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Abstract Ecological counts data are often characterized by an excess of zeros and
spatial dependence. Excess zeros can occur in regions outside the range of the dis-
tribution of a given species. A zero-inflated Poisson regression model is developed,
under which the species range is determined by a spatial probit model, including
physical variables as covariates. Within that range, species counts are independently
drawn from a Poisson distribution whose mean depends on biotic variables. Bayesian
inference for this model is illustrated using data on oak seedling counts.

Keywords Bayesian hierarchical spatial Model · MCMC algorithm ·
Spatial probit model

1 Introduction

Ecological surveys often involve counts of the numbers of individuals of one or more
species at sample sites scattered throughout a study region. Their intent may be to
obtain a better understanding of what environmental factors or habitat conditions
are favorable to the species of interest. If the locations of individual organisms are
realized from a spatial inhomogeneous Poisson process (Cressie 2001) whose log
intensity is a linear function of known environmental variables, then by the inde-
pendent increments property of the Poisson process, the counts at different locations
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are independently distributed. Poisson regression may be then used to model the
effects of environmental variables on species abundances. In practice, however, not
all pertinent variables are included in the analysis. This may result not only in over-
dispersion, but also spatial dependence in the counts data. Approaches to analyzing
spatially dependent counts data include the introduction of random effects (Diggle
et al. 1998), or marginal modeling using generalized estimating equations to estimate
model parameters (Gotway and Stroup 1997; Gotway and Wolfinger 2003).

Ecological counts data often include an excess of zeros (e.g., Welsh et al. 2000;
Leathwick and Austin 2001; O’Neill and Faddy 2003) owing either to the inclusion of
habitat unsuitable to the species, or to the limited ability of the species to disperse
into all parts of the study region. Lamber (1992) introduced the zero-inflated Poisson
regression model to account for an excess of zeros in counts of manufacturing defects.
Zero-inflated Poisson regression has been applied to model the numbers of sightings of
a rare possum species (Welsh et al. 1996), numbers of insect pests on sugarcane (Vieira
et al. 2000), and numbers of whiteflies on experimentally manipulated poinsettias (Van
Iersel et al. 2000, 2001). Zero-inflated negative binomial regression has been proposed
to model overdispersed data (Welsh et al. 1996). Hall (2000) introduced zero-inflated
Poisson models with random effects for applications in longitudinal data analysis.

Agarwal et al. (2002) proposes a zero-inflated model for spatial count data. In
accordance with the approach of Lambert 1992, they generate a zero with probability
p, and data from a Poisson distribution with probability 1 − p. Logistic regression is
used to model the probabilities of the excess zeros, while the log linear model is used
for the Poisson mean. Spatial dependence is introduced by adding spatially depen-
dent random effects to the logistic regression and/or log linear models. Conditional
on those random effects, excess zeros are generated independently. Consequently,
any region, no matter how small, will contain an infinite number of sites with excess
zeros, a pattern that is not compatible with the notion that excess zeros arise from the
inclusion of regions that are unsuitable to the species.

This paper introduces a zero-inflated Poisson model in which the excess zeros are
generated by a spatial probit model (Heagerty and Lele 1998). Under this model, an
excess zero is generated at a given site if the realization of a Gaussian random field
falls below a threshold. The collection of sites exceeding the threshold form a random
set, taken here to be habitat suitable to the species of interest. Here, the realization
of the random field is interpreted to be a measure of habitat suitability. By letting the
mean of the random field be a linear function of covariates, the effects of environmen-
tal variables on habitat suitability can be modeled. Within suitable habitat, counts are
generated according to a Poisson distribution. The log Poisson mean is taken to be a
linear function of environmental covariates.

The proposed zero-inflated Poisson regression model is developed in Sect. 3, and
Bayesian inference for the model parameters is considered in Sect. 4. Sect. 5 illustrates
inferences for the spatial zero-inflated Poisson regression model using data on oak
regeneration. The oak regeneration data are described in Sect. 2.

2 Oak regeneration data

Throughout eastern North America, natural regeneration of oaks (Quercus species)
is often difficult to obtain even where oaks are the dominant components of the
overstory before harvest. Although this problem is widespread both geographically



Environ Ecol Stat (2006) 13:409–426 411

Fig. 1 Locations of the 38 mixed-oak stands in central Pennsylvania

and among species, there is no universal solution. The major causes of regeneration
difficulty may change from site to site and from region to region. Because of this
variability, the “oak regeneration problem” is perceived to have both local and
regional aspects (Lorimer 1992). Specific prescriptions of local conditions necessary
for oak regeneration are required to supplement general guidelines for regenerating
oaks (Crow 1988). In an effort to understand and to help natural oak regeneration,
a long term Oak Regeneration Project has been conducted in central Pennsylvania
since 1996.

We shall explore the oak regeneration problem using data from 38 mixed-oak
stands surveyed in central Pennsylvania from 1996 to 2000 (Fig. 1). All stands were
surveyed 1 year prior to harvest. Within each stand, depending on stand size, 15–39
permanent circular plots, 8.02 m radius (20th-acre) each, were placed systemati-
cally in an approximately square grid. Fig. 2 shows the layout of the plots in a
typical stand. Complete data were available for 1,331 plots. Oak regeneration was
enumerated within four milacre (1.13 m radius) subplots established within each
plot. This investigation focuses on three oak species, prevalent in central Pennsyl-
vania: chestnut oak (Quercus prinus), white oak (Q. alba), and northern red oak
(Q. rubra).

Both physical and biotic variables were used to explain variation in oak regener-
ation. Physical variables include elevation, slope shape (sum of percent slope uphill,
downhill, and at 90◦ to aspect), slope percentage, slope aspect, and exposure angle
(the angle between the visible east and west horizons). Biotic variables include canopy
oak density by species, percent cover of hayscented ferns (Dennstaedtia punctilobula),
and percent cover of heather shrubs (blueberry (Vaccinium species) and huckleberry
(Gaylussacia baccata)).



412 Environ Ecol Stat (2006) 13:409–426

Fig. 2 Layout of plots in a typical stand

3 Zero-inflated Poisson model

The following defines a zero-inflated Poisson regression model in which the excess
zeros are generated by a spatial probit model (Heagerty and Lele 1998). The multivar-
iate probit model was introduced by Ashford and Sowden (1970), and is generated by
first selecting a random vector from a multivariate Gaussian distribution. Then zeros
are generated corresponding to elements falling below a threshold. A spatial version
of the probit model is obtained by letting the elements of the variance–covariance
matrix depend on the distance between the pair of sites.

Define the random field

Y (s) = α′x1 (s)+ ε (s) ,

where x1 (s) denotes a p1 ×1 vector of covariates observed at a location s ∈ D ⊂ �2, α
is a p1 × 1 vector of parameters, and ε (·) is a zero-mean, Gaussian random field with
covariance function τ 2ρ (r;γ ) ; r ≥ 0 that depends on unknown parameters τ 2 and γ .
Then the spatial probit model is defined by the binary random field

W (s) = I (Y (s) > ζ) ; s ∈ D ⊂ �2.

Here, the set {s ∈ D : Y (s) > 0} is interpreted to be the habitat suitable to the species
of interest. Not all of the parameters of this model are identifiable (De Oliveira 2000).
Therefore, we shall fix the variance τ 2 = 1 and threshold ζ = 0.

To ensure that realizations of the Gaussian field ε (·) are continuous in mean square
(see Stein (1999, pp. 20–22) for a formal definition), the correlation function ρ (·;γ )
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should be continuous at lag zero. The Matérn (1960) class of correlation functions

ρ (r; γ , ν) = 2 (γ r/2)ν Kν (γ r)
� (ν)

, (1)

where Kν (·) is the modified Bessel function of the second kind (Abramowitz and
Stegun 1965), includes a parameter ν that controls the smoothness of the realizations
of the random filed ε (·) (Stein 1999). Given that realizations of the random field Y (·)
are not observable, however, the parameter ν cannot be identified from the data.
Therefore, this parameter cannot be left free, but should be fixed at an appropriate
value.

The spatial zero-inflated Poisson regression model is obtained by taking the count
Z (s) = 0 if Y (s) < 0, and selecting Z (s) from a Poisson distribution with mean

λ (s;β) = exp
{
β ′x2 (s)

}

if Y (s) > 0. The p2 × 1 vector of covariates x2 (s) ; s ∈ D ⊂ �2 is used to model
the effects of environmental variables on species abundance. The two collections of
explanatory variables x1 (·) and x2 (·) may share covariates and may or may not be
identical (Lambert 1992).

3.1 Inferential issues

Suppose the data

{Z (si), x1 (si), x2 (si) : i = 1, . . . , n}
are sampled at n sites in the study region D. To simplify notation, we shall take
zi = Z (si) , x1i = x1 (si) , and x2i = x2 (si) ; i = 1, · · · , n. Then the joint distribution of
z and y is given by

p
(
z, y|θ) = (2π)−n/2 ∣

∣γ
∣
∣−1/2 exp

{
−1

2

(
y − X1α

)′
−1
γ

(
y − X1α

)
}

(2)

×
n∏

i=1

{
I (Yi < 0) I (zi = 0)+ I (Yi > 0)

1
zi! exp

{
zi

(
β ′xi

) − eβ
′xi

}}
,

where the n × p1 design matrix X1 has elements x1j (si) , the n × n correlation matrix
γ has elements ρ

(
si − sj; γ

)
. The likelihood is then obtained by integrating with

respect to the unobserved random field y:

p (z|θ) =
∫

�n
p

(
z, y|θ) dy. (3)

If the latent random field Y (·)was observable, then maximum likelihood or Bayes-
ian estimators of the parameters may be readily obtained from (2). Owing to the high
dimension of the integral in (3), obtaining such estimators from the data alone is not
straightforward. One approach is to reduce the dimension by adopting a composite
likelihood approach. For example, Heagerty and Lele (1998) use pair-wise compos-
ite likelihood to estimate the parameters of their spatial probit model. Composite
likelihood estimators are not as efficient (asymptotically) as maximum likelihood
estimators. Moreover, the composite likelihood equations for our model cannot be
simply expressed as a quadratic function of the data as in Heagerty and Lele, and the
complex structure of the matrix of second derivatives makes it difficult to prove the
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consistency and asymptotic normality of the composite likelihood estimators as the
area of the study region increases.

An alternative approach is to augment the data by simulating realizations of the
random field Y (·) , conditional on the data vector z, and candidate values of the param-
eter vector θ . Chib and Greenberg (1998) employ this strategy to obtain Bayesian
estimators and maximum likelihood estimators via the EM algorithm for the param-
eters of their multivariate probit model. This approach has also been used by Weir
and Pettitt (1999, 2000) and De Oliveira (2000) for their spatial probit models. Since
the large-sample inferential properties of the maximum likelihood estimator are yet
to be proved, the following shall adopt a Bayesian approach to parameter estimation.

3.2 Prior choice

Little information is available for the elicitation of priors in the present application.
Therefore, an objective Bayesian approach shall be taken here, but to ensure that
the posterior distribution is proper, only proper priors shall be considered. Given the
large sample size, it is expected that the data will dominate the prior. To simplify the
implementation of the Monte Carlo Markov chain algorithm used to sample from
the posterior distribution (Sect. 4), we shall consider the separable prior structure

π (θ) = π (α) π (β) π (γ ) .

Zellner’s (1986) g-prior shall be adopted for α and β. Take α ∼ N (α0, Vα) and
β ∼ N

(
β0, Vβ

)
, where Vα = gα

(
X′

1X1
)−1 and Vβ = gβ

(
X′

2X2
)−1 . The prior vari-

ance–covariance matrices of these priors take the variability of each of the explanatory
variables into account, yielding smaller prior variances for explanatory variables that
show greater variability. Specifying large values of gα and gβ yield noninformative
priors. In the present application, we take gα = gβ , = 1000. To favor the null model in
which the counts are independent of the explanatory variables, we shall take α0 = 0
and β0 = 0. Zero intercept terms correspond to a model in which the range of the
species covers half of the study region, and in which the mean counts are equal to one
within that range.

The choice of prior for the parameter γ of the correlation function depends on the
parametric form for that correlation function. Here, we shall take ρ (r; γ ) = γ r and γ
to be sampled from the Beta(a, b) distribution

π (γ ) = � (a, b)
� (a) � (b)

γ a−1 (1 − γ )b−1

Note that this correlation function corresponds to a reparameterization of the expo-
nential correlation function, which is obtained by taking ν = 0.5 in expression (1).
Initially, we shall take a = b = 1, yielding a uniform prior for γ . Note that the uniform
prior is not noninformative in this case, but favors a correlation function that is halved
with every unit increase in the distance between the pair of sites. In the present appli-
cation, distances between sites are measured in meters, and the closest pairs of sites
are approximately 7.2 m apart, so this prior favors a negligible correlation of only
0.0068 between the closest sites.
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4 Bayesian inference for the spatial ZIP model

Since the likelihood (3) involves a high-dimensional integral, direct Bayesian infer-
ence for the spatial ZIP model is intractable even when using Monte Carlo methods.
Therefore, we shall apply a data augmentation method similar to that proposed by
Chib and Greenberg (1998) for their spatial probit model. Instead of drawing samples
of the parameter θ from the posterior distribution p (θ |z) ∝ p (z|θ) π (θ), samples of(
θ , y

)
are drawn from p

(
θ , y|z) ∝ p

(
z|θ , y

)
p

(
y|θ)π (θ) using a Markov Chain Monte

Carlo (MCMC) algorithm (Gilks et al. 1996). In our implementation, the elements of
y,α,β, and γ are successively updated during each iterate of the MCMC algorithm.
A hybrid algorithm is adopted, using Gibbs steps to update y and α, and Metropolis-
Hastings steps to update β and γ .

4.1 MCMC algorithm

The conditional distribution of Yi depends on the value of the data zi. For zi = 0,

p
(
yi|y(i), z, θ

) = p
(
yi|y(i), zi = 0, θ

)

∝
(

2πσ 2
γ ,(i)

)−1/2
exp

{

− 1

2σ 2
γ ,(i)

(
yi − µ(i)

)2

}

×
{

I (yi < 0)+ I (yi > 0) exp
{
−eβ

′xi
}}

, (4)

where µ(i) = α′x1i + c′
γ ,(i)

−1
γ ,(i)

(
y(i) − X(i)α

)
, and σ 2

γ ,(i) = 1 − c′
γ ,(i)

−1
γ ,(i)cγ ,(i). The

matrix X(i) is X1 with the ith row removed, γ ,(i) is γ with the ith row and ith
column removed, and cγ ,(i) is the ith column of γ with the ith element removed.
Note that the inverse of γ ,(i) can be readily obtained from −1

γ (Christensen et al.
1992). Sampling from (4) is straightforward. Let q = �

(−µ(i)/σγ ,(i)
)

, where �(·)
is the cumulative distribution function for the standard normal distribution. With
probability p = q/

(
q + (1 − q) exp

{
−eβ

′xi
})

sample from N
(
µ(i), σ 2

γ ,(i)

)
truncated

to the right at zero, otherwise sample from N
(
µ(i), σ 2

γ ,(i)

)
truncated to the left at zero.

For Zi > 0, the Yi is conditionally distributed according to the truncated Gaussian
distribution

p
(
yi|y(i), z, θ

) = p
(
yi|y(i), zi > 0, θ

)

∝
(

2πσ 2
γ ,(i)

)−1/2
exp

{

− 1

2σ 2
γ ,(i)

(
yi − µ(i)

)2

}

I (Yi > 0) .

The algorithm selected for generating samples from the truncated Gaussian density
function ϕ(x)/�(a); x ≤ a, depends on the truncation point a. For large a, a sim-
ple rejection sampling algorithm may be applied, selecting standard normal random
variates X until a value X ≤ a is attained. Here, the polar method of Box and
Muller (1958) was used to generate the standard normal variates. Acceptance prob-
abilities decrease with deceasing values of a. For small a, the rejection sampling
algorithm of Marsaglia (1964) for generating variates from the tail of a Gaussian dis-
tribution yields higher acceptance probabilities. For Marsaglia’s algorithm, acceptance
probabilities increase with decreasing a. For the present application, Box and Muller’s
algorithm was used for a > −0.28, while Marsaglia’s algorithm was used for a ≤ −0.28.
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As determined on a Sun Blade 1000 computer, both algorithms generate approximately
equal numbers of realizations per second when a = −0.28.

The conditional distribution of α given y, z, and γ is N
(
µ̃α , Ṽα

)
,where

µ̃α = Ṽα

(
V−1
α µα + X′

1
−1
γ y

)

and

Ṽα =
[
X′

1

(
g−1
α I+−1

γ

)
X1

]−1
.

Samples from this multivariate normal distribution can readily be obtained using the
Cholesky decomposition method.

The conditional distribution of β is

p
(
β|y, z,α,σ , γ

) = p
(
β|y, z, σ ,γ

)

∝ exp

{
n∑

i=1

(
zi

(
β ′x2i

) − eβ
′xi

)
− 1

2

(
β − β0

)′ V−1
β

(
β − β0

)
}

Although it is feasible to sample directly from p
(
β|y, z, σ ,γ

)
using a rejection sam-

pling algorithm, the rejection rate is unacceptably high. Therefore, estimates of β were
updated using a Metropolis-Hastings step. Slow convergence was achieved under
block updating of β, so the elements of β were updated separately. Given current
values for y,β, σ ,γ , a candidate value β∗

j for the jth element of β is selected from

N
(
βj,ψ2

j vj

)
, where ψ2

j is a tuning constant and vj is the prior variance of βj. The

candidate value β∗
j is accepted with probability

min

{
p

(
β∗|y, z, σ ,γ

)

p
(
β|y, z, σ ,γ

) , 1

}

,

where β∗ is obtained by replacing the jth element of β with β∗. The tuning constantψ2
j

controls the acceptance rate of the algorithm. If ψ2
j is too small, then the acceptance

rate is high, but jump sizes are correspondingly small, yielding slow convergence.
Conversely, the selection of high values for ψ2

y leads to larger jump sizes, but at the
cost of lower acceptance rates. Following the recommendation of Gelman et al. (1996),
ψ2

j shall be selected so as to yield empirical acceptance rates around 0.25. Improved
performance of the algorithm was obtained by performing 12 subiterations of the
Metropolis-Hastings step for the elements of β during each iteration of the MCMC
algorithm (Carlin and Louis 2000, p. 160).

Finally, the conditional distribution of γ is

p
(
γ |y, z,α,β,σ

) = p
(
γ |y,α

)

∝ ∣
∣γ

∣
∣−1/2 exp

{
−1

2

(
y − X1α

)′
−1
γ

(
y − X1α

)
}
π (γ ) .

Since it is difficult to sample directly from this distribution, values of γ shall be gen-
erated using the Metropolis-Hastings algorithm. Given current values of y,α, and γ ,
a candidate value γ ∗ for γ is generated using the method suggested by De Oliveira

(2000): Take the logit transformation η = logit (γ ) , and generate η∗ from N
(
η,ψ2

γ

)
,
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where the tuning parameter ψ2
γ is selected to achieve an empirical acceptance rate

around 0.25 (Gelman et al. 1996). Here, the acceptance probability becomes

min

{
p

(
γ ∗|y,α

)
γ ∗ (1 − γ ∗)

p
(
γ |y,α

)
γ (1 − γ )

, 1

}

.

Again 12 subiterations of the this Metropolis-Hastings step were carried out for each
iteration of the MCMC algorithm.

To achieve the desired acceptance rates, an adaptive algorithm similar to that pro-
posed by Browne et al. (2002) was applied to select the tuning constantsψ required for
the Metropolis-Hastings steps of the MCMC algorithm. The tuning constantψ is set to
an arbitrary starting value (ψj = 0.5; j = 1, . . . , p2 and ψγ = 0.11 in the present appli-
cation), and the algorithm is run in batches of 100 iterations. The objective is to achieve
an acceptance rate within a specified tolerance interval (r −�, r +�). Following each
batch of iterations, the empirical acceptance rate r∗ for that batch is compared to tol-
erance interval. If r∗ > r+�, replaceψ withψ (2 − (1 − r∗) / (1 − r))−1; if r∗ < r−�,
replace ψ with ψ (2 − r∗/r) ; and retain the current value of ψ if r∗ falls inside the
tolerance region. The adaptive procedure ends when 5 successive values of r∗ fall
within the tolerance region.

4.2 Diagnostics

The application of the above rules yields a Markov chain
{(
θ(t), y(t)

)
: t = 1, 2, . . .

}
,

which following a sufficiently long burn-in period will be approximately distributed as
p

(
θ , y|z) (Roberts and Smith 1993). We shall use the test for stationarity proposed by

Heidelberger and Welch (1983), implemented in the CODA software package (Best
et al. 1995) on R, to assess convergence of the Markov chain. Based on Schruben’s
(1982) Brownian bridge model, Heidelberger and Welch test for initial transients
in the simulated chain. If an initial transient is detected, the test is repeated after
discarding an initial percentage (10% by default) of the iterations. Additional itera-
tions are discarded as necessary until a non-significant result can be reported. Thus, a
recommended burn-in period is given for each parameter.

4.3 Point estimation and uncertainty assessment

Following a sufficient burn-in period b, a point estimator for the parameters θ can be
obtained from the mean

θ̂ = 1
T − b

T∑

t=b+1

θ(t).

Here, b is taken to be the largest burn-in period reported by Heidelberger and Welch’s
(1983) procedure among all model parameters and parallel chains. Since successive
values of θ(t) are positively correlated, the sample variance–covariance matrix would
yield an underestimate of the uncertainty of θ . Kass et al. (1998) suggest an approach
based on the computation of effective sample size using estimates of the autocorrela-
tion. Estimation of the autocorrelation requires a point estimator for θ . The use of θ̂
or any other point estimator introduces a small bias in the estimator for the autocorre-
lation function, and hence a bias in the resulting variance estimator. Improved perfor-
mance can be achieved through variography. Define the multivariate semivariogram
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� (h) = 1
2

E
{(
θ(t) − θ(t+h)

) (
θ(t) − θ(t+h)

)′}
.

Note that � (h) → var (θ |z) as h → ∞. The method of moments estimator

�̂ (h) = 1
2 (T − b − h)

T−h∑

t=b+1

(
θ(t) − θ(t+h)

) (
θ(t) − θ(t+h)

)′

is an unbiased estimator for � (h) , and under suitable fourth-moment properties
for the Markov chain

{
θ(t)

}
, �̂ (h) converges in probability to � (h) as T → ∞.

The elements of �̂ (h) can be plotted against lag h to determine the lag � at which all
elements are close to their respective asymptotes. The failure of one or more elements
of �̂ (h) to converge towards an asymptote provides an additional diagnostic indicating
whether the Markov chain has yet to converge in distribution to the posterior. Once
� has been determine, the posterior variance may be estimated by

v̂ar (θ |z) = 1
M

T−b−1∑

h=�

T−h∑

t=b+1

(
θ(t) − θ(t+h)

) (
θ(t) − θ(t+h)

)′
, (5)

where M is the number of elements in the double sum.

5 Implementation on oak regeneration data

The Pennsylvania oak regeneration data were available for 1,331 plots spread over 38
mixed-oak forest stands (Fig. 1). To improve computational efficiency, and to reduce
floating-point errors in manipulations of large variance–covariance matrices, data
from different forest stands were assumed to be independent. This reduced the larg-
est matrix to be manipulated to 39 ×39, corresponding to the size of the largest stand.
Treating the stands as independent samples is justified since the estimated range of
spatial correlation for all three species falls well below the distances separating the
closest stands (Table 3).

The zero-inflated Poisson regression model has two component parts, a spatial
probit model for the presence/absence of oak seedlings, and a Poisson regression
model for seedling counts. When we attempted to include the same spatial cova-
riates in both model components, the MCMC algorithm performed poorly, showing
little evidence for convergence of model parameters to the posterior distribution. This
outcome is likely the consequence of high posterior correlations among model param-
eters. In the following, the physical variables, slope shape (shape), slope percentage
(slope), slope aspect (aspect), exposure angle (exposure), and elevation were used
to model the presence/absence of oak seedlings, while the biotic variables, counts of
adult trees of the same species, and percent covers of heather shrubs and hayscented
fern were used to model the abundance of oak seedlings where they were deemed
to be present. According to Shelford’s (1913) theory of tolerance, each and every
plant species is able to exist and reproduce successfully only within a definite range of
environmental conditions. The conditions under which a species can exist in isolation
are its potential range, and physical variables can serve as good measurements of
their potential range. Within the species potential range, seed availability, competi-
tion, mutualism, and other biotic factors can affect the abundance of species. Aspect
θ is a circular variable that measures the direction of the steepest descent. Attention
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must be give to its periodic nature during model building. In the following, the effect
of aspect will be modeled through a linear combination of the two variables sin θ and
cos θ .

5.1 Tuning constants

Implementation of Bayesian inference for the zero-inflated model for species counts
requires the specification of starting values for the tuning constants of the Metropolis-
Hastings steps of the algorithm. Optimal tuning constants are increasing functions of
the posterior variances of their respective parameters, which in turn are decreasing
functions of sample size. The tuning constants ψj for the Poisson regression coeffi-
cients βj were initialized at 0.5, and the tuning constant ψγ for the spatial correlation
parameter γ was initialized at 0.11. For each species, samples from the posterior dis-
tribution were obtained from 40,000 iterates of the proposed MCMC algorithm. The
adaptive algorithm for tuning constant specification converged within 1,200 iterates
for chestnut oak and white oak, and within 1,700 iterates for red oak. These initial
iterates will be removed in all of the following analyses. Table 1 presents the final
tuning constants and acceptance rates for the parameters of the Poisson part of the
model, and the spatial dependence parameter γ . Acceptance rates fall between 0.206
and 0.277, all close to the optimal rate of 0.25 suggest by Gelman et al. (1996).

5.2 MCMC diagnostics

In Fig. 3, parameter values are plotted against iterate number for chestnut oak seed-
lings for every tenth iterate. In the interest of saving space, only selected parameters
were plotted. The remaining parameters behave similarly to those of the first six
parameters in the plot, and similar results were obtained for the other two oak spe-
cies. The range of spatial correlation is r = −3/ log γ ; pairs of sites further than r
apart are negligibly correlated. Since the first 1,000 iterates of each parameter vary
quite widely, these iterates are not included in the plots. The results suggest that the
regression coefficients for both the probit and Poisson components of the model show
excellent mixing properties. However, coefficients for the Poisson part of the model
converge more slowly than the coefficients for the probit part of the model. The range
shows evidence of stronger temporal dependence across iterates than the remaining
parameters of the model. All variables for all three species passed the Heidelberger
and Welch test for convergence, in some cases after some initial portion of the iterates

Table 1 Tuning constants and acceptance rates for the Metropolis-Hastings steps of the MCMC
algorithm

Parameter Species

Initial Chestnut oak White oak Red oak

Tuning Tuning Acceptance Tuning Acceptance Tuning Acceptance

Intercept 0.50 0.406 0.238 0.269 0.236 2.619 0.221
Overstory 0.50 0.312 0.227 0.086 0.246 3.244 0.206
Low Shrubs 0.50 0.016 0.236 0.012 0.215 0.117 0.239
Ferns 0.50 6.096 0.277 6.274 0.270 6.434 0.260
γ 0.11 0.227 0.265 0.219 0.262 0.237 0.261
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Fig. 3 Iterates of the MCMC algorithm for selected parameters of the spatial zero-inflated Poisson
model for chestnut oak seedlings counts

were removed from the analysis as per standard procedure with this diagnostic. In the
remaining analyses, the burn-in period for each species will be set to the maximum
starting iteration required to pass the Heidelberger and Welch test. These burn-
periods are 5,861, 14,401, and 1,701, respectively, for chestnut, white, and red oak.

Figure 4 presents probability density functions estimated from the samples from
the posterior distribution for chestnut oak. Again, only selected variables were plot-
ted. The parameters for both the probit and Poisson portions of the model tend to
be approximately symmetrically distributed for this species and the other two oak
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Fig. 4 Kernel density estimates of the posterior distribution of select model parameters for chestnut
oak

species. In contrast, the range parameter shows a moderately skewed distribution for
all three species.

Semivariograms are plotted against lag iterate difference for the Monte Carlo sam-
ples of select variables for chestnut oak are presented in Fig. 5. This figure shows
that the regression coefficients for both the probit and Poisson parts of the model
show very small ranges of correlation across iterates. The range of spatial correlation,
however, has a long range of correlation across iterates. Only after the lag exceeds
84 iterates does the correlation between successive iterates falls below 0.05. There-
fore, we take � = 84 in expression (5) for the estimated posterior variance of each
parameter.

5.3 Effect of prior choice

To investigate the effect of prior choice on Bayesian inference for ZIP model param-
eters, four different prior models were considered (Table 2). Two levels of g were
considered for the Zellner g-prior for the regression coefficients of the probit and
Poisson parts of the model. Three levels of the hyperparameters a and b were con-
sidered for the Beta(a, b) prior for the spatial correlation parameter γ . The posterior
means and standard deviations of the parameters for chestnut oak are depicted in
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Fig. 5 Semivariograms against lag itereate difference for posterior samples of select model parmeters
for chestnut oak

Table 2 Prior models Prior model Zellner g-prior for α,β Beta prior for γ
gα , gβ a b

1 1,000 1 1
2 500 1 1
3 500 3/2 1
4 500 1 3/2

Fig. 6; similar results were obtained for the remaining two oak species. This figure
indicates that prior model choice had little effect on the posterior means and standard
deviations of the model parameters.

5.4 Results

The estimated ranges of spatial correlation do not differ greatly among the three oak
species (Table 3). They range between 684 m for chestnut oak to 894 m for white oak.

Table 4 shows the Bayes estimates of the regression coefficients together with
their posterior standard errors of the probit part of the model. For chestnut oak
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Fig. 6 Posterior means plus and minus their standard errors for various prior models for chestnut
oak model parameters

Table 3 Estimated range of
spatial correlation

Species Range Standard error

Chestnut oak 684.0 123.6
White oak 894.4 181.5
Red oak 743.2 160.9

regeneration, slope percent and elevation have significant influence on its range
of distribution. Chestnut oak favors regions with steeper slopes and low elevation.
McQuilkin (1990) also reported that chestnut oak is most commonly found on steeper
slopes with shallow soils. Chestnut oak has relatively higher abundance in the relative
low elevation Ridge and Valley than the Appalachian Plateau physiographic prov-
inces. The only significant factor for white oak is elevation, which agrees with the
former study that white oak grows best on lower slopes and coves (Rogers 1990).
No factors are found to have significant influences on the distribution of red oak
regeneration.

For the Poisson part of the model, the Bayes estimates of the regression coeffi-
cients and their posterior standard errors are given in Table 5. Among the three biotic
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Table 4 Inference for the
probit part of the model

Variable Species

Chestnut oak White oak Red oak

Intercept 1.24489 1.47971 1.00145
(0.66229) (0.66784) (1.01082)

Shape −0.00863 0.00529 0.00420
(0.00473) (0.00476) (0.00857)

Slope 0.01541 −0.01213 −0.01000
(0.00721) (0.00728) (0.01157)

Exposure 0.00404 −0.00122 0.00385
(0.00306) (0.00286) (0.00528)

Elevation −0.00416 −0.00348 −0.00025
(0.00106) (0.00089) (0.00132)

sin θ −0.06025 0.00620 0.04533
(0.07982) (0.07832) (0.12984)

cos θ −0.04879 −0.02539 0.05578
(0.07208) (0.07269) (0.12163)

Table 5 Inference for the
Poisson part of the model

Variable Species

Chestnut oak White oak Red oak

Intercept 2.41783 3.37363 −1.61527
(0.21747) (0.12318) (1.77110)

Overstory 0.56783 −0.17890 1.10645
(0.08570) (0.08317) (0.61342)

Low shrubs −0.00307 0.00155 −0.01280
(0.00838) (0.00544) (0.07918)

Haysented ferns −0.04947 −0.06181 −0.06433
(1.40565) (1.41643) (1.39812)

factors, overstory tree density is the only factor that is significant or marginal signifi-
cant for all the three oak species. Not surprisingly, chestnut oak and red oak is strongly
favored by the presence of the same species in the canopy above the plot. However,
the negative association between overstory and understory white oak abundance is
puzzling. After reviewing the original data, we found that most of the high density
white oak plots have small stem diameter, which might indicate that these plots are
relatively young and have not reach the cycle of regeneration stage yet.
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