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Introduction

We wish to recover a 2D image intensity yx, from observations

zx  y  vx  x,
where v is the blurring point spread function (PSF) of a linear
discrete convolution, x  X,

X  k1,k2, k1  1,2, . . . , n1, k2  1,2, . . . , n2

and  is i.i.d. Gaussian noise with the variance 2.

The vx is known.

The blurring phenomenon, modelled by the kernel v (continuous or
discrete), is very evident in many image applications.

Inverse problems arise in optical systems, satellite imaging,
radiometry, ultrasonic and magnetic resonance imaging, etc.
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In the 2D discrete Fourier transform (DFT) domain we have

Zf  YfVf  f,
with Zf, Yf, Vf and f of the respective size n1  n2 being the
DFT of the corresponding variables and the 2D normalized
frequency f  F,

F  f1, f2, f1  2k1/n1, f2  2k2/n2,

k1  0,1, . . . , n1  1, k2  0,1, . . . , n2  1.

An unbiased estimate of Yf can be obtained as a straightforward
pure (’naive’) inverse solution

Ŷf  1
Vf

Zf.

In the frequency domain being ill-posed means that Vf may take
zero or close to zero values.
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A regularized inverse operator gives instead of the pure inverse

Ŷf  Vf
|Vf|2  2

Zf,

where   0 is a regularization parameter.

This typically produces a reconstruction in which certain features of
the original image are ‘smoothed away’ and it seems to be a blurred
version of the original.

It would be of interest to obtain sharper reconstructions for objects
with edges.

The phenomenon of blurring and the goal of edge recovery have
been studied by many researchers over the last few years.
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A common point of most methods is that some basis functions are
applied for a approximation of the object function yx in the form of
series with coefficients defined from the observations.

These functions may be Fourier harmonics, eigenfunctions of the
convolution operator in SVD methods or wavelets in wavelet based
decompositions.

LPA estimation

Basically different ideas and methods arise from a nonparametric
regression approach. It is assumed that the function yx is well
approximated by a polynomial in some neighborhood of the point of
interest x.

The coefficients of the polynomial fit are found by the weighted least
square method. This approximation is used in order to calculate an
estimate for the point of interest x called also the ”centre” of the
LPA.
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This pointwise procedure determines a nonparametric character of
the LPA estimation.

Let x be a ”center” (reference point) of the LPA. The estimate for the
point xs in the neighborhood of the center x is presented as an
expansion:

yx, xs  CThx  xs,hx  x/h

x  1x,2x, . . . ,MxT,

C  C1,C2, . . . ,CMT,

where x  RM is a vector of linear independent 2D polynomials of
the powers from 0 up to m, C  RM is a vector of parameters of this
model.
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The conventional quadratic criteria function can be applied in order
find C:

Jhx  
xs

whx  xszxs  yx, xs2, whx  wx/h/h2,

where the window w formalizes the localized fitting in a
neighborhood of the centre x.

The scale parameter h  0 determines the ”size” of the
neighborhood.

The LPA estimate of yx is defined as

ŷhx  yx, xs|xsx  CTxh0,

and used for estimate calculation for xs  x only.

It is a key idea of the pointwise nonparametric estimate design.
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Thus, we arrive to a linear discrete kernel estimator defined on the
lattice X and given by the kernel ghx, x  X  R2, with the scale
(window size) parameter h  0:

yhx  gh  yx

The kernel ghx is defined by the equations

ghx  whxh
T0h

1hx,

h  
x

whxhxh
Tx.
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The following holds for gh:

(G1) The polynomial smoothness, m vanishing moments,

gh  xk0   |k|,0, |k| m,

where k  k1, k2 is a multi-index,

|k| k1  k2, xk  x1
k1x2

k2 ;

(G2)

||gh||2  
x

|ghx|2  Bhb, B, b  0.

Then, we say that the gh is a smoothing kernel estimator of the
order m.
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Idea of the deblurring algorithm

The smoothed image intensity yhx is used instead of the original
yx as a solution of the inverse problem and the scale parameter h
is exploited in order to suppress noise as much as possible while
preserving details of the object function yx.

Applying the kernel operator gh to the both sides of the observation
equation we yield

zhx  ghy  vx  hx  yh  vx  hx,

where yhx  gh  yx.

In the frequency domain this equation can be represented as:

Zhf  YhfVf  hf,

where Zhf, Yhf, and hf stand for DFT of the corresponding
smoothed functions.
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The following three types of ”solutions” can be used:

(A) Pure (naive) inverse (PI)

Ŷhf  1
Vf

Zhf 
Ghf
Vf

Zf, Vf  0, f  F,

(B) Regularized inverse (RI)

Ŷhf 
Vf

|Vf|2  2
Zhf 

VfGhf
|Vf|2  2

Zf,

(C) Regularized Wiener inverse (RWI)

Ŷhf 
Vf|Yhf|2

|VfYhf|2  22|Ghf|2
Zhf 

Vf|Yf|2Ghf
|VfYf|2  22

Zf,

where  is a regularization parameter.
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Pointwise spatially adaptive deblurring : ICI rule

The parameter h should be selected in such way that the noise in
ŷhx will be suppressed as much as possible provided that the
specific features of the object yx are preserved in ŷhx.

Consider a finite set of scale parameters h:

H  h1  h2 . . . . hJ,

starting with a quite small h1, and determine a sequence of the
confidence intervals Dj of the biased estimates obtained with the
windows h  h j as follows

Dj  ŷhjx    ŷhj
, ŷhjx    ŷhj

,

where ŷh

2 is the variance of the estimate ŷhjx and  is a threshold

of the confidence interval.
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The following ICI rule (statistic) is used in order to obtain the
adaptive window size (Goldenshluger-Nemirovski (1994,1997)):

Consider the intersection of the intervals Dj, 1  j  i, with
increasing i, and let i be the largest of those i for which the
intervals Dj, 1  j  i, have a point in common.

This i defines the adaptive window size and the adaptive LPA
estimate as follows

ŷx  ŷhxx, hx  h i .
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ICI rule for Adaptive Window Size Selection

14



This window size ICI selection procedure requires knowledge of the
estimate and its variance only.

It is equally applicable to all three algorithms PI, RI, RWI with the
their variances defined respectively by the formulas:

ŷh

2  2

n1n2
||

Ghf
Vf

||2
2,

ŷh

2  2

n1n2
||

VfGhf
|Vf|2  2

||2
2,

ŷh

2  2

n1n2
||

Vf|Yf|2Ghf
|VfYf|2  22

||2
2.

The kernel operator gh should be agreed with the PSF convolution
kernel v, i.e. the above variances are assumed to be finite.
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Implementation

Modification of the basic ideas.

(1) Two step algorithm is developed:

(a) The RI deconvolution procedure gives the image estimate used
as a reference signal on the second step;

(b) The RWI deconvolution gives the final estimate.

Both steps use the ICI rule for the adaptive scale selection.

RI ICI

WRI ICI

)(ˆ xy
h

)(ˆ xy
RI)(xz

)(xz

)(ˆ xy
RI

)(ˆ xy
h

)(ˆ xy
RWI
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(2) Directional LPA

A symmetric window-weight w in the LPA is a good choice if yx is
isotropic in a neighborhood of an estimation point. However if yx is
anisotropic nonsymmetric approximations of yx become much
more reasonable. To deal with the anisotropy of yx multiple
directional LPA kernels and estimates are exploited.

The neighborhood of the pixel x is separated in a number
overlapping or nonoverlapping subareas and the narrow directional
kernels are obtained by rotation of gh:

ghk,  whUkh
T0h

1hUk, h  
k

whUkhUkh
TUk,

U 
cos sin

 sin cos
.
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(2) ICI rule

Filtering of hx.

(3) Fusing of partial estimates

Let’s S partial estimates be obtained:

ŷh
sx, s  1, . . . , S.

There are a number of ways how to fuse these estimates. In
particular:

ŷx  
k1

S

sŷhs
x
s x, s  var

vars
, var  1/

s1

S

1/vars,

where ŷhs
x
s x are the kernel estimates with the ICI rule adaptive

window size for the subareas s  1, . . . , S.
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Algorithm complexity

The calculation of the image estimate ŷh
s

for given h is a linear
convolution requiring Nconv  n logn operations n  n1n2.

If the sectioning procedure is used for convolution, then
Nconv  n lognhJ , where nhJ is a maximum size of the square mask of
the kernel ghJ .

The selection of the adaptive scale the ICI algorithm is implemented
as a loop on J different scales in the set H.

These calculations are repeated for each of the S subareas
(quadrants) of the pixel neighborhood with the fusing the estimates.

Thus, overall the algorithm complexity is proportional to

J  S  Nconv,

where S is a number of the directional estimates.
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Experiments

The test signals are the 256  256 ”Cameraman” image (8 bit
gray-scale) and binary ”Cheese” corrupted by an additive
zero-mean Gaussian noise.

The blurred SNR (BSNR) is defined in dB as

BSNR  10 log10
x

y  vx  meany  vx2/2n1n2,

with BSNR  40 dB.

The discrete-space blur convolution PSF is a uniform 9  9 box-car.
The LPA is defined with H  1,3,5, 9,17.
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The performance criteria:

(1) Root mean squared error (RMSE: RMSE  1
#


x
yx  ŷx2 ;

(2) Improvement in SNR (ISNR) in dB:

ISNR  20 log10
1
#


x

yx  zx2 /RMSE.

(3) Visual evaluation.

Mainly the comparison is produced with one of the best in the field
wavelet based algorithm developed in RICE University (Neelamani
R., Choi H., Baraniuk R.). It is called ”ForWaRD” and available from

http://www.dsp.rice.edu/software/.
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"Cheese" original "Cheese" observations
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LPA  ICI, ISNR  15. 8dB ForWard, ISNR  9. 55dB
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hx, no filt.,   0 hx, filt.,   0

hx, no filt.,   450 hx, filt.,   450
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Original Observations
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LPA  ICI, ISNR  8. 23dB ForWard, ISNR  7. 16dB
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h,no filt.  0 h, filt.  0

h,no filt.  450 h, filt.  450
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TABLE I : ”Cameraman”, 9  9 car-box PSF

Method ISNR

LPA  ICI 8.23 dB

Result by Figueiredo and Nowak (EM) 7.59 dB

Forward, 7.16 dB

Result by Banham and Katsaggelos 6.7 dB
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TABLE II : "Lena”, PSF is a 5  5 separable filter with the weights 1, 4, 6, 4, 1/16 in

horizontal and vertical directions, BSNR  15. 93 dB.

Method ISNR

LPA  ICI 3.76 dB

Best result by Figueiredo and Nowak (EM) 2.94 dB

Best result by Liu and Moulin 1.078 dB

ForWaRD 2.87 dB
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Conclusions

Some theoretical topics:

(1) Directional nonparametric regression estimation;

(2) The adaptive scale selection procedures for small number of
samples;

(3) Fusing of the partial directional estimates;

(4) Analysis of regularized and Wiener based algorithms.
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Asymptotic properties

Oracle accuracy:

(B1) y  Hr

Hr   max
r1r2r

|r1r2 yx/x1
r1x2

r2 |  Lrx  L r,  r1  r2  r.

(B2) V is polynomial decaying,

c 0  |V|||||  c0,  |||| A, min
||||A

|V| c1.

Then, as h,,/h  0, m  r,

rx,hx  0n 2m1
m2 .

Adaptive estimate accuracy:

rx,hx  0lnn/n
2m1
m2 .

can be proved based on the technique due to A.Goldenshluger, A.
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Nemirovski (1997) for 1D regression and A. Goldenshluger (1999)
for 1D continuous deconvolution.
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