
A SPATIO-TEMPORAL MODEL OF THE SELECTIVE HUMAN VISUAL
ATTENTION

O. Le Meur1,2, D. Thoreau1, P. Le Callet2, D. Barba2

1THOMSON, 35511 Cesson-Sevigne; 2IRCCyN UMR no6597 CNRS, 44306 Nantes, France.

ABSTRACT

A new spatio-temporal model for simulating the bottom-
up visual attention is proposed. It has been built from
numerous important properties of the Human Visual
System (HVS). This paper focuses both on the architec-
ture of the model and on its performances. Given that
the spatial model of the bottom-up visual attention
has already been defined [1], the temporal dimension is
more accurately described. A qualitative and quanti-
tative comparison with human fixations collected from
an eye tracking apparatus is undertaken. From the for-
mer, the quality of the prediction is deemed very good
whereas the latter illustrates that the best predictor of
the human fixation consists of the sum all visual fea-
tures (achromatic, chromatic and motion).

1. INTRODUCTION

Despite the subjective impression that we see every-
thing around us with a high quality, a relatively small
portion of visual information is accurately treated. It is
well known that the selective visual attention is driven
both by a signal-based (Bottom-up) and by a task-
based mechanism (Top-Down). The design of compu-
tational models simulating the human selective visual
attention is a difficult issue. A very fine understand-
ing of numerous properties of the HVS is mandatory
in order to build a reliable model. The challenge re-
ally matters because the potential applications are con-
siderable (video quality assessment, watermarking and
video compression,...). Most of recent approaches can
be divided into two categories: the first one concerns
a statistical signal-based approach [2] whereas the sec-
ond one, on which we work, attempts to simulate the
major properties of the visual system.
The purpose of this study is to present a biologically-
plausible signal-based model of selective visual atten-
tion selecting locations of high salience in a color video
clip. The most important dimensions of the visual
field are the achromatic, the chromatic and the mo-
tion. Such dimensions are taken into account leading
to two saliency maps: spatial saliency map and tempo-

ral saliency map. From these maps, a spatio-temporal
saliency map is computed. The proposed model, and
especially its extension to the temporal dimension, is
described in section two. Section three refers to the eye
tracking experiments. Section four presents the assess-
ment method we use in order to compare the predic-
tions with human fixations.

2. VISUAL ATTENTION MODELLING

The process allowing to build the saliency maps are
detailed in the following sections, with a greater atten-
tion to the temporal saliency map determination (the
construction of spatial saliency map have been already
described [1, 3]). Figure 1 gives the flow chart of the
proposed model.

2.1. Spatial saliency map

According to an important psychovisual backing, the
spatial model consists of three sequential stages: visi-
bility, perception and finally perceptual grouping stage.

The visibility part attempts to simulate the biolog-
ically limited sensitivity of the visual system: first, a
transformation of the RGB component into the Kraus-
kopf color space composed of the cardinal direction
A (achromatic), Cr1 (red and green opponent compo-
nent) and Cr2 (the blue and yellow opponent compo-
nent) is achieved. Second, early visual features extrac-
tion is achieved by a perceptual channel decomposition
(DCP) consisting in splitting the 2D spatial frequency
domain both in spatial radial frequency and in orien-
tation. This decomposition is applied on each of the
three perceptual components leading to 17 psychovi-
sual channels (distributed over 4 crowns) and 5 chan-
nels for chromatic component. Third, contrast sensi-
tivity functions (CSF) are used to assess the visibility
of natural images components, taken into account that
we are not able to assess all details with the same ac-
curacy. Three anisotropic CSF are used to weight the
components (A,Cr1,Cr2). Finally, visual Masking ef-
fect refers to the modulation of the differential visibility



threshold due to the influences of the context (spatial,
intra-inter channels, inter components interactions).

The perception step attempts to simulate the per-
ception process. The perception produces from the psy-
chovisual space a description useful to the viewers and
not cluttered with irrelevant information. By simu-
lating the center/surround suppressive organization of
cortical cells, two relevant structural descriptions (one
for the achromatic component and one for the chro-
matic components) are built.

The perceptual grouping step computes a spatial
saliency map. This two dimensional map is obtained
by linearly combining the two structural descriptions.

We have shown [3] that this model provides a cor-
relation coefficient close to 0.72 between the output of
the model and the experimental results. It is noticeable
that this model outperforms Itti’s model [4].

2.2. Temporal saliency map

Figure 1 gives the synoptic of the proposed algorithm
used to build the temporal saliency map. The method
is based on the fact the visual attention is attracted
by motion contrast. Such contrast is deduced from the
local and the global motion. The proposed technique is
similar in spirit to the approach proposed in [5] in which
the saliency of a motion region is inversely proportional
to its occurring probability.

2.2.1. Hierarchical block matching motion estimation

Motion estimation plays a very important role in the
construction of the saliency map. Apparent motion is
computed between two successive frames using a hier-
archical block matching method. In general, the hierar-
chical decomposition is performed by a dyadic Gaussian
pyramid: the input image is first filtered by a 2D sepa-
rable filter and then subsampled (horizontally and ver-
tically by a factor of two). This process is iteratively
applied to build up each level of the Gaussian pyra-
mid. Here, we take advantage of the perceptual chan-
nel decomposition performed during the first steps of
the spatial saliency map creation.
Two neighboring pictures are used to form two pyra-
mids.

−→
V i

n denotes the motion field for the nth frame, at
the ith level of the pyramid. At the lowest resolution,
the motion vector providing the smallest sum of ab-
solute difference is kept, up sampled and transmitted
to the next higher resolution. Refinement algorithm
and decision are used to form the final motion field−→
V local.

Fig. 1. Architecture of the proposed model.

2.2.2. Estimation of a 2D parametric dominant mo-
tion model

In order to detect the temporal conspicuous areas of
a video sequence, we have first to cancel the motion
inherent to the camera. Assuming that the dominant
motion is due to the camera, we estimate the global
transformation between successive images based on a
previous estimated motion fields. The displacement−→
V Θ(s), at a pixel site s related to a motion model para-
metrized by Θ is given by a 2D affine motion model:

−→
V Θ(s) =

(
a1 + a2x + a3y
a4 + a5x + a6y

)
(1)

where Θ = [a1, a2, a3, a4, a5, a6] represents the affine
parameters of the model. The affine parameters are
computed with a popular robust technique based on
the M-estimators. They lessen the outliers effects by
replacing the squared residuals errors by another func-
tion. The estimated affine parameters Θ̂ have to min-
imize: Θ̂ = arg minΘ

∑
si∈S ρ(r(si)). r(si) = Ĩ(si +

−→
V Θ(si), t + 1)− Ĩ(si, t) represents the displaced frame
difference. ρ is the Tukey’s biweight function.

2.2.3. Relative and relevant motion

From the knowledge of the apparent dominant displace-
ment

−→
V Θ and of the local displacement

−→
V local for each

pixel s, the relative motion
−→
V relative is computed by−→

V relative(s) =
−→
V Θ(s)−

−→
V local(s). As the perception of

a moving object heavily depends on whether or not the
object is tracked by the eyes, we introduce the maxi-
mal pursuit displacement capability of the eyes. The
relative displacement greater than the maximal pursuit
displacement is discarded. For video, this value belongs
to the range 8 to 10 deg/s.
The relevance degree of a relative motion also depends
on the average amount of the relative displacement
computed across the picture. For example, a high rel-
ative motion is very conspicuous when there is only



few relative displacement. It is intuitively clear that
it will be easy to find a moving stimulus among sta-
tionary distractors [6], [7]. To model such property, a
linear quantification of ‖

−→
V relative‖ is achieved in order

to build a histogram. The median value of the his-
togram, called Γmedian, is a reliable estimator of the
relative motion amount. ‖

−→
V relative‖ is then weighted

by Γmedian. The closer Γmedian to 0, the more the rel-
ative motion is perceptually important. Finally, the
normalized temporal saliency map ST is computed by:

ST (s) =
−→
V relative(s)
Γmedian × λ

, λ = max
s

(
−→
V relative(s)

Γmedian
) (2)

2.3. Spatio-temporal saliency map

To cope with the difficult problem of the saliency maps
fusion, the following relation is proposed:

S(s) = αST (s) + (1− α)SS(s) + βST (s)SS(s) (3)

where SS and ST are the normalized spatial and tem-
poral saliency map respectively. α is deduced from the
spatio-temporal activity estimated by the frame differ-
ence (FD) value (See figure 2). β controls the strength
of the reinforcement. Figure 3 shows for the sequence

Fig. 2. Computation of the α coefficient depending on
the spatio-temporal activity of the sequence.

Stefan the different saliency maps. On these maps,
the most conspicuous areas detected by the model are
highlighted.

Fig. 3. Example of spatio-temporal saliency maps for
the sequence Stefan. From the left to the right, we have
spatial, temporal and spatio-temporal saliency map.

Fig. 4. Temporal evolution of C value for different
models. Results concerns the sequence Kayak.

3. EYE TRACKING EXPERIMENTS

In order to track and record real observers eye move-
ments, experiments have been performed with an eye
tracker from Cambridge Research Corporation. This
apparatus is mounted on a rigid headrest for good ac-
curacy on the measurement of the fixation point (σ is
less than 0.5 degree). Experiments were conducted in
normalized conditions (ITU-R BT 500-10) at viewing
distance of 4 times the TV monitor height. Four nat-
ural color sequences of various contents have been se-
lected. Each sequence was seen in random order by up
to 30 observers each in a task-free viewing mode. The
collected data correspond to the regular time sampling
(20 ms) of eye gaze on the monitor. For each particular
picture of a video clip and for each observer, a fixation
map, which encodes the conspicuous locations, is com-
puted from the collected data. Afterwards, all fixation
patterns are added together providing a spatial distri-
bution of human fixation. The resulting map is then
smoothed using a 2-Dimensional Gaussian filter. The
standard deviation is determined in accordance with
the accuracy of the eye-tracking apparatus. The ap-
pliction of the Gaussian filter is necesary to simulate
the fact that we stare at a particular area rather than
at a particular point. The fixated area has a size close
to the fovea’s size. A fixation density map representing
the observer’s regions of interest is finally obtained.

4. QUANTITATIVE COMPARISONS

In order to quantify the correlation C between the pre-
dicted saliency map and the human map, the follow-
ing algorithm, inspired from the work [8], is conducted
for each picture of the considered sequence. To begin,
the two maps are transformed into two dense probabil-
ity functions. Next, the coordinates (xk, yk) of the kth

most important fixation location are extracted from the
human map H. The salience, which is in fact a proba-
bility, is then extracted from the predicted probability
function P . Finally, for the ith picture, the extracted



Fig. 5. Temporal evolution of C value for different
models. Results concerns the sequence Table.

Table 1. Average value of C for the predictions and
accuracy value obtained from a confusion matrix.

N=20 SS ST S Uniform Accuracy
Kayak 0,33 0,16 0,36 0,16 0,84
Table 0,32 0,35 0,37 0,17 0,71

PatSpeed 0,34 0,32 0,4 0,18 0,82
Mobile 0,28 0,39 0,33 0,21 0,72

salience values are summed: Ci =
∑N

k=1 P i(xk, yk), N
is the number of the most important fixations that we
used. An uniform model which is the worst case al-
lows to bound the similarity degree. Table 1 gives the
average value of C computed over the whole sequence
(for N = 20) whereas the figures 4 and 5 illustrate the
temporal evolution of the similarity degree for different
configurations of the proposed model. In average, the
best model is the model incorporating all the visual fea-
tures; the sum of all visual features provides the best
predictor of human fixations. It is obvious that, in
presence of still video content or of complex dynamic
scenes, the strength of each visual feature is not the
same. The fusion step, based on the spatio-temporal
activities, deals with all of these cases. Moreover, in a
general case, motion is good predictor of human sac-
cades. Finally, although that top-down influences can
be very strong, it is now clear that bottom-up attention
continuously alerts us to salient items in the visual field.
These results are in agreement with the studies [8] and
[9]. Table 1 gives also the accuracy of the model, com-
puted from a confusion matrix. It contains information
about actual and predicted classifications achieved by a
classification system. Two categories are considered: a
pixel could be either of interest or not. It is noticeable
that the average value of the accuracy of the predic-
tion (i.e the proportion of the total number of correct
predictions) is about 80 percents. Given that the pro-
posed model is only based on the low level attributes,
this result is very encouraging. The best results are
obtained for the sequences Kayak and PatSpeed.

5. CONCLUSION

In this paper, a spatio-temporal model simulating the
bottom-up selective visual attention has been proposed.
From human fixations, collected from an eye tracking
experiments, a qualitative and a quantitative compar-
isons have been done. The predicted locations of inter-
est are qualitatively considered to be in good agreement
with the experimental results. Quantitative analysis
shows that the prediction is improved when all visual
features are used. Given that the proposed model is
only based on the low level features, the accuracy of
the prediction is really good: 80 percents of the human
fixations are well detected. As in [5], this technique
must be improved to deal with the case of relative large
foreground. In this case, the regions of the background
could be considered as of a great interest. In future
works, we will cope with the aforementioned problem.
In addition, we will pursue to assess and to optimize
the proposed model. A convenient manner will be to
compare it with other models.
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