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Abstract

Background: This study aims to suggest an approach that integrates multilevel models and eigenvector spatial

filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related

studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be
used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel

model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes.

However, the results of conventional multilevel models are potentially misleading when spatial dependency across
neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods

are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem

by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector
spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets.

Methods: In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting
for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability

of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs.

Results: The findings show that sex, employment status, monthly household income, and perceived levels of stress are
significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high

doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased

estimations and improves the explanatory power of the model compared to conventional multilevel models although
there are no changes in the signs of parameters and the significance levels between the two models in this case study.

Conclusions: The integrated approach proposed in this paper is a useful tool for understanding the geographical

distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the
spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is

anticipated that this integrated method will also out-perform conventional models when it is used in other contexts.
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Background
To analyze both effects of individual and neighborhood

factors on individual health outcomes, many previous

health-related studies utilized multilevel models that can

analyze two- (or more) level independent variables in

tandem [1-6]. These studies analyzed various health out-

comes, such as infant mortality [1], a low birth weight

[2], preterm birth [3], late-stage breast cancer [4], chil-

dren’s health-related quality of life [5], and tuberculosis

incidence [6], using aggregated data in common, such

as county-level, census tract-level, and postal code-level

data to represent neighborhood-level variables. The stud-

ies, however, do not take into account underlying spatial

dependency across neighborhoods; thus their multilevel

analyses results are potentially misleading in cases where

data exhibit spatial dependency. Spatial dependency in

health-related data indicates that health outcomes in

nearby neighborhoods are more similar to each other

than to those in distant neighborhoods. In other words,

these studies only consider within-neighborhood correl-

ation (i.e., correlation between individuals within the same

neighborhood) using a hierarchical setting, but fail to ac-

count for potential between-neighborhood correlation.

According to Jerrett et al. [7], spatial dependency of

health outcomes among nearby neighborhoods may arise

from similar socioeconomic (e.g., health facilities and

services) and natural environmental conditions (e.g., air

quality). For example, catchment areas for health facil-

ities may encompass a broader area, thereby transcend-

ing localized administrative boundaries. In terms of

local environment, disease risks from air pollution tend

to be similar among closer neighborhoods because their

local wind direction and/or road conditions (and environ-

mental and traffic policies) are more likely to be similar; as

a result, residents of those neighborhoods are exposed to

similar types and concentrations of atmospheric pollutants

[7-9]. However, the non-spatial multilevel model cannot

address this spatial dependency because the method

typically assumes that neighborhoods (i.e., spatial units)

are statistically independent of each other [10]; thus

multilevel models have been criticized as non-spatial

and unrealistic [10-13].

Based on the notion of spatial dependency of health out-

comes, some researchers used both a non-spatial single-

level linear model ignoring spatial dependency (i.e., linear

models estimated with ordinary least squares or weighted

least squares) and a spatial autoregressive model (SAR)

considering spatial dependency, and compared the two

methods [9,14]. The authors found that non-spatial

single-level models and the SAR models provided dif-

ferent regression results depending on the presence of

spatial dependency. These two studies, however, made

limited attempts to model individual characteristics

when using spatial models, because they used only

aggregated variables. Studies that analyze health out-

comes solely via aggregated data using a single-level

spatial model cannot fully explain factors that truly

influence individual health outcomes [15].

A few researchers have tried to incorporate a geo-

graphical perspective into the multilevel setting in vari-

ous ways to take into account both the multilevel

framework and spatial effects. Some studies attempting

to address spatial dependency in residuals of multilevel

models employed spatial lag regression model specifica-

tions [16,17]. In the spatial lag regression model, the

spatial autoregressive parameter is denoted as ρ, which

indicates the intensity of spatial dependency. Another

study [18] used multilevel models with geographically

weighted regression (GWR) developed by Fotheringham

et al. [13] to consider a spatially varying relationship

between neighborhood factors and obesity. GWR allows

researchers to estimate varying regression parameters

over space. However, in some cases, there can still be

spatial dependency after GWR is used, although this

method may mitigate spatial dependency by considering

spatial variation to some degree; this can influence the

regression results considerably. In addition, according to

Wheeler and Tiefelsdorf [19], GWR’s R2 goodness of fit

tends to be high when residuals have high spatial de-

pendency. Therefore, GWR should be used as an ex-

ploratory tool for understanding spatial variation rather

than a statistically stable method for addressing spatial

dependency.

As discussed above, limited attention has been paid

within the literature to integrating multilevel models and

spatial regression models. However, these two approaches

should be used in combination because the objectives of

both methods are important in health-related analyses.

Thus, it is increasingly necessary to integrate multilevel

models and spatial regression models, especially the eigen-

vector spatial filtering method, an advanced approach to

addressing spatial dependency in datasets. Compared to

spatial lag regression (or SAR) model specifications, which

present only one parameter of global spatial component,

the greatest advantage of eigenvector spatial filtering used

in this paper is to visualize a spatial structure in a map

form by decomposing it into smaller-scale spatial patterns

or local clusters with a set of eigenvectors [20,21]. This

trait could provide a better understanding of how health

phenomena are distributed across the space. Additionally,

because the spatial filtering technique can be applied to a

generalized linear model specification based on the bino-

mial or Poisson probability models, it is more flexible than

the spatial lag regression (or SAR) model, which re-

quires normalizing factor computation [22]. Compared

with GWR, which has an inherent problem of multi-

collinearity among local regression coefficients [19], the

spatial filtering method is more statistically reliable because
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eigenvectors generated in filtering procedure are mutually

orthogonal, which indicates the absence of multicollinear-

ity issues.

Griffith’s study [22] showed the possibility of combin-

ing hierarchical generalized linear models with spatial

filtering method as a disease mapping technique. Based

on this idea, the present study presents how multilevel

modeling components can be linked to the spatial filter-

ing framework by showing an integrated formulation

and uses self-rated health status in South Korea to inves-

tigate whether an integrated “spatially filtered multilevel

model” generates a more robust regression results than

a conventional multilevel model.

This study first identifies whether spatial dependency

exists within neighborhood-level residuals in the multi-

level model. Where spatial dependency is detected, the

eigenvector spatial filtering technique is applied to the

multilevel model to control for spatial dependency. The

study then compares the explanatory power of the

models and the regression results between the conven-

tional model and the spatially filtered model.

Methods
Data and variables

Data are obtained from the following sources: (1) the

2009 Community Health Survey (CHS) of South Korea;

(2) the e-Regional Indicators (2009) provided by Statis-

tics Korea; and (3) the Korean Deprivation Index (KDI)

designed by Yoon [23]. The CHS is a survey of health

outcomes among adults aged 19 or older, conducted by

the Korea Centers for Disease Control and Prevention.

A dependent variable, EQ-5D index (EuroQol-5 Dimen-

sion [24]), is obtained from the CHS. The EQ-5D index

indicates one of the measures of self-rated health status.

This index comprises five dimensions (mobility, self-care,

usual activities, pain/discomfort, and anxiety/depression)

that are measured by means of a three-point scale (no

problems; some problems; extreme problems). Respon-

dents are asked to assess their own health status by select-

ing the most appropriate indicator for each dimension.

Thus, based on these responses, a total of 35 types of self-

rated health status are produced. Each type has different

EQ-5D values that enable researchers to compare health

status between regions or countries [25,26]. A higher value

indicates that a respondent perceives him/herself health-

ier. Based on CHS’ EQ-5D questionnaire responses, the

study employs a weighted modela developed by Kang et al.

[27] to calculate a Korean EQ-5D index. Table 1 provides

descriptive statistics for the Korean EQ-5D index. In order

to minimize the impact of variability in age distribution

across the country, the study included individuals aged 60

and older. From 61,817 respondents, the average of the

Korean EQ-5D index is 0.783 and standard deviation is

0.261 (range −0.229 to 1.0).

To explore how self-rated health status varies across the

study area, census tracts are classified into four quartiles

depending on neighborhood-level EQ-5D values: “Very

low” (first quartile: 0.675 – 0.756), “Low” (second quartile:

0.757 – 0.787), “Average” (third quartile: 0.788 – 0.815),

and “High or very high” (fourth quartile: 0.816 – 0.883).

The values are visualized as a choropleth map (Figure 1).

Figure 1 shows how self-rated health status is more

similar to that in nearby neighborhood census tracts than

that in distant neighborhoods. This is because nearby

neighborhoods are likely to have similar demographic and

socioeconomic characteristics (e.g., sex, age, race, income,

language, and religion) and political resources within a lar-

ger citywide system [28,29]. In South Korea, development

policies have focused more on rapid economic growth

than the distribution of accumulated wealth, resulting

in serious regional disparities in health status across the

country. For example, most districts in Seoul, Korea’s

largest metropolitan area, show high self-rated health

status (Figure 1). This is because the Seoul metropolitan

area has sufficiently dense infrastructure provision for a

healthy environment to ensure good accessibility to

health services [30]. In contrast, many provincial cities

in non-metropolitan areas excluded from the benefits of

Table 1 Descriptive statistics for a dependent variable

and independent variables

N %

Individual-level variables (n = 61817)

Sex

Males 26116 42.2

Females 35701 57.8

Employment status

Employed 24508 39.7

Unemployed 37293 60.3

Perceived levels of stress

High level 13140 21.3

Low level 48649 78.7

Mean Standard
dev.

Range

Monthly household income (US$) 1382.1 1988.4 0.0 – 99553.6

Neighborhood-level variables
(n = 223)

Korean Deprivation Index (KDI) 0.3 0.9 -1.5 – 1.7

The number of doctors
per 1000 people

2.2 2.0 0.6 – 20.7

Degree of the Local Governments’
Financial Independence (LGFI)

65.1 9.5 33.7 – 91.4

Dependent variable

EQ-5D index 0.783 0.261 - 0.229 – 1.000
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economic development, such as Gangwon, Chungnam,

and Gyeongbuk show low self-rated health status.

The CHS also provides individual-level variables such as

sex, employment status, perceived levels of stress, and

monthly household income. Among these, sex (0 =males;

1 = females), employment status (0 = employed; 1 = un-

employed), and perceived levels of stress (0 = people with

high perceived levels of stress; 1 = people with low per-

ceived levels of stress) are binary. Monthly household in-

come is a continuous variable. Descriptive statistics for the

independent variables are summarized in Table 1.

The neighborhood-level variables consist of the KDI

[23], the doctor-to-resident ratio (number of doctors per

1,000 population), and the degree of the local govern-

ments’ financial independence (LGFI). The KDI is based

on eight census indicators reflecting neighborhood so-

cioeconomic levels, such as the proportions of house-

holds that are: without car ownership; in a low social

class; comprised of elderly people, etc. The number of

doctors per 1,000 population and LGFI were obtained

from e-Regional Indicators (2009). LGFI refers to the

local government’s level of autonomy to raise and use

financial funds. This ability facilitates implementation of

welfare policy, such as providing healthy residential en-

vironment or enhancing health care services. The ratio

of physicians to residents reflects accessibility to health

care services. Descriptive statistics for neighborhood-

level variables are provided in Table 1.

Multilevel model

When analyzing both individual and neighborhood va-

riables in tandem, a multilevel model is generally more

appropriate than an ordinary single-level regression mo-

del because it enables researchers to deal with hierarch-

ical structure of variables [31]. The multilevel model

assumes that individuals (i.e., lower hierarchy) belonging

Figure 1 Self-rated health status by census tracts, South Korea.
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to a particular neighborhood (i.e., higher hierarchy) are

not independent of each other because they are presumed

to share the similar characteristics of that neighborhood;

thus the model considers intra-neighborhood correlation.

Model construction begins with analyzing a ‘null’ model,

which is the simplest model and uses no independent vari-

able. The null model includes distinct types of variance of

the dependent variable, such as within-neighborhood and

between-neighborhood variances [32]. Based on this null

model, an Intra-class Correlation Coefficient (ICC) is

calculated, which guides how the null model should be

extended further. The ICC is the ratio between the

between-neighborhood variance and the sum of both

within-neighborhood and between-neighborhood variances.

A high ICC indicates that between-neighborhood variance

is not negligible, and thus a multilevel model should be

employed to explain the inter-neighborhood dynamics.

The null model is then extended to a more advanced

multilevel model by adding independent variables at

the individual- and neighborhood-levels. The two-level

Equation 1 is expressed as follows [32]:

Individual−level: Y ij ¼ β0 j þ β1jX ij þ rij

Neighborhood−level: β0 j ¼ γ00 þ γ01Zj þ u0 j; β1j ¼ γ10 þ u1j

ð1Þ

Here, Yij represents the value of the dependent variable

of the i th individual in neighborhood j, while Xij and Zj

indicate the independent variables at different levels. In

other words, Xij includes data about the individuals in

neighborhood j; Zj contains data about the neighborhoods.

β0 j and β1j are the individual-level intercept and slope, re-

spectively, in neighborhood j. rij indicates the error term

at the individual-level (i.e., within-neighborhood variance).

γ00 denotes the average of the dependent variable Yij, con-

trolling for the neighborhood-level variables Zj; γ01 is the

slope of the neighborhood-level variables Zj; and γ10 indi-

cates the overall value of slope at the individual-level, con-

trolling for the neighborhood-level variables Zj. Lastly, u0 j
and u1j are error terms at the neighborhood-level (i.e.,

between-neighborhood variance). In the framework of

multilevel modeling, an intercept is assumed to be incon-

sistent if the neighborhood averages of a dependent vari-

able differ between neighborhoods. Similarly, when effects

of independent variables on the dependent variable vary

across neighborhoods, the slopes of each neighborhood

are expected to deviate from their average.

Eigenvector spatial filtering

Proposed by Griffith [33], an eigenvector spatial filtering

technique handles spatial dependency within ordinary

single-level regression by utilizing a linear combination of

eigenvectors. Eigenvectors function as synthetic explana-

tory variables expressing underlying spatial structures of

the regression model [20]. This method allows one to

visualize local spatial clusters in a map form. Because eigen-

vectors are always independent of each other, the associated

spatial structures are thus regarded as being distinct.

From the perspective of eigenvector spatial filtering, an

ordinary single-level regression applied to spatial datasets

consists of two parts: (1) a systematic trend explained by

independent variables, and (2) unexplained random errors

that are often spatially autocorrelated [34,35]. That is to

say, the eigenvector spatial filtering technique can capture

a spatial signal from unexplained random errors, which in

turn reinforces the independence of the error term

[35,36]. This is expressed numerically in Equation 2:

Y ¼ Xβþ ε� ¼ Xβþ Eγ þ ξ
|fflfflffl{zfflfflffl}

ε�

ð2Þ

where Xβ refers to the systematic trend, while ε* is the

n-by-1 spatially autocorrelated error vector. X denotes

the n-by-k data matrix (i.e., n number of observations

and k number of independent variables); β indicates the

k-by-1 parameter vector corresponding to the independ-

ent variables. Eγ is the spatial signal captured by selected

eigenvectors E. The dimension of E is n-by-p (i.e., n num-

ber of observations and p number of selected eigenvectors),

and γ is the p-by-1 parameter vector corresponding to the

selected eigenvectors. Lastly, ξ is the n-by-1 spatially-

independent error vector.

When generating eigenvectors, two different spatial

processes are considered: (1) simultaneous autoregres-

sive (SAR); and (2) spatial lag [35]. These processes may

generate different analytical results due to their differing

model structures; for further details, see the study by

Tiefelsdorf and Griffith [35]. The present study deals

only with eigenvectors for the SAR process.

Eigenvectors for the SAR process, {e1, e2,⋯, en}SAR,

are extracted from a transformed spatial weight matrix

as follows:

e1; e2;⋯; enf gSAR ≡ evec M Xð Þ
1

2
V þ VT
� �

M Xð Þ

� �

ð3Þ

where a projection matrix M(x) ≡ I −X(XTX)-1XT; I re-

presents an n-by-n identity matrix; X is an n-by-k matrix

including n number of objectives and k number of inde-

pendent variables. A subset of {e1, e2,⋯, en}SAR is denoted

by ESAR, which contains only selected eigenvectors. This

set of eigenvectors can be introduced in a model as spatial

proxies to ‘filter out’ spatial dependency [35].

Eigenvectors are selected in a stepwise manner, and

the selection procedure is repeated until the value of
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Moran’s Ib (an indicator of a strength of spatial de-

pendency) approaches a pre-determined threshold

(e.g., |z(Moran’s I)| < 0.1). Each eigenvector, owing to

their mutual orthogonality, shows its unique spatial pat-

terns and different degrees of spatial dependency. The first

selected eigenvector has the highest Moran’s I value and

therefore accounts for the largest proportion of the overall

spatial dependency. The second eigenvector has the second-

highest Moran’s I value, and is uncorrelated with the first

one [20]; similarly, the nth eigenvector is considered to have

the nth-highest Moran’s I value, expressing the nth-largest

proportion of the spatial dependency.

Spatially filtered multilevel model

Equation 1 of the conventional multilevel model can be

rearranged as follows:

Y ij ¼ γ00 þ γ01Zj þ γ10X ij
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fixed effects

þ u0 j þ u1jX ij þ rij
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

random effects

ð4Þ

Basically, this multilevel model can be divided into two

parts, representing fixed effects (that are modeled in a

multileveled manner), and random effects (that are unex-

plained and often spatially autocorrelated). If this model is

corrected by the eigenvector spatial filtering technique,

the spatial signal can be introduced as follows:

Yij ¼

fixed effects

Xβðsystematic trendÞ

ðγ00 þ γ01Zj þ γ10XijÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

spatially autocorrelated random effects

þ ðγ0 þ γ1e1j þ � � � þ γnenjÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þðu00 j þ u01j Xij þ rijÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Eγðspatial signalÞ ξðwhite�noiseÞ

ð5Þ

This integrated model, entitled ‘spatially filtered mul-

tilevel model,’ regards the fixed effects in the multilevel

model as identical to the systematic trend Xβ in the

framework of eigenvector spatial filtering. In this mo-

del, a linear combination of eigenvectors Eγ is included

as a spatial proxy to separate the spatial signal from

the spatially autocorrelated random effects at the

neighborhood-level (u0j + u1jXij), leaving only a white-

noise u
0

0j þ u
0

1jX ij within them. This filtering process

results in unbiased regression results that improve the

explanatory power of the model.

All analyses are conducted in the R environment. The

‘lme4’ package [37] is used for the multilevel model run, and

the ‘spdep’ package [38] is employed for the ‘SpatialFiltering’

function for the eigenvector spatial filtering.

Results
Results of the conventional multilevel model

The null model finds that the variance at neighborhood-

level is 2.3% (ICC = 0.023). This indicates that 2.3% of

the total variance in self-rated health status arises from

inter-neighborhood dynamics. Given that a health out-

come itself is generally influenced more by individual

factors than by neighborhood characteristics, it is rea-

sonable that variance at individual-level is much larger

than that at neighborhood-level. The 2.3% variance at

neighborhood-level should be regarded with some cau-

tion, because Kreft and de Leeuw pointed out that for a

sufficiently large number of samples, even a small ICC

(for example, 1%) could considerably affect the degree of

significance [31].

To identify the effects of independent variables on indi-

vidual health status, the individual-level model (hereafter,

Level-1 model) is then designed by adding individual-level

variables to the null model. An intercept for each inde-

pendent variable in this study is assumed to be random

across the study area. Except for the slope for the monthly

household income variable, a slope for each independent

variable is regarded as fixed for simplicity of modeling. As

shown in Table 2, the Level-1 model yields much lower

Akaike Information Criterion (AIC) compared to the null

model, indicating a better model fit [39]. All individual-

level variables (sex, employment status, perceived levels

of stress, and monthly household income) are signifi-

cantly associated with individual self-rated health status.

These variables are found to account for 22% of

variance at individual-level and 31% of variance at

neighborhood-level. The reason why the Level-1 model

partially explains variance at neighborhood level—des-

pite it not including neighborhood-level variables—is

that regression analyses are performed separately for

each neighborhood.

For the next step, both individual-level and neighbor

hood-level variables are added together in the neighbor

hood-level model (hereafter, Level-2 model). By introdu-

cing neighborhood-level variables, a further 2% of vari-

ance at neighborhood-level is explained compared with

the Level-1 model. This suggests that neighborhood fac-

tors explicitly influence the individuals’ self-rated health

status. The Level-2 model shows the lowest AIC and

the highest explanatory power among the three models.

Like the Level-1 model, all individual-level variables

remain significant (p < 0.001). Of the three neighbor

hood-level variables, only two variables, KDI and the

doctor-to-resident ratio, are statistically significant

(p < 0.05) (Table 2).

Results of applying eigenvector spatial filtering

Before applying the eigenvector spatial filtering method,

we tested for spatial dependency between neighborhood-
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level residuals in the multilevel model and found this to

be significant (Moran’s I = 0.101; p < 0.05). Hence, it is

necessary to eliminate this spatial dependency by apply-

ing the eigenvector spatial filtering.

Eigenvectors in this study are extracted from a trans-

formed spatial weight matrix based on topological adja-

cency, so-called a “Queen” criterion—if two areas share

a boundary or a vertex, the entity of the spatial weight

matrix is coded as 1, and otherwise, 0. As an eigen-

vector selection algorithm, this study uses a Moran’s I

minimization scheme [35].

Figure 2 shows that by adding eigenvectors to the

model, the degree of spatial dependency becomes reduced

to the threshold (|z(Moran’s I)| < 0.1). This is because se-

lected eigenvectors explain spatial dependency as synthetic

variables. A group of 8 eigenvectors (e11, e3, e7, e5, e17, e23,

e39 and e29) are finally selected. The first selected eigen-

vector e11 explains the greatest proportion of spatial de-

pendency (Figure 2).

Selected eigenvectors are illustrated in Figure 3, all of

which portray positive spatial dependency patterns. The

first four eigenvectors exhibit explicit local clusters re-

lated to positive spatial dependency across the study

area. Given that the first sequenced eigenvector repre-

sents more noticeable cluster than those later in the

series, e11 displays the most prominent local cluster

pattern, as shown in Figure 3-A.

Discussion
The spatially filtered multilevel model presents unbiased

regression results and yields a lower AIC than the con-

ventional multilevel model. Both analyses present similar

regression parameters and the same parameter signs

(Table 2). In this study, addressing spatial dependency

has little effect on the fixed effects, whereas it improves

the independence of the random effects. With eigenvector

spatial filtering, the Moran’s I of the neighborhood-level

Table 2 Estimation results for the conventional multilevel model and the spatially filtered multilevel model

Variables Null
model

Level-1 multilevel
model

Level-2 multilevel
model

Spatially filtered
multilevel model

Individual-level variables

Sex (male:0; female:1) - – 49.88*** – 49.65*** – 49.69***

Monthly household income – 0.10*** 0.10*** 0.09***

Employment status (employed:0; unemployed:1) – –134.10*** –134.90*** –135.30***

Perceived levels of stress (high:0; low:1) – 154.60*** 155.60*** 155.70***

Neighborhood–level variables

Korean Deprivation Index (KDI) – – –23.82* –15.51*

The number of doctors per 1000 people – – 4.85* 2.60*

Degree of the Local Governments’ Financial Independence (LGFI) – – 0.98 0.16

Random effects

Variance at individual–level 66725 52226 52225 56013

Between monthly household income variance – 0.0039 0.0036 0.0011

Variance at neighborhood–level 1591 1102 1062 555

Constant 785.31*** 761.40*** 747.00*** 770.70***

Eigenvector selection – – – 8 eigenvectors

Moran’s I of neighborhood–level residuals – – 0.101* 0.005

AIC 861942 830665 830650 830549

Log–likelihood – 447328 – 415324 – 415314 – 415254

***p < =0.001 *p < =0.05.

Figure 2 Reduction of Moran’s I by eigenvector spatial

filtering procedure.
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residual declines from 0.101 to 0.005 and becomes non-

significant (p = 0.824).

According to the regression results, self-rated health

status is significantly higher for respondents meeting the

following conditions: male; employed; higher monthly

household income; lower stress level; living in a neigh-

borhood with lower KDI and proportionally more physi-

cians. These findings are similar to those of previous

studies [23,40-45]. For the doctor-to-resident ratio vari-

able, however, Matteson et al. reported conversely that

counties with more family practitioners per capita have

higher infant mortality [1]. However, they also found

that more hospital beds per capita predicted lower risk

of infant death. These results are somewhat contradict-

ory because it is generally considered that the numbers

of physicians and hospital beds tend to have a strong

positive relationship [46,47]. There does not appear to

be a clear and consistent effect of the doctor-to-resident

ratio on individual health outcomes; further studies are

therefore needed. The present study finds no significant

relationship between health status and LGFI, whereas

some previous domestic studies reported positive rela-

tionship between LGFI and health outcomes [48,49].

This study has several limitations that should be con-

sidered in future research. First, even after introducing

neighborhood-level variables into the model, variance at

neighborhood-level still remains. This may be because

some of the key determinants of self-rated health status

are omitted. In future research, other neighborhood

socioeconomic and environmental factors should be

considered to explain the remaining variance. For envir-

onmental factors such as air pollution, it is possible to

use the interpolated map data in multilevel modeling by

integrating it with survey datasets via geographic infor-

mation science (GIS) [50]. Second, given that the re-

spondents in this study are elderly (aged 60 and over),

the employment status variable used in this study can be

problematic, because people in their 70s or older are

more likely to retire than people in their 60s. In other

words, it is possible that the regression result could be

Figure 3 Spatial patterns of selected SAR eigenvectors. Notes: (A) First selected eigenvector e11. (B) Second selected eigenvector e3. (C) Third

selected eigenvector e7. (D) Fourth selected eigenvector e5. (E) Fifth selected eigenvector e17. (F) Sixth selected eigenvector e23. (G) Seventh

selected eigenvector e39. (H) Eighth selected eigenvector e29.
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confounded by an ‘age’ factor. Third, although census

tract data are the only viable option in this study, it

could be unclear whether census tracts accurately

represent the geographical areas where health-related

activities actually occur [21,51]. If they do not, then the

estimation of neighborhood effects via these adminis-

trative units would be unclear. Due to human mobility,

individual health outcomes may be influenced by more

complex geographical and temporal contexts beyond

their residential environment [52]. However, it is ac-

tually difficult to delineate these complex contexts

because there is a lack of spatial and temporal informa-

tion in many cases [51]. Kwan defined this as the un-

certain geographic context problem (UGCoP) [51]. To

obtain more realistic results, future studies should at-

tempt to identify the actual contexts influencing indi-

vidual health and mitigate UGCoP. Lastly, some recent

studies notice that an approach of removing spatial de-

pendency should practice caution in some cases where

neighborhood characteristics change abruptly across a

study area. Some researchers have begun to examine

this issue; so it must be left to future research.

Conclusion
This study explores the effects of individual- and neigh

borhood-level factors on self-rated health status of

people over the age of 60 via an approach that combines

a multilevel model and an eigenvector spatial filtering

technique. The findings show that sex, employment sta-

tus, monthly household income, and perceived levels of

stress are significantly associated with self-rated health

status. In addition, residents living in neighborhoods

with low deprivation and a high doctor-to-resident

ratio tend to report higher health status. There are no

changes in the signs of parameters or the significance

level between the two models used in this case study.

Nevertheless, the proposed spatially filtered multilevel

model provides unbiased and robust estimations and

has greater explanatory power than conventional multi-

level models. The spatially filtered approach is a useful

tool for understanding the spatial dynamics of self-

rated health status within a multilevel framework. In

future research, it would be useful to apply the spatially

filtered multilevel model to other datasets in order to

clarify the differences between the two models. The in-

herent modeling complexities of the eigenvector spatial

filtering method mean this approach has only recently

been put to practical use despite its advantage of visual-

izing underlying spatial structures. This study hopes

that applied models using the eigenvector spatial filter-

ing might be developed in many future studies. Finally,

it is hoped that the present findings might inform pol-

icy interventions to mitigate health inequality in South

Korea.

Endnote
aSee the study by Kang et al. [27].
bMoran’s I, developed by Moran [53], is calculated as

follows:

I ¼
n

X

i

X

j
vij

X

i

X

j
vij yi− y�ð Þðyj− y�Þ

X

i
yi− y�ð Þ2

where n is the number of spatial units; yi and yj are attri-

bute values at spatial units i and j; �y is the average of y;

and vij is an entity of a spatial weight matrix. If attribute

values at i and j are both higher (or both lower) than the

average, Moran’s I is a positive value between 0 and 1.

When the Moran’s I is 1, the attribute values of i and j

are assumed to be perfectly correlated. On the other

hand, if the attribute value at i is higher than the aver-

age, but the value at j is lower than the average, the

Moran’s I is negative. If attribute values of spatial units

are perfectly dispersed, Moran’s I is −1. A Moran’s I of

zero indicates that there is no spatial dependency and

thus observations are randomly distributed.

Abbreviations

SAR: Simultaneous autoregressive; GWR: Geographically weighted

regression; CHS: Community Health Survey; KDI: Korean Deprivation Index;

EQ-5D: EuroQol-5 Dimension; LGFI: Degree of the Local Governments’

Financial Independence; ICC: Intra-class Correlation Coefficient; AIC: Akaike
Information Criterion; GIS: Geographic information system; UGCoP: The

uncertain geographic context problem.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

YMP contributed to the design of the study, carried out all analyses, drafted
the manuscript, and was involved in interpreting research results. YK

participated in the design of the study and critically revised the drafted

manuscript for important intellectual content. Both authors read and

approved the final manuscript.

Acknowledgements

This research was supported by the National Research Scholarship

(#2012-0101082546) from Korea Student Aid Foundation (KOSAF).

Author details
1Department of Geography, Korea University, Anam-dong, Seongbuk-gu,

Seoul, Korea. 2Department of Geography Education, Korea University,
Anam-dong, Seongbuk-gu, Seoul, Korea.

Received: 1 November 2013 Accepted: 7 February 2014

Published: 27 February 2014

References

1. Matteson DW, Burr JA, Marshall JR: Infant mortality: a multi-level analysis

of individual and community risk factors. Soc Sci Med 1998, 47:1841–1854.
2. O'Campo P, Xue X, Wang MC, Caughy M: Neighborhood risk factors for

low birthweight in Baltimore: a multilevel analysis. Am J Public Health

1997, 87:1113–1118.

3. Ahern J, Pickett KE, Selvin S, Abrams B: Preterm birth among African American

and white women: a multilevel analysis of socioeconomic characteristics and

cigarette smoking. J Epidemiol Community Health 2003, 57:606–611.

4. McLafferty S, Wang F, Luo L, Butler J: Rural–urban inequalities in late-stage

breast cancer: spatial and social dimensions of risk and access.

Environment and Planning B: Planning and Design 2011, 38:726–740.

Park and Kim International Journal of Health Geographics 2014, 13:6 Page 9 of 10

http://www.ij-healthgeographics.com/content/13/1/6



5. Drukker M, Kaplan C, Feron F, van Os J: Children's health-related quality of

life, neighbourhood socio-economic deprivation and social capital: a

contextual analysis. Soc Sci Med 2003, 57:825–841.

6. Oren E, Koepsell T: Area-based socio-economic disadvantage and

tuberculosis incidence. Int J Tuberc Lung Dis 2012, 16:880–885.
7. Jerrett M, Gale S, Kontgis C: Spatial modeling in environmental and public

health research. Int J Environ Res Public Health 2010, 7:1302–1329.

8. Cakmak S, Burnett R: Spatial regression models for large-cohort studies

linking community air pollution and health. Journal of Toxicology and

Environmental Health, Part A: Current Issues 2003, 66:1811–1824.

9. Chakraborty J: Revisiting Tobler’s first law of geography: spatial

regression models for assessing environmental justice and health risk

disparities. In Geospatial analysis of environmental health, Volume 4. 2011th
edition. Edited by Maantay J, McLafferty S. Dordrecht: Springer; 2011:337–356.

10. Corrado L, Fingleton B: Multilevel modelling with spatial effect. Glasgow:

University of Strathclyde press; 2011.

11. Xu H: Compare spatial and multilevel regression models for binary

outcomes in neighborhood studies. Sociological Methodology, forthcoming.

12. Langford IH, Leyland AH, Rasbash J, Goldstein H: Multilevel modelling of

the geographical distributions of diseases. J R Stat Soc: Ser C: Appl Stat

1999, 48:253–268.
13. Fotheringham AS, Brunsdon C, Charlton M: Geographically Weighted

Regression: the analysis of spatially varying relationships. England: John Wiley

& Sons; 2002.

14. Lorant V, Thomas I, Deliege D, Tonglet R: Deprivation and mortality: the

implications ofspatial autocorrelation for health resources allocation.

Soc Sci Med 2001, 53:1711–1719.

15. Pickett KE: Multilevel analyses of neighbourhood socioeconomic context

and health outcomes: a critical review. J Epidemiol Community Health

2001, 55:111–122.

16. Morenoff JD: Neighborhood mechanisms and the spatial dynamics of

birth weight. Am J Sociol 2003, 108:976–1017.

17. Chen DR, Wen TH: Elucidating the changing socio-spatial dynamics of

neighborhood effects on adult obesity risk in Taiwan from 2001 to 2005.

Health & Place 2010, 16:1248–1258.

18. Chen DR, Truong K: Using multilevel modeling and geographically

weighted regression to identify spatial variations in the relationship

between place-level disadvantages and obesity in Taiwan. Appl Geogr

2012, 32:737–745.

19. Wheeler D, Tiefelsdorf M: Multicollinearity and correlation among local

regression coefficients in geographically weighted regression. J Geogr

Syst 2005, 7:161–187.

20. Griffith DA: Spatial autocorrelation and spatial filtering. New York: Springer;

2003.

21. Patuelli R, Schanne N, Griffith DA, Nijkamp P: Persistence of regional

unemployment: application of a spatial filtering approach to local labor

markets in Germany. J Reg Sci 2012, 52:300–323.

22. Griffith DA: A comparison of four analytical disease mapping techniques

as applied to West Nile Virus in the coterminous Uited States. Int J Health

Geogr 2005, 4:18.

23. Yoon TH: Regional health inequalities in Korea: the status and policy

tasks. J Crit Soc Policy 2010, 30:49–77.

24. EuroQol - Home. http://www.euroqol.org/.
25. Group EQ: EuroQol - a new facility for the measurement of health related

quality of life. Health Policy 1990, 16:199–208.

26. Kind P: The EuroQol instrument: an index of Health-related Quality of

Life. In Quality of Life and Pharmacoeconomics in Clinical Trials. 2nd edition.
Edited by Spilker B. Philadelphia: Lippincott-Raven; 1996:191–201.

27. Kang E, Shin H, Park H, Jo M, Kim N: A valuation of health status using

EQ-5D. Korean J Health Econ Policy 2006, 12:19–43.

28. Schelling TC: Models of segregation. Am Econ Rev 1969, 59:488–493.
29. Schelling TC: Dynamic models of segregation. J Math Sociol 1971, 1:143–186.

30. Elio & Company: Health Ranking. Seoul: Elio & Company; 2011.

31. Kreft IGG, de Leeuw J: Introducing multilevel modeling. London: Sage; 1998.

32. Luke DA: Multilevel modeling. Thousand Oaks: Sage; 2004.
33. Griffith DA: A linear regression solution to the spatial autocorrelation

problem. J Geogr Syst 2000, 2:141–156.

34. Haining R: Spatial data analysis: theory and practice. Cambridge: Cambridge

University press; 2003.

35. Tiefelsdorf M, Griffith DA: Semiparametric filtering of spatial

autocorrelation: the eigenvector approach. Environment and Planning A

2007, 39:1193–1221.

36. Chun Y: Modeling network autocorrelation within migration flows by

eigenvector spatial filtering. J Geogr Syst 2008, 10:317–344.
37. Bates D, Maechler M, Bolker B: lme4: Linear mixed-effects models using S4

Classes. 2013. http://cran.r-project.org/web/packages/lme4/index.html.

[R package version 0.999999-2.

38. Bivand R, et al: spdep: Spatial dependence: weighting schemes, statistics

and models. 2013. http://cran.r-project.org/web/packages/spdep/index.

html. [R package version 0.5-57.

39. Akaike H: Factor analysis and AIC. Psychometrika 1987, 52:317–332.

40. Hanyang University Industry Academic Cooperation Foundation:
Management center for health promotion: Health promotion strategies and

programmes development for health inequalities alleviation. Seoul: Ministry of

Health and Welfare; 2009.

41. Carstairs V, Morris R: Deprivation: explaining differences in mortality

between Scotland and England and Wales. Biritish Med J 1989,

299:886–889.

42. Sloggett A, Joshi H: Higher mortality in deprived areas: community or

personal disadvangate? BMJ 1994, 309:1470–1474.
43. Davey Smith G, Hart CL, Watt G, Hole DJ, Hawthorne VM: Individual social

class, area-based deprivation, cardiovascular disease risk factors, and

mortality: the Renfrew and Paisley study. J Epidemiol Community Health

1998, 52:399–405.
44. Byun YC: Regional differences in health expectancy in Korea and policy

suggestions. The Korea Institute for Health and Social Affairs: Seoul; 2011.

45. Han MA, Ryu SY, Park J, Kang MG, Park JK, Kim KS: Health-related Quality of

Life assessment by the EuroQol-5D in some rural adults. J Prev Med Public

Health 2008, 41:173–180.

46. Goodman DC, Fisher ES, Bronner KK: Hospital and physician capacity update:

a brief report from the Dartmouth Atlas of health care. Dartmouth Institute

for Health Policy and Clinical Practice: Hanover; 2009.
47. Leu RE, Rutten FFH, Brouwer W, Matter P, Rütschi C: The Swiss and Dutch

health insurance systems: universal coverage and regulated competitive

insurance markets. http://www.commonwealthfund.org/Publications/Fund-

Reports/2009/Jan/The-Swiss-and-Dutch-Health-Insurance-Systems–Universal-
Coverage-and-Regulated-Competitive-Insurance.aspx.

48. Jo DG: A spatial analysis of sociodemographic correlates of Health

related Quality of Life. Korean J Popul Stud 2009, 32:1–20.

49. Han JY, Na BJ, Lee MS, Hong JY, Lim NG: The relationship between local

fiscal indices and standardized mortality rate. In Proceedings of the KAIS

2010 Fall conference: 12-13 November 2010; Jeju. Cheonan: The Korea

Academia-Industrial cooperation Society; 2010:1072–1076.

50. Root E, Emch M: Regional environmental patterns of diarrheal disease in

Bangladesh: a spatial analytical and multilevel approach. In Geospatial

analysis of environmental health. Volume 4. 2011th edition. Edited by

Maantay J, McLafferty S. Dordrecht: Springer; 2011:191–204.

51. Kwan M-P: The uncertain geographic context problem. Annals of the

Association of American Geographers 2012, 102:958–968.

52. Gatrell AC: Mobilities and health. Aldershot: Ashgate; 2011.

53. Moran PAP: Notes on continuous stochastic phenomena. Biometrika 1950,

37:17–23.

doi:10.1186/1476-072X-13-6
Cite this article as: Park and Kim: A spatially filtered multilevel model to
account for spatial dependency: application to self-rated health status
in South Korea. International Journal of Health Geographics 2014 13:6.

Park and Kim International Journal of Health Geographics 2014, 13:6 Page 10 of 10

http://www.ij-healthgeographics.com/content/13/1/6

http://www.euroqol.org/
http://cran.r-project.org/web/packages/lme4/index.html
http://cran.r-project.org/web/packages/spdep/index.html
http://cran.r-project.org/web/packages/spdep/index.html
http://www.commonwealthfund.org/Publications/Fund-Reports/2009/Jan/The-Swiss-and-Dutch-Health-Insurance-Systems--Universal-Coverage-and-Regulated-Competitive-Insurance.aspx
http://www.commonwealthfund.org/Publications/Fund-Reports/2009/Jan/The-Swiss-and-Dutch-Health-Insurance-Systems--Universal-Coverage-and-Regulated-Competitive-Insurance.aspx
http://www.commonwealthfund.org/Publications/Fund-Reports/2009/Jan/The-Swiss-and-Dutch-Health-Insurance-Systems--Universal-Coverage-and-Regulated-Competitive-Insurance.aspx

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data and variables
	Multilevel model
	Eigenvector spatial filtering
	Spatially filtered multilevel model

	Results
	Results of the conventional multilevel model
	Results of applying eigenvector spatial filtering

	Discussion
	Conclusion
	Endnote
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

