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Abstract. Sun-induced chlorophyll fluorescence (SIF) retrieved from satellite spectrometers can be a highly

valuable proxy for photosynthesis. The SIF signal is very small and notoriously difficult to measure, requiring

sub-nanometre spectral-resolution measurements, which to date are only available from atmospheric spectrom-

eters sampling at low spatial resolution. For example, the widely used SIF dataset derived from the GOME-2

mission is typically provided in 0.5◦ composites. This paper presents a new SIF dataset based on GOME-2

satellite observations with an enhanced spatial resolution of 0.05◦ and an 8 d time step covering the period

2007–2018. It leverages on a proven methodology that relies on using a light-use efficiency (LUE) modelling

approach to establish a semi-empirical relationship between SIF and various explanatory variables derived from

remote sensing at higher spatial resolution. An optimal set of explanatory variables is selected based on an inde-

pendent validation with OCO-2 SIF observations, which are only sparsely available but have a high accuracy and

spatial resolution. After bias correction, the resulting downscaled SIF data show high spatio-temporal agreement

with the first SIF retrievals from the new TROPOMI mission, opening the path towards establishing a surrogate

archive for this promising new dataset. We foresee this new SIF dataset becoming a valuable asset for Earth

system science in general and for monitoring vegetation productivity in particular. The dataset is available at

https://doi.org/10.2905/21935FFC-B797-4BEE-94DA-8FEC85B3F9E1 (Duveiller et al., 2019).

1 Introduction

Mapping and monitoring the spatial and temporal patterns

of terrestrial gross primary productivity (GPP) through the

use of satellite remote sensing are of paramount interest for

vegetation, ecosystem and climate science. While the rate of

terrestrial photosynthesis cannot be directly measured from

space, recent research has demonstrated that sun-induced

chlorophyll fluorescence (SIF) retrieved from satellite spec-

trometers can be a highly valuable proxy (Frankenberg et al.,

2011). SIF is generally positively correlated with leaf pho-

tochemistry during specific light conditions that are com-

mon across the globe and should thus serve as valid proxy

for GPP, even though the mechanistic link between the two

is complex (Porcar-Castell et al., 2014). The origin of this

signal is the fluorescence of chlorophyll a, consisting of

a re-emission of absorbed photons at lower-energy wave-

lengths (from 650 to 850 nm, with peaks at approximately

690 and 740 nm). This physical mechanism allows photo-

synthetic organisms to adjust instantaneously to rapid per-

turbations in environmental conditions of light, temperature

and water availability, before the heat dissipation mechanism
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of non-photochemical quenching can be triggered (Maxwell

and Johnson, 2000).

Chlorophyll a fluorescence has been extensively studied in

laboratories, from the sub-cellular scale up to the leaf scale,

for many decades (Baker, 2008), but only recently has it been

possible to retrieve it from space-borne remote-sensing plat-

forms at the global scale. The majority of leaf-scale fluores-

cence research focused on induction kinetics, e.g. the tempo-

ral course of fluorescence (induced by saturating light pulses

under various conditions) during the period of light acclima-

tion of dark-adapted leaves. On the contrary, passive remote

sensing from satellite platforms allows only measuring the

light-adapted steady-state fluorescence (or SIF). However,

this has opened the possibility of exploring the carbon cy-

cle dynamics in various terrestrial ecosystems, ranging from

tropical forests (Lee et al., 2013; Parazoo et al., 2013) to the

northern tundra (Walther et al., 2018), passing by agricultural

landscapes (Guan et al., 2015; Guanter et al., 2014). It has

been used to analyse the response of plants to water availabil-

ity (Walther et al., 2019) and drought (Parazoo et al., 2015;

Yoshida et al., 2015; Sun et al., 2014) but also as an alter-

native measure to typical remote-sensing greenness indices

such as the NDVI (normalised difference vegetation index)

and EVI (enhanced vegetation index) for vegetation phenol-

ogy (Joiner et al., 2014; Walther et al., 2016).

Despite the abundance of recent studies, currently there

is no operational satellite instrument specifically dedicated

to the measurement of SIF. The SIF signal is notoriously

difficult to measure from space, as it represents only 1 %

to 5 % of the total reflected radiation in the near-infrared

spectrum that is detected by a remote-sensing instrument

(Meroni et al., 2009). Measuring it requires both a high spec-

tral resolution and high signal-to-noise ratio, which gener-

ally comes at the expense of spatial detail. The first mission

specifically designed for this purpose is the European Spatial

Agency’s Earth Explorer – FLEX (FLuorescence EXplorer),

due to be launched in 2023. All datasets that are currently

available come from missions originally conceived for mea-

suring atmospheric trace gas concentrations. These can be

separated into those providing highly precise soundings but

with sparse and thus spatially discontinuous samples (e.g.

GOSAT, TanSat and OCO-2) and those which do provide a

spatially continuous coverage but with less accuracy due to

a reduced spectral resolution (e.g. SCIAMACHY, GOME-2

and, more recently, TROPOMI). After the initial discovery

that such instruments could be serendipitously used to re-

trieve SIF from space (Frankenberg et al., 2011; Joiner et al.,

2011; Guanter et al., 2012), different retrieval methods have

been developed to adjust to the various sensors (Joiner et al.,

2013; Köhler et al., 2015; Sun et al., 2018; Köhler et al.,

2018), each with specific properties such as different spec-

tral fitting windows and cloud filtering procedures, resulting

in various distinct SIF datasets.

For a SIF dataset to become truly useful to the Earth

system science community as a proxy for GPP, the follow-

ing properties should be optimised: (1) the temporal archive

should be as long as possible, (2) the revisit frequency should

be high (ideally at daily or even sub-daily scale), (3) the geo-

graphic extent should be global (ideally gap-free), and (4) the

spatial resolution should be high enough to relate to distinct

land cover elements or plant functional types (PFTs). No cur-

rent individual SIF dataset adequately satisfies these specifi-

cations. Retrievals based on GOME-2 (Joiner et al., 2013;

Köhler et al., 2015) are perhaps at present those closest to

the mark, thanks to their spatially continuous sampling de-

sign combined with their temporal archive, which has been

running since 2007. However, their spatial resolution is 0.5◦

(approximately 50 km), which is too low for many applica-

tions in Earth science. The situation changed in 2018 with the

operational arrival of TROPOMI, from which SIF can be re-

trieved from a ground pixel footprint of around 7 km×3.5 km

at nadir (Köhler et al., 2018), but the shallow temporal depth

of this data record will preclude its use for many applications

for various years to come if no compatible archive is estab-

lished.

To remedy the lack of spatial detail, several studies have

proposed enhancing the spatial resolution of currently avail-

able SIF data. The first of such studies (Duveiller and

Cescatti, 2016) leverages on the concept of light-use effi-

ciency (LUE) used in GPP modelling (Monteith, 1977; Run-

ning et al., 2004) to constrain the spatial re-allocation of

GOME-2 SIF values within a 0.5◦ × 0.5◦ grid cell. This

model assumes that SIF can be estimated as a function of

greenness, as described by the NDVI, which is then down-

regulated based on water availability and temperature, char-

acterised respectively by evapotranspiration (ET) and land

surface temperature (LST). NDVI, ET and LST are all satel-

lite remote-sensing variables that are available at the fine

scale (e.g. ≤ 0.05◦), can be aggregated to the SIF resolu-

tion to establish the relationship over a local spatio-temporal

window and can then be used to predict SIF at higher reso-

lution. Since then, other studies have adopted entirely data-

driven approaches relying on machine-learning techniques to

either reconstruct SIF based on high-spatial-resolution re-

flectances from another satellite (Gentine and Alemoham-

mad, 2018; Li and Xiao, 2019) or to gap-fill spatially sparse

OCO-2 data (Yu et al., 2018; Zhang et al., 2018b). Com-

pared to these entirely empirical approaches, the Duveiller

and Cescatti (2016) method has the particularity that it re-

mains data-driven, as the original SIF signal is preserved

at each step, yet the downscaling remains physiologically

constrained by the assumptions of a semi-empirical process-

based model grounded on theory.

The objective of this work is to present an improved and

updated downscaled SIF dataset based on the Duveiller and

Cescatti (2016) methodology. Besides an extension of the

archive until the end of 2018, the new dataset has a higher

temporal frequency and is constructed from both updated

explanatory variables and different SIF retrievals. The op-

timal model configuration is selected based on a compari-

Earth Syst. Sci. Data, 12, 1101–1116, 2020 www.earth-syst-sci-data.net/12/1101/2020/



G. Duveiller et al.: A spatially downscaled SIF satellite product 1103

son with validation data composed of high-spatial-resolution

and high-spectral-resolution OCO-2 SIF observations. Fi-

nally, the resulting downscaled SIF data are compared to the

new TROPOMI retrievals in view of constituting an archive

for this promising SIF data stream.

2 Material and methods

2.1 Explanatory variables at high spatial resolution

The explanatory variables used to downscale SIF are all

retrieved from observations of the same instrument, called

MODIS (Moderate Resolution Imaging Spectroradiome-

ter), that flies aboard two sun-synchronous orbiting plat-

forms: Terra (with a descending morning orbit) and Aqua

(with an ascending afternoon overpass). The variables used

in the original Duveiller and Cescatti (2016) study, i.e.

monthly NDVI, ET and LST from the respective MYD13C1,

MOD16 (Mu et al., 2011) and MYD11C3 (Wan, 2008)

datasets, are all part of version 5 of MODIS products, which

are now deprecated and superseded by those of version 6.

Here, besides using the new version 6 products, we explore

the possibility of generating a downscaled SIF product with

an 8 d time step, and thus daily or 8 d MODIS products are

used instead of the monthly products used in Duveiller and

Cescatti (2016). For LST, the 8 d MYD11C2 product based

on the Aqua instrument is used (Wan et al., 2015b) to keep

afternoon observations (circa 13:30 local time), but these are

complemented by the morning MOD11C2 LST data prod-

uct from Terra (Wan et al., 2015a) to explore whether earlier

morning measurements (circa 10:30 local time) can improve

the downscaling performance. Instead of working with the

pre-computed monthly or 16 d NDVI products, we decided

to use the BRDF-corrected MODIS reflectance MCD43C4

products (Schaaf and Wang, 2015), which provide daily esti-

mations based on a 16 d moving kernel using the methodol-

ogy of Schaaf et al. (2002). To ensure a temporal match with

the LST product, the day corresponding to the centre of the

8 d LST compositing window is used to select the reflectance

values of interest and then calculate NDVI. Furthermore,

other indices that could be better downscaling explanatory

variables, such as the already mentioned EVI (Huete et al.,

2002), near-infrared reflectance of vegetation (NIRv) (Bad-

gley et al., 2017) and the normalised difference water index,

or NDWI (Gao, 1996), are also calculated based on these re-

flectances. NDWI is more specifically expected to be a plau-

sible surrogate for the MODIS ET product, the latter being

a highly modelled data product in itself. Finally, to retain a

comparable product to the original, the ET MOD16A2 prod-

uct (Running et al., 2017) is also collected. For all products,

the relevant quality flags were used to mask out values of

inferior quality. All products were retrieved directly from

the NASA LPDAAC (https://lpdaac.usgs.gov/, last access:

11 May 2020) using the R MODIS package (Mattiuzzi and

Detsch, 2018), with the exception of the MOD16A2, which

unlike the others is not directly available at the 0.05◦ spa-

tial resolution and was thus aggregated to that grid by using

a sliding window of 16 d moving at 8 d time steps using the

Google Earth Engine platform (Gorelick et al., 2017).

2.2 SIF data from GOME-2, OCO-2 and TROPOMI

The first source of SIF data is from the GOME-2 instru-

ment aboard the MetOp-A satellite. The SIF retrievals are

acquired at around 09:30 local time (at the Equator) and at

a spectral wavelength around 740 nm. The spatial footprint

of these measurements was approximately 40 km×80 km be-

fore 2013 and 40 km×40 km after that date as a consequence

of the additional monitoring capacities due to the arrival of

MetOp-B. Two retrievals from GOME-2 are used in this pa-

per. The first was developed by Joiner et al. (2013) and is

referred to as JJ in this study. Version 25 of this retrieval

was used in the original Duveiller and Cescatti (2016) paper,

which was superseded by version 27, used here. The second

retrieval was proposed by Köhler et al. (2015) and is referred

to here as PK. For both JJ and PK datasets, the individual re-

trievals are filtered to keep only those with solar zenith angles

below 70◦, local solar time between 08:00 and 14:00, and ef-

fective cloud cover fraction below or equal to 0.5. Then they

are gridded into 0.5◦ cells by taking the mean value over a

period of 16 d, in line with the MODIS reflectance products.

Since the GOME-2 acquisition time is early in the morning,

values need to be multiplied by a daily correction factor to

make them comparable with estimates from other sources.

Frankenberg et al. (2011) proposed a simple approach to con-

vert the instantaneous SIF to a daily average, which accounts

for variations in overpass time, length of day and solar zenith

angle. For the JJ dataset, such a daily correction factor is al-

ready provided in the dataset. For the PK dataset it is applied

using the implementation used in Köhler et al. (2018) as fol-

lows:

SIF =SIF(tm) ·
1

cos(θ (tm))

·

t=tm+12 h
∫

t=tm−12 h

cos(θ (t)) · H (cos(θ (t)))dt, (1)

where θ (tm) is the solar zenith angle at the time of measure-

ment tm and the integral is computed numerically in 10 min

time steps (dt), with the heavy-side step function H zeroing

out negative values of cos(θ ). This daily correction factor is

applied to the SIF retrievals prior to compositing and grid-

ding.

The second source of SIF data is the OCO-2 platform (Sun

et al., 2018). These retrievals are made from soundings over

footprints of 1.3 km×2.25 km at nadir, which together create

a 10 km wide stripe with a revisit time of 16 d. Retrievals

are made at two wavelengths, 757 and 771 nm, at 13:00 local

time (at the Equator). The SIF values at both wavelengths

www.earth-syst-sci-data.net/12/1101/2020/ Earth Syst. Sci. Data, 12, 1101–1116, 2020
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are first corrected daily, and then, to render them comparable

to the GOME-2 SIF at 740 nm, they are combined together

using the following formula:

SIF740 nm = 1.56 · (SIF757 nm + 1.8 · SIF771 nm)/2. (2)

The scaling factors were determined based on a reference SIF

emission shape derived from leaf-level measurements con-

ducted by Magney et al. (2019). Although ideally this rela-

tionship should be established at the canopy level, this would

prove to be a daunting task given the large canopy-scale

variability encountered across the globe. Furthermore, the

canopy effects are expected to be more prominent at smaller

wavelengths than 740 nm, so we deemed that the leaf-level

relationship should be sufficient for our purpose. All indi-

vidual observations between 2015 and 2017 are gridded into

a common 0.05◦ grid to match the MODIS grid for explana-

tory variables (and which becomes the grid of the final down-

scaled SIF product). This results in a validation dataset that

contains more than 138 million records distributed across

the globe. Each record is further attached to ancillary in-

formation of the major climate zone group in which it falls

(tropical, dry, temperate, continental or polar) based on the

revisited Köppen–Geiger classification (Kottek et al., 2006)

and the dominant vegetation type derived from the European

Space Agency’s Climate Change Initiative land cover maps

(ESA, 2017). Due to their superior spectral and spatial reso-

lution, the SIF retrievals from OCO-2 are considered here to

be a reference.

The third source of SIF data is from TROPOMI, the

single instrument aboard the Sentinel-5 Precursor satellite

(Veefkind et al., 2012). These data have been available daily

since early 2018, with a footprint of 7 km×3.5 km at nadir.

The daily corrected retrieval results with the default filter-

ing as described in Köhler et al. (2018) were aggregated to

the 0.05◦ grid using the 16 d compositing scheme used for

GOME-2. Similar to the other SIF datasets, the filtering con-

sists of thresholds for the fit quality, clouds, and extremely

low and high radiance levels and high solar zenith angles.

2.3 Parameterisation of the downscaling methodology

The downscaling procedure follows three steps: (1) an ag-

gregation of the explanatory variables to the low spatial res-

olution, (2) a calibration of the downscaling function over a

local spatio-temporal window of low-spatial-resolution data

and (3) the application of the calibrated function to the orig-

inal explanatory variables at high spatial resolution to result

in a downscaled SIF estimation. The downscaling function

always takes the following form:

SIF = f (V ) · f (W ) · f (T ), (3)

where f (V ) is a function of a vegetation index V , which

is down-regulated by two other functions, f (W ) and f (T ),

both outputting a value between 0 and 1 based on indicators

Table 1. Boundary conditions used to initialise the calibration pro-

cedure for every local optimisation dependent on the explanatory

variables used as a proxy for the vegetation V and for the water W

and thermal T stress.

Index Explanatory Parameter Min Initial Max

type variable

V NDVI b1 0.5 1 1.5

V NDVI b2 0.1 2 5

V EVI b1 0.5 1 1.5

V EVI b2 0.1 2 5

V NIRv b1 0.5 1 1.5

V NIRv b2 0.1 2 5

W ET b3 0.05 0.1 0.5

W ET b4 1 20 200

W NDWI b3 0 50 500

W NDWI b4 −1 0 1

T MOD b5 −310 −295 −290

T MOD b6 1 10 50

T MYD b5 −310 −295 −290

T MYD b6 1 10 50

W and T , respectively representing water and thermal stress.

A quadratic, a sigmoid and a Gaussian function are respec-

tively used to model f (V ), f (W ) and f (T ), resulting in the

following expanded expression:

SIF =b2V
b1 ·

1

1 + exp(b3(b4 − W ))

· exp

(

−0.5

[

T + b5

b6

]2
)

. (4)

The values of these bi parameters can have some physiolog-

ical interpretation. b1 determines the degree of linearity of

the general relationship between the vegetation index V and

SIF, which is allowed to range from having some saturating

effect (b1 = 0.5) to a mild exponential effect (b1 = 1.5). b2

is a simple multiplicative scaling factor, as the units of V are

not the same as those of SIF. The function to down-regulate

f (V ) based on water stress is characterised by b3, which de-

termines the steepness of the sigmoid function f (W ), and b4,

which represents the value of W at which f (W ) = 0.5, thus

defining the point on the W scale at which the hydric stress

reduces f (V ) by half. The thermic down-regulating function

f (T ) depends on its position, determined by the parameter

b5, which can be interpreted as an optimal temperature (in

degrees kelvin) for photosynthesis to occur over the region.

Finally, b6 defines the width of the Gaussian function f (T ),

meaning higher values represent lower sensitivity to temper-

ature variations. The bi parameters are estimated in the cal-

ibration phase for each time step using an adaptable spatial

moving window always composed of 40 observations. These

are selected within the limits of a box with an 11×11 GOME-

2 pixel window, and they include the central pixel and the
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Figure 1. Exploring the agreement, absolute bias and correlation between the OCO-2 validation dataset and downscaled GOME-2 SIF based

on different retrievals (PK for Köhler et al., 2015, or JJ for Joiner et al., 2013) and using different explanatory variables (NDVI, EVI or NIRv

for V ). Not all combinations were calculated. Yellow circles indicate the use of ET as a proxy for hydric stress (W ), while triangles represent

the use of NDWI instead. Empty triangles correspond to a subset in which the proxy for thermal stress (T ) is changed from MYD to MOD

(this was only done for the PK dataset). Each metric is calculated based on all available samples within the period 2015–2017.

39 available observations that are nearest to it. The calibra-

tion of the bi parameters is done over this selection using

the quasi-Newton L-BFGS-B optimisation algorithm (Byrd

et al., 1995) implemented in the core R package stats, which

allows the setting of a lower and an upper boundary for each

parameter.

The difference with the original procedure described in

Duveiller and Cescatti (2016) lies in using two different SIF

retrievals, SIFJJ and SIFPK, and different explanatory vari-

ables for V , W and T . NDVI, EVI and NIRv are three al-

ternative spectral indices explored for V ; ET and NDWI are

used for W ; and morning and afternoon LST, labelled MOD

and MYD, are used for T . Various combinations of variables

are tested, but giving priority to those that are suspected to

provide more relevant information, as the computational cost

of each run was not negligible. For all tests we used the initial

conditions exposed in Table 1 for a period coinciding with

that of the OCO-2 validation dataset, i.e. 2015–2017. The in-

dividual values of each downscaled dataset are matched in

space and time with those of the OCO-2 dataset and grouped

per climate zone and dominant vegetation type.

2.4 Quantifying agreement

To quantify the agreement between different sources of SIF

data, the λ index of agreement proposed by Duveiller et al.

(2016) is used in addition to regular metrics of correlation

and bias. This metric quantifies the degree of agreement be-

tween two sets of values, x and y, considering both the bias

between them and their level of correlation, all within a sin-

gle number ranging from 0 to 1. It has an added advantage of

being symmetric, unlike a typical measurement of goodness

of fit such as the coefficient of determination, and yet can still

be interpreted as a familiar correlation coefficient when there

is no bias. The calculation of this index is as follows:

λ = 1 −
n−1

∑n
i=1(xi − yi)

2

σ 2
x + σ 2

y + (µx − µy)2 + κ
, (5)

where µ and σ represent the mean and standard deviation,

respectively. The numerator of the fraction in Eq. (5) is the

mean squared deviation between x and y, while the denom-

inator quantifies the maximum deviation this set of points

could take. The term κ represents the covariance between x

and y. Including it in the denominator ensures that λ does not

take negative values when x and y are anti-correlated, but it

also unnecessarily inflates λ non-linearly. Therefore, κ is set

to zero when the correlation between x and y is positive and

otherwise takes the value of κ = 2n−1|
∑n

i=1(xi − µx)(yi −

µy)|.

We also use a variant of λ that quantifies only the unsys-

tematic contribution to the agreement, i.e. after the system-

atic bias between x and y is removed. To calculate this λu, the

numerator in Eq. (5) needs to relate only to the unsystematic

component of the deviations instead of the total deviations.

The mean squared unsystematic deviation is calculated based

on the orthogonal distances h from the principal plane be-

tween x and y, resulting in the following expression for λu:

λu = 1 −
n−1

∑n
i=1h

2
i

σ 2
x + σ 2

y + (µx − µy)2 + κ
. (6)

To characterise the principal plane between x and y and ob-

tain the distances h, we use an eigendecomposition of the co-

variance matrix containing vectors x and y, as described in

detail in Sect. 5 of the Supplement in Duveiller et al. (2016).

This also provides the slope and intercept of the lines be-

tween x and y in a symmetric way; i.e. the values remain

unchanged when x and y are interchanged. This slope and in-

tercept are used in our study to quantify and correct the bias

www.earth-syst-sci-data.net/12/1101/2020/ Earth Syst. Sci. Data, 12, 1101–1116, 2020
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Figure 2. Inter-comparison of the performance of different downscaled products disaggregated per major vegetation type and climate zone.

The downscaled products are based on either the PK or JJ retrievals combined with either the old set of explanatory variables (NDVI, ET and

MYD) or the new one (NIRv, NDWI and MYD). Each graph plots the agreement of a given downscaled product with OCO-2 over the period

2015–2017 against the agreement of another product with OCO-2 for the same period. The overall bias (B), correlation (r) and agreement

index (L) are reported for at the corresponding corner of each graph, with numbers in bold highlighting the better values in each pairwise

comparison.

between downscaled GOME-2 SIF values and TROPOMI re-

trievals.

3 Results

3.1 Benchmarking the downscaled datasets

The OCO-2 validation dataset is used to identify the opti-

mal combination of explanatory variables and input dataset

to produce the enhanced GOME-2 downscaled dataset. Since

generating these datasets is computationally expensive, not

all combinations were calculated. We instead explore how re-

placing a single variable at a time affects the results, starting

from the initial configuration from the Duveiller and Cescatti

(2016) paper: the JJ SIF retrieval downscaled with NDVI, ET

and MYD. The results are summarised in Fig. 1.

The first variable to substitute is ET with NDWI. NDWI

is a product that is at a lower level than ET, requiring far

fewer assumptions and thus rendering the downscaling in-

dependent from other sources of information such as the cli-

mate re-analysis data and the eddy-covariance towers used in

calibrating ET. Substituting ET for NDWI results in a marked

reduction in agreement for the JJ dataset due to a loss in cor-

relation and an increase in bias. For the PK dataset, the drop

in correlation is smaller and is accompanied with a reduction

in the bias, resulting in an increase in agreement.

The second variable change that is explored is the overpass

time of the LST data serving as a proxy for the thermal stress.

Earth Syst. Sci. Data, 12, 1101–1116, 2020 www.earth-syst-sci-data.net/12/1101/2020/



G. Duveiller et al.: A spatially downscaled SIF satellite product 1107

Figure 3. General benchmarking of the performance of GOME-2 SIF downscaling versus OCO-2 validation measures for the period 2015–

2017. The old downscaling method refers to that based on the original explanatory variables used in Duveiller and Cescatti (2016), i.e. NDVI,

ET and afternoon LST, while the new method refers to the best explanatory variables identified in this study, i.e. NIRv, NDWI and afternoon

LST. PK refers to the GOME-2 SIF retrieval proposed by Köhler et al. (2015), while JJ refers to that by Joiner et al. (2013). The agreement

refers to the index of agreement λ proposed by Duveiller et al. (2016).

Replacing the afternoon overpass (MYD) used initially with

the morning one (MOD) could be relevant, as it is closer to

the overpass time of the GOME-2 instrument. On the other

hand, data from the morning MODIS instrument aboard the

Terra platform may be of lower quality due to sensor degra-

dation (Sayer et al., 2015). As we did not expect this change

to make a strong difference, and to prioritise computational

resources, this analysis is done only on PK data. It shows

an increase in both the correlation (marginally) and the bias

(more substantially), and as a result this reduces the overall

agreement. We do not expect the results to be much different

for the JJ dataset.

The third variable to exchange is the vegetation index from

NDVI to EVI and NIRv. For both JJ and PK retrievals there

is a progressive increase in correlation and agreement, with

the best results stemming from the use of NIRv. Replacing

NDVI with EVI or NIRv even reduces slightly the bias for

JJ, whilst it marginally increases for PK. For JJ, the loss of

agreement due to the replacement of ET by NDWI appears

to be considerably mitigated by the use of NIRv instead of

NDVI.

In view of these results, a single common configuration of

explanatory variables consisting of NIRv, NDWI and MYD

is selected for downscaling both JJ and PK retrievals over the

longer time period from 2007 to 2018. Both of these down-

scaled products are made available together as outputs of this

study and will be referred to as a single downscaled SIF

dataset containing two separate products (Duveiller et al.,

2019).

To delve further into the details, Fig. 2 compares how both

JJ and PK retrievals fare with respect to OCO-2 when down-

scaled either with the old configuration of explanatory vari-

ables or the new one, but disaggregating the results for dif-

ferent vegetation types within distinct climate zones. Each

graph plots the index of agreement of a given downscaled

product with OCO-2 against the index of agreement of the

other downscaled product with OCO-2 so that for each point,

if it falls on a given side of the 1 : 1 line, the product of

that side has higher agreement with the references. Figure 2a

shows that, with the original explanatory variables of NDVI,

ET and MYD, the JJ retrieval agrees more with the OCO-2

dataset than the PK retrieval, as the latter is generally affected

by a bias. However, some vegetation types in the tropics, such

as croplands, grasslands and evergreen broadleaf forests, do

have higher agreement with OCO-2 in the PK product, and

this is accentuated with the new downscaling methodology

(Fig. 2c and d). The new methodology only marginally im-

proves the JJ product with respect to the original downscaled

SIF data (Fig. 2b). Figure 2d provides an inter-comparison

of the two downscaled products made available here, poten-

tially guiding users to prefer one or the other depending on

the type of climate or the dominant vegetation cover of their

area of interest.

To resume the outcome of this benchmarking with respect

to the OCO-2 validation dataset, Fig. 3 illustrates how both

SIF retrievals fare with the new set of downscaling explana-

tory variables compared both to the old downscaling method

and to SIF at the original spatial resolution. For both re-

trievals, the improvement in agreement between GOME-2

and OCO-2 is due more to the actual spatial downscaling

than to the choice of the downscaling variables. The original

PK retrieval shows higher agreement than the original JJ re-
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Figure 4. Selection of spatio-temporal subsets of the newly downscaled PK SIF product. Each box covers a region of 8◦ × 8◦, covering

parts of (A) the European Alps and their surroundings, (B) Bolivia, (C) the African Great Lakes, (D) the Indus Valley and the Indo-Gangetic

Plain, and (E) the US Corn Belt (the locations of these areas are shown in Fig. 5). The corresponding time is mentioned above each image.

Although the temporal frequency of the dataset is 8 d, only an image every 24 d is presented here to accentuate the seasonal dynamics. Notice

also that the five time series are not synchronised. Grey areas indicate lack of data.

trieval due to higher correlation despite a larger bias, but the

downscaling procedure improves both to very similar levels

of agreement and correlation.

3.2 Exploration of the data

As both PK and JJ downscaled products have broadly simi-

lar spatio-temporal patterns, for the sake of brevity and sim-

plicity we are going to focus the rest of this section on

Earth Syst. Sci. Data, 12, 1101–1116, 2020 www.earth-syst-sci-data.net/12/1101/2020/
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Figure 5. Maximum value of SIF over the entire new PK downscaled product. Values are in megawatts per square metre per steradian per

nanometre (mW m−2 sr−1 nm−1), the spatial resolution is 0.05◦ and the temporal range spans from early 2007 to the end of 2018. The white

boxes represent the zones illustrated in Fig. 4.

only one of the two: PK. The dataset spans from 21 Jan-

uary 2007 to 31 December 2018, with an 8 d revisiting fre-

quency. To provide an overview of the data, a selection of

spatio-temporal subsets are displayed in Fig. 4. These rep-

resent chronosequences of various areas around the globe,

with a sub-sampled revisit frequency to accentuate the sea-

sonal dynamics of the signal. The rise and fall of productivity

in seasonal vegetation are clearly visible in all cases, ranging

from the surroundings of the European Alps (A) to the east of

the Andean Cordillera (B) and even areas around the African

Great Lakes (C). The impact of agriculture is particularly ev-

ident in the irrigated areas of the Indo-Gangetic plains (D)

and within the US Corn Belt (E). Figure 4 also provides a

glimpse of the data gaps that can occur over mountainous

areas and lakes and during rainy periods, which can occur

either due to missing coarse-scale SIF input data or missing

fine-scale values of explanatory variables.

To resume the SIF patterns across the globe, Fig. 5 pro-

vides a map of the maximum SIF value encountered over the

entire dataset. This provides a largely gap-free representation

of the maximal productivity of terrestrial ecosystems during

the 2007–2018 period. The highest values are encountered in

intensive agricultural areas of South America, North Amer-

ica and north-eastern China.

3.3 Inter-comparison with TROPOMI

The PK downscaled product overlaps with TROPOMI during

the period from 18 March to 23 December 2018. These two

instruments sound vegetation in potentially different physi-

ological conditions due to the particular overpass times of

their respective satellite platforms (morning for GOME-2

and midday for TROPOMI). While this discrepancy may

be mitigated by the daily correction factor and the light-

use efficiency downscaling procedure, it may also be com-

pounded by other factors, and a proper inter-comparison

is warranted before attempting to establish an archive for

TROPOMI based on the downscaled GOME-2 values. For all

common records over this period the temporal agreement is

thus quantified and mapped in Fig. 6a. The λ metric takes on

high values in the northern temperate zones, particularly over

cultivated areas such as the US Corn Belt and north-eastern

China, where high maximum SIF values are observed in

Fig. 5. Relatively high agreement (0.5 ≤ λ ≤ 0.75) is found

in many highly seasonal areas, such as the Sahel, while ar-

eas with no seasonality such as deserts and tropical forests

have very low agreement (λ ≤ 0.25). This suggests that a

systematic bias is largely responsible for the disagreement,

which can be confirmed by mapping the fraction of system-

atic deviations over total deviations in Fig. 6b. This fraction

is elevated everywhere, and particularly over South Amer-

ica, where the South Atlantic Anomaly of the magnetic field

is known to deteriorate the quality of the GOME-2 SIF re-

trievals (e.g. Köhler et al., 2015). When the systematic com-

ponent is ignored using the unsystematic index of agreement

λu, the map in Fig. 6c reveals that the agreement between

both data streams is high. Parts with lower agreement remain

in tropical forests and deserts, but even these generally have

λu ≥ 0.75.

To further illustrate the compatibility of our new down-

scaled GOME-2 SIF product with TROPOMI SIF retrievals,

Fig. 7 shows latitudinal profiles of median SIF for differ-

ent time slices. The systematic bias between both products

is evident and relatively consistent. When the bias is cor-

rected using the slope and intercept values obtained at the

pixel level based on the common overlapping time series be-
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Figure 6. Agreement between the downscaled PK SIF product and TROPOMI SIF retrievals for the period from 16 April to 23 Decem-

ber 2018. Panel (a) shows the total agreement using the λ metric, based on all deviations irrespective of whether these are systematic or

non-systematic deviations. Panel (b) shows the ratio between systematic and total deviations. Panel (c) shows the agreement based only on

the unsystematic component, λu, in which any disagreement due to a systematic bias is removed.

tween the downscaled GOME-2 PK SIF and TROPOMI SIF,

the resulting median latitudinal profiles closely match each

other (reducing the root-mean-square deviations from 0.188

to 0.0328 mW m−2 sr−1 nm−1).

4 Discussion

The newly downscaled SIF dataset presented here should be

of general interest for Earth system science and more partic-

ularly for those studying vegetation dynamics over terrestrial

ecosystems. We foresee it becoming a valuable asset to bet-

ter calibrate dynamic global vegetation models (DGVMs),

such as those used in TRENDY (Sitch et al., 2015) and

which serve as a baseline to establish the yearly global car-

bon budget (Le Quéré et al., 2018). This SIF dataset could

also be used with data-driven approaches, such as those be-

hind widely used products such as FLUXCOM (Jung et al.,

2018) and GLEAM (Miralles et al., 2011), to provide en-

hanced datasets of the important variables such as GPP and

ET.

The comparison of the downscaled PK product with

TROPOMI SIF retrievals for the current overlap period

shows promising results towards creating a surrogate archive

for TROPOMI extending back to early 2007. Since the un-

mixing will never be perfect, this will never fully replace

actual high-spatial-resolution SIF retrievals, but to a certain
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Figure 7. Comparison of latitudinal profiles of TROPOMI SIF, downscaled GOME-2 PK SIF, and the same downscaled GOME-2 SIF but

bias-corrected based on the slope and intercept obtained at pixel level over the overlapping time series.

extent it should be a valuable proxy. To determine the de-

gree to which it can be used, as a bench line for detecting

changes for instance, more investigations will be necessary

once longer time series of synchronous data are available.

For the time being, the discrepancies between both appear to

consist of a systematic bias that may originate from a com-

bination of various reasons, ranging from differences in the

retrieval approach to sun-surface-sensor geometries, acquisi-

tion times and post-filtering. Correcting this bias empirically

results in large agreement between the two data sources. The

spatialised pixel-wise coefficients (slope and intercept) to

rescale the GOME-2 downscaled PK SIF retrievals onto the

TROPOMI values are also provided along with this dataset.

Having been extracted using an eigendecomposition as de-

scribed in Duveiller et al. (2016), the coefficients for this lin-

ear bias correction are reference-agnostic, i.e. neither dataset

source (GOME-2 or TROPOMI) was explicitly chosen as a

reference, and are thus symmetric.

The resulting downscaled products still contain gaps. As

mentioned before, gaps can occur due to missing data of ei-

ther the input SIF or the explanatory variables. Another rea-

son for data gaps occurs over islands or peninsulas, which are

areas were there is an insufficient number of neighbouring

grid cells to perform the downscaling operation. These gaps

could be filled in various ways with different levels of com-

plexity, ranging from statistically smoothing the time series

to coupling them with a model such as SCOPE (van der Tol

et al., 2009) in a data assimilation system (Lewis et al., 2012).

To allow users to have the maximum level of flexibility, we

have chosen here not to do any gap-filling beyond what is

already being done using the spatial weighted smoothing in-

cluded in the original downscaling methodology.

Revisiting the downscaling approach from Duveiller and

Cescatti (2016) created an opportunity to explore the use of

distinct retrievals and different input variables. It emerges

that the factor contributing most to the improvement is the

downscaling procedure itself rather than the choice of the re-

trieval or that of the explanatory variables. This highlights

the benefit and rationale of seeking to have information com-

ing from a finer spatial support, which is more adequate for

characterising the spatial fragmentation of terrestrial ecosys-

tems. The JJ retrieval, which is known to be noisier and have

a smaller bias than PK, benefited particularly from the down-

scaling procedure, probably due to the embedded spatial

smoothing step. Regarding the change in explanatory vari-

ables, the more important change comes from substituting

NDVI by NIRv, which has indeed been shown to be highly

correlated to SIF (Badgley et al., 2017). That improvement

partly enabled us to tolerate the replacement of ET with the

reflectance-based index NDWI, rendering the output fully in-
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dependent from eddy-covariance flux towers and thus from

ground-based GPP measurements. The change in the timing

of the LST estimation appears marginal based on the anal-

ysis using the PK dataset, and it was thus decided to keep

the afternoon overpass, as it comes from a younger satellite

that may be available for longer. However, the effect of LST

timing on the JJ retrieval could further be investigated in the

future.

The downscaling function based on light-use efficiency

theory used here could further be fine-tuned to further in-

crease the performance. In this study and for the present ver-

sion of our enhanced downscaled SIF dataset, we made a de-

liberate choice to maintain the overall structure of this func-

tion in order to stay compatible with the original Duveiller

and Cescatti (2016) work. A possible refinement could come

by including information on the incoming photosynthetically

active radiation (PAR) at the surface, if this can be obtained

at the high spatial resolution necessary for downscaling (e.g.

Ryu et al., 2018). Having an input for PAR could help re-

move the implicit assumption that cloud cover has to be sim-

ilar over the spatio-temporal supports of both the input down-

scaling explanatory variables and the retrieved GOME-2 SIF.

Instead, cloud cover could be expected not to be equal due to

various reasons such as differences in overpassing times, spa-

tial resolution and compositing schemes. Another improve-

ment should come from actually considering the fraction of

escaping SIF photons relative to the total SIF emitted by

the whole canopy, otherwise known as the escape ratio (Ryu

et al., 2019). This would imply using some knowledge of the

canopy structure of the vegetation type in question, which

may come from estimations of the clumping index based on

multi-angular satellite observations (Jiao et al., 2018). Such

improvements should be explored and considered in future

developments of the present dataset.

The present approach to downscaling SIF has some dis-

tinctive characteristics with respect to those proposed in

other recent studies (e.g. Gentine and Alemohammad, 2018;

Yu et al., 2018; Zhang et al., 2018b). First, the downscaling is

done within some physiological constrains imposed by light-

use efficiency theory rather than using a purely empirical

machine-learning approach. This should ground the down-

scaled values within limits of plausibility and further allow

for a certain degree of extrapolation. However, the present

approach remains data-driven, as the model only disaggre-

gates the SIF signal in space, but does not alter its mean value

at a given time and location. The downscaling is also done

within a regionalised context using local moving windows in

both space (40 nearest pixels) and time (16 d). This ensures

a calibration that is tailored to local conditions and further

normalises explanatory variables such as ET and NDWI that

need to be used in relative terms. By forcing the calibration

of parameters to be done locally and independently at ev-

ery time step, we further ensure that the original information

contained in the SIF signal is maintained in the downscaled

products. This means that the downscaled SIF is not a mere

rescaling of the information provided by the high-spatial-

resolution reflectance bands; this also means that any trend

present in the input SIF data due to sensor degradation (e.g.

Zhang et al., 2018a) will necessarily be present in the respec-

tive downscaled SIF dataset. Finally, the approach also uses a

particular weighted-average smoothing using an ensemble of

3 × 3 sets of calibrated parameters (for details, see Duveiller

and Cescatti, 2016) that removes tiling artefacts and partially

fills gaps where original SIF retrievals are deemed to be too

noisy. Despite these differences, a full inter-comparison be-

tween downscaled or reconstructed SIF datasets and a bench-

marking with a common and independent reference (such as

GPP from flux towers) should be considered to guide future

algorithmic developments and consolidate our capacity to es-

timate SIF and GPP from space.

5 Code availability

Code associated with this study, including the script to down-

scale SIF and the scripts to generate the figures in this paper,

is available here: https://doi.org/10.5281/zenodo.3753521

(Duveiller and Filipponi, 2020).

6 Data availability

The dataset of daily corrected downscaled SIF described in

this document has been labelled Version 2.0 to differentiate

it from Version 1.0, which is the original dataset described in

Duveiller and Cescatti (2016). These are all available in the

following repository:

Duveiller et al. (2019) – Downscaled-GOME2-SIF,

European Commission, Joint Research Centre (JRC)

(dataset), https://doi.org/10.2905/21935FFC-B797-4BEE-

94DA-8FEC85B3F9E1, PID – http://data.europa.eu/89h/

21935ffc-b797-4bee-94da-8fec85b3f9e1 (last access:

11 May 2020).

The files of the Version 2.0 dataset that are described here

are grouped by year in distinct NetCDF files for each of

the two GOME-2 retrievals (JJ and PK). The product is dis-

tributed in an equirectangular projection with a pixel size

of 0.05◦. The temporal coverage spans from 2007 to 2018.

The temporal sampling of the product is 8 d. However, ev-

ery record is based on SIF input data retrieved over a 16 d

moving window. This results in a certain amount of temporal

auto-correlation, as the 16 d window moves every 8 d, leaving

an overlap of 8 d in each successive record. The day reported

in the NetCDF file corresponds to the ninth day of the 16 d

retrieval period to match the MODIS convention used in the

MCD43C4 product. Along with the dataset, we also provide

in a separate file the slope and intercept values at the pixel

level to allow users to rescale the downscaled PK GOME-2

values to TROPOMI estimates.

Supporting data to this paper are available in this ex-

tra repository: https://doi.org/10.5281/zenodo.3753024 (Du-
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veiller et al., 2020). This includes data to generate the fig-

ures in this paper as well as OCO-2 and TROPOMI gridded

datasets that had to be generated specifically for this study.

7 Conclusions

This paper presents a new daily corrected SIF dataset with

a spatial resolution of 0.05◦ at 8 d time steps for the pe-

riod 2007–2018 based on two different retrievals of GOME-2

satellite observations. Validation with OCO-2, an indepen-

dent instrument capable of estimating SIF at higher reso-

lution with a very sparse sampling scheme, has served to

identify an adequate combination of explanatory variables

to reach this result. A comparison with SIF from the new

TROPOMI mission indicates that this downscaled SIF could

serve as an archive after a pixel-wise bias correction. As

such, we foresee this new SIF dataset being a valuable as-

set for Earth system science in general and for monitoring

vegetation productivity in particular.

This work also holds promise beyond the simple adjust-

ing of GOME-2 towards TROPOMI. First, it could serve

to produce a prior SIF dataset that could be used to op-

timise the SIF retrievals from the future FLEX mission.

The downscaling framework could further be used to down-

scale TROPOMI retrievals to the spatial resolution of FLEX

(∼ 300 m) by using explanatory variables from instruments

aboard Sentinel-3. FLEX retrievals could even be down-

scaled to decametric spatial resolution by leveraging on com-

binations of multi-spectral and thermic instruments including

Sentinel-2, Landsat-8 and the potential ESA candidate mis-

sion called the High Spatio-Temporal Resolution Land Sur-

face Temperature Mission (LSTM). Finally, the framework

and current dataset could also be adapted towards exploring

geostationary satellite data that will be able to provide opti-

mised sub-daily information of plant status.
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