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Abstract. The aim of the present paper is to study a Riemannian manifold admitting
a type of semi-symmetric non-metric connection whose torsion tensor is pseudo sym-
metric.
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1. Introduction

In 1924, Friedmann and Schouten [11] introduced the idea of semi-symmetric con-

nection on a differentiable manifold. A linear connection ∇̃ on a differentiable
manifold M is said to be a semi-symmetric connection if the torsion tensor T of the
connection ∇̃ satisfies

(1.1) T(X,Y ) = u(Y )X − u(X)Y,

where u is a 1-form and ρ1 is a vector field defined by

(1.2) u(X) = g(X, ρ1),

for all vector fields X ∈ χ(M), χ(M) is the set of all differentiable vector fields on
M .

In 1932, Hayden [12] introduced the idea of semi-symmetric metric connections

on a Riemannian manifold (M, g). A semi-symmetric connection ∇̃ is said to be a
semi-symmetric metric connection if

(1.3) ∇̃g = 0.

A relation between the semi-symmetric metric connection ∇̃ and the Levi-Civita
connection ∇ of (M, g) was given by Yano [26]: ∇̃XY = ∇XY +u(Y )X−g(X,Y )ρ1,
where u(X) = g(X, ρ1).
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The study of semi-symmetric metric connection was further developed by Amur
and Pujar [2], Binh [5], De [8], Singh et al. [21], Ozgur et al ([14],[15]), Ozen, Uysal
Demirbag [16], Zhao [28, 29], Velimirović et al [24, 25] and many others. After a
long gap the study of a semi-symmetric connection ∇̄ satisfying

(1.4) ∇̄g 6= 0.

was initiated by Prvanović [17] with the name pseudo-metric semi-symmetric con-
nection and was just followed by Andonie [3].

A semi-symmetric connection ∇̄ is said to be a semi-symmetric non-metric con-
nection if it satisfies the condition (1.4).

In 1992, Agashe and Chafle [1] studied a semi-symmetric non-metric connection
∇̄, whose torsion tensor T̄ satisfies T̄ (X,Y ) = u(Y )X−u(X)Y and (∇̄Xg)(Y, Z) =
−u(Y )g(X,Z)−u(Z)g(X,Y ) 6= 0. They proved that the projective curvature tensor
of the manifold with respect to these two connections are equal to each other. In
1992, Barua and Mukhopadhyay [4] studied a type of semi-symmetric connection
∇̄ which satisfies

(∇̄Xg)(Y, Z) = 2u(X)g(Y, Z)− u(Y )g(X,Z)− u(Z)g(X,Y ).

Since ∇̄g 6= 0, this is another type of semi-symmetric non-metric connection. How-
ever, the authors preferred the name semi-symmetric semimetric connection.

In 1994, Liang [13] studied another type of semi-symmetric non-metric connec-
tion ∇̄ for which we have (∇̄Xg)(Y, Z) = 2u(X)g(Y, Z), where u is a non-zero
1-form and he called this a semi-symmetric recurrent metric connection.

The semi-symmetric non-metric connections was further developed by several
authors such as De and Biswas [9], De and Kamilya [10], Liang [13], Singh et al.
([20], [22], [23]), Smaranda [18], Smaranda and Andonie [19] and many others.

We consider a type of linear connection given by

(1.5) ∇̄XY = ∇XY + aω(X)Y + bω(Y )X,

where a and b are two non-zero real numbers and ρ is a vector field defined by
ω(X) = g(X, ρ), for all X ∈ χ(M), the set of all differentiable vector fields on M .

The torsion tensor T̄ with respect to ∇̄ is

(1.6) T̄ (X,Y ) = (b− a)ω(Y )X − (b− a)ω(X)Y = π(Y )X − π(X)Y,

where π(X) = (b− a)ω(X).

Therefore, the connection ∇̄ is a semi-symmetric connection. Also

(∇̄Xg)(Y, Z) = −2aω(X)g(Y, Z)− bω(Y )g(X,Z)− bω(Z)g(X,Y ) 6= 0.

Hence the semi-symmetric connection ∇̄ defined by (1.5) is a semi-symmetric non-
metric connection.
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In 1987, Chaki [7] defined the notion of pseudo symmetric manifolds. A non-flat
Riemannian manifold (Mn, g), n ≥ 2 is said to be a pseudo symmetric manifold if
its curvature tensor R satisfies the condition

(∇XR)(Y, Z)U = 2ω(X)R(Y, Z)U + ω(Y )R(X,Z)U

+ω(Z)R(Y,X)U + ω(U)R(Y, Z)X

+g(R(Y, Z)U,X)ρ,(1.7)

where ω is a non-zero 1-form and ρ is a vector field defined by

ω(X) = g(X, ρ), for all X,

and ∇ denotes the operator of covariant differentiation with respect to the metric
tensor g. The 1-form ω is called the associated 1-form of the manifold. If ω = 0,
then the manifold reduces to a symmetric manifold in the sense of Cartan [6]. An
n-dimensional pseudo symmetric manifold is denoted by (PS)n.

A Riemannian manifold is said to be Ricci-semisymmetric with respect to the
Levi-Civita connection ∇, if

(R(X,Y ) · S)(U, V ) = 0.

A Riemannian manifold is said to be locally symmetric due to Cartan or Cartan
symmetric if it satisfies ∇R = 0.

The Weyl projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be a n-dimensional Riemannian manifold. If there
exists a one-to-one correspondence between each coordinate neighbourhood of M
and a domain in Euclidean space such that any geodesic of the Riemannian manifold
corresponds to a straight line in the Euclidean space, then M is said to be locally
projectively flat. For n ≥ 1, M is locally projectively flat if and only if the projective
curvature tensor vanishes. Here the Weyl projective curvature tensor P with respect
to the Levi-Civita connection is defined by

(1.8) P(X,Y )Z = R(X,Y )Z −
1

n− 1
[S(Y, Z)X − S(X,Z)Y ],

for X , Y , Z ∈ χ(M). In fact, M is projectively flat if and only if it is of constant
curvature [27]. Thus the projective curvature tensor is the measure of the failure of
a Riemannian manifold to be of constant curvature.

In this paper we study a special type of the semi-symmetric non-metric connec-
tion on Riemannian manifolds. The paper is organized as follows: After introduction
in Section 2, we define a special type of semi-symmetric non-metric connection and
we also construct an example of a special type semi-symmetric non-metric connec-
tion on Riemannian manifolds. In Section 3, we give some properties of a special
type of semi-symmetric non-metric connection. Next Section deals with the relation
of the curvature tensors between the Levi-Civita connection and the semi-symmetric
non-metric connection on a Riemannian manifold whose torsion tensor is pseudo
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symmetric with respect to a special type semi-symmetric non-metric connection.
Also we characterized a Riemannian manifold admitting a type of semisymmet-
ric non-metric connection whose curvature tensor vanishes and the torsion tensor
is pseudosymmetric. Weyl projective curvature tensor on Riemannian manifolds
admitting a special type of the semi-symmetric non-metric connection have been
studied in Section 5. Finally, we have classified the Ricci-semisymmetric Riemannian
manifolds admitting a special type of the semi-symmetric non-metric connection.

2. Existence of a type of semi-symmetric non-metric connection

We consider a type of linear connection ∇̄ and the Levi-Civita connection ∇ of a
Riemannian manifold M such that

∇̄XY = ∇XY +H(X,Y ),

where H is a tensor of type (1, 2) and X,Y ∈ χ(M), χ(M) is the set of all differen-
tiable vector fields on M . For ∇̄ to be a semi-symmetric non-metric connection in
M, we have

(2.1) H(X,Y ) =
1

2
[T̄ (X,Y )− T̀ (X,Y ) + T̀ (Y,X)] + aω(Y )X + bω(X)Y,

where g(X, ρ) = ω(X) and T̀ is a tensor of type (1, 2) such that

(2.2) g(T̄ (Z,X), Y ) = g(T̀ (X,Y ), Z).

Combining (1.6) and (2.2), implies that

(2.3) T̀ (X,Y ) = π(X)Y − g(X,Y )ρ,

where π(X) = (b− a)ω(X). In view of (1.6), (2.1) and (2.3)yields

H(X,Y ) = aω(X)Y + bω(Y )X.

Therefore, the semi-symmetric non-metric connection on a Riemannian manifold is
given by

∇̄XY = ∇XY + aω(X)Y + bω(Y )X.

Conversely, we prove that a linear connection ∇̄ such that ∇̄XY = ∇XY +
aω(X)Y + bω(Y )X is a semi-symmetric non-metric connection on a Riemannian
manifold.

The torsion tensor T̄ of the connection is given by

T̄ (X,Y ) = (b− a)ω(Y )X − (b− a)ω(X)Y = π(Y )X − π(X)Y.

From the above equation, we obtain that the connection ∇̄ is a semi-symmetric
connection. Also we have

(∇̄Xg)(Y, Z) = −2aω(X)g(Y, Z)− bω(Y )g(X,Z)− bω(Z)g(X,Y ) 6= 0.
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Therefore, we are in a position to conclude that the connection ∇̄ is a semi-
symmetric non-metric connection.

Now, we give an example of a special type semi-symmetric non-metric connection
on Riemannian manifolds.

Example 2.1. In local co-ordinate system let us denote the Riemannian -
Christoffel symbols by Γh

ij and {hij} with respect to the semi-symmetric connection
and the Levi-Civita connection respectively. Then we can express equation (1.5) as
follows:

(2.4) Γh
ij = {hij}+ aηjδ

h
i + bηiδ

h
j .

Let us consider a Riemannian metric g on R
4 given by

(2.5) ds2 = gijdx
idxj = (dx1)2 + (x1)2(dx2)2 + (dx3)2 + (dx4)2,

(i, j = 1, 2, 3, 4). Then the only non-vanishing components of the Christoffel symbols
with respect to the Levi-Civita connections are

{122} = −x1, {212} = {221} =
1

x1
.

Let us define ηi by ηi = (0,− 1
(x1)2 , 0, 0). If Γ

h
ij corresponds to the semi-symmetric

connections, then from (2.4), we have the non-zero components of Γh
ij as

Γ1
22 = {122}+ aη2δ

1
2 + bη2δ

1
2 = −x1.

Similarly, we obtain

Γ2
12 = Γ2

21 =
1

x1
, Γ3

32 = Γ4
42 = Γ1

12 = −a, Γ3
23 = Γ4

24 = Γ1
21 = −b.

Now we have

g22,1 =
∂g22

∂x1
− g2hΓ

h
21 − g2hΓ

h
21 = 0,

with respect to the semi-symmetric connection Γ, where ”,” denotes the covariant
derivative with respect to the semi-symmetric connection Γ. But

g11,2 = g33,2 = g44,2 = 2a 6= 0, g12,1 = g32,3 = g42,4 = b 6= 0.

Thus, Γ is not a metric connection. So, Γ is a semi-symmetric non-metric connec-
tion.
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3. Semi-symmetric non-metric connection

Definition 3.1. The 1-form ω is closed with respect to the Levi-Civita connection
if

(∇Xω)(Y )− (∇Y ω)(X) = 0,

where ρ is a vector field defined by ω(X) = g(X, ρ), ∇ denotes the operator of
covariant differentiation with respect to the metric tensor g and X,Y ∈ χ(M),
χ(M) is the set of all differentiable vector fields on M .

The vector field ρ is irrotational if g(Y,∇Xρ) = g(X,∇Y ρ) and the integral
curves of the vector field ρ are geodesic if ∇ρρ = 0.

Equation (1.5) implies that

(3.1) (∇̄Xω)(Y ) = (∇Xω)(Y )− (a+ b)ω(X)ω(Y ).

The above relation gives

(∇̄Xω)(Y )− (∇̄Y ω)(X) = (∇Xω)(Y )− (∇Y ω)(X),

this means that 1-form ω is closed with respect to the Levi-Civita connection ∇ if
and only if ω is closed with respect to the semi-symmetric non-metric connection
∇̄.

Putting Y = ρ in (1.5), we get

(3.2) ∇̄Xρ = ∇Xρ+ aω(X)ρ+ bω(ρ)X.

The above equation yields

g(Y, ∇̄Xρ)− g(X, ∇̄Y ρ) = g(Y,∇Xρ)− g(X,∇Y ρ),

which implies that the vector field ρ is irrotational with respect to ∇ if and only if
ρ is irrotational with respect to ∇̄.

Again putting X = ρ in (3.2), we obtain

(3.3) ∇̄ρρ = ∇ρρ+ (a+ b)ω(ρ)ρ.

If a = −b, then from the equation (3.3), it follows that

∇̄ρρ = ∇ρρ,

from this result we have the integral curves of the unit vector field ρ are geodesic
with respect to∇ if and only if the integral curves of the unit vector field ρ is geodesic
with respect to ∇̄. From the above discussion we can state the following:
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Theorem 3.1. If a Riemannian manifold admits a special type of semi-symmetric
non-metric connection, then

(i) the 1-form ω is closed with respect to the semi-symmetric non-metric con-
nection if and only if the 1-form ω is also closed with respect to the Levi-Civita
connection,

(ii) the vector field ρ is irrotational with respect to the semi-symmetric non-
metric connection if and only if the vector field ρ is also irrotational with respect to
the Levi-Civita connection and,

(iii) the integral curves of the unit vector field ρ are geodesic with respect to the
semi-symmetric non-metric connection if and only if the integral curves of the unit
vector field ρ are also geodesic with respect to the Levi-Civita connection provided
the non-zero real numbers of the connection satisfy the relation a = −b.

4. Expression of the curvature tensor of the semi-symmetric

non-metric connection

In this section we obtain the expressions of the curvature tensor and Ricci tensor
of M with respect to the semi-symmetric non-metric connection defined by (1.5).

Analogous to the definitions of the curvature tensor R of M with respect to the
Levi-Civita connection ∇, we define the curvature tensor R̄ of M with respect to
the semi-symmetric non-metric connection ∇̄ given by

(4.1) R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z,

where X,Y, Z ∈ χ(M), the set of all differentiable vector fields on M . Using (1.5)
in (4.1), we get

R̄(X,Y )Z = R(X,Y )Z − a(∇Y ω)(X)Z + a(∇Xω)(Y )Z − b(∇Y ω)(Z)X

+b(∇Xω)(Z)Y + b2ω(Y )ω(Z)X − b2ω(X)ω(Z)Y.(4.2)

From (1.6) we obtain

(4.3) (∇̄XC1
1 T̄ )(Y ) = (n− 1)π(Y ) = (n− 1)(b− a)(∇̄Xω)(Y ),

where C1
1 denotes the contraction.

Suppose the torsion tensor T̄ with respect to the semi-symmetric non-metric
connection is pseudo symmetyric, that is,

(∇̄X T̄ )(Y, Z) = ω(X)T̄ (Y, Z) + ω(Y )T̄ (X,Z) + ω(Z)T̄ (Y,X)

+g(T̄ (Y, Z), X)ρ,(4.4)

where ω(X) = g(X, ρ).

Contracting over Z in (4.4) and using (1.6), we obtain

(4.5) (∇̄XC1
1 T̄ )(Y ) = 4(n− 1)(b− a)ω(X)ω(Y )− (b− a)ω(ρ)g(X,Y ).
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Combining (4.3) and (4.5), we have

(4.6) (∇̄Xω)(Y ) = 4ω(X)ω(Y )−
ω(ρ)

n− 1
g(X,Y ).

Therefore, from (3.1) and (4.6), it follows that

(4.7) (∇Xω)(Y ) = (a+ b+ 4)ω(X)ω(Y )−
ω(ρ)

n− 1
g(X,Y ).

In view of (4.7) the equation (4.2) takes the form

R̄(X,Y )Z = R(X,Y )Z − b(a+ 4)ω(Y )ω(Z)X + b(a+ 4)ω(X)ω(Z)Y

+
bω(ρ)

n− 1
g(Y, Z)X −

bω(ρ)

n− 1
g(X,Z)Y.(4.8)

From (4.8), it follows that

R̄(X,Y )Z = −R̄(Y,X)Z,

and

(4.9) R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0.

We call (4.9) the first Bianchi identity with respect to the semi-symmetric non-
metric connection ∇̄.

Taking the inner product of (4.8) with U , we obtain

′R̄(X,Y, Z, U) = ′R(X,Y, Z, U)− b(a+ 4)ω(Y )ω(Z)g(X,U)

+b(a+ 4)ω(X)ω(Z)g(Y, U) +
bω(ρ)

n− 1
g(Y, Z)g(X,U)

−
bω(ρ)

n− 1
g(X,Z)g(Y, U),(4.10)

where ′R̄(X,Y, Z, U) = g(R̄(X,Y )Z,U) and ′R(X,Y, Z, U) = g(R(X,Y )Z,U).

Let {e1, ..., en} be a local orthonormal basis of the tangent space at a point of
the manifold M . Then by putting X = U = ei in (4.10) and taking summation
over i, 1 ≤ i ≤ n, we have

(4.11) S̄(Y, Z) = S(Y, Z) + bω(ρ)g(Y, Z)− b(n− 1)(a+ 4)ω(Y )ω(Z),

where S̄ and S denote the Ricci tensor of M with respect to ∇̄ and ∇ respectively.

The above discussion helps us to state the following proposition:

Proposition 4.1. For a Riemannian manifold M with respect to the semi-symmetric
non-metric connection ∇̄ whose torsion tensor is pseudo symmetric,
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(i) The curvature tensor R̄ is given by

R̄(X,Y )Z = R(X,Y )Z − b(a+ 4)ω(Y )ω(Z)X + b(a+ 4)ω(X)ω(Z)Y

+
bω(ρ)

n− 1
g(Y, Z)X −

bω(ρ)

n− 1
g(X,Z)Y.

(ii) The Ricci tensor S̄ is given by

S̄(Y, Z) = S(Y, Z) + bω(ρ)g(Y, Z)− b(n− 1)(a+ 4)ω(Y )ω(Z),

(iii)
R̄(X,Y )Z = −R̄(Y,X)Z,

(iv)
R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0,

(v) The Ricci tensor S̄ is symmetric.

Let us suppose the curvature tensor R̄ with respect to the semi-symmetric non-
metric connection vanishes, that is,

′R̄ = 0.

Using the above relation in (4.10), we see that

′R(X,Y, Z, U) = b(a+ 4)ω(Y )ω(Z)g(X,U)− b(a+ 4)ω(X)ω(Z)g(Y, U)

−
bω(ρ)

n− 1
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].(4.12)

Putting a = −4 in (4.12), the above equation reduces to

(4.13) ′R(X,Y, Z, U) = −
bω(ρ)

n− 1
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].

This result shows that the manifold is of constant curvature.

Now, we are in a position to state the following:

Theorem 4.1. A Riemannian manifold admitting a type of the semi-symmetric
non-metric connection whose curvature tensor vanishes and the torsion tensor is
pseudo symmetric is a manifold of constant curvature with respect to the Levi-Civita
connection provided the value of the non-zero real number a of the connection is −4.
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5. Weyl projective curvature tensor on a Riemannian manifold

admitting a special type of the semi-symmetric non-metric

connection

The Weyl projective curvature tensor P̄ with respect to the semi-symmetric
non-metric connection is defined by

(5.1) P̄ (X,Y )Z = R̄(X,Y )Z −
1

n− 1
[S̄(Y, Z)X − S̄(X,Z)Y ].

From (5.1), it follows that

(5.2) ′P̄ (X,Y, Z, U) =′ R̄(X,Y, Z, U)−
1

n− 1
[S̄(Y, Z)g(X,U)− S̄(X,Z)g(Y, U)],

where ′P̄ (X,Y, Z, U) = g(P̄ (X,Y )Z,U), for all X , Y , Z , U ∈ χ(M).

Using (4.10) and (4.11) in (5.2), it follows that

(5.3) ′P̄ (X,Y, Z, U) =′ P (X,Y, Z, U),

where

(5.4) ′P (X,Y, Z, U) =′ R(X,Y, Z, U)−
1

n− 1
[S(Y, Z)g(X,U)− S(X,Z)g(Y, U)].

This leads us to state the following:

Theorem 5.1. If a Riemannian manifold admits a type of the semi-symmetric
non-metric connection whose torsion tensor is pseudo symmetric, then the Weyl
projective curvature tensor with respect to the semi-symmetric non-metric connec-
tion is equal to the Weyl projective curvature tensor with respect to the Levi-Civita
connection.

6. Ricci-semisymmetric manifolds

A Riemannian manifold is said to Ricci-semisymmetric with respect to the semi-
symmetric non-metric connection ∇̄ if

(R̄(X,Y ) · S̄)(U, V ) = 0,

where X,Y, U, V ∈ χ(M). Then we have

(6.1) (R̄(X,Y ) · S̄)(U, V ) = S̄(R̄(X,Y )U, V ) + S̄(U, R̄(X,Y )V ).

Using (4.11) in (6.1), we get

(R̄(X,Y ) · S̄)(U, V ) = S(R̄(X,Y )U, V ) + S(R̄(X,Y )V, U)

+bω(ρ)[g(R̄(X,Y )U, V ) + g(R̄(X,Y )V, U)

−b(n− 1)(a+ 4)[ω(R̄(X,Y )U)ω(V )

+ω(R̄(X,Y )V )ω(U)].(6.2)
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By virtue of (4.8) and (6.2), we obtain

(R̄(X,Y ) · S̄)(U, V ) = (R(X,Y ) · S)(U, V ) + bω(ρ)[′R(X,Y, U, V )

−
1

n− 1
{S(Y, U)g(X,V )− S(X,U)g(Y, V )}]

+bω(ρ)[′R(X,Y, V, U)−
1

n− 1
{S(Y, V )g(X,U)

−S(X,V )g(Y, U)}]− b(n− 1)(a+ 4)ω(R(X,Y )U)ω(V )

−b(a+ 4)ω(Y )ω(U)S(X,V ) + b(a+ 4)ω(X)ω(U)S(Y, V )

−b(n− 1)(a+ 4)ω(R(X,Y )V )ω(U)− b(a+ 4)ω(Y )ω(V )S(X,U)

+b(a+ 4)ω(X)ω(V )S(Y, U).(6.3)

Putting a = −4 in (6.3) and using (5.4), we have

(R̄(X,Y ) · S̄)(U, V ) = (R(X,Y ) · S)(U, V )

+bω(ρ)[′P (X,Y, U, V ) +′ P (X,Y, V, U)].(6.4)

Summing up we can state the following:

Theorem 6.1. Ricci semi-symmetry of a Riemannian manifold with respect to the
Levi-Civita connection and the semi-symmetric non-metric connection are equiva-
lent, provided a = −4 and ρ is a null vector.
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