¢(2/1) Z 0 -.-

• " "'. i

\¢(N, 1) ¢(N,2) Z

J = B*¢*H* (2.1)

The Jacobian operator in (1.1) is seen to be the product of three operators B*, ¢* and H*. The operator

H*, being block diagonal, is called "memoryless" while the operator B* projects out the link 1 velocity

V(1) of the composite velocity V and propagates it to the tip location at point 0. The operator ¢ is lower
block triangular, which we denote as "causal," making ¢* upper block triangular and hence "anticausal." ¢*

represents a propagation of link velocities from the base to the tip, which is viewed as the anticausal direction,

as opposed to the tip-to-base recursion represented by ¢ which is denoted as causal.

The action of the Jacobian operator on the joint angle rates 0 then is as follows: H*0 results in relative

spatial velocities between the links along the joint axes: The action of ¢* then anticausally propagates these
relative velocities from the base to the tip to form the link spatial velocities V = col[V(1),..., V(N)]; B*

then projects out V(1) from V and propagates it to the tip forming V(0).

The well-known dual relationship to V(0) = J0 is T = J*f(O) = H¢Bf(O), where f(0) = coliN(O), F(0)]

is a spatial force which represents the tip interaction with the environment [14]. The action of J* on f(0) is as

follows: B takes f(0) to col[f(1), 0,... , 0]. The effect of ¢ is to propagate f(1) causally from link 1 to the base

forming the spatial forces acting at each link represented by f = col[f(1),..., f(N)]. Finally, g projects each

component of f, f(k), onto joint axis HW(k) = h(k) to obtain the joint moments T = col[T(1),... , T(N)].

The key points to note here are that J and J* have operator factorizations which have immediate physical

interpretations and obvious recursive algorithmic equivalents. Working with the factorized version of J, one

can manipulate expressions involving J in novel ways while maintaining the physical insight provided by the
factors and the ability to produce equivalent recursive algorithms at key steps of a calculation. For example,

using the techniques of the spatial operator algebra, one can find algorithms for efficient recursive construction

of J, J J*, J'J, and (when an arm is nonredundant and nonsingular) (j.j)-l. See [5] and [15].

3. An Operator Formulated Robot Dynamics

Consider the following equations of motion for a serial-link manipulator in a gravity-free environment

with the tip imparting a spatial force f(0) to the external environment:

A/lO + C + J* f(O) = T (3.1)

g denotes "bias" torques due to the velocity dependent coriolis and centrifugal effects. Equation (3.1) is

precisely the form that arises from a Lagrangian analysis of manipulator dynamics. Equation (3.1) has an

operator interpretation which arises from the following spatial operator factorizations of A//, g, and J*

M = H¢M¢*H* (3.2a)

g = H¢(M¢*a + b)

J* = H¢B

These factorizations are derived in [1,3,6,8]. The quantity

M = diag[M(1),... , M(N)]
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ismadeupof thespatialinertiaM(k) associated with each link of the manipulator. M, being block diagonal,

is interpreted as a memoryless operator. For a given link k,M(k) has the form

M(k) = ( I(k) m(k)_(k)'_
k-m(k)_(k) m(k):r ]

where I(k) is the inertia tensor of link k about joint k, re(k) is the link k mass, and p(k) is the 3-vector from
joint k to the link k mass center. The "tilde" operator is defined by _y = z × y for any 3-vectors x and

y. In (3.2b), a = col[a(1),..., a(N)] and b = col[b(1),...,b(N)] are quadratic functions of the link spatial
velocities. The operators H, ¢, and B were described in the previous section.

When (3.1) is given an operator interpretation via (3.2), it is immediately apparent that (3.1) is func-

tionally identical to the Newton-Euler reeursions given by [8,14,16]

a(N + 1) = 0

LOOP k = N,--- , 1;

END LOOP;

LOOP k = 1,... ,N;

END LOOP;

J

o_(k) = CT(k -I- 1, k)o_(k + 1) + HT(k)O(k) + a(k)

/(o) =

f(k) = ¢(k, k - 1)f(k - 1) + M(k)o_(k) + b(k)

T(k) = H(k)f(k)

where ot = col[o_(1),..., a(N)], and c_(k) = _'(k) denotes the spatial acceleration of link k.

It is now evident that the equivalence between the Lagrangian and reeursive Newton-Euler formulations

of manipulator dynamics [17] has been made trivial. Furthermore, the factorizations given by (3.2) allow us to

manipulate the dynamical equations of motion in ways not previously apparent. The fact that each factor has

an interpretation as a causal, memoryless, or anticausal recursion of spatial quantities means that at any point
of the mathematical analysis one can interpret expressions in a deeply physical way or immediately produce

an equivalent recursive algorithm.

The true power of the spatial algebra applied to manipulator dynamics will become clearer in the following
sections. It will be shown that an important alternative factorization to (3.2a) exists which results in new

causal, memoryless, anticausal operators with corresponding equivalent recursions. Also, we will discuss the

existence of powerful operator identities which allow one to manipulate kinematical and dynamical equations in

ways which would be otherwise impossible, all the while keeping the correspondence of abstract mathematical

expressions to equivalent implementable algorithms.

4. Operator Inversion of the Manipulator Mass Matrix

From (3.2a), the well known fact that )k4 is symmetric positive definite can be easily shown. It is also

well-known that a symmetric positive definite operator is a covariance for some Gaussian random process. A

deeper result is that the factorization given by (3.2a) shows that dr4 has the structure of a covariance of the

output of a discrete-step causal finite-dimensional linear system whose input is a Gaussian white-noise process•

This a very important fact, for it is well-known that such an operator can be factored and inverted efficiently

by the use of standard techniques from filtering and estimation theory. Applications of these techniques to

the manipulator mass matrix can be found in [1,3,6,8] and are partially summarized in this section.

First, we present an important alternative factorization to (3.2a). To this end, we define

/i i) 0 0/0 ( ¢(2, 2) 0 0
S _ 7:0 and ¢ =_ ¢S = ¢(3,2) ¢(3,3) 0 0

• . ... .... .. "

0 0 -.. 7: \¢(N, 2) ¢(N, 3) ¢(N,4) -.. ¢(N,N) 0
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Alsodefine
A_ _ diaa[¢(2, 1),..-, ¢(N + 1, N)]

and

D _ HPH*, G _ PH*D -1, L _-- AeG,

where P = diag[P(1),... , P(N)]. The diagonal elements P(k) are obtained by the following causal discrete-

step Riccati equation
P(1) = U(1)

LOOP k = 2,..- ,N;

END LOOP;

where

P(k) = ¢(k, k - 1)P(k - 1)¢T(k, k - 1) + M(k)

¢(k, k - 1) _ ¢(k, k - 1) - L(k - 1)H(k - 1) (4.1)

P(k) is always symmetric positive definite and hence D, which is diagonal with the positive diagonal elements

n(k) = H(k)P(k)UT(k), is always invertible.
In an analogous fashion to the definitions of the operators ¢ and A¢ we define the operators ¢ and A¢

with the component operators ¢(k, k - 1) being given by nq. (4.1), ¢(k, k) _ I, and

¢(i,j) _ ¢(i,i- 1)¢(i- 1, i- 2)...¢(j+ 1,j)

for i > j. Note that the ¢(i,j)'s form a semigroup.
With these definitions, we have that

A¢ = A¢(I-- GH)

Lemma 4.1: An alternative factorization of AA = H¢M¢*H* is

.A4 = (2- + HOL)D(Z + HOL)* (4.2)

where 2- + Hc_L is causal (lower triangular), and D is memoryless, diagonal and invertible.

Proof: See Appendix.

The factorization (4.2) is equivalent to viewing the mass operator ._4 as the covariance of a filtered
innovations process, Y. In stochastic estimation theory, the innovations representation is given by the causal

operator 2" + H_L operating on an innovations process e = diag[e(1),... , e(N)] which can be taken to be an
independent Gaussian sequence. The action of/7 + H_L on e,

Y = (2- + HOL)e

is equivalent to a causal tip-to-base recursion. The importance of the innovations operator 2- + H_L is that

it is trivially and causally invertible and that its inverse is precisely a discrete-step Kalman filter viewed as a

whitening filter. To demonstrate this, define

Lemma 4.2: The causal (lower triangular) operators 2- + H¢L and/7 - H@L are mutual causal inverses of
each other

(2" + Hc_L) -1 = 2" - Uv_L (4.3)

Proof: See Appendix.

The relationship e = (2" + HOL)-ly = (2" - HqL)y is equivalent to a causal tip-to-base recursion. This

recursion is precisely a discrete-step Kalman filter. Lemmas 4.1 and 4.2 result in
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Theorem 4.1: The operator ._--1 has the following anticausal-memoryless-causal operator factorization

A_ -1 -- CZ - HgIL)*D-I(z- HgIL) (4.4)

Application of Theorem 4.1 to the bias-free robot equations of motion given by Equation (3.3) immediately

yields the following O(N) forward dynamics algorithm

Algorithm FD.

T' = T - H¢[M¢* a -}-b + B f(0)] (4.5a)

= (7. - HCIL)*D-I(z - H_IL)T _ (4.5b)

Equation (4.5a) represents an O(N) Newton-Euler recursion to remove the bias torques. Equation (4.5b) leads

to the following O(N) recursive algorithm

_'(0); T'(0) -- 0

LOOP k = 1,... ,N;

END LOOP;

_(k)=¢(k,k- 1)_(k- 1)+L(k- 1)T_(k- 1)

e(k) =T'(k)-H(k)_(k)

,(k)=D-l(k)e(k)

LOOP k = N,..- , 1;

END LOOP;

A(N q- 1) -- 0

.k(k) -- CT(k -t- 1, k)._(k -t- 1) + HT(k)_(k)

_(k) = _(k) - nT(k)._(k + 1)

It can be shown that the forward dynamics algorithm given by Equations (4.5) is equivalent to that of [18],

but derived by vastly different means. Similarly, it can be shown that P(k) defined above is an articulated

body inertia as defined by [18], but discovered independently, and in a much different context, in [1].

In addition to the operator factorizations at our disposal, there exist a multitude of operator identities

relating the various operator factors. This greatly enhances the ability to obtain any number of important

results. For instance, it is shown in [8] how these identities can be used to obtain a variety of O(N) forward

dynamics algorithms, all of them significantly different. It is seen that the algorithm given by Equations (4.5)

above is but one in a whole class of such algorithms available from an application of the spatial operator

algebra. Furthermore, in [8] it is shown how these algorithms can be easily extended to the closed-chain

system made up of several arms grasping a common rigid object.

5. Applications of Spatial Operator Identities

Above, we have referred to the availability of identities relating elements of the spatial operator algebra.

In [8], many such relationships are derived. In this section, we will focus on the application of one such identity

as representative of how these identities can be used to perform high-level manipulations which result in novel

algorithms useful in dynamical analysis and control.

The identity of interest is

Identity 5.1:

(Z - H_tL)H¢ = He (5.1)
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Proof: See Appendix.

The action of ¢ on a composite spatial quantity Z = CY is equivalent to a causal tip-to-base recursion.

Application 1: Tip Force Correction Accelerations

From Eq. (3.1) it is evident that

where

0I = M-l( T- C) = M-1T '

can be determined from the forward dynamics algorithm (4.5). Our first application of Identity (5.1) is to find

a simple relationship between tip contact forces and the resulting joint accelerations, A0, due solely to such

tip forces. From Eqs. (3.1) and (3.2), we have .hJA0 = -J*f(O) or

HCMf*H*AO = -HfBf(O)

With Equation (4.4) this becomes

AO = --(Z -- HqtL)*D-I(Z - H_L)HCBf(O) (5.2)

Application of Identity (5.1) then results in

AO = --(Z- HqtL)*D-1HCBf(O) (5.3)

Eq. (5.3) is significantly simpler than (5.2). It shows how the effect of the tip force propagates from the tip
to the base of a manipulator, producing link accelerations which then propagate from the base to the tip.

Application 2: Composite Body Inertia Reflected to the Manipulator Tip

The next application of Identity (5.1) will be to produce an O(N) recursive algorithm for computing

the Operational Space mass matrix A of Khatib [13]. Knowledge of A, together with the Operational Space

coriolis, centrifugal, and gravity terms, enables the use of Operational Space Control - a form of feedback

linearizing control described in [13]. The ability to obtain the Operational Space dynamics recursively avoids

the need to have explicit analytical expressions which can be quite complex. Although we will only discuss the

recursive construction of the Operational Space mass matrix A, the entire Operational Space dynamics can

be computed via O(N) recursions using the techniques of the spatial operator algebra, allowing for recursive

implementation of Operational Space Control.

If the dynamics of an N-link manipulator are reflected to the tip locations, the resulting composite body
inertia has the form

h = (JAA-1J*) -1

For a manipulator whose workspace is R 6, the inversion of the 6 x 6 operator J,A,4-1J * entails a constant

cost which is independent of the number of manipulator links. The real work is to obtain an efficient O(N)

algorithm for the construction of f_(0) = J.h_-lJ *. Equations (1.1) and (4.4) reveal that

_(0) = J.A4-1J * = B*¢*H*(Z - H@L)*D-I(Z - HqIL)HCB (5.4)

Application of Identity (5.1) to Eq. (5.4) immediately results in

_(0) = J.Ad-IJ * = B*¢*H*D-1HCB (5.5)

It is quite straightforward [8] to show that the following O(N) anticausal base-to-tip recursive algorithm is
equivalent to (5.5)

12(N + 1) = 0
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LOOP k=N,...,1;

_(k) = CT(k + 1, k)fl(k + 1)¢(k + 1, k) + HT(k)D-I(k)H(k)

END LOOP;

fl(0) = CT(1, 0)fl(1)¢(1,0)

Application 3: Closed Chain Forward Dynamics

Figure la represents a closed chain of rigid bodies connected by revolute joints which are all actuated.

Figure la can be viewed as a graph whose nodes are links and whose edges are joints. A spanning tree can

be found for this graph which is equivalent to cutting the chain at some point, say point e of Figure la. The
root of this tree is indicated by the arrow.

Imagine that the chain is physically cut at c and designate the root link to be the "Base." This results

in Figure lb. For simplicity, assume that the base is immobile. This assumption results in no real loss of

generality - see, e.g., ref. [8]. Cutting the chain has resulted in arms 1 and 2 with N1 and N2 links respectively.

We can now assign the causal/anticausM directions to each arm. (Note that this assignment propagated back

to Fig. la corresponds to the existence of a directed graph associated with Fig. la.)

The fact that the tips of arms 1 and 2 are always constrained to remain in contact corresponds to the

boundary conditions

f2(0) = -fl(0) -----f(0) (5.6a)

al(O) = a2(O) (5.6b)

With (5.6a), the dynamicM behavior of arms 1 and 2 is given by

.MIOI + C1 = TI + J_I(O) , .A420 + C2= T2- J_f(O)

subject to (5.65). Note from Y(0) = J0 and _(0) = 4(0) that

(5.7)

(5.8)

From (5.7)

where

(5.9)

(5.10)

and

Ai/1 M?xJD'(0) A//2= -_g* 0= , .M2 2f( ) (5.11)

If f(0) can be determined, _1 and 02 can be found from (5.9)-(5.10) via the recursive algorithms presented
earlier.

To find f(0), define

O¢1S(0) : JIOIS -I- J101 , c_2S(0) = J20S + J202 , A°_S(0) = OtlS(0) -- _2S(0) (5.12)

These quantities can be computed via O(N1) and O(N2) recursive algorithms [8]. Eqns. (5.8) and (5.12) yield

O_1(0 ) -- O_lf(0 ) --[- J1m01

 2(0) = + J2A/ 2

which with the boundary condition (5.6b) gives

As s(0) = J1A_I -- J2A_2 (5.13)
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From(5.11),(5.13)becomes

where

Thus

Aoq(0) = (A11 + A_-l)f(0) (5.14)

--1 *

A11 = Jl'hd-llJ_ , A2-1 = J2-M2 J2 (5.15)

f(0) = AcAczl(0) (5.16a)

A_-1 -- A11 + A_-1 (5.17a)

As discussed previously, A11 and A_-1 can be found via O(N1) and O(N2) recursive algorithms respectively.

Noting that the inversion of A_-leR 6x6 involves a fiat cost independent of N1 and N2, we see that we have

produced an O(N1 + N2) recursive algorithm for finding the forward dynamics of the system of Figure la. Ac
is the composite body inertia of the closed chain system reflected to point c.

The spatial algebra perspective enables the generation of efficient recursive algorithms for computing
the composite body inertia of a system of several arms grasping a common object which is of complexity

O(N) + O(_), when no arm is at a kinematical singularity, or, more generally, O(N) + O(ga), where N is the

total number of links in the system and _ is the number of arms grasping the object.

For additional applications of the spatial operator algebra similar to those of this section, see for example
[5,8]. In [5] an operator expression for (j.j)-I is obtained for nonredundant arms which is used in a recursive

scheme for solving the manipulator inverse kinematics problem. In [8], many additional examples may be

found along with an extensive listing of operator identities. For instance, in [8] it is shown how one can easily

find the composite body inertia matrix for a system consisting of several arms grasping a commonly held rigid

body.

6. Conclusions

A powerful new spatial operator algebra for describing the kinematical and dynamical behavior of multi-

body systems has been presented. Abstract dynamical equations of motion, such as arise from a Lagrangian

analysis, can be reinterpreted as equivalent operator formulated equations. From this perspective, the dis-

tinction between abstract expressions, the interlink physical relationships of spatial quantities (velocities,

accelerations, and forces), and recursive algorithms which propagate spatial quantities from link-to-link en-

tirely vanishes. One consequence of the operator algebra is that the equivalence between the Lagrangian and

Newton-Euler formulations of dynamics is trivial and transparent.

Important elements of the spatial operator algebra were presented, in particular those which arise from

natural factorizations of critical kinematical and dynamical quantities. These factorizations allow one to

manipulate equations of motion in hitherto unknown ways, greatly increasing our powers of analysis. This is

particularly true given the existence of important identities and inversions which relate the spatial operators.

A key result is the operator factorization and inversion of the manipulator composite body inertia given by
Fact 4.1 and Theorem 4.1.

Various applications of the spatial algebra to kinematics, dynamics, and control were presented, including

the development of a recursive forward dynamics algorithm, which essentially comes for free once the key step

of obtaining the innovations factorization (4.1) is seen.

The potential payoff of the spatial algebra in terms of providing a framework which can manage the

complexity associated with multibody systems is immense. For example, compare the abstract simplicity of

the development of the forward dynamics algorithm in this paper with those developed by other means which

often require a morass of notation and development. In Sec. 5, we touched only lightly on some of the current

areas where the spatial operator algebra is being applied. We believe that this algebra can provide a complete

framework for describing multibody systems. This will greatly aid in the ultimate generation of "smart"

programs which can reason about the behavior of the dynamical world by the use of a suitable hierarchy of
abstraction.
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Appendix

Prior to proving Lemma 4.1, Lemma 4.2 and Identity 5.1, we define

and establish the following identities.

Lemma AI:

(a) ¢-, _ ¢-1 = SLH

(b) ¢¢-1 = I + CLH

¢-1¢ = I+ SLH¢

(bPH* = 0

¢M¢* =P+¢P+P¢*

HCM¢*H* = D

(c)

(d)
(e)

and d) _ ¢- Z

(A.1)

(A.2)

(A.3)

(A.4)
(A.5)

2O2



Proof:

(a) It is easy to verify that
= _A¢ and ¢ = _A¢

It then follows that

¢-1 = I - SA_ and ¢-1 = I - SA c (A:6)

Thus, ¢-1 _ ¢-1 = S(A¢ - A¢). However, we have seen from the definition of A¢ that

A¢ = A¢(I - GH) (A.7)

and the result follows immediately.

(b) These two identities are obtained by respectively pre- and post-multiplying (A.1) by ¢.

(c) It follows from the definition of G that (I - GH)PH* = 0. Thus, using (A.7)

(bPH* = _AcPH* = _A¢(I-- GH)PH* = 0

(d) From the definition of P it follows that P satisfies the following equation:

M = P - (SA¢)p(SA¢)*

which using (A.6) and some simple manipulations yields the result.

(e) We have that,

HCMO*H* = g(P + (bP + P(b*)H*, using (A.4)

= HPH*, using (A.3)

=D

Proof of Lemma 4.1:

Proof of Lemma 4.2:

M _- HCM¢*H*

= H(¢¢-I)¢M¢*(¢¢-I)*H *

= (I+ H,_L)HCM¢*H*(I + HchL)*, using (A.2)

= (I + HCL)D(I + H(_L)*, using (A.5)

(I + H_L) -1 = (I + H¢SL) -1

= I - H¢(I + SLH¢)-ISL, using a standard matrix identity

= I- H¢(¢-I¢)-ISL, using (A.2)

= I - H¢SL = I - HtlIL

Proof of Identity 5.1:

Premultiplying (A.1) by ¢ we see that ¢¢--1 = I- @LH. Hence,

(I - H_L)H¢ = H(I - ¢1LH)¢

= H(¢¢-1)¢ = H¢

2O3



"Base"

Anficausal _Anficausal

a. b.

Figure 1: Closed Chain System
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