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Abstract— We present a novel spatially constrained generative
model and an EM algorithm for model-based image segmenta-
tion. The generative model assumes that the unobserved class
labels of neighboring pixels in the image are generated by prior
distributions with similar parameters, where similarity i s defined
by entropic quantities relating the neighboring priors. In order
to estimate model parameters from observations, we derive a
spatially constrained EM algorithm that iteratively maxim izes a
lower bound on the data log-likelihood, where the penalty term
is data-dependent. Our algorithm is very easy to implement,and
is similar to the standard EM algorithm for Gaussian mixtures
with the main difference that the labels posteriors are ‘smoothed’
over pixels between each E- and M-step by a standard image
filter. Experiments on synthetic and real images show that our
algorithm achieves competitive segmentation results compared to
other Markov-based methods, and is in general faster.

Index Terms— Image segmentation, Hidden Markov random
fields, EM algorithm, Bound optimization, Spatial clustering.

I. I NTRODUCTION

In the seminal papers of [1], [2], Markov random field
(MRF) models were introduced for image analysis. Subse-
quently, they have been used by many researchers for the
solution of a number of important problems in image analysis
such as image restoration, segmentation, edge-preservingfil-
tering to name a few (see, e.g., [3]–[5] and references therein).
MRF models provide a powerful and formal way to account
for spatial dependencies between image pixels. A drawback
of the aforementioned models is that it is typically very ex-
pensive to properly account for the pixels spatial dependencies
during inference/learning. Various approximations have been
introduced in order to make the problem tractable (e.g., multi-
resolution MRF [6]), but the high cost of MRF-based methods,
as compared to other methods, still remains.

In order to overcome this computational cost, several alter-
natives to MRF models have been proposed. These include
modeling approaches that aim at directly defining hierarchical
(Markovian) models on trees as in [7], [8]. Also, Markov
chains [9], [10] have been used, where the 2-D image is
transformed into one-dimensional chain using some predefined
sweep. These approaches, while being in general more com-
putationally efficient compared to MRF, are less powerful in
capturing spatial dependencies. In particular, as stated in [7],
hierarchical models have a tendency to produce block-like
artifacts in the final estimates. In [9] it is reported that Markov
chains, while being more robust, they tend to produce more
irregular borders.
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A particular problem that has been addressed by MRF
models is image segmentation, the task of identifying ho-
mogeneous image regions or determining their boundaries.
Formally, the task of image segmentation is to partition an
image into a set of nonoverlapping regions{R1, . . . , RK}, so
that the variation of some property (such as intensity, color,
texture, etc.) within each regionRk is either constant, or
follows a simple modelΦk (e.g. Gaussian) [11]. What makes
this problem especially difficult is that the parameters foreach
model Φk, as well as the corresponding regionsRk have to
be simultaneously estimated from the input image. To solve
it, prior MRF models are commonly used in conjunction with
iterative estimation procedures like the Expectation Maximiza-
tion (EM) or other iterative algorithms [5].

In this paper we introduce a novel generative model and
an EM algorithm for Markov-based image segmentation. The
proposed generative model assumes that the hidden class labels
of the pixels are generated by prior distributions that share
similar parameters for neighboring pixels. In order to define
a notion of similarity between neighboring pixels priors, we
introduce a pseudo-likelihood quantity that couples neighbor-
ing priors by means of entropic quantities like the Kullback-
Leibler divergence. To estimate the unknown parameters of
the pixels prior distributions, as well as the parameters of
the observation model, we derive an EM algorithm that it-
eratively maximizes an appropriately constructed lower bound
on the data log-likelihood. The proposed algorithm is very
similar to the standard EM algorithm for mixture models,
with the main difference that the mixing weights (posterior
distributions) of neighboring pixels are coupled in each EM
iteration by an averaging operation. This results in a simple
and efficient scheme for incorporating spatial constraintsin an
EM framework for image segmentation. Experimental results
demonstrate the potential of the method on synthetic and real
images.

The rest of the paper is organized as follows. In Section II
we briefly review the problem of image segmentation by dis-
cussing three classes of generative models that are commonly
used in the literature. In Section III we describe our proposed
algorithm in detail and draw parallels with other existing
approaches. In Section IV we show experimental results, and
we conclude with a discussion in Section V.

II. A R EVIEW OF MRF-BASED MODELS FOR IMAGE

SEGMENTATION

In this section we discuss three commonly used probabilistic
graphical models for image segmentation. The first one is a
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Fig. 1. Three commonly used probabilistic graphical modelsfor image
segmentation. Pixelj is assumed to be in the neighborhood of pixeli. (a) The
standard mixture model. (b) Markov random field on pixels labels. (c) Markov
random field on pixel label priors.

standard mixture model in which spatial dependencies between
pixels are not explicitly incorporated into the generativemodel.
The second one assumes that the hidden pixel labels form a
Markov field. The third one, which is the one adopted in our
method, assumes that the prior distributions that generatethe
pixel labels form a Markov field.

We first introduce the notation used throughout the paper.
We are dealing with images consisting ofn pixels. For a pixel
i we denote byyi its observed value; for gray scale images
this is a scalar with values from 0 to 255, for color images
this can be, e.g., a three-component vector with R,G,B values.
Moreover we assume that each pixeli belongs to a single class
(image segment or region) which is indexed by the hidden
random variablexi. The latter takes values from a discrete
set of labels1, . . . , K. In all models we consider, we assume
an observation model in the formp(yi|xi) that describes the
likelihood of observingyi given pixel labelxi. This model is
a Gaussian1 density conditional on the class labelk, i.e.:

p(yi|xi = k, θ) = N (mk, Ck) (1)

that is parameterized by its meanmk and (co)varianceCk,
collectively denoted for all components byθ. In all models
we consider in this paper the observation model is shared
among all pixels, that is, the parametersθ = {mk, Ck}K

k=1

are independent of the pixel indexi.

A. Standard mixture model

This is the standard (Gaussian) mixture model [13] in
which the spatial dependencies between pixels can be implic-
itly introduced by using the pixels coordinates as an extra
feature [14]. This model is also employed in our previous
work [15]. The corresponding generative model is shown
in Fig. 1(a), where we show two neighboring pixelsi and
j. The model assumes a common prior distributionπ that
independently generates all pixel labelsxi. This prior π is

1This model cannot handle highly textured regions but there are alternatives
(e.g., FRAME [12]) that can.

assumed to be a discrete distribution withK states, whose
parametersπk, k = 1, . . . , K are unknown, and holds:

p(xi = k|π) = πk (2)

where we see that no spatial dependence between pixels is a
priori assumed (the priorπk has no dependence on pixel index
i). Each pixel labelxi generates a pixel observationyi from a
shared Gaussian distributionp(yi|xi, θ) with parametersθ as
described above. The log-likelihood of all observationsy =
{y1, . . . , yn} for the n pixels is given by

L1(θ, π) =
n∑

i=1

log
K∑

xi=1

p(yi|xi, θ)p(xi|π) (3)

=

n∑

i=1

log

K∑

k=1

p(yi|xi = k, θ)πk. (4)

The EM algorithm [16], [17] learns the parametersπ andθ
by iteratively maximizing a lower bound of the log-likelihood
L1. This bound is a function of the model parameters and a
set of auxiliary distributionsqi:

F1(θ, π, {qi}) = L1(θ, π) −
∑

i

D(qi ‖ pi) (5)

where D denotes the Kullback-Leibler divergence between
two discrete distributions which is defined asD(A ‖ B) =
EA[log A − log B], and which is always nonnegative and
becomes zero whenA = B. The distributionpi ≡ p(xi|yi) is
the Bayes posterior of labelxi given yi and parametersθ, π:

p(xi = k|yi) =
p(yi|xi = k)πk

p(yi)
. (6)

In the EM algorithm we repeatedly maximizeF1 over its
parameters, in a coordinate ascent fashion. In the E-step we
fix θ, π and optimize overqi, and in the M-step we fixqi and
optimize overθ, π. This gives:

πk =
1

n

n∑

i=1

p(xi = k|yi), (7)

mk =
1

nπk

n∑

i=1

p(xi = k|yi)yi, (8)

Ck =
1

nπk

n∑

i=1

p(xi = k|yi)yiy
⊤
i − mkm⊤

k . (9)

Similar equations we obtain in our algorithm which we will
explain in detail in Section III.

B. Markov random field on pixel labels

This model has been used for instance in [1], [18]–[23],
and is graphically shown in Fig. 1(b). Here the vector of pixel
labelsx = {x1, . . . , xn} is assumed to be a (hidden) Markov
random field (MRF) with Gibbs joint probability distribution

p(x|β) =
1

Z(β)
exp(−H(x|β)) (10)

whereH is an energy function

H(x|β) =
∑

C

Vc(xc|β) (11)



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. XX, XXXX XXXX 3

0 5 10 15 20 25 30 35
−6.8

−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

Iterations

P
e

n
a

li
z
e

d
L

o
g

-L
ik

e
li
h

o
o

dF

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 2. Experiment with synthetic image and white Gaussian noise. (a) The
five-class synthetic image. (b) The maximization progress of the penalized log-
likelihood F of our algorithm for this experiment. (c) The noise corrupted
five-class image with additive white Gaussian noise (σ = 52). (d) The
segmentation result of the standard EM algorithm (MCR 53.7%). (e) The
segmentation result of ICM with running time of 39 sec (MCR 31.7%). (f) The
segmentation result of SimF with running time of 90 sec (MCR 2.88%).
(g) The segmentation result of MeanF with running time of 100sec (MCR
3.89%). (h) The segmentation result of our approach with running time of
92 sec (MCR 1.78%).

parameterized by a set of clique potentialsVc and some
nonnegative scalarβ. To deal with the inherent intractability of
MRF (due to the normalizer in (10)), a standard approximation
suggested by Besag [2], [24] and used, e.g., by [18], [23]
involves factorizing the joint distribution as

p(x|β) ≈

∏

i

p(xi|xNi
, β) (12)

where Ni denotes the set of neighboring pixels of pixeli.
Using this approximation, the likelihood of the complete data
(hidden pixel labels and pixel observations) reads

p(y, x|θ, β) =
∏

i

p(yi|xi, θ)p(xi|xNi
, β). (13)

In particular, by clampingxNi
for each pixeli to x̃Ni

the
observed data log-likelihood becomes

L2(θ, β) =
∑

i

log

K∑

xi=1

p(yi|xi, θ)p(xi|x̃Ni
, β). (14)

Note a similarity betweenL2 in (14) andL1 in (4); they
are both mixture likelihoods with a parameter vectorθ in the
observation model that is shared by all pixels. Their difference
is that the priorπ in L1 is shared by all pixels, whereas
the priorp(xi|x̃Ni

, β) in L2 is different for each pixeli and
depends on the neighborsNi of the pixel and the parameter
β. We kindly refer the reader to [18] for more details.

MaximizingL2 w.r.t. θ andβ can be carried out by the EM
algorithm. In [23], for instance, each EM iteration involves a
mean-field like procedure in which the labelx̃i of a pixel i
is sequentially estimated from the values of its neighboring
pixels Ni as, e.g.,

x̃i = arg max
xi

p(xi|yi, x̃Ni
, θ, β), (15)

where p(xi|yi, x̃Ni
, θ, β) is the Bayes posterior given the

parametersθ andβ of the previous iteration, and̃xNi
includes

a mix of previous and current estimated values (with respect
to the current sweep over pixels). For each EM iteration the
above procedure effectively requires computing a complete
image restoration. We kindly refer the reader to [23] for more
details.

C. Markov random field on pixel label priors

This is the model that we adopt in this work, and which has
also been used in [9], [11], [25], [26]. It is graphically shown
in Fig. 1(c). Here the pixel label priorsπ = {π1, . . . , πn}
are treated as random variables that form a Markov random
field, whereas the pixel labelsxi are assumed conditionally
independent given the priors. In [25] the random field of the
priors is defined as

p(π|β) =
1

Z(β)
exp(−U(π|β)) (16)

whereU is an energy function in the form

U(π|β) = β
∑

i

∑

j∈Ni

K∑

k=1

(πik − πjk)2 (17)

parameterized by a scalarβ. In the above notation,πik refers
to the componentk of the prior distribution of pixeli. In this
model the priors{πi} are estimated together withθ by the EM
algorithm. Translating the conditional independencies induced
by the above graphical model, the penalized log-likelihoodof
the observed data reads (ignoring constants)

L3(θ, π) =
∑

i

log

K∑

k=1

p(yi|xi = k, θ)πik

− β
∑

i

∑

j∈Ni

K∑

k=1

(πik − πjk)2. (18)

We note the similarity ofL3 with the L1 of the standard
mixture model. Here, however, there aren different πi dis-
tributions, one for each pixeli, and additionally there is a
penalty term (the energyU ) that penalizes neighboring pixels
with different labels. Note that this model enforces spatial
dependencies between pixels in a different way than the MRF
model of the previous section. Namely, here the assumption
is that neighboring pixels have similar prior distributions that
generate their pixel labels, whereas in the classical MRF model
we postulate a Markov random field directly on the pixel
labels. An attractive property of this model, as we explain
below, is that the E-step of the EM algorithm is easier to
carry out since we do not need to estimate a restoration of the
image. On the other hand, the M-step is more complicated as
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Fig. 3. Experiment with synthetic image and spatially correlated Gaussian
noise. (a) The original four-class image. (b) The maximization progress of
the penalized log-likelihoodF of our algorithm for this experiment. (c) The
noise corrupted image with spatially correlated Gaussian noise. (d) The
segmentation result of the standard EM algorithm (MCR 28.72%). (e) The
segmentation result of ICM with running time of 5 sec (MCR 16.8%). (f) The
segmentation result of SimF with running time of 22 sec (MCR 17.6%).
(g) The segmentation result of MeanF with running time of 23 sec (MCR
17.4%). (h) The segmentation result of our approach with running time of
6 sec (MCR 0.68%).

it also involves the penalty term−U(π) of (16). Indeed, the
computational effort in [11], [25], [26] goes in the estimation
of the {πi} priors in the M-step which requires solving
a constrained optimization problem (sinceπi is a discrete
distribution with

∑
k πik = 1 for eachi).

The main motivation for using this model as opposed to
the traditional MRF model on pixel labels (of Section II-B),
is its flexibility with respect to the initial conditions. This
flexibility is manifested in the shape of the objective function;
In the traditional MRF model of Section II-B, the penalized
log-likelihood function will be sharper and will contain several
local maxima, and hence it will be more sensitive to the initial
solution. In the current model, the field constraints are directly
enforced over the parameters of the label priors, resultingin
a smoother objective function. This can be intuitively seen
by noting that distinct parameter values for some priors may
induce exactly the same pixel labels, and therefore searching
in the space of priors (in the M-step of our algorithm as we
show next) will be easier than searching in the space of labels.
This search will be also facilitated by the fact that the space
of prior parameters is continuous, as opposed to the discrete
nature of the space of pixel labels. Interestingly, although the
current model contains more parameters (Kn, a vector ofK
parameters for eachπi, as opposed ton of the traditional
MRF model), the smoothness of the objective function, as
argued above, allows the result to be less dependent on the
initialization. The above arguments will be experimentally
verified in Section IV.

III. T HE PROPOSEDMETHOD

In our method we also use the graphical model of Fig. 1(c),
but we use a different modeling strategy for the spatial
dependencies between the priors and a different algorithm for
learning the unknown parameters. As in [23] we employ the
Besag approximation for modeling the joint density over pixel
priors:

p(π|β) ≈
∏

i

p(πi|πNi
, β), (19)

where we defineπNi
as a mixture distribution over the priors

of neighboring pixels of pixeli, i.e.,

πNi
=

∑

j∈Ni

j 6=i

λijπj , (20)

where λij are fixed positive weights and for eachi holds∑
j λij = 1. The mixing weightλij depends on the relative

offset between the pixelsi andj, while the mixture does not
include the prior of the same pixeli. Note that the evaluation of
this mixture corresponds to a convolution operationπ·k∗λ, for
each componentk, whereλ is a symmetric linear image filter
with zero coefficient in its center and nonnegative coefficients
elsewhere that sum to one. See Section IV-B for more details
about filter related issues.

Further, for the conditional densityp(πi|πNi
, β) we assume

an approximate log-model in the form (ignoring constants)

log p(πi|πNi
, β) = −β

[
D(πi ‖ πNi

) + H(πi)
]
. (21)

whereD(πi ‖ πNi
) =

∑K
k=1

πik log πik −
∑K

k=1
πik log πNik

is the Kullback-Leibler divergence betweenπi andπNi
which

is always nonnegative and becomes zero whenπi = πNi
, and

H(πi) = −
∑K

k=1
πik log πik is the entropy of the distribution

πi which is always nonnegative and reaches its maximum
when πi is uniform. The KL termD(πi ‖ πNi

) intuitively
expresses the degree of similarity between the prior of pixel
i and the priors of its neighbors, and it provides a way of
constraining neighboring pixels to have similar class labels.
Similarly, the entropy termH(πi) constrains the label priors
to be as informative as possible: in homogeneous regions it
is reasonable to expect that neighboring pixels have similar
priors, and that these priors are far from uniform. It is
important to emphasize that the entropy termH(πi) does not
enforce the priorsπi to be of a particular shape, but it merely
constrains them to be as informative as possible.

MAP (maximum a posteriori) estimation of the parameters
θ and πi of our model involves maximizing the data log-
likelihood (the first term ofL3 in (18)) penalized by the
approximate log-prior term (21). Direct optimization of this
penalized log-likelihood is, however, difficult because ofthe
coupling of neighboring pixels priorsπi (which would require
constraint optimization techniques as those in [26]). To facil-
itate optimization, we introduce an approximation that makes
use of an auxiliary set of distributionssi as follows:

log p(πi|πNi
, β, si) ≈ −β

[
D(si ‖ πi)+D(si ‖ πNi

)+H(si)
]

(22)
which decouples the pixels priors and allows for an efficient
coordinate ascent EM-like optimization as we show next. Note
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(a) (b) (c)

Fig. 4. The effects of using different filters on the segmentation results.
(a) The three-class synthetic image. (b) The noise corrupted image with
additive white Gaussian noise ofσ = 95. (c) The segmentation result using
Gaussian kernel withσ = 1 (MCR 1.08%).

that in the above approximation, whensi = πi then (22)
becomes identical to (21).

The above approximate log-prior involves only entropic
quantities and therefore is a nonnegative quantity that lower
bounds the data log-likelihood. Note that this penalty term
(Bayesian prior) does not depend on the observed data (im-
age pixels). Recently, other approaches have appeared in the
machine learning literature that incorporate constraintsinto a
learning problem by lower bounding the data log-likelihood
using data-dependent penalty terms [27], [28]. Typically those
bounds involve a KL distance between posterior distributions,
thus explicitly incorporating the observed data into the bound-
ing terms, and utilizing useful domain knowledge. In the
same spirit we introduce an additional penalty term involving
posterior distributions in the form

−
1

2

[
D(qi ‖ pi) + D(qi ‖ pNi

) + H(qi)
]

(23)

whereqi is an arbitrary class distribution for pixeli, andpi

is the posterior class distribution of a pixeli computed for
model parametersθ and priorπi by the Bayes rule:

pik ≡ p(xi = k|yi, θ, πik) =
p(yi|xi = k, θ)πik∑K

l=1
p(yi|xi = l, θ)πil

. (24)

The coefficient1/2 in the penalty term above was chosen
because it allows a tractable M-step as we show next. Putting
all terms together, the penalized log-likelihood of the observed
data as a function of the model parameters and the introduced
auxiliary distributionss = {si} andq = {qi} reads (ignoring
constants):

F(θ, π, s, q) =
∑

i

[
log

∑

k

p(yi|xi = k, θ)πik

−
1

2

[
D(qi ‖ pi) + D(qi ‖ pNi

) + H(qi)
]

− β
[
D(si ‖ πi) + D(si ‖ πNi

) + H(si)
]]

.

(25)

Our EM algorithm maximizes the energyF in (25) by
coordinate ascent. In the E-step we fixθ andπ and maximize
F over s andq. In the M-step we fixs andq and maximize
F over θ and π. Next we show how these two steps can be
performed.

E-step: In the E-step we optimize oversi for a pixel i,
assumingθ andπ fixed. A similar derivation holds forqi. The
terms ofF involving si are:

−
∑

k

sik log sik +
∑

k

sik log πik −
∑

k

sik log sik

+
∑

k

sik log πNik +
∑

k

sik log sik =

−
∑

k

sik log sik +
∑

k

sik log(πikπNik). (26)

The latter is an (un-normalized) negative KL-divergence which
becomes zero when

si ∝ πiπNi
. (27)

Similarly we obtain

qi ∝ pipNi
. (28)

M-step: In the M-step we fixs and q and maximizeF
overθ andπ. The terms ofF involving the priorsπi and the
posteriorspi (and thereforeθ andπi) are:

log
∑

k

p(yi|xi = k, θ)πik

−
1

2

[
D(qi ‖ pi) +

∑

j∈Ni

j 6=i

D(qj ‖ pNj
)
]

− β
[
D(si ‖ πi) +

∑

j∈Ni

j 6=i

D(sj ‖ πNj
)]. (29)

We show now the derivation involving the posteriors. The
terms of (29) involving onlypi are:

−
1

2

[
D(qi ‖ pi) +

∑

j∈Ni

j 6=i

D(qj ‖ pNj
)
]
, (30)

which, ignoring terms independent ofpi, reads

−
1

2

[
−

∑

k

qik log pik −
∑

j∈Ni

j 6=i

∑

k

qjk log pNjk

]
, (31)

where

pNj
=

∑

m∈Nj

m 6=j

λjmpm = λjipi +
∑

m∈Nj

m 6=i,j

λjmpm. (32)

The mixturepNj
appears in the last term of (31) for all pixels

j that are neighbors of pixeli. To make the M-step tractable,
we bound these terms using Jensen’s inequality:

log pNjk = log
∑

m∈Nj

m 6=j

λjmpmk ≥

λji log pik +
∑

m∈Nj

m 6=i,j

λjm log pmk , ∀k. (33)
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Fig. 5. Segmentation example of the PET image of a dog lung with K = 3.
(a) The original image. (b) Simple thresholding based initialization. (c) The
segmentation result of ICM. (d) The segmentation result of SimF. (e) The
segmentation result of MeanF. (f) The segmentation result of our approach.

Using (31) and (33) and noting thatλji = λij , we finally get
(ignoring again terms independent ofpi):

1

2

[ ∑

k

qik log pik +
∑

k

∑

j∈Ni

j 6=i

λjiqjk log pik

]
⇒

1

2

∑

k

(qik + qNik) log pik (34)

where the distributionqNi
is

qNi
=

∑

j∈Ni

j 6=i

λijqj . (35)

An identical derivation holds for the priors producing a term:

β
∑

k

(sik + sNik) log πik. (36)

In total, the terms ofF (actually a lower bound of it since we
employed (33)) involving the priorsπi and the posteriorspi

are:

log
∑

k

p(yi|xi = k, θ)πik +
1

2

∑

k

(qik + qNik) log pik

+ β
∑

k

(sik + sNik) log πik. (37)

Expanding the posteriorpi in the above terms and noting that
1

2

∑
k (qik + qNik) = 1, we immediately see that the log-

likelihood term cancels. Then (37) reads:

1

2

∑

k

(qik + qNik) log p(yi|xi = k, θ)πik

+ β
∑

k

(sik + sNik) log πik ⇒

1

2

∑

k

(qik + qNik) log p(yi|xi = k, θ)

+
∑

k

[
1

2
(qik + qNik) + β (sik + sNik)

]
log πik (38)

Collecting all terms of (38) involvingπi and differentiating
w.r.t. πi (using a Lagrange multiplier to ensure

∑
k πik = 1),

we can easily show that we get:

πi =
1

(1 + 2β)

[
1

2
(qi + qNi

) + β(si + sNi
)

]
. (39)

Similarly, differentiating (38) overθ, we get the following
update equations for the means and covariances of theK
Gaussian components:

mk =

∑
i(qik + qNik) yi∑

i(qik + qNik)
, (40)

Ck =

∑
i(qik + qNik) yiy

⊤
i∑

i(qik + qNik)
− mkm⊤

k . (41)

Note that the update equations forθ are analogous to those in
the standard mixture model, with the difference that here the
weights correspond to ‘smoothed’ pixel posteriors. The use
of such spatially smoothed weights in the M-step of the EM
algorithm is a key element in our approach that distinguishes it
from other works. The complete algorithm is shown in Alg. 1.

Concerning the initialization of the parameter vectorθ,
we employ the k-means algorithm, but we note that other
clustering algorithms [29] can be used also. The initialization
of the priors{πi} in this work is uniform. Concerning time
complexity, each EM step has cost that is linear in the number
of pixels in the image and linear in the number of class
labels, as we can directly see in the EM update equations,
for instance, (27) and (40). Additionally, our update equations
involve a convolution operation for computing the ‘smoothed’
distributionsπNi

, pNi
, sNi

, and qNi
, which, for each pixel

i, has constant runtime complexity (since the size of the
filter is fixed). Concerning the convergence rate of our algo-
rithm, we have experimentally observed that our method can
quickly reach a good solution indicated by high values ofF
(see Fig. 2(b) and Fig. 3(b)). This is in accordance with similar
findings for the batch EM algorithm in the literature [17],
but for which theoretical evidence is, to our knowledge, still
lacking.

Finally, in this work we setβ = 0.5. It is a matter of future
work to investigate ways to incorporateβ in the optimization
process (as in [22], [23]).

IV. EXPERIMENTS

In this section we demonstrate the performance of our algo-
rithm on synthetic and real images. Specifically, in SectionIV-
A we evaluate the performance of our segmentation algorithm
in the presence of noise. Section IV-B includes additional
experiments to test the algorithm’s behavior w.r.t the choice of
parameters and initialization. Section IV-C presents segmen-
tation results on gray level images. Finally, in Section IV-D
we show segmentation results on color images.

A. Noise-Corrupted Synthetic Images

We first illustrate our algorithm on synthetic images and
consider its robustness against noise. We use the same syn-
thetic images as in [20], [26]. These are simulated three-class
and five-class images (see Fig. 4(a) and Fig. 2(a)) sampled
from an MRF model using the Gibbs sampler [1]. In Fig. 2(c)
we show the five-class image after adding white Gaussian
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1: Initialize the parameter vectorθ, e.g., using k-means.
2: Initialize the priors{πi}, e.g., uniform πik = 1

K
, ∀i, k.

3: E-step: Compute posterior probabilitiespi using (24) and
the current estimates ofθ and{πi}.

4: Compute{si} according to (27) and (20) and normalize
eachsi so that

∑
k sik = 1.

5: Compute{qi} according to (28) and normalize eachqi so
that

∑
k qik = 1.

6: M-step: Update the parameter vectorθ using (40) and
(41).

7: Update{πi} according to (39).
8: EvaluateF from (25).
9: If convergence ofF , e.g.,|Ft+1/Ft − 1| < ǫ

10: then stop.
11: elsego to step 3.
12: end if

Algorithm 1: The proposed EM algorithm for image segmen-
tation

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 6. Segmentation example of the buoy image withK = 3. (a) The
original image. (b) K-means initialization. (c) Initialization based on EM
for independent mixtures. (d) The segmentation result of ICM with k-means
initialization. (e) The segmentation result of SimF with k-means initialization.
(f) The segmentation result of MeanF with k-means initialization. (g) The
segmentation result of our approach with k-means initialization. (h) The
segmentation result of ICM with EM initialization. (i) The segmentation
result of SimF with EM initialization. (j) The segmentationresult of MeanF
with EM initialization. (k) The segmentation result of our approach with EM
initialization.

noise with σ = 52. In Fig. 2(d) we show the segmentation
results of the standard EM algorithm using the generative
model discussed in Section II-A. It is clear from these exam-
ples that in presence of noise, an algorithm that does not use
spatial constraints cannot produce meaningful segmentation
results. On the contrary, a method like ours that does take
into account the spatial relation of pixels can successfully
segment these noisy images, as we demonstrate in Fig. 2(h).
The total running time of our method (from initialization till
convergence) was 15 seconds for the three-class image and 92
seconds for the five-class one (as shown in Fig. 2(h)). All times

TABLE I

M ISCLASSIFICATION RESULTS FOR THE THREE-CLASS IMAGE.

Noiseσ

18 25 28 47 52 95

EM 0.61% 3.64% 5.82% 20.5% 23.9% 42.3%
HMRF-EM - - 0.12% 1.04% - 8.73%
ICM 0.03% 0.15% 0.21% 0.81% 0.96% 4.01%
SimF 0.02% 0.08% 0.13% 0.43% 0.62% 1.52%
MeanF 0.02% 0.08% 0.12% 0.39% 0.54% 1.32%
SVFMM 0.2% 1.5% - - 21% -
SVFMM-QD 0.1% 1% - - 13% -
Our Approach 0.03% 0.1% 0.1% 0.46% 0.50% 1.18%

run time of
our approach 5.8sec 7.7sec 8.8sec 14sec 15sec 29sec

(for our method) refer to a Matlab implementation running on
a 3.0GHz PC-based workstation. In these synthetic images the
ground truth is known (the true assignment of pixels to theK
classes), which allows us to evaluate the performance of the
various methods in terms of the misclassification ratio (MCR).
This is simply the number of misclassified pixels divided by
the total number of pixels [20].

We compare our method with related methods based on
hidden Markov random fields: the ICM algorithm [2] (termed
ICM); the Spatially Variant Finite Mixture Model method [25]
(termed SVFMM); the extension to SVFMM [26] (termed
SVFMM-QD); the Hidden Markov Random Field Model
based on EM framework proposed in [20] (termed HMRF-
EM); the Mean field and the Simulated field methods of [21],
[23] (termed MeanF and SimF respectively). Finally, we have
also included the comparison with the standard EM algorithm.

Tables I and II contain the misclassification ratio results
of the previously mentioned methods for the same synthetic
images and for various amounts of noise. For the methods
SVFMM, SVFMM-QD and HMRF-EM we replicate the mis-
classification ratio results reported in the correspondingpapers.
For SimF and MeanF methods we used a software implemen-
tation developed by the authors of [21], [23] (in C) and is pub-
licly available at http://mistis.inrialpes.fr/software/SEMMS.html.
This software also includes an implementation of the ICM
algorithm. We initialize ICM, SimF and MeanF methods in
the same way that we initialize our algorithm. As in [21],
[23] the number of iteration for SimF and MeanF was set to
100 and the ICM was run until convergence. For our method
the restorations shown result from the maximization of the
estimated prior distributionπi (which the algorithm learns).
The SVFMM, SVFMM-QD and HMRF-EM methods use a
first order neighborhood system, while, ICM, SimF and MeanF
methods use a second order neighborhood system.

In Fig. 3 we present the segmentation results for a synthetic
four-class image in which we have added spatially correlated
noise. To generate this noise we sampled a configuration of
binary indicators from a standard Potts-model MRF [1] using
Gibbs sampling. If the drawn indicator of a pixel was one,
then we added Gaussian noise with standard deviationσ = 52
to the corresponding pixel, otherwise we didn’t add noise.
Clearly this kind of noise invalidates the Gaussian observation
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

Fig. 7. Segmentation example of the water buffalo image withK = 2.
(a) The original image. (b) K-means initialization. (c) Thesegmentation
result of our approach with k-means initialization. (d) Initialization based on
EM for independent mixtures. (e) The segmentation result ofour approach
with EM initialization. (f) The segmentation result of ICM with k-means
initialization. (g) The segmentation result of SimF with k-means initialization.
(h) The segmentation result of MeanF with k-means initialization. (i) The
segmentation result of ICM with EM initialization. (j) The segmentation result
of SimF with EM initialization. (k) The segmentation resultof MeanF with
EM initialization.

model assumption used by all methods discussed in the paper
(since the true observation model is now a Gaussian mixture),
and renders the observations spatially correlated. Thus, it
presents a case where the true generative model of the image is
different than the postulated one, which makes it an interesting
experiment for real-world data. In Fig. 3(c) we show the noise
corrupted image. In Fig. 3(d)-(g) we present the segmentation
results of the EM, ICM, SimF and MeanF. Fig. 3(h) shows
the segmentation obtained by our method. Clearly we see
an advantage of our method over the other methods on this
problem. We note that we initialized all algorithms in the same
way.

In Fig. 2(b) and Fig. 3(b) we present the maximization
progress of the penalized log-likelihoodF for the simulated
five-class image of Fig. 2 and the simulated five-class image
of Fig. 3 respectively.

The experiments point out that in all methods the misclassi-
fication ratio increases as the amount of noise and the number
of labelsK increases. Our method performs much better than
all other methods when moderate or high amount of noise is
present, and it is competitive to other methods for low amounts
of noise. Our method, implemented in Matlab, was faster than
SimF and MeanF methods, which were implemented in C
and optimized. In Fig. 2 we present the running time and the
segmentation results of ICM, SimF and MeanF methods for
the five-class image.

TABLE II

M ISCLASSIFICATION RESULTS FOR THE FIVE-CLASS IMAGE.

Noiseσ

18 23 25 33 47 52

EM 15.1% 27.1% 28.2% 43.1% 53.8% 53.7%
HMRF-EM - 0.2% - 1.36% 7.68% -
ICM 0.47% 0.94% 1.24% 4.44% 24.6% 31.7%
SimF 0.26% 0.46% 0.47% 0.92% 2.19% 2.88%
MeanF 0.23% 0.38% 0.49% 0.73% 2.41% 3.89%
SVFMM 6% - 30% - - 42%
SVFMM-QD 4% - 10% - - 28%
Our Approach 0.24% 0.39% 0.49% 0.73% 1.49% 1.78%

run time of
our approach 19sec 23sec 27sec 40sec 76sec 92sec

B. Choice of Parameters

Our algorithm has in total three parameters, the number of
componentsK, the priors parameterβ, and the image filter
used in (20). In this work we assume that the number of
componentsK as well as the observation model family are
given to us for a particular image. Also, in experiments not
shown here we determined that0.5 is a good choice for the
parameterβ. As already mentioned, it is a matter of future
work to investigate ways to incorporate this parameter in the
optimization process. In this section we will consider the only
other free parameter in our algorithm which is the filter used
for evaluating the mixturesπNi

, pNi
, qNi

andsNi
(see Eq. (20)

and Eq. (35)).
Specifically, as mentioned in Section III the evaluation of

such mixtures can be achieved by convolving with an image
filter. In order for these mixtures to be valid distributions
(without the need of extra normalization) the applied filter
must have coefficients that sum to one. Our algorithm also
requires that the center coefficient of the filter be zero. Also,
we choose the filter to be symmetric. In the case where
domain knowledge would imply some (simple) spatial relation
between pixels with the same class label, this knowledge could
be easily incorporated into our framework by employing a non
symmetric filter that encourages these spatial relations.

Clearly the choice of filter can affect the performance of the
algorithm and the quality of the segmentation. In addition the
mixture calculation can be performed by a variety of images
filters. In the section IV-A all reported results of our algorithm
were obtained using a ‘modified’ (i.e. the center coefficientset
to zero) pillbox filter with diameterδ equal to 5. We show the
coefficients of this filter in Table III.

In Table IV we report the misclassification ratio results
using different filters for the three class image (see Fig. 4(a)),
after adding white Gaussian noise withσ = 95 (see Fig. 4(b)).
We used ‘modified’ versions (i.e. the center coefficient is
set to zero) of a low pass Gaussian filter and a mean filter.
In Fig. 4(c) we show the corresponding segmentation results
for Gaussian filters withσ = 1. The results illustrate that a
larger filter size can compensate for the presence of high noise
levels in the image. A closer look at Fig. 4(a),(c) reveals that
large size filters, while providing increased robustness tonoise,
tend to oversmooth the edges. When the noise levels in an
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

Fig. 8. Segmentation example of the dog sled image withK = 3.
(a) The original image. (b) K-means initialization. (c) Thesegmentation
result of our approach with k-means initialization. (d) Initialization based on
EM for independent mixtures. (e) The segmentation result ofour approach
with EM initialization. (f) The segmentation result of ICM with k-means
initialization. (g) The segmentation result of SimF with k-means initialization.
(h) The segmentation result of MeanF with k-means initialization. (i) The
segmentation result of ICM with EM initialization. (j) The segmentation result
of SimF with EM initialization. (k) The segmentation resultof MeanF with
EM initialization.

image are low there is no benefit from using large size filters,
and the resulting oversmoothing of the edges just decreasesthe
segmentation accuracy. Clearly, if the noise level of images in
a particular domain is known a priori, then the filter type and
its parameters can be fine-tuned for optimal performance.

C. Gray-Level Images

In natural images a number of difficult aspects of image
segmentation come together, like noise and varying imaging
conditions. Additionally, the true value of image labelsK is
not known. In the following experiments we use the same
images as in [21], [30], [31] whereK was estimated using
(approximations of) the Bayesian Information Criterion (BIC).
Fig. 5(a) shows a128 × 128 Positron Emission Tomography
(PET) image of a dog lung and Fig. 6(a) shows an aerial
100 × 100 image of a buoy against a background of dark
water (see [30] for more details on their nature and origin).

For the PET image of a dog lung the image’s labelsK
was estimated to be 3. In Fig. 5(c)-(f) we demonstrate the
segmentation results of ICM, MeanF, SimF and our approach.
For our method we used a ‘modified’ (i.e. the center coefficient
set to zero) pillbox filter with diameterδ equal to 7. All other
settings for all methods were the same as in Section IV-A. All
algorithms were initialized by a simple thresholding of the
image as shown in Fig. 5(b). The result shows that MeanF,
SimF and our approach perform approximately the same and

TABLE III

COEFFICIENTS OF THE FILTER USED IN THE EXPERIMENTS.

0 0.0185 0.0414 0.0185 0
0.0185 0.0852 0.0865 0.0852 0.0185
0.0414 0.0865 0 0.0865 0.0414
0.0185 0.0852 0.0865 0.0852 0.0185

0 0.0185 0.0414 0.0185 0

TABLE IV

M ISCLASSIFICATION RESULTS FORFIG. 4(b) WITH DIFFERENT FILTERS.

Gaussian (σ = 0.5) Gaussian (σ = 1) mean3 × 3 mean5 × 5

1.19% 1.08% 1.23 % 1.16%

are producing more homogeneous regions for the lungs than
the ICM algorithm.

For the buoy image the image’s labelsK was estimated to
be 3. In Fig. 6(d)-(g) we demonstrate the segmentation results
of ICM, MeanF, SimF and our approach. We used the same
settings for all methods as in Section IV-A. All algorithms
were initialized using the k-means based initialization which
is shown in Fig. 6(b). It is clear that all algorithms given
this particular initialization perform approximately thesame
and they are all capable of correctly assigning the pixels
belonging to the buoy to one cluster. In Fig. 6(h)-(k) we show
the segmentation results of the four methods using the same
setting as before but employing an alternative initialization
based on EM for independent mixtures. This initialization is
shown in Fig. 6(c), where the horizontal scan lines from the
imaging process of Fig. 6(a) can be clearly observed. Only our
approach was able to correctly assign the pixels belonging to
the buoy to one cluster given this EM based initialization.

The buoy experiment demonstrates a significant aspect
of our approach, namely, that it is relatively insensitive to
initialization compared to other methods. We feel that this
is an important aspect, since in natural images, not only the
true value of image labelsK is hard to estimate, but also an
appropriate initialization cannot be known a priori.

D. Color Images

In Fig. 7–8 we show the segmentation results of two differ-
ent color images from the Berkeley Segmentation Dataset [32].
In these figures, we show the original image, the initializations
obtained by K-means and EM, the results of our method with
these two initializations, and the corresponding results of ICM,
SimF and MeanF. In these examples our algorithm is able to
consistently segment the original image independently of the
initialization, whereas all three MRF-based methods are rather
sensitive to the initial conditions.

In Fig. 9 we show the segmentation results of an image
in rgb color space when the Gaussian observation model
assumption is violated. Normalizedrgb color (chromaticity)
has been widely used by many researchers in the field of
image segmentation, e.g. [33], [34], because of its important
invariant properties. Specifically, it has been shown in [35]
that, under the assumption of the dichromatic reflection model,
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Segmentation example of a color image withK = 6. (a) The
original image. (b) The normalizedrgb color image. (c) The segmentation
result of ICM in rgb color space. (d) The segmentation result of SimF inrgb
color space. (e) The segmentation result of MeanF inrgb color space. (f) The
segmentation result of our approach inrgb color space.

normalized color is to a large extent invariant to a change in
camera viewpoint, object pose, and the direction and intensity
of the incident light. In addition, the color transformation
from RGB to normalized colorrgb is simple and easy to
compute while does not necessitate extra color-reduction steps
as in [36]. Namely, based on the measured RGB-values,
normalized colorrgb is computed as follows:

r = R/(R + G + B) (42)

g = G/(R + G + B) (43)

b = B/(R + G + B) (44)

However, this (non-linear) color transformation has a serious
drawback, as it becomes unstable for someRGB sensor
values. Particularly,rgb is undefined at the black point (R =
G = B = 0) and is unstable near this singular point. As
a consequence, a small perturbation for dark (low-intensity)
sensor values (e.g. due to sensor noise), will cause a significant
jump in the transformed values.

In Fig. 9(b), which is the normalizedrgb color transfor-
mation of Fig. 9(a), the unstable invariant values are clearly
visible at the bottom of the red ball. The presence of these
unstable invariant values violate the assumed Gaussian ob-
servation model. Fig. 9(c)-(e) show the segmentation results
for K = 6 for the normalized color image of Fig. 9(b) with
ICM, SimF and MeanF, respectively. In Fig. 9(f) we show the
corresponding results with our approach. All figures show a
reconstruction of the normalizedrgb image, with pixel values
in the final result corresponding to the estimated mean of
their assigned Gaussian component. The results show that
our approach produces more homogeneous regions than other
algorithms and consequently a better segmentation.

V. CONCLUSIONS

We proposed a graphical model and a novel EM algorithm
for Markov-based image segmentation. The proposed model
postulates that the unobserved pixel labels are generated by

prior distributions that have similar parameters for neighboring
pixels. The proposed EM algorithm performs iterative bound
optimization of a penalized log-likelihood of this model.
The derived EM equations are similar to the standard (un-
constrained) EM algorithm, with the only difference that a
‘smoothing’ step is interleaved between the E- and the M-
step, that couples the posteriors of neighboring pixels in
each iteration. Compared to other MRF-based algorithms for
segmentation, we note that our algorithm enjoys a simple
implementation and demonstrates competitive performancein
terms of speed and solution quality.
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