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A Spatially Constrained Generative Model and an
EM Algorithm for Image Segmentation

Aristeidis Diplaros,Student Member, IEER\ikos Vlassis, and Theo Gevefglember, IEEE

Abstract— We present a novel spatially constrained generative A particular problem that has been addressed by MRF
model and an EM algorithm for model-based image segmenta- models is image segmentation, the task of identifying ho-
tion. The generative model assumes that the unobserved ctas mogeneous image regions or determining their boundaries.

labels of neighboring pixels in the image are generated by fpor ; Lo e
distributions with similar parameters, where similarity i s defined Formally, the task of image segmentation is to partition an

by entropic quantities relating the neighboring priors. In order image into a set of nonoverlapping regiop®, . .., Rx }, so
to estimate model parameters from observations, we derive a that the variation of some property (such as intensity, olo

spatially constrained EM algorithm that iteratively maximizes a texture, etc.) within each regiof;, is either constant, or
lower bound on the data log-likelihood, where the penalty tem follows a simple mode;, (e.g. Gaussian) [11]. What makes

is data-dependent. Our algorithm is very easy to implementand . . oo .
is similar to the standard EM algorithm for Gaussian mixtures this problem especially difficult is that the parametersefach

with the main difference that the labels posteriors are ‘smothed’ Model @, as well as the corresponding regiofls have to
over pixels between each E- and M-step by a standard image be simultaneously estimated from the input image. To solve

filter. Experiments on synthetic and real images show that ou it prior MRF models are commonly used in conjunction with
algorithm achieves competitive segmentation results conaped 10 jterative estimation procedures like the Expectation Meza-
other Markov-based methods, and is in general faster. . . . .
tion (EM) or other iterative algorithms [5].

_ Index Terms—Image segmentation, Hidden Markov random | this paper we introduce a novel generative model and
fields, EM algorithm, Bound optimization, Spatial clustering. an EM algorithm for Markov-based image segmentation. The
proposed generative model assumes that the hidden clads lab
of the pixels are generated by prior distributions that shar

In the seminal papers of [1], [2], Markov random fieldsimilar parameters for neighboring pixels. In order to defin
(MRF) models were introduced for image analysis. Subsea-notion of similarity between neighboring pixels priorsg w
quently, they have been used by many researchers for th#oduce a pseudo-likelihood quantity that couples nieagh
solution of a number of important problems in image analysisg priors by means of entropic quantities like the Kullback
such as image restoration, segmentation, edge-presdikingLeibler divergence. To estimate the unknown parameters of
tering to name a few (see, e.g., [3]-[5] and referencesitiere the pixels prior distributions, as well as the parameters of
MRF models provide a powerful and formal way to accounhe observation model, we derive an EM algorithm that it-
for spatial dependencies between image pixels. A drawbaatatively maximizes an appropriately constructed lowerriab
of the aforementioned models is that it is typically very exan the data log-likelihood. The proposed algorithm is very
pensive to properly account for the pixels spatial depecidsn similar to the standard EM algorithm for mixture models,
during inference/learning. Various approximations haeerb with the main difference that the mixing weights (posterior
introduced in order to make the problem tractable (e.g.timuldistributions) of neighboring pixels are coupled in each EM
resolution MRF [6]), but the high cost of MRF-based methodgeration by an averaging operation. This results in a stmpl
as compared to other methods, still remains. and efficient scheme for incorporating spatial constramem

In order to overcome this computational cost, several-altéfM framework for image segmentation. Experimental results
natives to MRF models have been proposed. These inclutlmonstrate the potential of the method on synthetic and rea
modeling approaches that aim at directly defining hieraadhi images.
(Markovian) models on trees as in [7], [8]. Also, Markov The rest of the paper is organized as follows. In Section Il
chains [9], [10] have been used, where the 2-D image g briefly review the problem of image segmentation by dis-
transformed into one-dimensional chain using some preetfircussing three classes of generative models that are corymonl
sweep. These approaches, while being in general more camsed in the literature. In Section Il we describe our preubs
putationally efficient compared to MRF, are less powerful ialgorithm in detail and draw parallels with other existing
capturing spatial dependencies. In particular, as statdd]j approaches. In Section IV we show experimental results, and
hierarchical models have a tendency to produce block-likg conclude with a discussion in Section V.
artifacts in the final estimates. In [9] it is reported thatrkia/
chains, while being more robust, they tend to produce more
irregular borders.

I. INTRODUCTION

II. A REVIEW OF MRF-BASED MODELS FOR IMAGE
SEGMENTATION

The authors are with the Informatics Institute, Universidf Amster- . . . I
dam, Amsterdam, The Netherlands. E-mail: diplaros@seiewa.nl, vias- In this section we discuss three Commonly used prObab”'St'

sis@science.uva.nl, gevers@science.uva.nl graphical models for image segmentation. The first one is a
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assumed to be a discrete distribution with states, whose
/@>\ /@K parametersry, k = 1,..., K are unknown, and holds:

() © H p(x; = k|m) = 7, (2)
where we see that no spatial dependence between pixels is a

priori assumed (the priar; has no dependence on pixel index

@ @ 1). Each pixel labek; generates a pixel observatignfrom a
shared Gaussian distributigriy;|z;, 6) with parameter® as

v described above. The log-likelihood of all observatigns-

{y1,...,yn} for the n pixels is given by

n K
@) (b) © Ly(0,7) = log > p(yila:, 0)p(i|m) 3)
=1 :Eizl
Fig. 1. Three commonly used probabilistic graphical modelsimage

n K
segmentation. Pixel is assumed to be in the neighborhood of pikgla) The = lo |z =k, 0)my. 4
standard mixture model. (b) Markov random field on pixel®lab(c) Markov Z & ;p(yﬂ ! ’ ) ( )
random field on pixel label priors. -

=1

The EM algorithm [16], [17] learns the parameterand
by iteratively maximizing a lower bound of the log-likelibd
standard mixture model in which spatial dependencies ttweC1. This bound is a function of the model parameters and a
pixels are not explicitly incorporated into the generativedel. set of auxiliary distributiong;:
The second one assumes that the hidden pixel labels form a 1 .
Markov field. The third one, which is the one adopted in our Fi0mAai}) = L1(0,m) = ZD(% Ipe) ©)
method, assumes that the prior distributions that genéhnate '

pixel labels form a Markov field where D denotes the Kullback-Leibler divergence between

o : o discrete distributions which is defined a§A || B) =
We first introduce the notation used throughout the pap “llog A — log B], and which is always nonnegative and

We are dealing with images consistingropixels. For a pixel becomes zero whed — B. The distributionp; = p(zi]ys) is

i we denote byy; its observed value; for gray scale image : . )
this is a scalar with values from 0 to 255, for color image%e Bayes posterior of label; giveny; and parameters, 7
p(yilxi = k)my,
plz; =kly;) = ————. (6)
( ) p(y:)

this can be, e.g., a three-component vector with R,G,B galue

Moreover we assume that each pixélelongs to a single class

(image segment or region) which is indexed by the hiddgp the M algorithm we repeatedly maximizg, over its
random variabler;. The latter takes values_from a d'scre“f)arameters, in a coordinate ascent fashion. In the E-step we
set of labelsl, ..., K. In all models we consider, we assumg;, 9, 7 and optimize over;, and in the M-step we fix; and

an observation model in the forp(y;|z;) that describes the optimize overd, 7. This gives:
likelihood of observingy; given pixel labelz;. This model is '

a Gaussiart density conditional on the class labeli.e.: 1 &
ty beg Tk = o Zp(fci = kly:), (7)
p(yilzs = k,0) = N (my, Ci) (1) T
that is parameterized by its mean; and (co)variance’y,, = Zp (@i = klyi)yi, (®)
collectively denoted for all components I8y In all models ) 1;1
we conS|derl in this paper the observation model |sKshared Cp = — Zp(zi _ klyi)yiy;r _ mkka. 9)
among all pixels, that is, the parametérs= {my, Cy};-; Tk “—

are independent of the pixel index Similar equations we obtain in our algorithm which we will

explain in detail in Section Il

A. Standard mixture model

. : . B. Mark dom field ixel label
This is the standard (Gaussian) mixture model [13] in arkov random Nield on pixel labe’s

which the spatial dependencies between pixels can be implic T"iS model has been used for instance in [1], [18]-{23],
itly introduced by using the pixels coordinates as an extPdd iS graphically shown in Fig. 1(b). Here the vector of pixe
feature [14]. This model is also employed in our previod@Pelsz = {z1,...,z,} is assumed to be a (hidden) Markov
work [15]. The corresponding generative model is showi@ndom field (MRF) with Gibbs joint probability distributio

in Fig. 1(a), where we show two neighboring pix&lsand 1 _

j. The model assumes a common prior distributiorthat p(zl8) = Z(B3) exp(—H(@9)) (10)
independently generates all pixel labels This prior 7 is where H is an energy function

1This model cannot handle highly textured regions but thezealiernatives H(x|8) = Z Ve(z:|8) (12)
(e.g., FRAME [12]) that can. C
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(c) (d)

® (9) (h)
Fig. 2. Experiment with synthetic image and white Gaussiaisen (a) The
five-class synthetic image. (b) The maximization progrésﬁhmpenallmd log-
likelihood F of our algorithm for this experiment. (c) The noise corrapte
five-class image with additive white Gaussian noise £ 52). (d) The
segmentation result of the standard EM algorithm (MCR 53.7@&) The
segmentation result of ICM with running time of 39 sec (MCR734). (f) The
segmentation result of SimF with running time of 90 sec (MCR8%).
(g) The segmentation result of MeanF with running time of @@ (MCR

3.89%). (h) The segmentation result of our approach witming time of
92 sec (MCR 1.78%).

parameterized by a set of clique potentidls and some
nonnegative scalat. To deal with the inherent intractability of

MRF (due to the normalizer in (10)), a standard approxmnano
suggested by Besag [2], [24] and used, e.g., by [18], [2

involves factorizing the joint distribution as
p(x]B) = Hp zilzn,, B)

where N; denotes the set of neighboring pixels of pixel
Using this approximation, the likelihood of the completeada
(hidden pixel labels and pixel observations) reads

Hp Yilwi, 0)

In particular, by clampingey, for each pixeli to zy, the
observed data log-likelihood becomes

Z log Z (yilz;, 0)

xi=1
Note a similarity betweernC, in (14) and £, in (4); they
are both mixture likelihoods with a parameter veaian the
observation model that is shared by all pixels. Their déiffere

12)

y733|9 $1|$N156) (13)

p(zilTn,,B).  (14)

Maximizing £ w.r.t. ¢ and 3 can be carried out by the EM
algorithm. In [23], for instance, each EM iteration invodva
mean-field like procedure in which the labe] of a pixel
is sequentially estimated from the values of its neighlmprin
pixels N; as, e.g.,

fi = argngxp(:z:ﬂyi,f]vi,@,ﬂ), (15)
where p(z;|y;, Tn,,0,3) is the Bayes posterior given the
parameterg and of the previous iteration, angly, includes

a mix of previous and current estimated values (with respect
to the current sweep over pixels). For each EM iteration the
above procedure effectively requires computing a complete
image restoration. We kindly refer the reader to [23] for enor
details.

C. Markov random field on pixel label priors

This is the model that we adopt in this work, and which has
also been used in [9], [11], [25], [26]. It is graphically stro
in Fig. 1(c). Here the pixel label priors = {m,..., 7.}
are treated as random variables that form a Markov random
field, whereas the pixel labels; are assumed conditionally
independent given the priors. In [25] the random field of the
priors is defined as

1
X T 16
p(m|B) = 70 ° p(=U(x5)) (16)
whereU is an energy function in the form
UrlB) =8> Z ik — k) 17

i JEN; k=1

parameterized by a scalgr In the above notationy;;, refers

to the component of the prior distribution of pixel. In this

model the priorqr;} are estimated together withby the EM

gorithm. Translating the conditional independenciesioed
the above graphical model, the penalized log-likelihobd

the observed data reads (ignoring constants)

K
) = ZlogZp(yih:i =k,0)m
i k=1
K
= BY N (i —m)?

i JEN; k=1

We note the similarity ofCs; with the £, of the standard
mixture model. Here, however, there atedifferent r; dis-
tributions, one for each pixel, and additionally there is a
penalty term (the energy) that penalizes neighboring pixels
with different labels. Note that this model enforces spatia
dependencies between pixels in a different way than the MRF
model of the previous section. Namely, here the assumption
is that neighboring pixels have similar prior distributsothat
generate their pixel labels, whereas in the classical MR&aho
we postulate a Markov random field directly on the pixel

(18)

is that the priorr in £, is shared by all pixels, whereaslabels. An attractive property of this model, as we explain

the priorp(x;|Zn,, B) in Ly is different for each pixef and
depends on the neighboré; of the pixel and the parameter
8. We kindly refer the reader to [18] for more details.

below, is that the E-step of the EM algorithm is easier to
carry out since we do not need to estimate a restoration of the
image. On the other hand, the M-step is more complicated as
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I1l. THE PROPOSEDMETHOD

In our method we also use the graphical model of Fig. 1(c),
but we use a different modeling strategy for the spatial
dependencies between the priors and a different algoritdrm f
learning the unknown parameters. As in [23] we employ the
Besag approximation for modeling the joint density overepix
priors:

p(|B) ~ Hp(m-m,ﬂ), (19)

where we definery, as a mixture distribution over the priors
of neighboring pixels of pixel, i.e.,

TN = > AT (20)
JEN;
<l iR, J#i
J J Y where )\;; are fixed positive weights and for ea¢hholds
- o >_;Aij = 1. The mixing weight);; depends on the relative
(f) (9) (h) offset between the pixelsand j, while the mixture does not
. ) P J \
Fig. 3. Experiment with synthetic image and spatially clated Gaussian In(.:IUd? the prior of the same pIXEINOte.that the e\./aluatlon of
noise. (a) The original four-class image. (b) The maxiniaatprogress of thiS Mixture corresponds to a convolution operatiop A, for
the penalized log-likelihood” of our algorithm for this experiment. (c) The each componerit, where\ is a symmetric linear image filter
noise corrupted image with spatially correlated Gaussiaisen (d) The ; i i ; e
segmentation result of the standard EM algorithm (MCR 2&)/2e) The with zero coefficient in its center and ponnegatlve coeflitse .
segmentation result of ICM with running time of 5 sec (MCR&B6). (f) The €lsewhere that sum to one. See Section IV-B for more details
segmentation result of SimF with running time of 22 sec (MCR6%). about filter related issues.
(9) The segmentation result of MeanF with running time of 28 §MCR Further, for the conditional denSiMﬂ'ihTNwﬂ) we assume

17.4%). (h) The segmentation result of our approach witming time of . . . .
6 sec (MCR 0.68%). an approximate log-model in the form (ignoring constants)

log p(milmn,, 8) = =B[D(m; || 7n,) + H(m)].  (21)

WhereD(m- || 7TNi) = Z?:l Tik 10g Tk — Zle Tik 10g TNk
it also involves the penalty termU(7) of (16). Indeed, the is the Kullback-Leibler divergence betweepandny, which
computational effort in [11], [25], [26] goes in the estineat is always nonnegative and becomes zero whes 7y,, and

of the {m;} priors in the M-step which requires solvingH (m;) = —ZkK:lmk log ;. is the entropy of the distribution
a constrained optimization problem (sineg is a discrete m; which is always nonnegative and reaches its maximum
distribution with ", 7;, = 1 for eachi). when 7; is uniform. The KL termD(x; || wn,) intuitively

. L . . expresses the degree of similarity between the prior oflpixe
The main motivation for using this model as OPposed Pand the priors of its neighbors, and it provides a way of
Fhe_ trad|t|<.)r.1r_al MRF model on pixel 'f"‘t."?'s (of S.e.ct|on II'B)’constraining neighboring pixels to have similar class lsbe

is its flexibility with respect to the initial conditions. T Similarly, the entropy termi (m;) constrains the label priors
flexibility is.r'nanifested in the shape Of the objective onnF 0 be as’ informative as possi;)Ie: in homogeneous regions it
In the tradltlonal MRF model of Section ”'_B’ the penallzecﬁs reasonable to expect that neighboring pixels have simila
log-likelihood function will be sharper and will containzal priors, and that these priors are far from uniform. It is
local maxima, and hence it will be more sensitive to theahiti imporiant to emphasize that the entropy tekhr,) does not
solution. In the current model, the field constraints areatly . o priors:; to be of a particular shape Zbut it merely
enforced over the parameters of the label priors, resulting constrains them tOZ be as informative as possi’ble.

a smoother objective function. This can be intuitively seen MAP (maximum a posteriori) estimation of the parameters
!oy noting that distinct parameter values for some priors maY and 7 of our model involves maximizing the data log-
induce exactly the same pixel labels, and therefore Se@Chy ojinood (the first term of s in (18)) penalized by the

in the space .Of prlors_(m the M—step. of our algorithm as w, pproximate log-prior term (21). Direct optimization ofigh
ShQW next) W'”. be easier thaQ searching in the space ofsab enalized log-likelihood is, however, difficult becausetioé
This .search will be glso fagllltated by the fact that the spa oupling of neighboring pixels priors; (which would require

of prior parameters is cqntlnuous, as oppo_sed o the dscr%nstraint optimization techniques as those in [26]). Talfa
nature of the space of pixel labels. Interestingly, alttotige itate optimization, we introduce an approximation that esk

current model contains more parameteisy( a vector. .OfK use of an auxiliary set of distributions as follows:
parameters for each;, as opposed to of the traditional

MRF model), the smoothness of the objective function, asgp(m;|mn,, 3, s:) ~ —B3[D(s; || m)+D(s; || 7n,)+H(ss)]
argued above, allows the result to be less dependent on the (22)
initialization. The above arguments will be experimemntallwhich decouples the pixels priors and allows for an efficient
verified in Section IV. coordinate ascent EM-like optimization as we show nexteNot
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E-step: In the E-step we optimize ovey; for a pixel i,
assuming andr fixed. A similar derivation holds fog;. The
terms of F involving s; are:

- Z sik log ik + Z Sik log mix — Z sik log si
% 3

k k
(@) (b) (c) + Z Sik log TN,k + Z Sik log sk =
k k
Fig. 4. The effects of using different filters on the segmimtaresults.
(a) The three-class synthetic image. (b) The noise cormupteage with - Zsik log s;1 + Zsik IOg(WiIdTNik)- (26)

additive white Gaussian noise ef = 95. (c) The segmentation result using
Gaussian kernel witlr = 1 (MCR 1.08%).

The latter is an (un-normalized) negative KL-divergencécivh
becomes zero when
that in the above approximation, whey = m; then (22) S; X TN, - (27)
becomes identical to (21). o _
The above approximate log-prior involves only entropieimilarly we obtain
guantities and therefore is a nonnegative quantity thattow Qi X PiPN; - (28)
bounds the data log-likelihood. Note that this penalty term
(Bayesian prior) does not depend on the observed data (imM-step: In the M-step we fixs and ¢ and maximizeF
age pixels). Recently, other approaches have appearee in@4er ¢ and=. The terms ofF" involving the priorsm; and the
machine learning literature that incorporate constraimis a Posteriorsp; (and therefore) and ;) are:
learning problem by lower bounding the data log-likelihood
using data-dependent penalty terms [27], [28]. Typicdilyse
bounds involve a KL distance between posterior distrimsgjo ~ log > _ p(yi|z; = k, 0)m

thus explicitly incorporating the observed data into thersb k
ing terms, and utilizing useful domain knowledge. In the _ 1[ (¢ || pi) + Z D(qg; || pw,)
same spirit we introduce an additional penalty term invadvi 2 jen, ! !
posterior distributions in the form J#i
1 —B[D(si | m) + Y D(sj || ww;)]- (29)
—5 (D | pi) + Dlai | ) + H(gi)] (23) sEN:

whereg; is an arbitrary class distribution for pixe¢] andp; We show now the derivation involving the posteriors. The
is the posterior class distribution of a pixélcomputed for terms of (29) involving onlyp; are:
model parameterg and priorm; by the Bayes rule:

1
p(yilxi =k, 0) i 2[ (g || i) Z D(g; |l pn,)] (30)
pir = p(xi = klys, 0, mir) = —fg—— R (24) JJG;Z
Yo Pilrs = 1,0)mq

which, ignoring terms independent pf, reads
The coefficient1/2 in the penalty term above was chosen

because it allows a tractable M-step as we show next. Putting 1
; A —=| - ik 10g Pik — ik 1 31
all terms together, the penalized log-likelihood of theexed [ Z it 108 Pik Z Z Qik 08 PN, ] (31)

data as a function of the model parameters and the introduced g JJG;Z g
auxiliary distributionss = {s;} andq = {¢;} reads (ignoring
constants): where
= NimDPm = Njipi + XimDm.- 32
f(eaﬂ-vSv(J) = Z {1ngp(yl|xz = kae)wik pN] m;\]j smP 7P m;\[j imP ( )
i k m#j m#i,j
- %[D(qi | pi) + D(g || pn,) + H(q:)] The mixturepy, appears in the last term of (31) for all pixels
4 that are neighbors of pixél To make the M-step tractable,
= B[D(si | mi) + D(si || ) + H(Si)]] we bound these terms using Jensen’s inequality:
(25)
, o _ logpn;r = log Z NjmPmk =
Our EM algorithm maximizes the energ§ in (25) by meN;
coordinate ascent. In the E-step we firand7 and maximize m#j
F overs andgq. In the M-step we fixs and ¢ and maximize \ji log pir + Z Njm log Do, V. (33)
F overf andw. Next we show how these two steps can be men,

performed. m#i,j



we can easily show that we get:

1 1
T 1525 2(q +qn,) + B(si + sn,) (39)
Similarly, differentiating (38) ovem, we get the following
update equations for the means and covariances ofithe

Gaussian components:

>oilain +anik) yi
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>i(aik +anik)

(G + a2 yiuT

(f) Ck _ Zz(%k QNLIC) YiY; T (41)

(a) (b)
(c) (d) (e) Zi(%‘k E— — mpmy, .

(a) The original image. (b) Simple thresholding basedatittation. (c) The the standard mixt del with the diff that h th

segmentation result of ICM. (d) The segmentation result iofFS (e) The e_ Standard mixture moael, wi e_ I erence_ at heee

segmentation result of MeanF. (f) The segmentation regufuo approach. Weights correspond to ‘smoothed’ pixel posteriors. The use
of such spatially smoothed weights in the M-step of the EM
algorithm is a key element in our approach that distingsshe

Using (31) and (33) and noting thag; = A;;, we finally get from other works. The complete algorithm is shown in Alg. 1.

(40)

mr =

(ignoring again terms independent g): Concerning the initialization of the parameter vectyr
1 we employ the k-means algorithm, but we note that other
B} [Z ik log pik + Z Z Ajilik Ingik] = clustering algorithms [29] can be used also. The initidiira
k ko JEN: of the priors{r;} in this work is uniform. Concerning time
Jj#£i . - .
1 complexity, each EM step has cost that is linear in the number
52(%1@ + qn,k) log pik (34) of pixels in the image and linear in the number of class
k labels, as we can directly see in the EM update equations,
where the distributionyy, is for instance, (27) and (40). Additionally, our update edpreg
involve a convolution operation for computing the ‘smoathe
qn; = Z Aijq;- (35) distributions7y,, pn,, sn,, andgy,, Which, for each pixel
Jje;é\lf 1, has constant runtime complexity (since the size of the

filter is fixed). Concerning the convergence rate of our algo-
An identical derivation holds for the priors producing anter rithm, we have experimentally observed that our method can
quickly reach a good solution indicated by high valuesrof
B Z (sik + snik) log . (36) (see Fig. 2(b) and Fig. 3(b)). This is in accordance with ksimi
§ findings for the batch EM algorithm in the literature [17],

In total, the terms ofF (actually a lower bound of it since we put for which theoretical evidence is, to our knowledgd) sti
employed (33)) involving the priors; and the posteriorg; |acking.

are: Finally, in this work we sets = 0.5. It is a matter of future
1 work to investigate ways to incorporatein the optimization
log > plyilai = k,0)m + 3 > (gik + qw.k) log pin process (as in [22], [23]).
k k
+8>  (sik + snk) logmn.  (37) IV. EXPERIMENTS
k

In this section we demonstrate the performance of our algo-
Expanding the posterigr; in the above terms and noting thatithm on synthetic and real images. Specifically, in Sectién
% >k (@ix +ank) = 1, we immediately see that the log-A we evaluate the performance of our segmentation algorithm

likelihood term cancels. Then (37) reads: in the presence of noise. Section IV-B includes additional
1 experiments to test the algorithm’s behavior w.r.t the cbaif
= Z (gir + qn;) log p(yilz: = k, 0)mig parameters and initialization. Section IV-C presents ssgm
2 k tation results on gray level images. Finally, in SectionDV-
+ 52 (siw + sn,p) logmie = we show segmentation results on color images.
k

A. Noise-Corrupted Synthetic Images

We first illustrate our algorithm on synthetic images and
1 consider its robustness against noise. We use the same syn-
+ Z [5 (qik + anik) + B (sik + sn) [ log ik (38)  thetic images as in [20], [26]. These are simulated thrasscl
k and five-class images (see Fig. 4(a) and Fig. 2(a)) sampled
Collecting all terms of (38) involvingr; and differentiating from an MRF model using the Gibbs sampler [1]. In Fig. 2(c)
w.r.t. 7; (using a Lagrange multiplier to ensup€, m;, = 1), we show the five-class image after adding white Gaussian

1
B > (aik + gn.x) log p(yilzs = k. 6)
K
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1: Initialize the parameter vectak, e.g., using k-means.
2: Initialize the priors{r;}, e.g., uniform m;;, = %,Vz‘, k.
3: E-step: Compute posterior probabilitigs using (24) and

the current estimates ofand {r;}.

TABLE |
MISCLASSIFICATION RESULTS FOR THE THREECLASS IMAGE.

i Noise o

4: Compute{s;} according to (27) and (20) and normaljze 18 | 25 | 28 | 47 | 52 | 95
eachs; so that) ", s, = 1. EM 0.61% | 3.64% | 5.82% | 20.5% | 23.9% | 42.3%
5: Compute{q;} according to (28) and normalize eaghso| HMRF-EM - - | 012%) 1.04% ) - | 8.73%
that T ICM 0.03% | 0.15% | 0.21% | 0.81% | 0.96% | 4.01%
Dok Gik = 1. . SimF 0.02% | 0.08% | 0.13% | 0.43% | 0.62% | 1.52%
6: M-step: Update the parameter vectérusing (40) and MeanF 0.02% | 0.08% | 0.12% | 0.39% | 0.54% | 1.32%

(41). SVFMM 0.2% | 1.5% - - 21% -

) : SVFMM-QD || 0.1% | 1% - - 13% -
7: Update{r, } according to (39). Our Approach || 0.03% | 0.1% | 0.1% | 0.46% | 0.50% | 1.18%

8: EvaluateF from (25). Tun time of

9: If convergence ofF, e.g.,|Fi11/F: — 1| <e our approach || 5.8sec| 7.7sec| 8.8sec| 14sec | 15sec | 29sec

10: then stop.
11: elsego to step 3.
12: end if

Algorithm 1: The proposed EM algorithm for image segme
tation

(a) (b) (c)

(d) (e) (f) (9)

(h) (i) ) (k)
Fig. 6. Segmentation example of the buoy image with= 3. (a) The
original image. (b) K-means initialization. (c) Initiaiion based on EM
for independent mixtures. (d) The segmentation result & Mith k-means
initialization. (e) The segmentation result of SimF witlmeans initialization.
(f) The segmentation result of MeanF with k-means initatian. (g) The
segmentation result of our approach with k-means iniagilin. (h) The
segmentation result of ICM with EM initialization. (i) Theegmentation
result of SimF with EM initialization. (j) The segmentatioasult of MeanF

with EM initialization. (k) The segmentation result of oyspmoach with EM
initialization.

noise withoc = 52. In Fig. 2(d) we show the segmentatio

nQ‘or our method) refer to a Matlab implementation running on
a 3.0GHz PC-based workstation. In these synthetic images the
ground truth is known (the true assignment of pixels to khe
classes), which allows us to evaluate the performance of the
various methods in terms of the misclassification ratio (MICR
This is simply the number of misclassified pixels divided by
the total number of pixels [20].

We compare our method with related methods based on
hidden Markov random fields: the ICM algorithm [2] (termed
ICM); the Spatially Variant Finite Mixture Model method [R5
(termed SVFMM); the extension to SVFMM [26] (termed
SVFMM-QD); the Hidden Markov Random Field Model
based on EM framework proposed in [20] (termed HMRF-
EM); the Mean field and the Simulated field methods of [21],
[23] (termed MeanF and SimF respectively). Finally, we have
also included the comparison with the standard EM algorithm

Tables | and Il contain the misclassification ratio results
of the previously mentioned methods for the same synthetic
images and for various amounts of noise. For the methods
SVFMM, SVFMM-QD and HMRF-EM we replicate the mis-
classification ratio results reported in the correspongaqers.

For SimF and MeanF methods we used a software implemen-
tation developed by the authors of [21], [23] (in C) and is pub
licly available at http://mistis.inrialpes.fr/software/SEMMS.html
This software also includes an implementation of the ICM
algorithm. We initialize ICM, SimF and MeanF methods in
the same way that we initialize our algorithm. As in [21],
[23] the number of iteration for SimF and MeanF was set to
100 and the ICM was run until convergence. For our method
the restorations shown result from the maximization of the
estimated prior distributionr; (which the algorithm learns).
nrhe SVFMM, SVFMM-QD and HMRF-EM methods use a

results of the standard EM algorithm using the generatifiést order neighborhood system, while, ICM, SimF and MeanF
model discussed in Section II-A. It is clear from these exarmethods use a second order neighborhood system.

ples that in presence of noise, an algorithm that does not

usén Fig. 3 we present the segmentation results for a synthetic

spatial constraints cannot produce meaningful segmentatfour-class image in which we have added spatially corrdlate
results. On the contrary, a method like ours that does takeise. To generate this noise we sampled a configuration of
into account the spatial relation of pixels can successfulbinary indicators from a standard Potts-model MRF [1] using
segment these noisy images, as we demonstrate in Fig. 2@ipbs sampling. If the drawn indicator of a pixel was one,

The total running time of our method (from initializationl ti

then we added Gaussian noise with standard deviatien52

convergence) was 15 seconds for the three-class image and®#he corresponding pixel, otherwise we didn't add noise.
seconds for the five-class one (as shown in Fig. 2(h)). Aksm Clearly this kind of noise invalidates the Gaussian obs@wa
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TABLE Il
MISCLASSIFICATION RESULTS FOR THE FIVECLASS IMAGE.

Noise o

18 | 23 | 25 | 33 | 47 | 52
EM 15.1% | 27.1% | 28.2% | 43.1% | 53.8% | 53.7%
HMRF-EM - 0.2% - 1.36% | 7.68% -
ICM 0.47% | 0.94% | 1.24% | 4.44% | 24.6% | 31.7%
SimF 0.26% | 0.46% | 0.47% | 0.92% | 2.19% | 2.88%
MeanF 0.23% | 0.38% | 0.49% | 0.73% | 2.41% | 3.89%
SVFMM 6% - 30% - - 42%
SVFMM-QD 4% - 10% - - 28%
Our Approach || 0.24% | 0.39% | 0.49% | 0.73% | 1.49% | 1.78%
run time of
our approach 19sec | 23sec | 27sec | 40sec | 76sec | 92sec

B. Choice of Parameters

Our algorithm has in total three parameters, the number of
componentsK, the priors paramete, and the image filter
used in (20). In this work we assume that the number of

(i) G) (K) cpmponentsK as WeII. as thg observation. model family are
given to us for a particular image. Also, in experiments not

Fig. 7. Segmentation example of the water buffalo image with= 2. Shown here we determined th@abt is a good choice for the

o e i e o ke v o PoraMeter. AS alieady mentioned. i is a matter o futre

IrEeslufor indeper;]%ent mixtures. (e) The segmentétion resulbwf approach WOItk _tO 'r_weStlgate ways t_O mcorporate thls parameter & th

with EM initialization. (f) The segmentation result of ICMitiv k-means Optimization process. In this section we will consider timéyo

if;itiaT“ﬁation- () I:tfoiege“;iﬂtﬁg;o&égﬁlﬂt Vf;‘:tﬁlf;‘fnvevgrf:zeﬁ?;g'a|'lza$ﬂg other free parameter in our algorithm which is the filter used

ge)gme?]tesiﬁgrr:qusult of ICM with EM initialization. (j) Thegmenta‘tio(n) result fOr @valuating the mixturesy; , p,, qn; andsy, (see Eq. (20)

of SimF with EM initialization. (k) The segmentation resolt MeanF with and Eq. (35)).

EM initialization. Specifically, as mentioned in Section Il the evaluation of
such mixtures can be achieved by convolving with an image
filter. In order for these mixtures to be valid distributions

model assumption used by all methods discussed in the paggithout the need of extra normalization) the applied filter

(since the true observation model is now a Gaussian mixturgjust have coefficients that sum to one. Our algorithm also

and renders the observations spatially correlated. Thus,dquires that the center coefficient of the filter be zerooAls

presents a case where the true generative model of the imag@d choose the filter to be symmetric. In the case where
different than the pOStUlated one, which makes it an int-E@S domain know|edge would |mp|y some (S|mp|e) Spatia| relatio
experiment for real-world data. In Fig. 3(c) we show the Boietween pixels with the same class label, this knowledgicou
corrupted image. In Fig. 3(d)-(g) we present the segmentatipe easily incorporated into our framework by employing a non
results of the EM, ICM, SimF and MeanF. Fig. 3(h) showsymmetric filter that encourages these spatial relations.

the segmentation obtained by our method. Clearly we seecjearly the choice of filter can affect the performance of the

an advantage of our method over the other methods on thigorithm and the quality of the segmentation. In additioa t

problem. We note that we initialized all algorithms in thenga mixture calculation can be performed by a variety of images

way. filters. In the section IV-A all reported results of our aligom

In Fig. 2(b) and Fig. 3(b) we present the maximizatiowere obtained using a ‘modified’ (i.e. the center coefficaatt
progress of the penalized log-likelihogd for the simulated to zero) pillbox filter with diamete§ equal to 5. We show the
five-class image of Fig. 2 and the simulated five-class imageefficients of this filter in Table IlI.
of Fig. 3 respectively. In Table IV we report the misclassification ratio results

The experiments point out that in all methods the misclassising different filters for the three class image (see Fig)}4(
fication ratio increases as the amount of noise and the numhbéer adding white Gaussian noise with= 95 (see Fig. 4(b)).
of labels K increases. Our method performs much better th&le used ‘modified’ versions (i.e. the center coefficient is
all other methods when moderate or high amount of noisedst to zero) of a low pass Gaussian filter and a mean filter.
present, and it is competitive to other methods for low ant®urin Fig. 4(c) we show the corresponding segmentation results
of noise. Our method, implemented in Matlab, was faster théor Gaussian filters withr = 1. The results illustrate that a
SimF and MeanF methods, which were implemented in 1&rger filter size can compensate for the presence of higsenoi
and optimized. In Fig. 2 we present the running time and thevels in the image. A closer look at Fig. 4(a),(c) reveak th
segmentation results of ICM, SimF and MeanF methods ftarge size filters, while providing increased robustnesmise,
the five-class image. tend to oversmooth the edges. When the noise levels in an
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- TABLE Il
COEFFICIENTS OF THE FILTER USED IN THE EXPERIMENT.S

0 0.0185 0.0414 0.0185 0
0.0185 0.0852 0.0865 0.0852 0.0185
0.0414 0.0865 0 0.0865 0.0414
0.0185 0.0852 0.0865 0.0852 0.0185

0 0.0185 0.0414 0.0185 0

TABLE IV
MISCLASSIFICATION RESULTS FORFIG. 4(b) WITH DIFFERENT FILTERS

Gaussiang¢ = 0.5) | Gaussian4 = 1) | mean3 x 3 | mean5 x 5
1.19% 1.08% 1.23 % 1.16%

are producing more homogeneous regions for the lungs than
the ICM algorithm.

For the buoy image the image’s labdls was estimated to
be 3. In Fig. 6(d)-(g) we demonstrate the segmentationtsesul
of ICM, MeanF, SimF and our approach. We used the same
settings for all methods as in Section IV-A. All algorithms
. _ _ were initialized using the k-means based initializationiakih
Fig. 8. Segmentation example of the dog sled image with= 3. g shown in Fig. 6(b). It is clear that all algorithms given
(a) The original image. (b) K-means initialization. (c) Tlsegmentation . . S LT .
result of our approach with k-means initialization. (d)tiization based on this part'CU|ar initialization perform approxw.nat-ely tmme.
EM for independent mixtures. (e) The segmentation resulbwfapproach and they are all capable of correctly assigning the pixels
with EM initialization. (f) The segmentation result of ICMitw k-means beIonging to the buoy to one cluster. In Fig 6(h)-(k) we show
initialization. (g) The segmentation result of SimF withreans initialization. h . | f the f ) h 'd . h
(h) The segmentation result of MeanF with k-means initilem. (i) The the _Segmentat'on results of t _e our metho S us!n_g_ t _e same
segmentation result of ICM with EM initialization. (j) Thegmentation result setting as before but employing an alternative initialaat
of SimF with EM initialization. (k) The segmentation resolt MeanF with  hased on EM for independent mixtures. This initializatien i
EM initialization. . . . ; .

shown in Fig. 6(c), where the horizontal scan lines from the

imaging process of Fig. 6(a) can be clearly observed. Onty ou

image are low there is no benefit from using large size filter@PProach was able to correctly assign the pixels belonging t
and the resulting oversmoothing of the edges just decrdlasesthe buoy to one cluster given this EM based initialization.
segmentation accuracy. Clearly, if the noise level of insdge =~ The buoy experiment demonstrates a significant aspect
a particular domain is known a priori, then the filter type an@f our approach, namely, that it is relatively insensitiee t

its parameters can be fine-tuned for 0ptima| performance_ initialization Compared to other methods. We feel that this
is an important aspect, since in natural images, not only the

true value of image label& is hard to estimate, but also an

appropriate initialization cannot be known a priori.
In natural images a number of difficult aspects of image

segmentation come together, like noise and varying imaging

conditions. Additionally, the true value of image labdisis D- Color Images

not known. In the following experiments we use the same In Fig. 7-8 we show the segmentation results of two differ-

images as in [21], [30], [31] wher& was estimated using ent color images from the Berkeley Segmentation Datasét [32

(approximations of) the Bayesian Information Criteriod@R  In these figures, we show the original image, the initiaicreg

Fig. 5(a) shows d28 x 128 Positron Emission Tomographyobtained by K-means and EM, the results of our method with

(PET) image of a dog lung and Fig. 6(a) shows an aeridilese two initializations, and the corresponding resdlt€M,

100 x 100 image of a buoy against a background of darBimF and MeanF. In these examples our algorithm is able to

water (see [30] for more details on their nature and originonsistently segment the original image independenthhef t
For the PET image of a dog lung the image’s lab&ls initialization, whereas all three MRF-based methods atteera

was estimated to be 3. In Fig. 5(c)-(f) we demonstrate tisensitive to the initial conditions.

segmentation results of ICM, MeanF, SimF and our approachln Fig. 9 we show the segmentation results of an image

For our method we used a ‘modified’ (i.e. the center coefficiem rgb color space when the Gaussian observation model

set to zero) pillbox filter with diameter equal to 7. All other assumption is violated. Normalized;b color (chromaticity)

settings for all methods were the same as in Section IV-A. Alas been widely used by many researchers in the field of

algorithms were initialized by a simple thresholding of thenage segmentation, e.g. [33], [34], because of its impbrta

image as shown in Fig. 5(b). The result shows that MeaniRyariant properties. Specifically, it has been shown in ][35

SimF and our approach perform approximately the same aét, under the assumption of the dichromatic reflectionehod

C. Gray-Level Images
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(a) (b) (c)
@ O ® The authors are thankful to K. Blekas, A. T. Cemgil,

Fig. 9. Segmentation example of a color image wih — 6. (@) The |- Galatsanos, |. Patras and J. J. Verbeek for their valuable

original image. (b) The normalizedgb color image. (c) The segmentation cOmments. The authors are grateful to N. Peyrard for making

reslult of ICM(ir;r%t: color space. (d) Thel Sefg'\r/lnenté:_gﬁgg rlesult of Sir(rf\)Fgriﬁ publicly available the implementation of MeanF, SimF and

color space. (e e segmentatlon result o ean olor space. e f f f

segmentation result of our approachrgb color space. ICM methods;_. .ThIS work is an IOP prolect gponsored by
the Dutch Ministry of Economic Affairs, project number
IBV99001.

normalized color is to a large extent invariant to a change in
camera viewpoint, object pose, and the direction and iitiens REEERENCES
of the incident light. In addition, the color transformatio

; ; ; [1] S.Geman and D. Geman, “Stochastic relaxation, Gibkisilligions, and
from RGB '[_0 normalized C0|OI‘.7“gb IS S|mple and easy to the Bayesian restoration of image#ZEE Trans. on Pattern Analysis and
compute while does not necessitate extra color-reductepss Machine Intelligencevol. 6, pp. 721741, 1984.

as in [36]. Namely, based on the measured RGB-valueg] J. Besag, “On the statistical analysis of dirty pictytedournal of the

ormalized colo is computed as follows: Royal Statistical Society. Series B (Methodologicafl. 48, no. 3, pp.
Irgb p 259-302, 1986.

prior distributions that have similar parameters for néigfing
pixels. The proposed EM algorithm performs iterative bound
optimization of a penalized log-likelihood of this model.
The derived EM equations are similar to the standard (un-
constrained) EM algorithm, with the only difference that a
‘smoothing’ step is interleaved between the E- and the M-
step, that couples the posteriors of neighboring pixels in
each iteration. Compared to other MRF-based algorithms for
segmentation, we note that our algorithm enjoys a simple
implementation and demonstrates competitive performance
terms of speed and solution quality.
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