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ABSTRACT

Black Leaf Streak Disease (BLSD) is the most severe foliar disease
of banana and plantain. BLSD is caused by Pseudocercospora fi-
jiensis , an ascomycete fungus which produces wind-borne spores
responsible for its spatial dispersal. In order to evaluate the BLSD
long-distance dispersal and to better understand the effect of en-
vironmental factors on its invasive spatial spread, a spatiotemporal
study was set up during the recent BLSD invasion in the Martinique
island (FWI). Disease detection was carried out from September
2010 to May 2012 and sampling squares were defined from a reg-
ular spatial grid built over the island. In this paper, we consider
a stochastic model of spatio-temporal propagation of BLSD in an
heterogeneous landscape and we present mathematical and com-
putational results for this continuous-time model. Statistical infer-
ence of parameters is carried out from presence-absence data using
a Bayesian framework based on a data augmentation method with
respect to square first colonization times. Parameter posterior distri-
bution calculations made possible the evaluation of the BLSD long-
distance dispersal and land-cover influence on the disease propaga-
tion. Our results enabled the reenactment of the invasion.
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1. INTRODUCTION

Understanding biological pathogen invasion is a major contempo-
rary issue: the occurrence of new diseases causes serious disrup-
tion of existing ecosystems, biodiversity and local economy [15, 2].
The evaluation of the spatiotemporal spread of a disease is neces-
sary for effective and successful control strategies and requires a
good knowledge on the long distance spread of the pathogen and
on the effects of environmental factors on this dispersion [4, 12].

Interacting factors can be incorporated into the transmission model
[3, 40, 41].
An epidemiological model for transmission in heterogeneous land-
scapes and Bayesian Markov chain Monte Carlo (MCMC) infer-
ence were used by [14] to estimate dispersal and life-cycle parame-
ters. [26] presented a Bayesian Markov model for investigating en-
vironmental spread processes. Several authors used models based
on spatial or spatio-temporal stochastic processes : for seed dis-
persal [25], spatio-temporal invasion of alien species [9], disease
spread [8, 42]. One can refer to [11]for the theory of point pro-
cesses and [10] for statistical analysis of spatio-temporal data. [22]
showed the potential for integrating stochastic simulations into a
framework for statistical modelling. [17, 18, 19, 9] discussed about
bayesian methods for fitting model without missing or censored
data and [32, 13] discussed the case with missing or censored data.
However such missing data can be included as extra parameters
in a Bayesian framework. [29] discussed about the use of data-
augmented MCMC and presented a simulation-based Bayesian in-
ference for epidemic models illustrated with data from an outbreak
of smallpox. [30] addressed some shortcomings of partially ob-
served diseases by means of a reconstruction framework. [31] de-
veloped a scheme for robust inference about transmission chains
in the context of the Foot-and-Mouth Disease Virus. The frame-
work presented leads to a Bayesian inference scheme able to re-
construct most likely transmission patterns and infection dates. [23]
presented an auto logistic model with covariates for spatially cor-
related binary observations on a lattice but the time aspect was
not taken into account. They adopted a Bayesian set-up with in-
complete observations from sampled responses taken over the area
of interest. Their aim was to improve predictions of probability of
presence for such lattice binary data. [43] demonstrated how meth-
ods of MCMC based on a hybrid sampler combining Gibbs sam-
pling within Metropolis-Hastings frameworks can be used to derive
estimates of parameters and missing data for ecological process
models. [7] used a continuous time discrete state space Markov
process with spatially varying covariates to model colonization-
dispersal of Heracleum mantegazzianum, an invasive alien weed.
They developed a Bayesian approach to parameter inference taking
into account uncertainty in colonization times.
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Understanding invasive species dynamics is a real challenge [6].
To the best of our knowledge, there are few studies reporting the
evaluation of the long distance dispersal of invasive species and the
effects of environmental factors on invasion dynamics. Thus, our
objective is twofold. We first focus on modeling the invasion pro-
cess of Black Leaf Streak Disease (BLSD), a major foliar disease
of bananas, in an heterogeneous landscape island scale. Then, we
tackle the problem of performing statistical inference on this model
with incomplete data in order to better understand the spatiotempo-
ral spread of BLSD: evaluating the long distance dispersal and the
effect of environmental factors on the dispersion during the inva-
sive phase.
In this paper, we first introduce a spatiotemporal model based on a
stochastic intensity taking into account past neighboring infections
and environmental variables in section 2. Then, we present the data
augmentation technique we developed within a Bayesian frame-
work. In section 3, we present the presence-absence data available
at the Martinique island scale over 83 survey weeks and we apply
the method developed to the BLSD survey data to assess the long
distance dispersal and the impact of land-cover type on the spatio-
temporal dynamic and to propose a reenactment of the BLSD inva-
sion.

2. MODEL AND INFERENCE

2.1 Model

We consider a spatiotemporal stochastic process of colonization
which is assumed to be governed by its conditional intensity pro-
cess. We denote by X the whole set of squares defined from a
regular spatial grid built over the island, and by Ft− the coloniza-
tion history prior to time t so that the conditional intensity at any
square i of X and at time t in R+ conditional on Ft− is defined as
follows (e.g., [11]) :

λi(t) = lim
h 7−→0+

Pr(square i is colonized in [t, t+ h] | Ft−)

h
(1)

At time t, a susceptible square i receives spores transmitted from
squares that are already infected before t. We assume that this
square i has a suitability Si associated with the rainfall level and
the habitat receptivity to the infection ([20]). The effect of rainfall
level is modeled by an exponential term exp(γPi) where Pi is the
mean rainfall level in square i, and γ ∈ (−∞,∞) is a parameter
to be estimated : positive (negative) values of this parameter im-
plies that locations with high rainfall levels are (not) preferred by
the pathogen. The effect of habitat receptivity is modeled by a term
5
∑

k=0

rk.Hi,k where Hi,k is the proportion of square i belonging to

landscape category k, k ∈ {0, ..., 5} and rk ∈ [0,∞) is a pa-
rameter representing the receptivity for colonization of landscape
category k. We set r0 = 0 to reflect that the volcano/sea (habitat
0) is uncolonizable due to the absence of host, and r1, ..., r5 repre-
senting respectively five different landscape compositions.
Let di,j be the distance between squares i and j. If j is infected
before t and i susceptible at time t, the rate of transmission from
square j to square i is assumed to be equal to Sifβ(di,j) where

Si = exp(γ Pi)

5
∑

k=0

rk Hi,k and fβ(di,j) = β2d
−2β
i,j stands for

the isotropic power-law dispersal kernel with decay parameter β,
[7].

Therefore, the stochastic intensity for a susceptible square i at time
t conditionally to the history of the process prior to time t is :

λi(t) = exp(γ Pi)

5
∑

k=0

(rk Hi,k)
∑

j∈C
t−

fβ(di,j) (2)

where Ct− is the set of colonized squares before time t.
It is worth noticing that if square i is colonized at time t, then

λi(t) = 0.

2.2 Likelihood

Denoting by θ the parameter vector, we have θ =
(β, γ, r1, · · · , r5). We face the problem of inferring θ from
incomplete data consisting of intervals in which first dates of
colonization are detected or not for squares included in the survey
over the time interval [0, T ]. If we denote by τi the unobserved
colonization date for square i, then the complete data set is

τ = {min(τi, T ), i ∈ X}

and the likelihood function of the complete data set is (see for ex-
ample [10], p 349)

L(θ; τ) =
(

∏

i∈X
τi≤T

λi(τi)
)

× exp
(

−
∑

i∈X

∫ T

0

λi(t)dt
)

(3)

From (2) and (3), we can write L(θ; τ) =

∏

i∈CT







Si

∑

j∈Cτi−

fβ(di,j)



× exp







−Si

∑

j∈Cτi−

fβ(di,j)(τi − τj)











×
∏

i/∈CT

exp







−Si

∑

j∈C
T−

fβ(di,j)(T − τj)







(4)

where Si = exp(γ Pi)

5
∑

k=0

(rk Hi,k) is the suitability for coloniza-

tion in square i.
The first product on the right-hand side of (4) is the contribu-
tion from the squares colonized before the last observation date T
whereas the second one corresponds to the probability for the re-
maining squares not being colonized at this date.
We have to tackle the problem of inferring θ from incomplete data
consisting of intervals in which dates of colonization occur. The
complete data set τ is not available and the incomplete data likeli-
hood involves integrals which are analytically and numerically in-
tractable (6). If we denote by D the observed incomplete set of data,
then the joint posterior distribution for θ and τ is

P (θ, τ |D) =
P (D, τ |θ)π(θ)

P (D)
(5)

where π(.) is the prior distribution for θ and P (D) considered as a
normalizing constant. π(.) reflects the knowledge about the model
parameters prior to the observations. Therefore, the posterior dis-
tribution for θ is obtained by marginalizing over τ :

P (θ|D) =

∫

H

P (θ, τ |D)dτ (6)
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Table 1. Notations used in the likelihood and the MCMC

algorithm.

Notation Definition

τi time of colonization of the ith square

Ct set of squares colonized up to time t

Ct− set of squares colonized prior to time t

N number of squares in Martinique

λi(t) rate of colonization of a square i in time t conditionally

to the history of the process prior to time t

θ (β, γ, r1, ..., r5), the parameter vector

θ∗ infered parameter vector

H the space of unobserved colonization times

π(.) prior distribution of parameter

qk(., .) proposal distribution for the kth element of θ

E(a) exponential distribution with parameter a

where H is the space of unobserved colonization times.
In next section, we focus on MCMC techniques [37] for sampling
from the posterior P (θ, τ |D) and then from P (θ|D). For any single
parameter, the marginal posterior is then estimated by the sampled
values of this parameter only. The notations used are summarized
in Table 1.

2.3 Bayesian inference on parameters

By using MCMC techniques and considering the unknown colo-
nization times as augmented variables in the MCMC algorithm, we
can sample from the posterior distribution of θ. We generalize the
sampling method proposed by [7, 5] by updating the whole set of
first colonization times at each iteration by means of a reversible-
jump hybrid sampler. This updating method reconstructs realiza-
tions of the colonization times consistent with the data and the
model. Each iteration of this algorithm includes also updating of
all model parameters. We assume that the prior distributions for
the parameters are independent and uniform over a fixed interval.
To sample from the posterior distribution P (θ, τ |D), the algorithm

starts with an initial vector τ (0) of colonization times consistent
with the observation D. Then, at the mth step, the vector τ (m+1)

of colonization times consistent with D is obtained from a sam-
pler conditional on τ (m) and θ(m) the parameter vector sampled at
step m. At step m, our proposal samples a vector τ (m+1) accord-
ing to a truncated multivariate Gaussian law centered on τ (m) with
an adaptive variance matrix. The algorithm is as follows:

(1) Start with τ (0) consistent with the data and iterate the follow-
ing procedure:

(2) Assign values to θ(0);

(3) Set m = 0;

(4) Repeat

—Draw τ (m+1) consistent with D using the data augmentation
sampler with τ (m) and θ(m);

—Sample θ(m+1) using Metropolis-Hastings with τ (m+1) and
θ(m);

—Set m = m+ 1;

—Store every τ (m) and θ(m); after an initial burn-in period;

(5) End repeat.

For τ (0), each unknown colonization time is drawn according to
the uniform distribution on a interval consistent with D.

θ(m+1) = (β(m+1), γ(m+1), r
(m+1)
1 , r

(m+1)
2 , r

(m+1)
3 , r

(m+1)
4 , r

(m+1)
5 )

and the kth element θ
(m+1)
k of θ(m+1) is drawn according to the

acceptance probability:

min
(

1,
P
(

(θ
(m+1)
1 , · · · , θ

(m+1)
k−1 , θ⋆k, θ

(m)
k+1, · · · θ

(m)
7 ); τ (m+1)

)

qk(θ
⋆
k, θ

(m)
k )

P
(

(θ
(m+1)
1 , · · · , θ

(m+1)
k−1 , θ

(m)
k , θ

(m)
k+1, · · · θ

(m)
7 ); τ (m+1)

)

qk(θ
(m)
k , θ⋆k)

)

(7)
where qk is the proposal for θk.

2.4 Method evaluation using artificial data

The stochastic model presented in section 2.1 is easily simulated
as a time continuous Markov process when the covariates vary
spatially only. We use the fact that the waiting time between two
consecutive events follows, conditionally to the past history, an
exponential distribution with parameter depending on the set of
squares colonized prior to the last event. Using a spatio-temporal
point process with conditional intensity λx(t) for square x in X at
time t given by equation 2, the waiting time of the next infection
is distributed according to the exponential distribution E(a) with

a =
∑

x∈X

λx(t). It is worth noticing that λx(t) = 0 if x is already

infected at time t.
The simulation states in two steps, the first step consists in the cal-
culus of the waiting time of the next infection ǫ :

ǫ = inf(τx) ∼ E(
∑

x∈X

λx(t)) (8)

The second step is to establish the square position concerned by
the future infection in time (t + ǫ). The square j is retained with
probability pj such that :

pj =
λj(t)

∑

j∈X

λj(t)
. (9)

The evaluation of the MCMC algorithm was carried out using inde-
pendent artificial data sets on 500 squares. The posterior densities
of the 7 parameters are presented in Fig 1.
The Gelman-Rubin criterion [16] was used to confirm the chain
convergence and set at the value 1.

3. APPLICATION: REGIONAL SCALE DYNAMICS

OF BLSD

The Black Leaf Streak Disease (BLSD) or Black Sigatoka of
bananas, is caused by the devastating ascomycete fungal plant
pathogen Pseudocercospora fijiensis . It is one of the most impor-
tant food security threat at global scale [34] because of its massive
damage to banana crops and its rapid worldwide expansion [38].
In the Caribbean Islands, the first detection was in Cuba in 1990
and one of the most recent introduction was in Martinique (French
West Indies). The first report of BLSD on Martinique island in
September 2010 indicates that the disease was introduced passively
by spores, from nearby islands where BLSD was yet present, dur-
ing August 2010 [24]. Now some genetic studies suggest that the
disease was introduced through two successive and independent
modes (natural and anthropogenic) ([20]). Indeed, a surveillance
network was set up since 2009 and allowed to check monthly the
banana production with respect to BLSD.
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Fig. 1. Bayesian posterior densities for each of the seven model parame-

ters (β, γ, r1, r2, r3, r4, r5) obtained from 10000 runs of the algorithm

using artificial data. The red dot indicates the real parameter value used in

the data simulation. We used a burn-in period of 1000 iterations.

BLSD is specific to Musa hosts (bananas and plantain). Banana
susceptibility to BLSD and plantation density are also important
in the invasion process [20, 21]. The disease causes many lesions
on leaves which become large necrotic surface reducing the photo-
synthetic surface of the plant. On susceptible cultivars, BLSD may
destroy (by necrosis) 40% to 100% of total leaf surface [27] which
causes important yield losses, from 20 to 80% in the absence of
fungicide treatments [20].
Pseudocercospora fijiensis displays both an asexual and sexual
reproduction emitting respectively and successively two types of
spores (conidia and ascospores). Both spores play an important part
in the fungus dispersal, but only ascospores are considered as re-
sponsible for the long-distance dispersal [20]. The long dispersal
distance of Pseudocercospora fijiensis spores was studied at differ-
ent spatial scales. [36] proposed the estimation of an anisotropic
dispersal function using a 2 km square experiment zone and ob-
served the disease symptoms across the experiment (1 km from the
infection source). At a larger spatial scale, [1] detected the pres-
ence of the pathogen 6 km away from the infectious source. The
velocity of an epidemic invasion depends on climatic conditions
and landscape composition [33]. Indeed, rainfall and wind are the
two natural dispersal modes of BLSD.

3.1 Data

Presence-absence data for Pseudocercospora fijiensis were col-
lected in Martinique island within the framework of a disease
surveillance network on banana over the whole island coordinated
by the DAAF (Direction de l’Alimentation, de l’Agriculture et de
la Forêt) and the FREDON Martinique (Fédération REgionale de
Défense contre les Organismes Nuisibles de la Martinique). Mar-
tinique island surface area is about 1228 km2. A regular grid with
cell size of 1 km x 1 km was placed over Martinique providing
1236 observation units. As mentioned in paragraph 2.1, we refer
to such an observation unit as a square. Presence-absence observa-
tions were carried out (Fig. 2) within different time windows (time
between two consecutive observations of the same square) and sur-
rounding environmental variables were measured. After the detec-
tion of BLSD on banana tree in a square, no more observations were
carried out on it since once a square is colonized by the pathogen it
remains infected.
Detection rates were spatially and temporally heterogeneous : the
time window length was comprised between 1 and 82 weeks with
an average of 21 weeks, in some squares only the date of the first
detection was available, and in other squares only the last date
of non-detection was available. The whole observation period was
over 83 weeks (from September 2010 to May 2012). Fig. 3 shows
the spatial locations of the fungus at three different dates: begin-
ning of the study with 37 squares contaminated, middle (week 36)
and end (week 83) of the study.
Five land-cover categories were defined : isolated banana from par-
tially resistant varieties, private garden with few plants of partially
resistant varieties, creole garden (small-scale farming with banana
and other productions such as vegetables, fruits), Cavendish plots
specialized in production for export on a larger scale and plantain
plots possibly extending over several hectares. Banana cultivated
in plots are very susceptible to BLSD and disease controls are used
to maintain good production. On Cavendish plots fungicide chem-
ical treatments are preferably used whereas on plantain plots man-
ual control, such as defoliating necrotic leaves, are privileged [35].
The disease evaluation of each visual positive detection on a banana
tree was confirmed with laboratory diagnostic. As lesions were an-
alyzed on infected leaf samples using molecular markers of high
sensitivity levels, there are no false-positive results.
Rainfall data were collected by Météo France on 19 weather sta-
tions located from north to south of the island. The average weekly
rainfall was calculated over the 83 weeks and used as a covariate.
As environmental variables such as land-cover and humidity in-
duced by rainfall are assumed to affect the spreading process, each
of the 1236 squares covering Martinique was associated with a vec-
tor of covariates : the proportions of each landscape type and the
rainfall level. The proportions of each landscape type were calcu-
lated from geo-referenced administrative surveys on Cavendish and
plantain plots made from years 2010 to 2012 and expert opinions
regarding the distribution of urban and rural zones of the island.

3.2 Bayesian analysis of the real data

The prior distributions chosen for the model parameters reflect the
lack of information about these parameters : β ∼ U [0, 10], γ ∼
U [−10, 10] and rk ∼ U [0, 10] for each k in {1, · · · , 7}.
We used Normal distributions centered on the current param-
eter for each proposal distribution. After tuning, the standard
deviation used for β, γ, r1, r2, r3, r4 and r5 are respectively
0.01, 0.5, 0.001, 0.001, 0.01, 0.01 and 0.01. Fig. 4 gives the pos-
terior distributions of the land-cover parameters and γ, whereas the
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Fig. 2. Set of squares considered over the 83 weeks of survey. Black

squares correspond to squares with observations, grey squares are non-

observed squares and white squares are uncolonizable (high mountain and

volcano).

Fig. 3. Presence-absence maps for Pseudocercospora fijiensis (left to

right), at the beginning of the survey (week 1), at the middle of the sur-

vey (week 36), and at the end of the survey (week 83). Black cells are

squares with disease detection, grey squares are non informed or non in-

fected squares and white squares are uncolonizable (high mountain and vol-

cano).

posterior distribution of β is shown in Fig. 5. The posterior means
and standard errors are given in table 2. From these parameter esti-
mates, several numerical experiments were carried out.

Table 2. Bayesian estimates of the parameter vector

θ = (β, γ, r1, r2, r3, r4, r5).

Parameter Posterior Posterior Quantile Quantile

Mean standard error 2.5% 97.5%

β 1.991 0.655 1.069 1.325

γ -2.124 1.454 -4.574 0.861

r1 5.58e-03 2.98e-03 6.07e-04 0.012

r2 1.303e-02 3.684e-03 6.383e-03 0.021

r3 5.746e-03 4.132e-03 2.815e-04 0.015

r4 4.418e-03 1.292e-03 2.25e-03 0.0072

r5 2.473e-03 1.793e-03 1.77e-04 0.0069

Fig. 4. Bayesian posterior density of the rainfall parameter γ, along with

the ones for the land-cover parameters ri representing the receptivity for

colonization of landscape category i ranging from 1 to 5: isolated banana,

private garden, creole garden, Cavendish plots and plantain plots. Grey

points correspond to the posterior mean value, black points correspond (left

to right) to the 2.5% and 97.5% quantiles.

Fig. 5. Bayesian posterior density of β, the decay parameter of the

isotropic power-law dispersal kernel. Grey points correspond to the pos-

terior mean value, black points correspond (left to right) to the 2.5% and

97.5% quantiles.

3.3 Spatiotemporal prediction

New infected squares appear to be clustered around previous ones
due to the pathogen spread characteristics as shown in Fig 3. The
invasion process seems to be related to the landscape structure : the
southern part of the island is less infected by the disease, probably
because of the dry vegetation of this region whereas the northern
part is mostly covered by the tropical rain-forest. Based on the pro-
posed model, the simulated predictions of spatio-temporal spread
of infections provide very similar results to that observed, as in
Fig. 6 which shows artificial data generated from the parameter
Bayesian estimates.
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Fig. 6. Probability of colonization map (left to right), at the beginning of

the survey (week 10), at the middle of the survey (week 36) and at the end

of the survey (week 83), obtained from 10000 model simulations using the

estimated posterior density of the parameter vector. The darker the square,

the higher the probability

4. DISCUSSION

In this study, we set out to model the invasion process of an emerg-
ing plant disease in a heterogeneous landscape. To achieve this
goal, we had to address the problem of performing statistical in-
ference on the model with incomplete data. This approach was ap-
plied to the incidence data obtained during the invasion of Black
Leaf Streak Disease of bananas in Martinique.
We modeled successfully the BLSD invasion through a spatiotem-
proal stochastic process. The island landscape was divided in
squares of 1 km x 1 km, which were characterized by two envi-
ronmental factors (rainfall level and land-cover type).
A first sensitivity analysis was realized using variance-based
method, the extended Fourier Amplitude Sensitivity Test (eFAST)
[39]. It shows that the land-cover is less influential than the rain-
fall level and dispersal parameters. The sensitivity analysis had to
be performed on averaged outputs because of the stochasticity of
the model. [28] proposed the use of meta-models in this context to
obtain valuable indexes.
We used the Bayesian paradigm for fitting a spatio-temporal
stochastic process to square data with unobserved first coloniza-
tion times and subject to censoring. Bayesian statistical inference
could be performed using a data augmentation method which re-
constructs the first colonization time for each square at each it-
eration of MCMC algorithm. This data reconstruction method is
powerful and original in the epidemiology science. Whereas some
short-distance function were available for BLSD [36], the inference
of the dispersal parameter allowed to get for the first time a long-
distance function for this disease. This function would be useful to
develop spatial epidemiological model to evaluate control methods
at landscape scale (such as varieties mixtures).
Numerical simulations can be performed to evaluate where future
colonization events are likely to occur using the Bayesian parame-
ter estimates obtained from our inferential routine. We could simu-
late square colonization beyond the end of our survey data and for
unobserved squares. These predictive data generation can be useful
in a control strategy framework. Numerical simulations can be also
carried out in case where the covariates are time dependent but this
is more computer-time consuming.
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