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1. Introduction

Most CO2 emissions originate in human settlements, from

villages and small towns to megacities. The characterization of

emissions of carbon dioxide caused by urban energy consumption

has become the focus of a fast growing body of scientific literature

(Lenzen et al., 2004; Kennedy et al., 2009; Parshall et al., 2010;

Baiocchi et al., 2010; Weisz and Steinberger, 2010; Glaeser and

Kahn, 2010; Minx et al., 2011, 2013; Hillman and Ramaswami,

2011; Gurney et al., 2012; Baur et al., 2014). Recent assessments on

cities and climate change have highlighted that there is still a lack

of understanding concerning what determines emissions in cities

and which type of design-features make a difference in the carbon

output (Grubler et al., 2012; Seto et al., 2014). A key hurdle is that

approaches so far largely rely on simple correlation analysis or

single common regression equations to understand the practical

and statistical relevance of emission drivers (see, e.g., Newman and

Kenworthy, 2006; Min et al., 2010; Karathodorou et al., 2010; Jones

and Kammen, 2014; Parshall et al., 2010; Kennedy et al., 2009;

Makido et al., 2012; Minx et al., 2013). Such an approach may

suppress both spatial context, non-linear effects, and the

interdependence of emission drivers.

Local conditions, infrastructures, and lifestyles vary widely.

Many of the relevant emission drivers for understanding carbon

emissions of human settlements can therefore only be appreciated

in their particular context. For example, heating patterns in the UK

– as expressed in the heating degree day variable used for this

research – vary widely due to differences in the local climate.

Equally, it is well recognized that the available housing infra-

structure within different parts of a settlement directly determines
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energy consumption of different areas (Boardman, 2007). Schel-

ling’s (1969) seminal work on segregation has helped to explain

the clustering of lifestyles in space, which has been observed in

cities around the world (Clarke, 1991).

All those local drivers combine differently in different places

and there is no reason to assume that they would do so linearly and

independently. Today, entire research fields such as geo-demo-

graphics or other variants of consumer segmentation are built

around the importance of place-specific contextualization for the

prediction of consumer behaviour (Harris et al., 2005; Longley,

2012). The local context is equally important for understanding

and predicting the carbon output of settlement areas. The limited

understanding of emission drivers of cities might, in fact, be related

to a lack of appreciation of this heterogeneity.

In this paper we test the hypothesis that the impact of drivers of

residential CO2 emissions can be understood using simple one-

size-fit-all models disregarding complex dependencies among

each other and local circumstances. We apply a tree regression

analysis to devise a human settlement typology of residential CO2

emissions that reveals the differential impacts of emission drivers

and their interactions depending on the particular spatial context.

Such typologies help to appreciate the heterogeneity across human

settlements. Also, by grouping settlements areas into different

clusters they allow for the generalization of insights to similar

areas, which is helpful for policy applications. We apply this

method to data, which is geographically complete (all human

settlements across England) and has a high spatial resolution (sub-

city level). The endogenous clustering applied to this data largely

avoids the necessity of drawing arbitrary city boundaries as well as

any further a priori spatial discrimination.

Our approach allows us to disentangle the interactions between

the most important socio-economic, infrastructural and climatic

drivers of residential CO2 emissions of a given location while at the

same time revealing the conditions of the wider spatial context of

the human settlement. The wider spatial context is relevant as, for

example, the emission profiles of two otherwise identical low-

density residential areas may substantially differ if the first is part

of a small rural town and the second a suburb of London (Büchs and

Schnepf, 2013). In fact, we demonstrate that typical emission

patterns of human settlements also depend on the spatial context

of these settlements. We also show that types of residential CO2

emissions correlate with observed location-specific lifestyles.

Our approach follows Creutzig et al. (2015) in their develop-

ment of a global typology of cities with respect to their energy use

that points to an urbanization wedge for climate change

mitigation. While lacking the global scope, this work is geographi-

cal explicit and complete, builds on a richer and consistent set of

human settlement data, and focuses explicitly on residential CO2

emissions. As such, our typology is a first important step towards a

contextual understanding of local emissions. It suggests that local

policies may need to account for these differential impacts of

emission drivers and go beyond ‘one-size-fits-all’ approaches. At

the same time it opens up the possibility that settlements of

similar types can learn from context-specific best practice and lead

towards more systematic impact testing of policies. Those are

fundamental prerequisites for the eventual emergence of an

evidence based best practice approach for urban sustainability

comparable to standard practice in other areas of public policy

such as in health care.

2. Developing the typology

In this section we describe the method and data used for

devising a typology of human settlements with respect to CO2

emissions. We define the term human settlement in a general

sense as ‘‘cities, towns, villages, and other concentrations of human

populations which inhabit a given segment or area of the

environment’’ (UNESCO-UNEP, 1983). Larger human settlements

can be conceptualized as being composed of a number of smaller,

distinct spatial units. We assume that these smaller spatial units

can be usefully classified into groups defined by threshold values

for a set of common determinants of domestic carbon dioxide

emissions. We will refer to these groups as ‘‘settlement types’’. In

this sense, the unique arrangement of settlement types mark the

structure of a human settlement.

2.1. Method

We describe first the regression model linking emissions with

its determinants, then the recursive partitioning method used to

identify the different types of settlements (each of which is subject

to a separate regression), and finally the procedures used to

statistically test and validate our model.

In line with most theoretical and empirical literature on the

determinants of emissions typically based on the demand for

specific forms for energy, we consider the following regression

equation,

ln Ei ¼ b0 þ b1ln Y i þ
Xk�1

j¼2

b j ln X ji
þ ei; (1)

where i = 1, . . ., N indexes settlements. Here Ei denotes CO2

emissions, Yi is income, and X j i
, for j = 2, . . ., k � 1, denote the other

socio-economic variables, k the total number of regressors, and ei is

the classical error term.

For developing our typology of human settlements with respect

to drivers of CO2 emissions, we used the recursive sample

partitioning method developed by Loh (2002) and Kim et al.

(2007) known as GUIDE (acronym for Generalized, Unbiased,

Interaction Detection and Estimation). It is a refinement of the

classification and regression tree (CART) methods of Breiman et al.

(1984), that iteratively partitions the data into ever increasing

homogeneous sub-groups, by fitting a separate regression model at

each node (Eq. (1) in our case).

At each split the available sample is partitioned into two groups,

using binary splitting rules of the form Xj � x, obeying separate

linear regression models that minimize an overall measure of

discrepancy between the observed response and the predicted

values of the estimated models, over all possible splits for all

available independent variables. The resulting model can be

conveniently presented as a binary decision tree: the branch on the

right (left) of each non-terminal node contains the settlements for

which the split variable is greater (lower) than the split value. CART

type models can be viewed as computationally efficient strategies

for estimating a fully nonparametric regression model. GUIDE has

been shown to improve on its predecessors by reducing

classification errors and increasing the interpretability of the

results (see, e.g., Loh, 2009; Tan, 2010, for details).

To avoid ‘‘overfitting’’ the available sample, a large tree is

‘‘grown’’ first which is then reduced in size by a suitable ‘‘pruning’’

procedure. In practice, because of the flexible nonparametric

nature of the approach, it is entirely possible to fit a tree with many

parameters that has adapted too well to noisy features of the data

(OLS tends to give higher weights to noisy observations) and is

therefore unsuitable for generalizations and difficult to interpret.

Generally, as the number of splits increases, the variance of the

model prediction for a given observation will decrease but the

model will tend to overfit the available sample and decrease its

accuracy when applied to different data. This is known as the

variance-bias trade-off as decreasing one comes at the expense of

increasing the other. To choose a model that takes both errors into

account, variance and bias can be combined to form the mean

G. Baiocchi et al. / Global Environmental Change 34 (2015) 13–2114



squared error (MSE). This is at the basis of the well-established

cost-complexity pruning methodology, first introduced by Brei-

man et al. (1984), to determine the size of trees that minimizes

miss-classification errors. In practice, the predictive ability of a tree

of a particular size is assessed by using a technique known as (10-

fold) cross-validation (see, e.g., Clark and Pregibon, 1993). This is

performed by randomly splitting the available sample into

10 equally sized parts (folds), leaving one part out for validation,

and using the remaining 9 parts as training data to grow a tree. The

partitioning procedure is then repeated 10 times, with a different

subset of the data reserved for use as the test dataset each time,

averaging the performances of the 10 models to yield a cross-

validation estimate of how well the model performs with unseen

data. The size of tree that minimizes the cross-validated error is

chosen as the size of the final pruned tree. For more details see the

Supporting Information (denoted henceforth as SI) and the

references therein (Chaudhuri et al., 1994).

One limitation of the regression splitting approach is the lack of

distribution theory useful for inference on splitting variables and

thresholds. Hansen (1996, 2000) developed a testing procedure

that addresses this issue which we employed to obtain confidence

intervals for the main splits (see also, Loh, 2009; Tan, 2010, for

details).

2.2. Data

All data used in the analysis is publicly available through

national statistics offices. Final gas and electricity consumption

data of households were obtained from the Department of Energy

and Climate Change (DECC, 2011). We focus on these domestic CO2

emission sources, because they are shaped by local drivers and can

often be directly influenced by policies at the local level – most

importantly spatial planning. Emissions from transportation

would be of similar importance, but are not available at the

required level of detail. The focus of many studies on all emission

sources can in fact blur the picture.

The geo-referenced GIS datasets provided by the Office for

National Statistics (ONS, 2011) were used for visualization

purposes and to obtain heating degree days (HDD) averages from

the Met Office UKCIP dataset (Met Office, 2011). All other

indicators are part of the ONS Neighbourhood Statistics (ONS,

2011). If possible, the time period of the datasets used was 2005.

The spatial units underlying the analysis in this study are the

Middle Layer Super Output Areas (MSOA). England is partitioned

into 6780 MSOAs, which are part of the layered statistical

geography hierarchy developed by the Office for National Statistics

(ONS, 2011). They are constructed to contain an average

population of 7000 and are constrained to the administrative

Local Authority (LA) boundaries of 2003. The particular partitioning

of a given geographical area used for spatial analysis has major

impacts on the results of the analysis. The layered statistical

geography hierarchy has been specifically designed to improve the

usefulness of small area statistics and to promote the validity and

comparability of different studies (ONS, 2011).

The following list specifies the origin of the various input data.

� Energy consumption (EC) data is based on domestic electricity and

gas (weather corrected) consumption data provided by the

Department of Energy and Climate Change (DECC, 2011). The

data is based on detailed meter readings provided by electricity

suppliers and gas transporters which have been matched to the

MSOA levels to generate georeferenced datasets. All datasets are

subject to a number of validation and quality assurance

procedures (DECC, 2011). We convert energy consumption data

into carbon dioxide emissions following the reporting guidelines

by the Department of the Environment, Food and Rural Affairs

(DEFRA, 2007). The resulting CO2 emission account therefore

comprises scope 1 (all direct emissions in the domestic sector)

and scope 2 emissions (indirect emissions that arise in the

production of electricity consumed by the domestic sector).

� Income represents average weekly total household income in

pounds estimates (unequivalised) as reported in the ONS

Neighbourhood Statistics (ONS, 2011). The modelling method-

ology applied enables a combination of survey data with census

and administrative data in order to improve the quality of

estimates at small area level.

� Heating degree days (HDD) have been calculated by overlaying

the GIS data for the MSOA layer with the 5 km gridded HDD data

for 2005 available from the Met Office UKCIP dataset (Met Office,

2011).

� Housing in poor condition and Central heating are two sub-

indicators of the underlying indicators of the Living Environment

domain, one of the seven domains contributing to the Index of

Multiple Deprivation 2007 published by the Office for National

Statistics. The data are published on the LSOA level and have

been aggregated to the MSOA level for this analysis.

� Density in persons per hectare is calculated by dividing the

population of an MSOA by its area.

3. Results

The regression tree for predicting CO2 emissions from

household energy consumption in England is displayed in

Fig. 1. The tree presents a nested and contextualized description

of emission drivers of human settlements. The 15 terminal nodes

contain the estimated subsamples and represent the human

settlement types of the typology. The preliminary threshold

estimation produced a tree with 75 terminal nodes that was

reduced to 15 using the cross-validation procedure described

above to prevent overfitting. Each type is characterized by its

specific sequence of attributes in the regression tree. Individual

regressions reveal the impact of attributes on CO2 emissions for

each human settlement type (SI Tables S2, S3, and S4. The

respective descriptive statistics are provided in Tables S5 and S6).

We compare our typology with the UK national statistics’ geo-

demographic area classification at the MSOA level (ONS, 2001) in

the following called ONS lifestyle groups (see, for details, Harris

et al., 2005; Baiocchi et al., 2010). The overlap between human

settlement type, as driven by CO2 emissions, and these lifestyle

groups is coded in Fig. 2. The spatial distribution of settlements is

displayed in Figs. 3 and 4.

The results of our analysis demonstrate that the non-linear

combination of CO2-emission drivers uniquely characterize human

settlements (Fig. 1) together with their attribute values. The

15 distinct types of human settlement can only be properly

understood by taking a closer look at the non-trivial relationships

between the characteristics of the settlement types and their

respective CO2 emissions (see Fig. 1) but, altogether, not by

autocorrelation statistics (S4 and Table S7). We observe six key

insights.

First, density and income are the key drivers of the typology. Fig. 1

shows that density is the best discriminator for a typology of

human settlements, as characterized by CO2-emission drivers. The

split based on density occurs at the threshold of 50 persons per ha

(82nd percentile). The high density types (12–15, 56–58, 59),

comprise an area which amounts to less than 1% of the area of

England but includes about 18% of its population. For Greater

London, high density nodes cover about 36% of its area and 66% of

its population. Income is the second most important driver of CO2

emissions, particularly for low density types where it correlates

more strongly with CO2 emissions within each regression node and

appears higher up in the regression hierarchy: In the low density
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part of the tree (nodes 10, 11, 18, 19, 32–35), income is the

dominant discriminatory attribute splitting clusters at about

900 £/week. Crucially, the relationship between emissions and

determinants changes significantly for high income (94th

percentile) and low density highlighting the non-linear relation

between emission attributes and resulting domestic CO2 emis-

sions. In the high-density (right) part of the tree, income is less

relevant in discriminating between human settlement types (only

occurring at node 14).

Second, the impact of emission drivers is highly context

dependent. We reject the hypothesis that emission drivers of

human settlements can be adequately explained by a unique global

model. Instead, we find highly differential impacts and combina-

tions of emission drivers depending on the particular settlement

Fig. 1. Human settlement types in England as determined by their CO2 emissions drivers. CO2 emissions drivers split spatial units recursively to produce maximally distinct

settlement types. The results are highly robust (S1-3). Diamonds indicate the splitting criteria in terms of splitting variable and threshold value of splitting variable; circles are

terminal nodes which represent the different settlement types and contain the estimated subsamples. A human settlement whose attribute satisfies a splitting criterion, it is

assigned to a node down the left branch; otherwise it goes down the right branch. Beneath each node, the average predicted emission, in italics, with associated sample pth

quantiles, in parenthesis, are reported. The symbol �* denotes � or missing. There are only 64 missing values, all for the income variable, less than 1% of the 6780 observations

(these belong to rural and isolated areas). The 95% confidence interval for the most important first and second splits are (44, 51) for density, (880, 910) for income, and (2.3,

2.35) for household size. For details see the SI.

Fig. 2. Frequency of lifestyle group membership occurring in each human settlement type, as characterized by its CO2 emission drivers. A few settlement types map into ONS

lifestyle categories quite well. For instance, the prevalently London type 13 (83%) of high density higher income and smaller household size, has a majority of ‘young city

professionals’. The other almost London specific (80%) type 56, with low income and high density, has a majority belonging to the ‘multicultural inner city’ group. The

lifestyles of richest and largest emitters are also clearly identified: 10, most distant type from centers, with ‘affluent urban commuter’, and 11 with ‘Mature city professionals’.

See the text for more details.
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type and its particular place-specific context. Table S4 presents the

regression results for the aggregated low and high density areas

(nodes 2 and 3 in the tree regression picture) and the pooled OLS.

Estimates differ greatly across typologies, both statistically and

substantively. The spatial Chow test (Anselin, 1990) very strongly

rejects the stability of coefficients across the identified typologies

both jointly and individually (see Supporting information). For

instance, population density is statistically significant for most

typologies but has a large negative impact only for the higher

density areas, above 50 persons per ha (82nd percentile). For

higher density areas a doubling of density decreases emissions on

average by about 18% as opposed to only 2.2% for all settlements

(pooled OLS). Density appears very important for high density

settlement types (12, 13, 58, and 59), but not for the two poorest

settlement types (57 and 15). For the lower density settlements

income has a much higher impact for the richest top 6% of the

settlements (nodes 10 and 11). A 10% increase in income, increases

average emissions by almost 7% more than twice the overall effect

for all settlements. Analogous heterogeneity is present in all other

variables. Estimating one equation to explain emissions for all

Fig. 3. Human settlement type, as characterized by its CO2 emission drivers in 6780 English human settlements (Middle Layer Super Output Areas, MSOA). Each human

settlement is colored according the corresponding node from the tree regression results it belongs to (Fig. 1). Settlement types can be compared with the ONS areas

classification in terms of lifestyle (Fig. 2). Nodes 10, 11, 34 and 35, have the highest proportion of the ONS group ‘Affluent urban commuter’, 51%, 28%, 21%, and 16%,

respectively. Node 10, the node with largest average distance from centres (see Fig. 4), has also a high proportion of ‘Urban commuter’ (20%) and Node 11, which are, on

average, slightly closer to the city centres, of ‘Mature city professionals’ (42%). These very high income, high emissions, and lower density settlement types tend to have large

houses, with four or more bedrooms, often in Georgian and Victorian terraces and are found in many urban areas of the UK, but particularly in London (Wandsworth, Ealing,

Barnet, Richmond and Merton), Manchester (Trafford), and Oxbridge.
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settlements greatly misrepresents the impact of various determi-

nants by ignoring nonlinearities interactions between them and

their spatial context.

Third, average carbon dioxide emissions are highest for low-

density, high-income and lowest for high-density, low-income human

settlement types. This pattern is generally in line with the notion

that increasing density is associated with lower emissions

(Newman and Kenworthy, 2006). However, our results go

substantially beyond insights from these simple relationships

and show that emissions are particular to human settlement types

as characterized by the place-specific combination of emission

drivers, including income, household size and local climate. For

example, income becomes relatively more important as driver of

CO2 emissions in low-density settlements than in high-density

settlements. Specifically, the highest emissions are found for low

density, high income settlement types (10, 11). The settlement

type with the highest mean density in the high density part of the

tree (13) has the second lowest mean carbon dioxide emissions.

Types 10, 11, 34 and 35, have the highest proportion of ‘Affluent

urban commuter’, 51%, 28%, 21%, and 16%, respectively (Fig. 2).

Settlements of type 10 have the largest average distance from the

closest major urban center (see Fig. 4) and also a high proportion of

‘Urban commuter’ (20%). In comparison, settlements of type 11 are,

on average, slightly closer to major urban centers and have ‘Mature

city professionals’ (42%) as the dominant demographic (Fig. 2).

These settlement types have populations with very high income,

far above average higher education qualification, and relatively

low density. They tend to have large, often detached houses, with

four or more bedrooms and are found in many urban areas of the

UK, but particularly in London (Wandsworth, Ealing, Barnet,

Richmond and Merton), Manchester (Trafford), and Oxbridge.

Overall, the six types with highest mean emissions have low

density and the types with the lowest mean emissions have high

density.

The smaller impact of income on emissions in high density

areas comes with a comparatively larger impact of other drivers. At

the highest sub-node (3) the sample is split by household size at a

threshold of 2.3 persons per household. Subsequent nodes above

that threshold contain types with the lowest and highest mean CO2

emissions for high density areas. In this context, household size,

heating degree days, poor housing condition, and central heating

become important in explaining the fine structure of urban

typology. For example, settlements located in warmer areas are

generally associated with lower emissions. If the final split is based

on HDD, warmer areas are always associated with lower emissions

than colder areas. However, if a split based on HDD occurs higher

up in the tree, the effect of the HDD variable on emissions can be

outweighed by the influence of other socio-economic determi-

nants. For example, types 34 and 35 are typically located in warmer

parts of England than types 18 and 19, which have the highest

average HDD. Due to these differences in climate it takes about 20%

more energy to heat similar homes in most areas of types 18 and

19, yet the emissions of type 34 and 35 are higher owing to higher

income in these areas.

Fourth, variance in emissions is higher for low-density than for

high-density types. The mean emissions of the fifteen settlement

types vary by a factor of 1.6. CO2 emissions vary slightly more

across low density (factor of 1.36) than high density (factor of 1.25)

settlement types. This can partially be explained by more diverse

incomes in low density settlements. Also, size and structure of

dwellings tend to be more similar in high-density settlement types,

for example, due to tighter space constraints. (This heterogeneity

problem highlights the dangers of a ‘‘one size fits all’’ regression

approach. This problem is expected also because low density

settlement types have higher income and therefore more of what is

know in economics as ‘‘discretionary income’’, i.e., scope for more

choice about consumption and therefore more variability (see, e.g.,

Gujarati, 2004).

Fifth, the Greater London area is notable in that it contains a

number of settlement types which are mostly endemic (Types 13,

56 and 58). Most MSOAs in London’s extremely dense core belong

to type 13 and account for 82% of all MSOAs of this type. Node

13 includes 52% of ONS group ‘Young city professionals’ and 28% of

group ‘Multicultural inner city’ (Fig. 2). The former are young,

highly qualified persons in their late 20s living mostly on their own

in urban flats primarily in Inner London (Westminster, Camden,

Islington, Wandsworth, Hammersmith, and Fulham), the latter are

populated by young multi-ethnic communities living in urban

flats, mostly in their 20s and 30s with only a few very young

children that are primarily found in Inner and Outer London

boroughs. Type 58, which occurs almost exclusively in the London

area (�94%), is characterized by high income and the lowest

average HDD. Low HDD settlement types occur in London in more

than 50% of all cases. The different types and frequency of human

settlements occurring in London re-emphasize that London differs

radically from the rest of England, not only in finance, culture and

real estate (Sassen, 2001), but also in terms of its CO2 emission

drivers.

Sixth, the same settlement types tend to cluster in space. The maps

of the spatial distribution of human settlement types, presented in

Fig. 3 (England) and Fig. 4 (London) provide further insights on the

relationship among settlement types and the characterization of

cities. Crucially, areas of the same type cluster together which

demonstrates that features covary spatially. An adjacency analysis

substantiates this insight. Fig. 5 reports the relative frequencies of

settlements of different types being neighbors. For settlements of

most types, their most likely neighbor is of the same type.

Settlement type 33 is common and hence neighbors to many other

types. Types 13, 56, and 58 occur often together, and represent the

neighborhoods in London that are inhabited by mostly ‘Young city

professionals’, ‘Multicultural inner city’, and ‘Multicultural urban’

inhabitants, all with relatively low emissions. This effect is due to

the different scales on which the underlying drivers vary spatially.

Climatic conditions usually vary on a comparatively large scale

unless influenced by factors like the urban heat island effect. In

large cities, residential neighborhoods sharing similar energy

Fig. 4. Human settlement type, as characterized by CO2-emission drivers, of

982 MSOAs of Greater London. Some human settlements are endemic to London.

London specific Node 13 includes 52% of ONS group ‘Young city professionals’ and

28% of group ‘Multicultural inner city’. The former are young, highly qualified

people in their late 20s living mostly on their own in urban areas flats primarily in

Inner London, the latter are populated by young multi-ethnic communities living in

flats, mostly in their 20s and 30s with only a few very young children that are

primarily found in London boroughs.

G. Baiocchi et al. / Global Environmental Change 34 (2015) 13–2118



consumption patterns due to similar construction periods might

span multiple MSOAs. Also other properties like income or

infrastructural features are not randomly distributed at the MSOA

level. Income related clusterings on the city level (e.g., within

London) could be signs of segregation dynamics (Schelling, 1969).

Seventh, settlement types are spatially correlated to the closest

density hot spot (urban center). We have examined the frequencies

of different area types with respect to density hotspots to obtain

density-contextualized spatial correlations. As density hotspots

we used all 31 cities with a population larger than 150,000

inhabitants and calculated the distance of each MSOA to the closest

one. Fig. 6 shows the smoothed frequencies for each area type. The

frequencies have been normalized by dividing the occurrences in

each distance bin of the individual area type histograms by the

total number of MSOAs within the same distance bin because in a

two-dimensional centrality metric the expected frequencies

increase as a quadratic function of distance. Settlement types

exhibit very distinct profiles regarding their frequency of occur-

rence at different distances from urban centres. For the types

mostly endemic to London type 13 makes up the inner city core,

followed by type 56, type 11 and type 10 moving outwards.

Regarding their emission profiles the two London inner city types

(13, 56) have the lowest emissions and the two outer types (11, 10)

by far the highest emissions overall. The observation that more

central types have lower emissions hold in general. Emissions are

significantly correlated with the average distance to the closest city

center (1km distance translates to 85.5 kg of CO2, p = 0.003, adj.

R2 = 0.465). On the aggregate level, this analysis reveals a number

Fig. 5. Neighboring relationship between human settlement types. Settlements of the same type are neighboring each other and effectively cluster together in space (the dark

diagonal). But also some human settlements of different types tend to occur more often together than expected by chance.
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of spatial patterns shown in Fig. 6: (a) smaller households tend to

live closer to city center than larger ones; (b) within higher density

areas, higher incomes tend to live slightly further away from the

city center; (c) in lower density areas, lower incomes tend to live

closer to townships than higher incomes. On the level of specific

types, the composition of ONS lifestyle groups within each type is

well reflected in this metric for the most rural (18, 19, 35),

suburban (10, 34, 59) and inner city (12, 13, 15, 56, 57) types,

respectively (Fig. 2).

4. Discussion

We here provide a spatially explicit CO2 emission-driven

typology of human settlements that is objective, explicit, and

reproducible, where the impact of specific emission drivers is

unmasked by its contextualization with other emission drivers.

The typology is (a) geographically complete (including all English

settlements); (b) non-discriminatory as settlement types are

endogenously determined by emission drivers, but not via pre-

classification of urban and rural areas; and (c) spatially fine-

grained drivers of GHG emissions in human settlements at

unprecedented spatial resolution.

We reject the hypothesis that global models are useful to

understand emission drivers at the local scale, because they do not

sufficiently allow for heterogeneity to appreciate the specific

impacts. We demonstrate that local emission drivers are often

relevant in a particular context, but less so in others. By pooling the

entire sample, averaging effects can overshadow this important

place-specific relevance. This could be the reason why studies not

always find a very strong impact of context-specific variables like

density or HDD (see, e.g., Minx et al., 2011; Kennedy et al., 2009;

Makido et al., 2012).

Our results imply that in mostly urbanized countries, like the

UK, the rural/urban distinction is becoming less useful compared

to countries with lower urbanization levels. Notably, low density,

‘‘rural’’ areas have driver/emission profiles similar to low density

‘‘urban’’ areas. But it holds that low density areas tend to have

higher emissions, while higher density areas (and not necessarily

meaning densities referring to high-rise buildings) have lower

emissions.

The fine-scaled nature of our results has implication for the

spatial resolution of climate mitigation policies. City-wide studies

are hampered in policy conclusions as they cannot resolve the large

heterogeneity within any city; resulting policy recommendations

remain at the level of an one-size fits-all approach. In contrast, as

our analysis elucidates drivers of emissions at small-scale human

settlement scale, we provide appropriate data for designing

mitigation policies that comprehensively cover human settle-

ments of a whole country but nonetheless always integrate

locality-specific context information. Our analysis enables both

specialization and generalization of policies. Policies can special-

ize: policy interventions can be targeted to the sub-city level,

acknowledging the different combinations of GHG emission

drivers in different human settlements. But polices can also

generalize: our analysis of settlement types allows for a formula-

tion of potential policy interventions targeting similar settlement

types across different cities. Hence, settlements of similar types

can learn from context-specific best practice experience. It also

improves the potential for systematic impact testing of polices.

Based on these comparable units, a systematic, evidence based

best-practice approach could be implemented, as it is standard in

other areas of public policy such as in health care.

The typology is enabling, but alone insufficient for systematic

policy assessment. A policy assessment would also investigate

costs of mitigation options and inter-temporal dynamics, e.g., path

dependency issues associated with residential density and urban

form. But a few hints for targeted policies already emerge. For

example, settlements with poor housing conditions (types 11 and

19) could be prioritized for retrofitting measures; and types with

high HDD (types 18, 19, 35, 57 and 59) could be prioritized for

advanced insulation measures.

The literature on how CO2 emissions depend on city population

size and density is rapidly developing. While there is modest

agreement that CO2 emissions per capita are lower in denser cities

compared to less dense suburbs (Glaeser and Kahn, 2010; Jones

and Kammen, 2014), urban density differences play out most

visibly in the transport sector and between the urban form

differences of world regions (Newman and Kenworthy, 1989; Baur

et al., 2014), which can be explained, in an urban economics

framework, by the long-term differences in transport prices

(Creutzig, 2014). This perspective is complicated by the effect of

population size: some literature points to linear scaling between

population size and CO2 emissions (Fragkias et al., 2013), whereas

a recent study finds that CO2 emissions from transport scale supra-

linearly with city population size: Larger city have larger per capita

transport emissions per capita than smaller cities (Louf and

Barthelemy, 2014).

Our study adds an additional perspective to this debate. We

look only at residential CO2 emissions, excluding transport CO2

emissions. But our analysis looks at finer spatial scale, finding

that emissions are systematically lower above a certain

population density (50 persons per ha) on district level. Hence,

rather than debating average city densities, it might be more

important to increase densities over this threshold density, but

possibly not much more, in as many city quarters and

settlements as possible.

Importantly, this density value is roughly of the same

magnitude as the critical threshold in population densities needed

to support minimal modal choice (Frank and Pivo, 1994; Rickwood

et al., 2008). In other words, residential CO2 emissions change their

patterns at similar levels than transport CO2 emissions. This might

hint towards potential synergies in these two key areas of spatial

planning, substantiating the claim that climate change adaptation

and mitigation should be mainstreamed with urban planning

(Creutzig et al., 2012; Viguie and Hallegatte, 2012).

The ex-post analysis demonstrates that emission patterns are

location-dependent and a function of centrality. This results hints

to the potential of marrying our empirical results with causal

urban economic analysis. The concept of centrality is as old as the

spatial economic literature (Christaller and Baskin, 1966). Thuenen

emphasized the interaction between market value, transport costs

and agricultural productivity in making best use of land

surrounding a city (Von Thünen, 1875). A century later the model

structure was extended to explain residential patterns as a

function of the distance to the city center (Alonso, 1964). In this

study, we find that residential CO2-emission types of human

settlements (excluding transport emissions) demonstrate a clear

spatial signal as a function of distance to the next city center. This is

most likely an indirect effect of the building vintage and socio-

economic characteristics, which themselves are more directly a

consequence of centrality (Fujita, 1989).

Identifying commonalities across space while allowing for

place-based specificities, rather than assuming a rigid distinction

between urban and nonurban environments, is a precondition for

a better scientific understanding of the role human settlements

can play in climate change mitigation. Our typology is one

contribution in this direction: Common settlement types might

face common mitigation challenges, with greater potential for

intervention; and mitigation policies might target specific

settlement types, rather than relying on one-size-fits-all

approaches. A global data-driven typology of cities and their

GHG emissions should follow suit.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.gloenvcha.2015.

06.001.
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