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The world is experiencing a pandemic due to Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), also known as COVID-19. The USA is also suffering
from a catastrophic death toll fromCOVID-19. Several studies are providing preliminary
evidence that short- and long-term exposure to air pollution might increase the severity
of COVID-19 outcomes, including a higher risk of death. In this study, we develop a
spatiotemporal model to estimate the association between exposure to fine particulate
matter PM2.5 andmortality accounting for several social and environmental factors. More
specifically, we implement a Bayesian zero-inflated negative binomial regression model
with random effects that vary in time and space. Our goal is to estimate the association
between air pollution and mortality accounting for the spatiotemporal variability that
remained unexplained by the measured confounders. We applied our model to four
regions of the USA with weekly data available for each county within each region. We
analyze the data separately for each region because each region shows a different disease
spread pattern.We found a positive association between long-term exposure to PM2.5 and
the mortality from the COVID-19 disease for all four regions with three of four being
statistically significant. Data and code are available at our GitHub repository.
Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

The world is experiencing an enormous death toll from COVID-19. The number of
COVID-19 cases and deaths vary spatially and temporally and can be affected by many
factors, some local some global. There is a large body of literature that investigates the
key biological, socioeconomic, and environmental factors that might increase the degree of
severity of the health outcomes after having contacted COVID-19 (Karmakar et al. 2021;
Webb Hooper et al. 2020; Yancy 2020; Abdelzaher et al. 2020; Ali and Islam 2020; Fiasca
et al. 2020;Giani et al. 2020).Concerning the environmental factors, it iswell established that
short- and long-term exposure to air pollution increases the risk of several chronic diseases,
including cardiovascular and respiratory diseases, irrespective of COVID-19 (Jiang et al.
2016; Lelieveld and Münzel 2019). We and others (Chakrabarty et al. 2020; Liu et al. 2020;
Ogen 2020; Jiang and Xu 2021; Yongjian et al. 2020; Conticini et al. 2020; Comunian et al.
2020) have hypothesized that exposure to air pollution increases the severity of COVID-
19 outcomes, because air pollution can affect our immune, respiratory and cardiovascular
system. This is a rapidly evolving area of research, see, for example (Bhaskar et al. 2020)
for a review of the epidemiological studies on this topic.

In this paper, we introduce a Bayesian spatiotemporal model to estimate the association
between long-term exposure to PM2.5 and COVID-19 health outcomes. To address this sci-
entific question, we need to overcome several challenges. These include: 1) a large number
of zero counts, especially at the beginning of the pandemic; 2) complex spatiotemporal vari-
ation that remained unexplained after having accounted for several measured confounders;
and 3) computational feasibility. To overcome the challenges listed above and many others,
we introduce a Bayesian model with multivariate spatiotemporal distributions of random
effects while accounting for several measured socioeconomic and demographic factors. We
modeled the COVID-19 death counts via a zero-inflated negative binomial (ZINB) distri-
bution (Neelon et al. 2019). Since the frequentist approach to fitting the ZINB model is
challenging for longitudinal, spatial, and spatiotemporal data, particularly when the model
includes multivariate spatial random effects, we have chosen a more tractable Bayesian
approach proposed by Neelon et al. (2019).

We apply ourBayesianmodel to a data set that includesweekly county-level death counts,
air pollution levels and many other potential confounders from the USA.We incorporate the
spatial and spatiotemporal information into the model by assigning a multivariate intrinsic
conditionally autoregressive (ICAR) prior structure (Banerjee et al. 2014) to the random
effects. Additional time-fixed effects are also considered. Then, we analyze the effectiveness
of the zero-inflated model compared to an ordinary negative binomial model.

Wu et al. (2020) also considered a ZINB model at a county level to investigate the asso-
ciation between long-term exposure to PM2.5 and COVID-19 deaths using an ecological and
cross-sectional study design. These authors also considered state-specific random effects to
capture variation between states. While Wu et al. (2020) investigated global association by
using the data over most of US counties, no spatial dependence nor temporal dependence
was assumed in the model, which is the main difference from our modeling. Instead, we
decided to analyze spatiotemporal county-level data within regions consisting of multiple
states that are geographically connected. This can account for heterogeneous dynamics of
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the spread of disease across different regions of the USA. For our analysis, we consider four
regions: Mid-Atlantic (New Jersey, New York, and Pennsylvania), Pacific (California, Ore-
gon, and Washington), South Atlantic (Florida, Georgia, North Carolina, South Carolina),
and Midwest (Iowa, Kansas, Missouri, Nebraska, North Dakota, and South Dakota). The
results of our model show an overall positive association between long-term exposure to the
(PM2.5) and the mortality from the COVID-19 disease, which matches with other previous
studies (Bhaskar et al. 2020).

The rest of the paper is organized as follows: In Sect. 2, we describe and visualize the
data set for four regions in the USA. In Sect. 3, we present the methodology, including how
we leverage the spatial and spatiotemporal information to estimate the COVID-19 spread.
In this section, we also compare different statistical models. In Sect. 4, we present the results
by applying the methods to the data set. A simulation study along with more details of the
real data analysis is available in the Supplementary document. In Sect. 5, we discuss the
results and comment on future directions.

2. DATA

2.1. COVID-19 DEATH COUNTS

We accessed the data from the repository maintained by the Johns Hopkins University
Center for Systems Science and Engineering (JHU CSSE). We obtained daily number of
deaths in each county from March 23, 2020, to August 31, 2020. Please note that the start
date of the data source is March 22, 2020.

To investigate different scenarios of temporal and spatial dynamics of the COVID-19
deaths, we consider four regions: Mid-Atlantic (New Jersey, New York, and Pennsylva-
nia), Pacific (California, Oregon, and Washington), South Atlantic (Florida, Georgia, North
Carolina, South Carolina), and Midwest (Iowa, Kansas, Missouri, Nebraska, North Dakota,
and South Dakota). Instead of considering the ratio of a COVID-19 count to a county-level
population size, the county-level population size was considered as an offset variable in the
model to remove the obvious effect of the county-level population size on the COVID-19
death counts. For spatiotemporal models, we computed 23 weekly COVID-19 death counts
from March 23 to August 31, 2020 by aggregating daily counts from Monday to Sunday
without overlapping. For spatial models, which we consider for comparison, we used cumu-
lative counts since the beginning of the study period. For sensitivity analysis, we consider a
different starting day of a week to calculate COVID-19 weekly death counts for spatiotem-
poral models. For spatial models, we consider a different length of aggregating COVID-19
death counts.

2.2. EXPOSURE TO PARTICULATE MATTER (PM2.5)

We imported the data from the repository where code and data are publicly available for
reproducing analyses in “Exposure to air pollution and COVID-19 mortality in the United
States: A nationwide cross-sectional study” (Wu et al. 2020). The county-level long-term
averaged PM2.5 (μg/m3) is calculated from an established exposure prediction model ([21],
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Van Donkelaar et al. 2019). Wu et al. (2020) considered the period of 2000–2016. We
extended the period up to 2018 for our analysis. Thus, temporal variations of PM2.5 during
our study period for each county were not considered.

2.3. POTENTIAL CONFOUNDERS

The twelve potential risk factors or confounding variableswere selected from the previous
benchmark study (Wu et al. 2020). The list of variables includes percent of poverty, popu-
lation density (4 levels by quartiles), median house value (thousand $), median household
income (thousand $), percent of owner-occupied housing, percent of Hispanic population,
percent of Black population, percent of the adult population with less than a high school
education, and percent of the adult population older than age 65, percent of hospital beds per
population and percent of smoking. These were collected from the 2000 and 2010 Census
(https://www.census.gov) and the 2005–2016 American Community Surveys (https://www.
census.gov/programs-surveys/acs/) according to Wu et al. (2020). Note that these variables
do not vary temporally but only spatially.

3. METHODS

In this paper, we will explore spatiotemporal modeling of the count data for our main
analysis. We account for the spatiotemporal nature of the county-level weekly COVID-19
death cases over the regions introduced in Sect. 2.

Depending on the over-dispersion and zero inflation characteristics in the outcome, we
consider a negative binomial (NB) and a zero-inflated negative binomial (ZINB) distribution-
basedmodeling approach.Wewill compare these results with the spatial model results using
cumulative counts to provide general understanding of our implications of findings.

3.1. MODELS

3.1.1. Spatial Negative Binomial Model

Let yi represent the death counts in county i for a certain week or the aggregated death
count for a certain period. We model these cross-sectional spatial count data with a negative
binomial distribution (Neelon et al. 2019) specified as,

yi ∼ NB (pi , r) (1)

where pi represents the success probability in the negative binomial distribution for county
i and r controls dispersion of the model since var(yi ) = E(yi )(1 + E(yi )/r). We model
yi as a generalized linear mixed model with a logistic link function. We assume D fixed-
effect covariates including exposure to PM2.5, population density, age distribution and several
socioeconomic variables. County-specific spatial random intercepts, bi , are introduced to

https://www.census.gov
https://www.census.gov/programs-surveys/acs/
https://www.census.gov/programs-surveys/acs/
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allow spatial dependence among the counties. The model is then defined as:

logit (pi ) = θi = log(xoi ) + β0 +
D∑

d=1

βd Xd + bi . (2)

xo i is a population size of the i th county so that log(xo i ) indicates an offset variable. Note
that a positive value of βd associated with a unit change in Xd accounts for an increase in the
expected number of counts. We assign {bi } an intrinsic conditional autoregressive (ICAR)
prior (Banerjee et al. 2014), which is specified by the following conditional structure:

bi | b(−i), σ
2
b ∼ N

⎛

⎝ 1

mi

∑

l∈∂i

bl ,
σ 2
b

mi

⎞

⎠ , (3)

wheremi is the number of neighbors of the i th county, ∂i is the set of indices for the neighbors
of the i th county and b(−i) is the set of random intercepts except the one for the i th county.
σ 2
b /mi represents the conditional variance given the random intercepts corresponding to

the rest of the counties. Note that we assume the first-order neighbor structure. This model
is similar to the model considered in Wu et al. (2020), but we consider spatial random
intercepts. This model is used to compare with a spatiotemporal model. In the rest of the
paper, we will refer to this negative binomial spatial model by SNB.

3.1.2. Spatiotemporal Negative Binomial Model

The NB distribution-based modeling of spatiotemporal count data can be expressed as:

yi j ∼ NB
(
pi j , r

)
, (4)

where yi j and pi j are the count and the success probability corresponding to the negative
binomial distribution for the i th county at time ti j , j = 1, . . . , ni , respectively. We model
pi j as a generalized linear mixed model with the logistic link function in a following way:

logit
(
pi j

) = θi j = log(xo i j ) + β0 +
M∑

m=1

β1mTm +
D∑

d=1

βd+M Xd + bi1 + bi2ti j . (5)

xo i j is a population size of the i th county at the time ti j so that log(xo i j ) indicates an offset

variable.
M∑

m=1
β1mTm is a flexible nonlinear time-fixed effect using M cubic B-splines to

capture the time trend fully. β = (β0, β1, β2, . . . βM+D)T represents the coefficient vector
for the fixed effect covariates. bi = (bi1, bi2)T represents the spatial bivariate randomeffects
for the i th county. bi1 is a random intercept and bi2 is a random slope for a linear time trend.
In this model, we account for time trend both as a fixed effects and also as a random effects
because theremight be heterogeneity across counties in the temporal dynamic of COVID-19
weekly deaths that remained unexplained by the time invariant covariates.
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We modeled the county-specific random effects vector bi , as a bivariate ICAR prior to
incorporate spatial dependence in the intercept and slope of the linear county-specific time
trends:

bi | b(−i), σ
2
b ∼ N2

⎛

⎝ 1

mi

∑

l∈∂i

bl ,
1

mi
�

⎞

⎠ , (6)

where mi is the number of neighbors for the i th county and ∂i is the set of neighbors for
the i th county. �/mi is a 2× 2 conditional covariance matrix of bi given b(−i), the random
effects for the rest of the counties. We shall refer to this model as STNB in the rest of this
paper.

3.1.3. Spatiotemporal Zero-Inflated Negative Binomial Model

In order to explain the zero inflation in the count data across different counties over time,
we consider a spatiotemporal ZINB model (Neelon et al. 2019) for yi j as,

yi j ∼ (
1 − qi j

)
1(wi j=0∧yi j=0) + qi jNB

(
pi j , r

)
1(wi j=1), (7)

where qi j represents the probability that the i th county at time ti j belongs to the negative
binomial component and wi j represents the corresponding indicator variable. ∧ is a symbol
of logical conjunction. We can interpret qi j as the probability that the i th county at time ti j
potentially can have death counts. The rest of the parameters are same as defined in (4). To
consider both a population size offset and nonlinear time-fixed effect similar to the model
in (5), we model qi j and pi j as,

logit
(
qi j

) = logit
[
Pr

(
wi j = 1 | β1, b1i

)]

= θ1i j = log(xoi j ) + β10 +
M∑

m=1

β1mTm +
D1∑

d=1

β1(d+M)Zd + b1i1 + b1i2ti j ,

logit
(
pi j

) = θ2i j = log(xoi j ) + β20 +
M∑

m=1

β2mTm +
D2∑

d=1

β2(d+M)Xd + b2i1 + b2i2ti j

(8)

where b1i = (b1i1, b1i2)T and b2i = (b2i1, b2i2)T represent the random effects correspond-
ing to qi j and pi j , respectively.We impose a multivariate ICAR prior structure (Neelon et al.

2019) on φi = (
bT1i , b

T
2i

)T
as,

φi | φ(−i),� ∼ N4

⎛

⎝ 1

mi

∑

l∈∂i

φl ,
1

mi
�

⎞

⎠ , (9)

where �/mi is a 4×4 conditional covariance matrix. This multivariate ICAR allows spatial
dependence and county-specific random time trend within count components and excess-
zero components as well as dependence between them. This model will be referred to as
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STZINB-NLT in the rest of this paper, where NLT refers to nonlinear fixed-time trend for
qi j .

We hypothesize that the assumption of nonlinear fixed time trend for qi j might not be
necessary in the sense ofmodel parsimony. Thus, we consider a simpler version by assuming
linear time fixed effect in a binary component. That is,

logit
(
qi j

) = θ1i j = log(xoi j ) + β10 + β11ti j +
D1∑

d=1

β1(d+1)Zd + b1i1 + b1i2ti j . (10)

This model will be referred to as STZINB-LT in the rest of this paper, where LT refers to
linear fixed time trend for qi j .

3.2. BAYESIAN INFERENCE

3.2.1. Prior Specification and MCMC Settings

We illustrate prior and hyper-parameter specifications and Markov Chain Monte Carlo
(MCMC) settings under the STZINBmodel framework. For the latent at-risk indicatorswi j ,
probability was given as exp(θ1i j )/[1 + exp(θ1i j )], where θ1i j is defined as either equation
(8) or (10). Prior distributions for β1 and β2 were assumed to be Np

(
β0 = 0, �0 = 100Ip

)
,

respectively, where Ip is a p × p identity matrix. For r in negative binomial component,
a uniform prior was considered. To construct time-basis functions Tm,m = 1, · · · , M , we
standardized time points ti j to be ranged from 0 to 1, i.e., ti j = j

J , where J = 23 is the
number of weeks during the study period, and j = 1, · · · , J = 23 is a week indicator. We
set three internal knot points 0.25, 0.50, 0.75 considering 0 and 1 as boundaries, so that
M = 7 throughout our analysis. DIC is calculated as described in Gelman et al. (2013) for
model comparison.

For each model, we ran three MCMC chains with 11,000 iterations, and 1,000 burn-
in. For each model, convergence of each model was determined by conventional MCMC
diagnostics such as trace plots and Geweke z-statistics.

3.2.2. Conditional Posterior Distribution and Model Fitting

A posterior sampling algorithm of STZINB is adopted fromNeelon et al. (2019), and it is
straightforward to implement the algorithms for the othermodels as they are simplermodels.
As outlined in Neelon et al. (2019), we need to update at-risk indicators w, coefficients for
the binarymodel componentβ1, coefficients for the countmodel componentβ2, a dispersion
parameter r for the negative binomial distribution, the set of spatial random effects φ with
�. The following illustrate the steps of MCMC to update the parameters.

STEP1 Update at-risk indicators w

Given current parameter values, we drawwi j from a Bernoulli distribution with prob-
ability ηi j such that
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ηi j = Pr(yi j = 0|wi j = 1)Pr(wi j = 1)

Pr(yi j = 0|wi j = 1)Pr(wi j = 1) + Pr(yi j = 0|wi j = 0)Pr(wi j = 0)

= qri j (1 − pi j )

qri j (1 − pi j ) + pi j
(11)

where qi j and pi j are defined in (8). Note that qi j is the inverse logit of θ1i j , and pi j is
the inverse logit of θ2i j . To avoid numerical issue, we adjusted the sampled qi j and pi j
to be within (0.001, 0.999), respectively, in practice.

STEP2 Update β = (
β1,β2

)

To update β1, we draw a latent variable ξ1i j from a Pólya-Gamma distribution
PG(1, θ1i j ) as shown in Polson et al. (2013). Given w and ξ1, the full conditional distri-
bution of β1 is

Pr
(
β1|w, ξ1

) ∝ π(β1) exp

[
−1

2
(z1 − Xβ1)

T�1(z1 − Xβ1)

]
(12)

where X is a n × p design matrix, π(β1) the prior distribution Np (β0, �0), z1 =
w−1/2

ξ1
, and �1 = diag(ξ1) an n × n precision matrix. Conditional on z1, we update β1

from Np (μ,�) where � =
(
�−1

0 + XT�1X
)−1

, and μ = �
(
�−1

0 β0 + XT�1z1
)
.

We update β2 by similar process using the corresponding Pólya-Gamma distribution
PG(yi j + r, θ2i j ) as shown in Pillow and Scott (2012).

STEP3 Update r
We can use a random-walk Metropolis–Hastings step illustrated in Neelon et al.

(2019). We present Metropolis–Hastings method with uniform prior because of effi-
ciency in computation time.

STEP4 Update φ, �
Let φ11 = (b111, · · · , b1n1)T be the n × 1 vectors of random intercepts for the binary

component,φ12 = (b112, · · · , b1n2)T be the n×1 vectors of random slopes for the binary
component, φ21 = (b211, · · · , b2n1)T be the n × 1 vectors of random intercepts for the
count component, and φ22 = (b212, · · · , b2n2)T be the n × 1 vectors of random slopes
for the binary component. Then, φ = (φ11,φ12,φ21,φ22)

T is the 4n×1 collection of all
random effects by definition. Under the STZINB-NLT model illustrated in Sect. (3.1.3),
the conditional prior for φ11, for instance, is

Pr(φ11|φ12,φ21,φ22, �) ∝ exp

[
−1

2
(φ11 − μ11)

T�11(φ11 − μ11)

]
(13)

where �11 =
[
�11 − �1,−1�

−1
−1,−1�−1,1

]−1
Q, μ11 =

[(
�1,−1�

−1
−1,−1

)
⊗ In

]
φ(−1),

�1,−1, �11 denotes the first element of �, �(1,−1) is the 1× 3 vector comprising the first
row of � with element 1 removed, �(−1,−1) is the 3 × 3 sub-matrix of � after removing
row 1 and column 1, Q = M− A, M = diag(m1, · · · ,mn) an n×nmatrix with diagonal
elements equal to the number of neighbors for each spatial unit, A is an n × n adjacency
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Table 1. Summary statistics for four regions: Mid-Atlantic (New Jersey, New York, and Pennsylvania), Pacific
(California,Oregon, andWashington), SouthAtlantic (Florida,Georgia,NorthCarolina, SouthCarolina),
and Midwest (Iowa, Kansas, Missouri, Nebraska, North Dakota, and South Dakota)

Mid-Atlantic Pacific South Atlantic Midwest

Number of counties 150 133 372 531
Average of zero death proportions (%) 55.0(9.3) 63.2(8.7) 53.7(13.5) 90.4(3.2)
Average of weekly death counts 16.4(169.0) 5.0(54.4) 2.6(9.1) 0.3(2.1)
Cumulative death counts by 2020/08/31 377.1(1028.4) 116.8(527.7) 59.4(168.8) 7.2(37.5)
Population size (thousands) 275(415) 373(1,014) 666(1,455) 29(79)

2000–2018 averaged ambient PM2.5 (μg/m3) 9.4(2.0) 6.2(3.0) 10.5(1.1) 6.8(1.8)
Poverty rate (%) 8.0(3.5) 9.3(4.3) 12.2(5.5) 9.6(5.4)
Population density (in sq mi) 2,525(8,703) 919(2,306) 390(732) 99(362)
Median house value[MHV] (in thousand $) 192.6(132.9) 275.7(172.9) 125.6(55.1) 99.5(31.1)
Median household income[MHI] (in thousand $) 60.2(17.0) 54.4(14.8) 43.2(9.8) 50.8(9.2)
Home owners rate (%) 74.9(10.5) 67.2(8.5) 71.0(8.1) 77.2(6.4)
Hispanic (%) 5.7(7.5) 16.7(15.1) 6.7(6.8) 3.7(5.4)
Less than high school education (%) 18.3(5.3) 15.0(8.6) 25.9(9.6) 16.3(7.4)
Black (%) 4.7(6.8) 1.6(2.1) 23.1(16.9) 1.1(3.3)
Older than age 65 (%) 15.7(2.5) 15.5(4.5) 15.1(4.6) 18.3(4.4)
Hospital beds per population (%) 0.33(0.28) 0.27(0.28) 0.32(0.34) 0.55(0.76)
Smoke rate (%) 47.5(8.0) 46.0(9.2) 47.5(9.5) 45.8(7.2)

matrix with aii = 0, ail = 1 if county units i and l are neighbors, and ail = 0 otherwise.
We update each vector of φ = (φ11,φ12,φ21,φ22)

T from its normal full conditional
distribution based on (13) applying sum-to-zero constraints as needed. To update �, we
use its conjugate prior, an inverse-Wishart full conditional distribution.

4. RESULTS

4.1. OVERALL DESCRIPTION

Table 1 shows summary statistics of our data for the four regions in theUSA:Mid-Atlantic
(New Jersey, New York, and Pennsylvania), Pacific (California, Oregon, and Washington),
South Atlantic (Florida, Georgia, North Carolina, South Carolina), and Midwest (Iowa,
Kansas, Missouri, Nebraska, North Dakota, and South Dakota). For example, 55.0 for Mid-
Atlantic in the row of the average of zero death proportions means on average 55.0% of
counties in Mid-Atlantic region have zero deaths during the 23 weeks. In the row of the
average of weekly death counts, 16.4 for Mid-Atlantic means on average 16.4 deaths for
each county during a week.

The sample variance of COVID-19 weekly death counts exceeds the sample mean for
all the four regions in Table 1. This indicates that the negative binomial distribution, which
can accommodate overdispersion, would be suitable in modeling COVID-19 weekly death
counts. High proportion of zero counts may not be fully explained by the negative bino-
mial distribution alone. Therefore, zero-inflated negative binomial (ZINB) models could be
suitable to account for the excess zero counts as well as the overdispersion. This modeling
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Figure 1. Bar plots of weekly COVID-19 death counts during the study period (2020/03/23–2020/08/31). In the
first row, the height of each bar represents the proportion of counties with no death count (0–100%) in each week.
A red dashed line is the global average of zero rates across time (week). In the second row, the height of each bar
represents the weekly death counts averaged across all counties with regions. Please note that the ranges of y-axis
are different among the four regions .

Table 2. Average and standard deviation (SD) of 23 correlation values calculated between logarithm of COVID-
19 weekly death counts per capita and PM2.5 over counties in each week for four regions. A zero count
is replaced with 0.5 when calculating correlation. The row of percentage of significance provides the
percentage of significant correlation values (different from zero) based on a t-test with a 5% significance
level

Mid-Atlantic Pacific South Atlantic Midwest

Average 0.344 0.436 0.076 0.215
SD 0.081 0.108 0.053 0.051
Percentage of Significance 100% 96% 43% 96%

allows that the observed zero would come from two different sources: structural zero and
zero from the negative binomial component.

The four regions have different characteristics of COVID-19 death counts until August.
Figure 1 illustrates two types of bar plots representing the weekly rates of zeros and the
weekly death counts averaged across counties within regions. Midwest has the highest zero
rates over time. Pacific and South Atlantic regions have decreasing zero rates over time in
general. The bar plot of the weekly death counts for both regions shows bimodal shapes
with a large peak in early August. On the other hand, Midwest has bimodal shape but the
peak is in early May. Different from the other three regions, Mid-Atlantic is left-skewed
with a peak in April.

To investigate possible association between COVID-19 death counts and PM2.5, we com-
pute correlation between log of COVID-19 weekly death counts per capita and PM2.5 over
counties in each region for each week. With 23 weeks of consideration, we have 23 corre-
lation values for each region. Note that all correlation values are positive. In Table 2, we
provide average and standard deviation of these 23 values for each region. Also, we provide
the percentage of significant correlation based on a t-test for nonzero correlation with 5%
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significance level. Majority of weeks has statistically significant nonzero correlation values
except South Atlantic. From this investigation, we hypothesized that the COVID-19 counts
and long-term PM2.5 exposure were positively associated.

4.2. ESTIMATION RESULTS OF THE MODELS ON COVID-19 MORTALITY

Among the Bayesian spatiotemporal models such as STNB, STZINB-LT, and STZINB-
NLT, one model that shows the lowest Deviance information criterion (DIC) is chosen for
each of the four regions. STZINB-NLT is chosen for Mid-Atlantic and Pacific regions,
while STZINB-LT is chosen for South-Atlantic and Midwest regions. Note that we include
a nonzero-inflated model for comparison and the zero-inflated models were selected for
all the regions we considered in this study with given study period. The DIC values for
the models we considered are provided in Tables 4, 6, 8 and 10 in the Supplementary
document.

Table 3 describes the estimated coefficients and their 95% credible intervals of the covari-
ates on COVID-19 weekly death counts under the selected model. The results for the four
regions indicate that long-term exposure to PM2.5 is positively associated with the expected
COVID-19 weekly death counts, but only Pacific region shows lack of significance based on
the 95% credible interval. The point estimate of β2,2 that corresponds to PM2.5 for the Mid-
Atlantic region is equal to 0.069, which is the change in the expected COVID-19 weekly
death counts in log scale by a unit change in PM2.5. That is, an increase of 1 μg/m3 in
the long-term PM2.5 level is associated with a e0.069 − 1 � 7.1% increase in the expected
COVID-19 weekly death counts per county after controlling all the confounding factors.
Similarly, we have 2.3% for Pacific, 3.1% for South Atlantic and 9.2% for Midwest of
increments in the expected COVID-19 weekly death counts per county.

Increases in MHI, Hispanic population and number of beds are associated with the
increases in the expected COVID-19 death counts, although some are not significant based
on 95% credible intervals. MHV is negatively associated except Mid-Atlantic region, while
Black population and Smoking rate are mostly positively associated except Pacific region
for Black population and South Atlantic for smoking rate. The other confounders show
mixed directions of the effects.

Table 4 illustrates the estimated coefficients and their 95% credible intervals of the
covariates on qi j , the probability that belongs to the negative binomial component under
the selected model. The estimated coefficients for long-term ambient PM2.5 are positive for
all regions except for Pacific region. This implies that the increase in the level of long-
term ambient PM2.5 can potentially increase the chance of COVID-19 death since qi j is
the probability that belongs to the negative binomial component which models nonzero
death counts. The effect of the long-term ambient PM2.5 on qi j is statistically significant for
Mid-Atlantic and Midwest regions. If the long-term ambient PM2.5 increases in 1 μg/m3

adjusting the other confounding factors in Midwest region, for example, the log odds ratio
for qi j increases by 0.355. This implies that if the long-term ambient PM2.5 changes from
8 μg/m3 to 9 μg/m3, qi j will increase in exp(9 · 0.355)/[1 + exp(9 · 0.355)] − exp(8 ·
0.355)/[1 + exp(8 · 0.355)] � 0.016. On the last week of the study period, qi j in Midwest
region ranges from 0.164 (Jewell County) to 0.999 (Johnson County).
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The most estimates for MHI, Hispanic population and number of beds are positive,
which are similar to the results in Table 3, but they are mostly not significant. For the
other confounders, the directions of the effects for the confounders are rather different and
compared to the results in Table 3, and the effects are mostly not significant.

Figure 2 shows the time-averaged qi j . Note that qi j represents the probability of the
i th county being in the negative binomial component at the j-th week. The dark colored
counties for each region indicate a high time-averaged probability in the first row. In the
second row, we show 12 counties whose estimated qi j s correspond to the

j
11 th quantiles for

j = 0, 1, · · · , 11. The differences between the first and the second counties are relatively
larger inMid-Atlantic and Pacific regions than those in the other two regions. The decreasing
rate over counties is slower in South Atlantic and Midwest regions compared to the other
regions.

The estimated �, the covariance matrix of four spatial random effects in each region
shows that off-diagonal entries are close to zero (Table 3 in the Supplementary document).
Recall that these random effects are random intercepts and random slopes for time in the
count component and excess zero component. Thus, estimated zero implies these random
effects are not correlated to each other, although each random effect is spatially dependent.

Figure 3 shows the estimated nonlinear mixed time effects in the negative binomial
component (the COVID-19 weekly death counts). Each of the four regions shows different
nonlinear temporal patterns in the negative binomial component. We selected five represen-
tative counties out of twelve appeared in Fig. 2 considering the rank of the estimated qi j , and
they show distinctive patterns over study periods since we allow county-specific random
effects in the intercept and linear components. The temporal patterns are overall similar to
the patterns we observed in Fig. 1. This is expected since the covariates in the models are
static so that the time effect components in the models try to capture the temporal patterns
unexplained by the static covariates. The estimated effects of the models were not much
sensitive by a different starting day of a week when aggregating COVID-19 daily death
counts to weekly death counts (results not shown).

4.3. COMPARISON BY MODELING TECHNIQUES

In this section, we compare our spatiotemporal models with a spatial negative binomial
model (SNB) with cumulative death counts. The results are provided in Table 5. Since
the models are different as well as the response variables are different, we cannot directly
compare the results between the SNB model and spatiotemporal models. However, we can
assess the direction of associations and whether they are consistent or not between these
models. Under the SNB model, we found that the long-term exposure to PM2.5 is positively
associated with the expected cumulative death counts for COVID-19 for all four regions.
This is consistent with the results from the spatiotemporal models provided in the previous
subsection and also with the results by Wu et al. (2020). This supports the hypothesis
of positive association between the long-term ambient PM2.5 and the expected COVID-19
death counts. On the other hand, the results are different in some aspects. Note that the
effect size of long-term ambient PM2.5 estimated from the spatial model exceeds those from
spatiotemporalmodels.We suspect that this could be due to the lack of temporal components
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Figure 2. Visualization of time-averaged qi j using the selected models for the four regions. The first two rows
show the time-averaged qi j over counties. The last row show twelve counties whose estimated qi j s correspond to
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are different among the four regions (Color figure online).

in the model. Also, the directions of the association for some confounders are not the same
and there are less number of significant effects.

The estimated effects are rather sensitive to the length of the period for aggregating the
outcome variable (results not shown), which could be an issue to consider a SNB model for
COVID-19 death counts. In addition to this issue, a SNB model ignores temporal charac-
teristics of the data. Thus, it is natural to consider a spatiotemporal model, but we should be
careful in interpreting the results from the spatiotemporalmodels since themodel complexity
can result in an overfitting or unstable estimation.
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5. CONCLUSION AND DISCUSSION

We investigate the relationship between long-term exposure to PM2.5 and county-level
COVID-19 weekly death counts by implementing and comparing several spatiotemporal
negative binomial models with/without a zero-inflated component. These associations were
adjusted by social and environmental factors. We also considered county-level random
effects that account for spatiotemporal interaction in both the structural zero component and
the negative binomial component via an ICAR model. We considered possible nonlinear
time effects in both components as well.

We hypothesize potential heterogeneity in the effects of long-term exposure to PM2.5

and other social and environmental factors on the COVID-19 weekly death counts across
divisions of the USA, likely due to different region-specific sociocultural, behavioral and
healthcare system as well as COVID-19 policies by assuming that nearby states have sim-
ilar characteristics. Thus, we consider four geographically different regions (Mid-Atlantic,
Pacific, South Atlantic, andMidwest) and applied the spatiotemporal models to each region.

Based onmodel comparison byDIC,we selected zero-inflatedmodels for all four regions.
Within zero-inflated models, the linear time trend model for the probability that belongs to
the negative binomial component was chosen for South Atlantic andMidwest regions, while
the nonlinear time trend model was chosen for the other two regions. Note that we assumed
nonlinear time trend for the negative binomial component for all four regions.

We compare the results obtained from these spatiotemporal models with the results
obtained from a spatial negative binomial model that completely ignores the temporal infor-
mation. The spatial negative binomial model was applied to the cumulative death counts
until the date we considered (August 31, 2020). Because the spatiotemporal model uses
weekly COVID-19 counts as outcome and the spatial model uses cumulative death counts
for the whole study period as outcome, the results obtained under the two models have dif-
ferent interpretations. Still we found that the direction and the strength of the associations
between PM2.5 and COVID-19 death counts are consistent.

The estimated coefficients associated with long-term exposure to PM2.5 from the selected
models are mostly positive and statistically significant for the regions under this study after
adjusting the nonlinear time trend with a county-specific random slope, spatial dependence,
and many other measured confounders. The directions of association for COVID-19 weekly
death counts, although not significant for Pacific, are consistentwith the result of the previous
study (Wu et al. 2020). Note that Wu et al. (2020) did not consider spatial and temporal
dependence in the model. We also checked the effects of long-term exposure to PM2.5 for all
the models introduced in Sect. 3.1 and the model from Wu et al. (2020) using the data used
in this study. All the models show the positive association. The results are given in Tables
5, 7, 9 and 11 in the Supplementary document.

Some of confounders may affect on COVID-19 weekly death counts through an inter-
action effect. Thus, we investigate effects by an interaction term between PM2.5 and other
confounders, but they are not critical for the models and data sets we considered. These find-
ings add evidence of the increase in risk of death for COVID-19 by the long-term exposure
to air pollution into the literature.
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By aggregating the data over time or region, we may encounter ecological fallacy and
need to be careful in interpreting the result. That is, the increased effects on COVID-19
death counts by PM2.5 that we observed from our analysis may not imply an increased risk
of individual’s death by COVID-19 since the analysis is based on a county-level weekly
aggregated death counts. Our results only imply that long-term exposure to PM2.5 may
increase COVID-19 weekly death counts at a county level.

By applying themodels to each region, separately, we are able to see different association
patterns among regions. Although the effect of the long-term exposure to PM2.5 on the
COVID-19 weekly death counts is in the same direction for all four regions, the size of
the effects is different. Also, the effects of the some other confounders show different
directions by region. The proposed models, spatiotemporal zero-inflated negative binomial
models with nonlinear time effects, spatial random effects and spatiotemporal interaction
random effects, are very flexible and capture the spatiotemporal characteristics of the data.
On the other hand, the complexity of the model could lead to an increased variability in
estimation due to the large number of parameters to estimate. This issue could be alleviated
by controlling the prior distribution with the information from the previous study.

To support our claim about our methodology and modeling strategy, we have done exten-
sive simulation studies whichmimics our specific spatiotemporal data structure with nonlin-
ear temporal effects. Full details of our simulation studies are included in the Supplementary
document. We have developed a user-friendly R tool. All model-related R codes and soft-
ware can be downloaded from GitHub repository (https://github.com/junpeea). We are also
in the process of developing a R-Shiny-based application for cloud-based deployment and
interactive interface for non-statistician’s easy use and access.

As the spread of COVID-19 is ongoing, geographically different regions have different
dynamics of the disease spread and a spatiotemporal model is flexible enough to handle
different types of dynamics. As the surge of COVID-19, the zero-inflated model might
not be suitable for many states anymore. However, by investigating and comparing several
spatiotemporal models including nonzero-inflated models, we can find a reasonable model
that explains the characteristics of the data. The risk factor and confounders we used are
not temporally varying although the response variable, COVID-19 weekly death counts, is
varying over time. Temporal variations in the response variable would be due to unavailable
temporal covariates such as policy changes by county health department on COVID-19 and
policy changes for school opening and business operation. To handle temporal variations
without such temporal covariates, we introduced nonlinear time effects with county-specific
random slopes. Once this additional information is available, we can easily accommodate
it into the model.

One can consider applying the spatiotemporal model to county-level COVID-19 weekly
death counts for the entireUSA.This can be doable but a singlemodelmay not be able to cap-
ture heterogeneous effects that we found in this study. Also, handling a spatial dependence
model with a large number of spatial regions brings an additional computational burden. On
the other hand, we can extend the current model with a spatiotemporally varying coefficient
model to capture heterogeneous effects by states or by county so that we can investigate the
whole data into one model framework. A modified spatial dependence modeling such as

https://github.com/junpeea
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allowing spatial dependence only within state to increase computational efficiency can be
also considered. We plan to investigate such extension as a future study.

The effect of PM2.5 on individuals’ health has been investigated in both long-term and
short-term directions in the literature. COVID-19 changed economic environment as well
as people’s life styles in many ways, which cause large variations (either up or down) in PM
levels during a short-term period (Wu et al. 2020; Venter et al. 2020) As our focus is long-
term effect of PM2.5 on COVID-19 death counts, these short-term changes of PM levels were
not considered in our analysis. Thus, our findings are restricted to the association between
long exposure to PM2.5 and COVID-19 death counts, in particular, aggregated death counts
over counties and weeks.

Finally, as we have mentioned earlier, this study contributes toward the possibility of
the hazards of PM2.5 on COVID-19-positive cases and related mortality. Specifically, we
believe that as we have incorporated the “zero-inflation” part to the model, it will allow to
make inference in early stages of the pandemic of this kind. Nevertheless, we assent that
the claim on the higher risk of a COVID-19 death in polluted counties is open to debate
as our findings (positive association) do not imply causation. It is also acknowledged that
the findings in this paper are limited as they depend on several factors such as the data
structure, models and inference methods. There have been about only two years since the
coronavirus outbreak began; even so a heavy contribution from several genre of research
related to this pandemic—which is a great reflection of the fact that researchers around the
world are trying to infer on the connection between the air pollution and its association with
the deaths related to COVID-19. However, we are in a urgent need of more research to be
done, at the granular level with more complexity in the data and in the modeling. As we
are working on this problem, as a statistician and data scientist, it is believed that there is
an immediate need of more patient-level data (which is not easy to access because of the
issues related to data confidentiality, data sharing, and other related things) than the kind of
data publicly available these days. That also makes us believe that as more similar findings
are accumulated by other researchers, our claim would become much more stronger.
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