
A Species Conserving Genetic Algorithm for
Multimodal Function Optimization

Jian-Ping Li Jian-Ping.Li@umist.ac.uk
Department of Mechanical, Aerospace and Manufacturing Engineering, UMIST, PO
Box 88, Manchester M60 1QD, UK

Marton E. Balazs BALAZSM@Richmond.ac.uk
Department of Computing, Mathematics and Sciences, Richmond the American
International University in London, Queens Road, Richmond upon Thames TW10 6JP,
UK

Geoffrey T. Parks gtp@eng.cam.ac.uk
Engineering Design Centre, Cambridge University Engineering Department,
Trumpington Street, Cambridge CB2 1PZ, UK

P. John Clarkson pjc10@eng.cam.ac.uk
Engineering Design Centre, Cambridge University Engineering Department,
Trumpington Street, Cambridge CB2 1PZ, UK

Abstract
This paper introduces a new technique called species conservation for evolving paral-
lel subpopulations. The technique is based on the concept of dividing the population
into several species according to their similarity. Each of these species is built around a
dominating individual called the species seed. Species seeds found in the current gen-
eration are saved (conserved) by moving them into the next generation. Our technique
has proved to be very effective in finding multiple solutions of multimodal optimiza-
tion problems. We demonstrate this by applying it to a set of test problems, including
some problems known to be deceptive to genetic algorithms.

Keywords
Genetic algorithms, multimodal functions, niching, species, species conservation.

1 Introduction

Over the years, genetic algorithms (GAs) have been proven effective in solving a variety
of search and optimization problems (Goldberg, 1989; Gen and Cheng, 1997; Parmee,
1999). When attempting to optimize a multimodal function, the Simple Genetic Algo-
rithm (SGA) converges to a single solution (Goldberg and Richardson, 1987). The in-
trinsic parallelism in a GA suggests, however, that this method should be able to locate
several optima of a multimodal function.

There are two good, practical reasons why it may be desirable to locate multiple
optima of an optimization problem. First, by encouraging the GA to locate multiple
optima, the chances of locating the global optimum may be improved. Second, in a
design context, identifying a diverse set of high-quality solutions will provide the de-
signer with insight into the nature of the design space and, perhaps, suggest innovative
alternative solutions.

c©2002 by the Massachusetts Institute of Technology Evolutionary Computation 10(3): 207-234

J-P. Li et al.

Only a limited amount of research has been done into the use of GAs to locate mul-
tiple optima of a multimodal function. The techniques developed for solving problems
of this type fall into two broad categories: iterative methods and parallel subpopulation
methods.

Iterative methods address the problem of locating multiple optima of a multimodal
function by repeatedly applying the same optimization algorithm. To prevent repeated
convergence to the same solution, iterative methods use various techniques to prohibit
the underlying optimization method from searching again those portions of the search
space that have already been explored. Tabu Search (Glover, 1989) and the Sequential
Niche Technique (Beasley et al., 1993) fall into this category.

Parallel subpopulation methods attempt to produce multiple solutions to a mul-
timodal optimization problem by dividing the population into subpopulations that
evolve in parallel. If there is no communication between these subpopulations, such
a method is equivalent to iterating the evolution of a single, smaller population sev-
eral times (Beasley et al., 1993). In consequence, parallel subpopulation methods use
some communication between the subpopulations to allow “good characteristics” of
individuals to spread.

One important class of parallel subpopulation methods is island model parallel GAs
(IMGAs) (Gordon et al., 1992). IMGAs exploit the concept of punctuated equilibria in
an evolutionary computation context (Cohoon et al., 1987). In IMGAs the overall popu-
lation is partitioned into subpopulations, which evolve in isolation for a period known
as an epoch. At the end of each epoch, solutions migrate between subpopulations. Mi-
gration must be carefully controlled, as communication between subpopulations has
potential drawbacks, such as the reduction of diversity of solutions (Davidor, 1991). A
variety of migration schemes, which are well reviewed by Martin et al. (1997), have
been developed. IMGAs have been successfully applied to a variety of design prob-
lems (Cohoon et al., 1991; Lienig and Thulasiraman, 1993; Eby et al., 1999), but, by their
nature, they introduce a number of additional control parameters that need careful se-
lection to ensure good algorithm performance.

This paper introduces species conservation, a new technique for evolving parallel
subpopulations. This technique introduces just one control parameter, the species dis-
tance, in addition to those needed to control any GA.

To describe our technique we will consider unconstrained optimization problems
of real-valued functions, defined over arrays of real numbers. Where no confusion
could occur we denote the objective function by f . The GA using species conservation
(SCGA) presented in this paper makes no distinction between genotypes and pheno-
types. Thus, genetic operators will be applied directly to individuals represented by
arrays of real numbers. Note that none of the above restrictions are required for our
technique to be applicable. The only reason for imposing them is for simplicity of pre-
sentation.

The next section describes the related work that is relevant to our proposed tech-
nique. Section 3 introduces the species conservation technique and describes the algo-
rithm that implements it. Section 4 presents the results from a series of experiments
on a set of test functions, comparing our results with other results reported in the lit-
erature where this is possible. Section 5 draws some conclusions and proposes further
directions of research.

208 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

2 Related Work

The preservation of good individuals from one generation to the next and the main-
taining of diversity are two very important and apparently contradictory requirements
when applying GAs to multimodal optimization problems. In this section we briefly
review the methods developed to address these issues that are most relevant to our
research: elitism and niching.

2.1 Elitism

It is important to prevent promising individuals from being eliminated from the popu-
lation during the application of genetic operators. To ensure that the best chromosome
is preserved, elitist methods copy the best individual found so far into the new popu-
lation (De Jong, 1975).

Different GA variants achieve this goal of preserving the best solution in different
ways. For instance, Whitley’s GENITOR (Whitley, 1989) creates just one child each
cycle which then replaces the worst member of the population. In Eshelman’s CHC
(Eshelman, 1991) the offspring and parent populations are merged and the best M (the
population size) individuals selected.

The effects of elitism have been widely researched, and it is used in most GA im-
plementations (Gen and Cheng, 1997). However, “elitist strategies tend to make the
search more exploitative rather than explorative and may not work for problems in
which one is required to find multiple optimal solutions” (Sarma and De Jong, 1997).

2.2 Evolving Parallel Subpopulations by Niching

In common with other techniques used in evolutionary computation, the idea of nich-
ing was inspired by nature. In natural ecosystems there are many different ways in
which individuals may survive by taking on different roles. Each of these roles is called
an ecological niche. Rather than evolving a single population of identical (or very sim-
ilar) individuals, ecosystems evolve subpopulations to fill different niches.

Niching was introduced into GAs primarily to maintain the diversity in a popu-
lation. Later the same techniques were extended to design GAs capable of retrieving
multiple optimal solutions.

A number of means of implementing niching in GAs have been devised (Deb and
Goldberg, 1989; Goldberg, 1989; Beasley et al., 1993). In the literature Cavicchio’s (1970)
dissertation was one of the first studies to attempt to induce niching behavior in a GA
by introducing a mechanism called preselection. Preselection is a tournament approach
where a child replaces an inferior parent and induces niching by letting similar indi-
viduals compete for a place in the population.

De Jong (1975) generalized Cavicchio’s preselection technique in a scheme he
called crowding. In crowding an individual is compared to a randomly drawn sub-
population and the most similar member of that subpopulation is replaced. Later two
further variants of crowding, deterministic crowding (Mahfoud, 1995) and probabilistic
crowding (Mengshoel and Goldberg, 1999), were introduced. Both of these use Boltz-
mann tournament selection (Goldberg, 1990) for handling children and parents. The
main difference between the two is that the former uses a deterministic acceptance
rule, while the latter uses a probabilistic one. Recently Hughes and Leyland (2000)
have used a GA with a fixed number of species to locate the radar scattering centers in
a missile-target engagement simulator.

Another way of inducing niching behavior in a GA is to use fitness sharing. Gold-
berg and Richardson (1987) used Holland’s sharing concept (Holland, 1975) to divide

Evolutionary Computation Volume 10, Number 3 209

J-P. Li et al.

the population into different subpopulations according to the similarity of the individ-
uals. They introduced a sharing function that defined the degradation of the fitness of
an individual due to the presence of neighboring individuals. The sharing function is
used during selection. Its effect is such that when many individuals are in the same
neighborhood they degrade each other’s fitness values, thus limiting the uncontrolled
growth of a particular species.

Spears (1994) used tag bits to identify different species — individuals with the
same tag bit value belong to the same species. The tag bits are used to restrict mating
and to perform fitness sharing, and can be changed, i.e., a solution can change species,
through mutation.

All the niching techniques we have found described in the literature try to give all
local or global optimal solutions an equal opportunity to survive. Sometimes, however,
survival of low fitness but very different individuals may be as, if not more, important
than that of some highly fit ones. The purpose of this paper is to present a new tech-
nique called species conservation that addresses this problem. We show that using this
technique, a simple GA will converge to multiple solutions of a multimodal optimiza-
tion problem.

3 Species Conservation

The technique for multimodal function optimization presented in this paper achieves
niching by exploiting the notion of species.

A species is a class of individuals with common characteristics. In their approach
to niching by fitness sharing, Goldberg and Richardson (1987) divided the population
into different subpopulations according to the similarity of the individuals. They used
the Euclidean distance between two individuals to measure their dissimilarity. The
larger the distance between two individuals, the more dissimilar they are.

The distance between two individuals xi = [xi1, xi2, ..., xin] and xj =
[xj1, xj2, ..., xjn] was defined by:

d(xi,xj) =

√√√√
n∑

k=1

(xik − xjk)2 (1)

Note that this is not the only way in which the distance, and hence the dissimilarity,
between two individuals represented by vectors of real numbers could be defined.

In this paper we use the above definition of distance to characterize the dissimilar-
ity between two individuals, but the method we describe will work for other distance
definitions as well.

3.1 The Definition of a Species

Our definition of a species, as well as the operation of the SCGA, depends on a param-
eter we call the species distance, which we denote by σs. The species distance specifies
the upper bound on the distance between two individuals for which they are consid-
ered to be similar. In our approach we propose that the species distance also be used to
determine which individuals are worth preserving from one generation to the next.

In this work we define a species with respect to a finite population PN =
{x1,x2, ...,xN}. This is an intuitively reasonable view, because a species consists of
actual individuals and is by no means just a region of feasible space. One consequence
of this is that we do not define a notion of absolute species, that is, species defined only
with respect to feasible space and the objective (fitness) function.

210 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

x2

x1

Species
Species seed

Non-dominating individuals

Figure 1: A sample distribution of species in a two-dimensional domain.

A species will be a subset Si of PN in which the distance between any two indi-
viduals is less than the species distance. Note that we do not require that any two indi-
viduals satisfying the condition that the distance between them is less than the species
distance belong to the same species.

There are obviously many ways in which a population can be partitioned into
species. In this paper we propose to construct the species in a population around cer-
tain individuals we call dominating individuals or species seeds.

Let S1, S2, ..., Sk be a partitioning of population PN into species. An individual
x∗ ∈ Si is a dominating individual in its species if, for every individual y ∈ Si,

f(x∗) ≥ f(y) (2)

Note that the equality in this relation (≥ rather than >) means that there may be more
than one dominating individual in a species.

A species Si is centered on its dominating individual x∗ if, for every individual
y ∈ Si,

d(x∗,y) ≤ σs/2 (3)

It is important to note that this definition does not mean that if a species Si is
centered on its dominating individual x∗, all the individuals within a distance σs/2 of
x∗ are in Si. To illustrate this, Figure 1 shows a possible partitioning of a population in
a two-dimensional domain into species centered on their dominating individuals.

It should be clear that according to the above definitions, a dominating individual
may dominate several species — indeed a single globally optimal individual will dom-
inate all species. Nevertheless, the notions of a dominating individual and of a species
dominated by a dominating individual are helpful to our technique, as they allow us
to define a criterion for selecting individuals for conservation.

3.2 The Need for Conservation

In natural environments some species may become extinct because they could not
adapt to a changing environment. Nevertheless, they may be useful (to humanity or to

Evolutionary Computation Volume 10, Number 3 211

J-P. Li et al.

P1 P2

A

f (x)

x

◆
◆

◆
◆

◆

Figure 2: An illustration of the need for species conservation.

some other ecosystems) in the future. Under these conditions one could intervene to
preserve a few individuals.

Introducing elitism into a GA will often lead to one highly fit individual gradu-
ally replacing all competing rivals. Thus, in addition to introducing the possibility of
premature convergence, elitism also prevents a GA from finding multiple optima of a
multimodal optimization problem. The question we seek to answer is: “How can the
idea of elitism be transferred to a GA using some form of niching in such a way that
several possibly useful individuals are copied into the next generation (conserved)?”

The answer to this question is not trivial, because there may be several reasons
why an individual should be conserved.

First, we would like to conserve highly fit individuals. The question that needs
to be answered here is: “Which individuals should be conserved?” Fitness sharing
addresses this issue by adjusting the fitness of individuals based on the size of the niche
they are in. While this gives a higher probability of selection to individuals belonging
to smaller niches (or even to isolated individuals), it does not guarantee their survival.

Second, we would like to conserve individuals that, while not highly fit, are differ-
ent enough from the current best individuals to be worth keeping.

Suppose, for example, that our problem is to maximize the function shown in Fig-
ure 2, and assume that, after some iterations of the GA, the population consists of the
points shown. Most of the individuals have converged on peak P1, but at the same
time, a low fitness individual A has appeared. Because the fitness of A is very small,
the probability of this individual surviving to the next generation is low. This is true
even for a GA using fitness sharing, unless a sharing function is specifically designed
for this problem. However, this individual is very important to the search, if the other
global optimum (P2) is to be found. In order to preserve the “good quality” of A, that
of being far from the other members of the population and thus possibly close to an
unexplored region, we need a special method to conserve it.

212 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

begin
XS = �;
while (no more unmarked individuals in G(t)) do

Search for the best unmarked x∗ ∈ G(t);
Mark x∗ as processed;
found ← FALSE;
for all x ∈ XS do

if (d(x∗,x) ≤ σs/2) then
found ← TRUE;
break;

end (if)
end (for)
if (not found) then

let XS ← XS ∪ {x∗};
end (if)

end (while)
end

Figure 3: The algorithm for determining the species seeds.

None of the techniques we have encountered in the literature address this problem.
We propose to solve the problems described above by partitioning the population

into a set of dominated species and copying the dominating individual of each of these
species (the species seeds) into the next generation.

3.3 Determining the Species in a Population

To determine the individuals that will be copied into the next generation, we need
to partition the current generation into a set of dominated species and determine the
dominating individual in each of these species. In Figure 3 we show the algorithm
that accomplishes this. In the algorithm, XS denotes the set of species seeds found in
generation G(t).

The algorithm builds the set XS by successively considering each of the individ-
uals in G(t), in decreasing order of fitness. When an individual is considered, it is
checked against the species seeds found so far. If XS does not contain any seed that
is closer than half the species distance (σs/2) to the individual considered, then the
individual will be added to XS .

The procedure for determining the species seeds has to be performed for every
generation in a GA run, and, as a consequence, it will introduce some overhead to the
computation. The complexity of this additional computation can be characterized in
terms of the number of times a distance between two individuals needs to be evaluated.
We can analyze this complexity by considering the algorithm given in Figure 3:

• The while loop is executed for each individual in the population, that is, a total of
N times.

• Assume that, when considering the ith individual, XS contains ri species seeds. In
this case the for loop will be performed at best 1 and at worst ri times. The former
will happen when the individual considered is within a distance σs/2 of the best

Evolutionary Computation Volume 10, Number 3 213

J-P. Li et al.

begin
Mark all individuals as unprocessed;
for all x ∈ XS do

Select the worst unmarked y ∈ S′(x, σs);
if (y exists) then

if (f(y) < f(x)) then
y = x;

end (if)
else

Select the worst unmarked y ∈ G(t + 1);
y = x;

end (if)
Mark y as processed;

end (for)
end

Figure 4: The algorithm for conserving species.

individual, while the latter will happen if the individual considered is not within
a distance σs/2 of any of the species seeds found so far.

• For a given i the value of ri will range from 0 (no seeds have yet been found) to
i− 1 (all the individuals considered so far were found to be species seeds).

The number of distance evaluations performed when determining the species
seeds in one generation Ts(N) can thus be characterized by the following relation:

N ≤ Ts(N) ≤
N∑

i=1

(i− 1) =
N(N − 1)

2
(4)

That is, the number of distance evaluations performed for each generation is O(N2).
For the algorithm given in Figure 3 we can give a much tighter upper bound on

the number of distance evaluations required when determining the species seeds in a
generation by taking into account the value of the species distance σs. First, let us note
that the actual upper bound is given by:

N ≤ Ts(N) ≤
N∑

i=1

NS = NS ·N (5)

where NS is the number of species that will be found for the generation under consid-
eration. An upper bound on NS can be given based on the size of the search space and
σs. If we denote this upper bound by Nσ , the above inequalities become

N ≤ Ts(N) ≤ Nσ ·N (6)

This means that, in practice, the overhead for finding species seeds is of linear order
with the coefficient of the linear term depending on σs.

The average complexity is much harder to calculate, because we cannot make any
assumptions about the distribution of the individuals in a generation.

214 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

begin
t = 0;
Initialize G(t);
Evaluate G(t);
while (not termination condition) do

Identify species seeds XS ;
Select G(t + 1);
Crossover G(t + 1);
Mutate G(t + 1);
Evaluate G(t + 1);
Conserve species from XS in G(t + 1);
t = t + 1;

end (while)
Identify species seeds XS ;
Identify global optima;

end

Figure 5: The structure of the SCGA.

3.4 Conserving Species

Once all the species have been found, the new population is constructed by applying
the usual genetic operators: selection, crossover, and mutation. Since some species
may not survive following these operations, we copy them into the new population
and thus enable them to survive. The species conservation process used is shown in
Figure 4 and works as follows:

• The new generation G(t+1) is searched for solutions belonging to the same species
(designated S′(x, σs)) as each species seed x ∈ XS identified in generation G(t),
i.e., the solutions y ∈ G(t + 1) for which d(x,y) < σs/2 are found.

• Species seed x replaces the worst of these “similar” solutions as long as it is better
(fitter).

• If there are no solutions in the same species as x in G(t + 1), x replaces the worst
unmarked solution in G(t + 1).

• As the species seeds are drawn from the previous generation, the number of
species seeds NS is always less than the population size N , and therefore un-
marked solutions must always exist.

Thus, all the species seeds are either conserved or superseded by better examples of the
same species.

Note that it is possible that none of the species seeds selected for conservation
will be copied into the next generation. However, this will only happen if the new
generation created by applying the genetic operators contains at least one individual
from each of the species defined by the seeds in XS , and if each of these individuals
has higher fitness than the corresponding species seed.

Conserving the species seeds adds another overhead to the computations per-
formed. Again, we can characterize the complexity of this overhead by the number

Evolutionary Computation Volume 10, Number 3 215

J-P. Li et al.

of times a distance between two individuals is computed. Considering the algorithm
given in Figure 4:

• The for loop is executed for each species seed, that is, a total of NS times.

• When the ith species seed is conserved, there are i − 1 marked individuals in the
population. Therefore N − (i − 1) distance evaluations are required between the
N−(i−1) unmarked members of the population and the species seed x to identify
the members of the species S′(x, σs) and hence the worst individual in this species.

The number of distance computations performed when conserving the species
seeds in one generation Tc(N) can be characterized by the following relation:

N < Tc(N) =
NS∑

i=1

(N − i + 1) = NS

[
N − 1

2
(NS − 1)

]
< NS ·N ≤ Nσ ·N (7)

Differentiating this expression for Tc(N) with respect to NS , it is easily shown that
Tc(N) is maximized when NS = N + 1

2 . NS must be an integer, in practice, and, as the
species seeds are identified from the population, cannot exceed N . Hence, substituting
NS = N in Equation 7:

Tc(N) ≤ 1
2
N(N + 1) (8)

Thus, combining the results in Equations 6 and 7, the total overhead introduced by
our species determination and conservation processes, as measured by the number of
distance calculations performed per generation, Tsc(N) = Ts(N) + Tc(N), will be:

2N ≤ Tsc(N) ≤ 2NS ·N ≤ 2Nσ ·N (9)

Thus, the complexity of the number of distance computations performed for each
generation is between O(N) and O(N2). If the species distance σs is set small, there are
potentially many species seeds in each generation, and the complexity is O(N2); if σs

is sufficiently large, there are few species seeds, and the complexity is approximately
O(N). Overall, even with a large number of species seeds, this overhead is no worse
than the overhead introduced by any other parallel subpopulation techniques.

The reader may ask the obvious question: “Why would we want to perform this
complicated procedure instead of simply copying the species seeds into the new gen-
eration before the application of the genetic operators?” The rationale for doing this is
that we want to allow a newly generated individual similar to a conserved species seed
to replace that seed in the new generation. This will result in each species containing
individuals of increasing (or at least not lower) fitness from one generation to the next.

Obviously just copying the conserved species seeds into the new generation and
then “filling it up” with individuals created using genetic operators is also a viable
approach. We still need to investigate whether this alternative approach affects the
behavior of the SCGA significantly.

3.5 The SCGA

In this section we present the structure of the SCGA. The algorithm is based on the
structure of a classical SGA and is shown in Figure 5.

The only significant differences between the SCGA and the SGA are that:

• Within the generation loop, first the species seeds are determined;

216 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

0

50

100

150

200

0 5 10 15 20
c

Fi
tn

es
s

Figure 6: The two-peak trap function.

• After the genetic operators have been applied and the population evaluated, the
species conservation process is performed, and, thus, the new generation is con-
structed.

3.6 Identifying Global Optima

There is one more question that we need to answer with respect to the operation of
the SCGA: “How are the global optima1 (the solutions to the optimization problem)
identified after the generation loop is exited?”

First, recall that in XS we collected all the dominating individuals that were suffi-
ciently different from each other. This suggests that XS should contain (among other
individuals) the global optima found, if any. Unfortunately, XS may contain both low
fitness individuals that were stored because they were sufficiently different from all
the other individuals in the previous generation, and high (but not necessarily equal)
fitness individuals. This leaves us with only one option — to select from XS those
individuals that have a “high enough” fitness.

In our implementation of the SCGA we consider that the global optima to the prob-
lem at hand are the most fit individuals in XS ; these being all the individuals in XS that
have a fitness “close to” the fitness fmax of the most fit species seed. For this purpose
we define a solution acceptance threshold rf (0 < rf ≤ 1) and identify as global optima all
the individuals x ∈ XS that satisfy the following inequality:

f(x) ≥ (fmax − fmin)× rf (10)

where fmin is the minimal fitness in the final population. Identifying the global optima
in this way is straightforward, since the individuals are stored in XS in decreasing order
of fitness. As rf is used in post-processing the results of the SCGA run, its value has no
effect on algorithm performance. In processing these results the user can interactively

1Here we use “global optima” to mean “dissimilar, high-quality solutions.” If one is tackling a multi-
modal optimization problem with equal-valued optima, then one would probably be seeking to find the true
global optima. If, as is much more likely to be the case in a design context, one is tackling a problem the op-
timal solutions of which are not known, then one would be interested in identifying dissimilar, high-quality
solutions.

Evolutionary Computation Volume 10, Number 3 217

J-P. Li et al.

Table 1: Comparison of the performance of different algorithms applied to the two-
peak trap function.

Success Evaluations
Algorithm rate expected

Iterated Genetic Search (Ackley, 1987) 0.00% > 1000000
Stochastic Iterated Genetic Hillclimbing (SIGH) 100% 780
Iterated traditional GA (Beasley et al., 1993) 0.01% 2300000
Sequential Niche GA (SNGA) 77.60% 4900
SCGA 100% 935

adjust rf . The values of rf quoted in Section 4 are therefore included merely to enable
others to reproduce our results.

3.7 Choosing the Parameter σs

The species distance parameter σs introduced in our technique plays a crucial role in
our definition of the species and species seeds. If we choose it too small, many species
may be found in every generation. This will increase the overhead associated with
our technique, thus reducing efficiency, without necessarily increasing effectiveness.
On the other hand, a large value of σs will make many solutions indistinguishable
from the point of view of species conservation. This means that too few species will
be conserved. If σs is so large that only one species seed is conserved, the SCGA will
degenerate into an elitist SGA with all its disadvantages (plus the overhead introduced
by species conservation).

Deb and Goldberg (1989) proposed that the species distance be estimated on the
following basis. The radius of the smallest hypersphere containing feasible space is
given by:

r =
1
2

√√√√
n∑

k=1

(
xu

k − xl
k

)2 (11)

where xl
1, x

l
2, ..., x

l
n and xu

1 , xu
2 , ..., xu

n are respectively the lower and upper bounds on
the control variables. If each species (or niche) is enclosed by an n-dimensional hy-
persphere of radius σs, and if we know Ng , the number of global optima, the species
distance can be estimated as:

σs =
r

n
√

Ng

(12)

Even in the context of Deb and Goldberg’s work, this approach has a very strong
limitation — it can only be used in cases where the global optima are evenly distributed
over the feasible region. In any practical application we will not know how many global
optima the objective function has, nor can we assume that the global optima are evenly
distributed.

The question then is: “How should one choose the species distance parameter?”
We suggest that σs be selected so that the solutions found will be sufficiently di-

verse. More precisely, if the SCGA user considers that a solution is significantly novel
compared to another one if the distance between them is at least d, then we suggest
that σs be chosen such that σs ≥ 2d. Thus, all species seeds selected will be sufficiently

218 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

0

50

100

150

200

0 5 10 15 20
c

Fi
tn

es
s

Figure 7: The central two-peak trap function.

different, as defined by the user, and, as a consequence, so will the solutions found by
the SCGA.

It is also possible to conceive of mechanisms by which σs could be determined
automatically and adaptively. For instance, it is easy, at the cost of additional distance
evaluations, to vary σs iteratively so that, say, a specified proportion of the initial (and
subsequent) population(s) are designated as species seeds. Methods for automatically
determining suitable values of σs are the subject of ongoing research.

4 Experimental Results

4.1 Preamble

The evaluation of any optimization algorithm is, of necessity, an extended process. The
true test of our SCGA will, of course, be on real-world design problems for which the
number, distribution, and quality of optima are unknown. However, first the algo-
rithm’s performance must be investigated on suitable test problems that are well un-
derstood. The latter process is made difficult by the fact that there are only limited
published results arising from the application of comparable techniques to the sort of
problems for which the SCGA has been designed.

When testing the algorithm on well understood problems, there are two measures
of performance:

• The consistency with which all known optima are located;

• The average number of objective function evaluations required to find these op-
tima.

In Section 4.2 we give details of the SCGA implementation we used to conduct the
performance investigations reported here.

In Section 4.3 we report the results of applying the SCGA to some simple trap func-
tions. This enables us to demonstrate that the SCGA can reliably locate the optima of
these deceptive problems, and do so in an average number of evaluations comparable
to, and in some cases, significantly better than the number required by other techniques
designed for multimodal problems.

Evolutionary Computation Volume 10, Number 3 219

J-P. Li et al.

Table 2: Comparison of the performance of different algorithms applied to the central
two-peak trap function.

Evaluations
Algorithm expected

Stochastic Iterated Genetic Hillclimbing (SIGH) > 1000000
Sequential Niche GA (SNGA) 3000
SCGA 625

In Section 4.4 we report the results of applying the SCGA to some multimodal
problems with multiple global optima from the literature. This enables us to demon-
strate that the SCGA can reliably locate all the optima of these problems.

In Section 4.5 we report the results of applying the SCGA to the two-dimensional
Shubert function. This is a problem from the literature with 760 local minima, of which
18 are unevenly spaced global optima. We show that the SCGA can reliably locate all
these global optima, and investigate the effect on the performance of the algorithm of
varying the population size and the species distance. In the absence of any published
results concerning the performance of other methods on this problem, we can only
draw tentative conclusions about the SCGA’s computational efficiency here.

Finally, in Section 4.6 we report the results of applying the SCGA to higher dimen-
sion versions of the Shubert function. This enables us to make some observations about
how the algorithm’s performance scales with problem size.

4.2 SCGA Implementation

The SCGA implementation used in these tests employed:

• proportional, roulette-wheel selection;

• intermediate recombination to perform crossover (with probability pc), so that the
offspring O of randomly chosen parents S and T is:

xO = xT + U × (xS − xT) (13)

where U is a uniformly distributed random number over [0, 1];

• uniform neighborhood mutation (with probability pm):

x′j = xj + rm ×R× (
xu

j − xl
j

)
(14)

where R is a uniformly distributed random number over [−1, 1].

It is important to recognize that our species conservation technique can be em-
ployed with any combination of standard selection, crossover, and mutation operators.
The operators chosen for this SCGA implementation were chosen specifically because
they would not by themselves contribute significantly to the maintenance of diversity:

• proportional, roulette-wheel selection is well known to be susceptible to scaling
problems;

• intermediate recombination introduces a bias towards the center of mass of the
population;

220 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

0

50

100

150

200

0 5 10 15 20 25 30
c

Fi
tn

es
s

Figure 8: The five-peak uneven trap function.

• uniform neighborhood mutation strictly limits the size of any mutations intro-
duced.

Thus, if the SCGA does succeed in reliably locating all the global optima of multimodal
problems, then this success can, with certainty, be attributed to the species conservation
technique.

The only control parameters that are important to the performance of the species
conservation technique are the population size N and the species distance σs. The
values of the other control parameters used are given in the following sections in order
to aid reproducibility of results but are not significant to our argument.

4.3 Trap Functions

Trap functions are deceptive. That is, they are functions for which finding the global
optimum using GAs is hard, because they feature a local optimum or local optima that
can “attract” the population away from the true global optimum. Thus, trap functions
represent useful first tests for techniques aimed at multimodal function optimization.

Several trap functions have been introduce as benchmarks for evaluating the ef-
fectiveness of various kinds of GAs (Ackley, 1987; Deb and Goldberg, 1991; Goldberg,
1992). We tested the SCGA on some of these, as well as on a specially constructed trap
function that has multiple global optima. We derived the latter function from “classi-
cal” trap functions.

4.3.1 Two-Peak Trap
The fitness function of the two-peak trap is defined by:

F (c) =

{
160
15 (15− c) for 0 ≤ c < 15
200
5 (c− 15) for 15 ≤ c ≤ 20

(15)

The global maximum of this function is at c = 20 and has a fitness of 200, but there is a
“false maximum” at c = 0, with a fitness of 160. This function is shown in Figure 6.

In applying the SCGA to this problem, we used the following values for the algo-
rithm control parameters: N = 50, pc = 0.6, pm = 0.05, rm = 0.15, rf = 0.9999, and

Evolutionary Computation Volume 10, Number 3 221

J-P. Li et al.

Table 3: Comparison of the success rates of the SCGA and SGA in finding both the
global maxima of the five-peak uneven trap function.

Optimum at c = 0 Optimum at c = 30 Both optima
SCGA 100% 100% 100%
SGA 20% 14% 0%

Table 4: SCGA performance on multimodal optimization problems.

Number Evaluations
of SCGA per solution

Problem global parameters required
optima used Mean σ

Deb’s 1st function (Deb, 1989) N = 50, pc = 0.6,
f1(x) = sin6(5πx) 5 pm = 0.05, σs = 0.1, 662 191

where 0 ≤ x ≤ 1 rm = 0.1, rf = 0.99
Six-hump camel back function

(Michalewicz, 1996) N = 50, pc = 0.6,
f(x) =

(
4− 2.1x2

1 + x4
1
3

)
x2

1 2 pm = 0.05, σs = 2.0, 918 274
+ x1x2 +

(−4 + 4x2
2

)
x2

2 rm = 0.1, rf = 0.9999
where −3 ≤ x1 ≤ 3, −2 ≤ x2 ≤ 2
Brannin RCOS function

(Michalewicz, 1996)
f(x) = a

(
x2 − bx2

1 + cx1 − d
)2

N = 100, pc = 0.6,
+ e(1− f) cos(x1) + e 3 pm = 0.05, σs = 1.0, 2843 445

where −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15, rm = 0.2, rf = 0.9999
a = 1, b = 5.1/(4π2), c = 5/π,
d = 6, e = 10, f = 1/(8π)

σs = 2.0. We ran the SCGA 30 times and averaged the number of function evaluations
needed over these runs. The algorithm found the global maximum on average after 27
generations. The average number of objective function evaluations required was 935
(with a standard deviation of 362). Note that the algorithm produces similar results
using any value less than 20 for σs.

These results, together with those reported by Ackley (1987) and Beasley et al.
(1993), are presented in Table 1. Note that in every SCGA run the global optimum was
located. The SCGA comfortably outperforms all but Ackley’s Stochastic Iterated Genetic
Hillclimbing (SIGH) algorithm on this problem. The latter requires on average about
20% fewer function evaluations than the SCGA.

222 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

Initial population

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

5th generation

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10
10th generation

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

30th generation

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

70th generation

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

100th generation

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 9: Evolution of an SCGA population when applied to the 2-D Shubert function.

4.3.2 Central Two-Peak Trap
Another trap function for which both Ackley (1987) and Beasley et al. (1993) report
results is the Central Two-Peak trap (Figure 7). Its fitness function is given by:

F (c) =

160
10 c for 0 ≤ c < 10
160
5 (15− c) for 10 ≤ c < 15

200
5 (c− 15) for 15 ≤ c ≤ 20

(16)

This function has a global maximum of 200 at c = 20, but it has a “central” false maxi-
mum of 160 for c = 10.

With the same parameter settings as for the two-peak trap function, the SCGA
found the global maximum of the central two-peak trap function on average after 17
generations. The average number of objective function evaluations required was 625
(with a standard deviation of 144). Note that, although a species distance σs = 2.0
was used, the algorithm is similarly successful using any species distance less than 10,
as this value of σs allows the SCGA to clearly distinguish between the true and false
maxima.

Table 2 compares the performance of the SCGA with results reported by Ackley
(1987) and Beasley et al. (1993). Note that the SIGH algorithm, which performed best
on the two-peak trap function, exceeded its 1 million evaluation limit on this problem.
The superior performance of the SCGA on this problem is readily apparent.

Evolutionary Computation Volume 10, Number 3 223

J-P. Li et al.

Table 5: Results for the SCGA applied to the 2-D Shubert function.

Average number of
Function Function

Population Generations evaluations evaluations
size Ng Nf per solution
N N

1

f

Mean σ Mean σ Mean σ

90 1170 144 74181 9101 4121 505
100 837 85 59030 6006 3279 333
200 250 18 35647 2663 1980 147
300 167 13 35747 2825 1985 156
400 144 7 41180 2005 2287 111
500 123 10 44178 3575 2454 198
600 111 8 48017 3688 2667 204
700 105 10 52905 5281 2939 293
800 107 7 61840 4258 3435 236
900 86 5 55753 6006 3097 333

1000 89 6 64178 4491 3565 249
1100 90 4 71198 3066 3955 170
1200 86 4 74612 4125 4145 229
1300 93 7 87046 6501 4835 361
1400 77 6 78375 6038 4354 335

4.3.3 Five-Uneven-Peak Trap
While Beasley’s Sequential Niche GA (SNGA) (Beasley et al., 1993) was reported to be
effective for solving a number of trap functions, none of those functions had multiple
global optima. Moreover, for both of the trap functions presented above, several SNGA
runs were needed to find the single global optimum. For both these trap problems the
SCGA was able to find the global optimum in a single run with an average number
of function evaluations significantly lower than that required by the SNGA. In this
section we present the results from a set of experiments performed to demonstrate that
the SCGA can effectively solve deceptive optimization problems with multiple global
optima. To do this we introduce a new trap function that we call the five-uneven-peak
function, defined by:

F (c) =

80(2.5− c) for 0 ≤ c < 2.5
64(c− 2.5) for 2.5 ≤ c < 5.0
64(7.5− c) for 5.0 ≤ c < 7.5
28(c− 7.5) for 7.5 ≤ c < 12.5
28(17.5− c) for 12.5 ≤ c < 17.5
32(c− 17.5) for 17.5 ≤ c < 22.5
32(27.5− c) for 22.5 ≤ c < 27.5
80(c− 27.5) for 27.5 ≤ c ≤ 30

(17)

This function has five peaks, as shown in Figure 8. However, it has only two global
maxima (with fitnesses of 200) on the borders of the feasible region, at c = 0 and c = 30,
respectively.

224 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 200 400 600 800 1000 1200 1400

Population Size

Fu
nc

tio
n

E
va

lu
tio

ns

Figure 10: Variation in the average number of function evaluations per solution with
population size for the 2-D Shubert function, with one standard deviation (σ) error
bars.

With the same parameter settings as before, the SCGA found both the global op-
tima on average after 85 generations. As in the previous cases, the value of the species
distance used (σs = 2.0) allowed the SCGA to distinguish between the false and true
global maxima. The average number of objective function evaluations required was
2811 (with a standard deviation of 1186), i.e., 1406 evaluations per global optimum
(with a standard deviation of 593).

To evaluate the performance of the SCGA on this trap function, we compared it
with a SGA using the same operators as the SCGA but with no species conservation.
We ran both GAs 100 times. Runs were terminated when both global optima had been
found or after 1000 generations. The statistics of the results obtained are summarized
in Table 3.

Table 3 clearly shows that the three local maxima of this function did not prevent
the SCGA from consistently finding both the global maxima. At the same time, the
SGA did not find either of the global maxima in 66% of the runs and only one of the
optima in each of the other runs.

4.4 Other Multimodal Problems

Table 4 summarizes the performance of the SCGA (averaged over 30 runs in each case)
on three other multimodal optimization problems from the literature. It can be seen
that the algorithm reliably locates all the global optima in these problems.

Beasley et al. (1993) report results for the SNGA on the first of these problems
(Deb’s 1st function). The SNGA found the five global optima in an average of 380
evaluations per optimum. This compares favorably with the SCGA’s 662 evaluations
per optimum. However, on this problem the SNGA employed a 30-bit binary-coded
chromosome rather than a real-valued one, as used in the SCGA, so the spaces being
searched by the two algorithms are not identical.

Evolutionary Computation Volume 10, Number 3 225

J-P. Li et al.

0

2

4

6

8

10

12

14

16

18

20

0 4 8 12 16 20 24 28 32 36 40

Species Distance

So
lu

tio
ns

 F
ou

nd

Figure 11: Variation in the average number of optima found with species distance for
the 2-D Shubert function, with one standard deviation (σ) error bars.

We have been unable to find any results reported in the literature for the other two
problems.

4.5 Two-Dimensional Shubert Function

We now present results we obtained minimizing the two-dimensional (2-D) Shubert
function (Michalewicz, 1996) defined by:

f (x1, x2) =
2∏

i=1

5∑

j=1

j cos[(j + 1)xi + j] (18)

where −10 ≤ xi ≤ 10 for i = 1, 2.
This is a very interesting function. It has 760 local minima, 18 of which are global

minima with an objective function value of −186.73. The global optima are unevenly
spaced. The multiplicity of global optima and their uneven distribution present the
SCGA with a greater challenge than the problems studied in the preceding sections, and
are characteristics with which the SCGA must be able to cope if it is to tackle difficult,
real-world design optimization problems.

Despite an extensive search, we could find no published reports detailing results
for this optimization problem. In a private communication Ken Price (University of
Berkeley) reported that he has managed to find all 18 global optima using their highly
successful Differential Evolution method (Storn and Price, 1997). 50 trials were needed
to find these solutions. Each trial required about 6,000 function evaluations, so, in total,
about 300,000 function evaluations were needed. Averaging these over the number of
global optima found (18) gives an average of 16,667 function evaluations per solution.

The smallest distance between any two global solutions of the 2-D Shubert func-
tion is about 0.98, so, to find all the global optima, the species distance σs was set to 1.6.
Using a population size N = 1000, pc = 0.6, pm = 0.05, and rm = 0.15, the SCGA suc-

226 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

-10

-8

-6

-4

-2

0

2

4

6

8

10

x1 x2 x3

Figure 12: The distribution of the global optima of the 3-D Shubert function. Values of
x1, x2, and x3 constituting a global optimum are joined by straight lines.

cessfully identified all the global optima within 100 generations. Figure 9 illustrates the
pattern of evolution of the population during a typical SCGA run on this problem. The
black squares represent the best individuals found in that generation. Note that here
“best individuals” means all the individuals with fitness higher than (fmax − fmin)×rf ,
where rf = 0.95, and fmax and fmin are the maximal and minimal fitnesses in the cur-
rent population.

4.5.1 Effect of Population Size

Next, to analyze the effect of the population size on the performance of the SCGA, the
algorithm was run for population sizes (N) ranging from 90 to 1400 individuals. For
each population size, the observations were averaged over 30 runs. Table 5 summarizes
the results obtained. Note that each run continued until all the 18 global optima were
found. The results presented in Table 5 show that, for all the population sizes consid-
ered, the average number of function evaluations per solution found (N

1

f) required by
the SCGA is much smaller than the number required by Differential Evolution.

Figure 10 illustrates graphically the variation in N
1

f with population size. The
number of function evaluations per solution is lowest for population sizes between 200
and 300. This observation is consistent with our discussion in Section 3 concerning
the relationship between the species distance σs, the number of species seeds, and the
population size.

For the given species distance (σs = 1.6), the maximum possible number of species
in the domain of the 2-D Shubert function under consideration is about 600. When the
population size is smaller than 200, the average number of function evaluations per
solution, N

1

f , rises dramatically. This is because, for small population sizes, the pop-
ulation consists almost entirely of species seeds. This makes it more difficult for the
SCGA to generate new individuals that are better than the conserved species seeds,

Evolutionary Computation Volume 10, Number 3 227

J-P. Li et al.

Table 6: Experimental results for the SCGA applied to the n-D Shubert functions.

Average Average
Average Number number number

Dimension Population number of of of function of function
n size generations solutions evaluations evaluations

N Ng found Nf per solution
N

1

f

Mean σ Mean σ Mean σ

1 15 33 13 3 324 123 107 41
2 45 447 51 9 14098 1607 1566 179
3 105 1487 136 27 118077 10853 4373 402
4 405 2861 147 81 938707 48473 11589 598

and, although the population is genetically diverse, it evolves slowly as new individu-
als only survive if they are better than existing species seeds. This represents the most
significant danger associated with this form of distributed elitism; rather than prema-
ture genetic convergence occurring (the principal danger associated with traditional
elitism), a form of genetic stagnation occurs.

For population sizes above 300, the number of function evaluations per solution in-
creases with population size. As the population size increases above its optimal value,
more function evaluations are required each generation, independent of the species
distance value chosen. Recognizing that the error bars shown are ± one standard de-
viation, it can be seen that N

1

f increases approximately linearly with N for values of N
above 300.

4.5.2 The Effect of the Species Distance Parameter
As mentioned earlier, the choice of the species distance σs has a significant effect on
the performance of the SCGA. In Section 3.7 we gave an intuitive explanation of why a
small value of σs would result in the location of many solutions (but possibly at a high
cost), while a large value of σs would result in the location of too few solutions. To
examine this claim, we conducted a series of experiments, again using the 2-D Shubert
function, in which we varied the value of σs and counted the number of global optima
found. For these runs we used pc = 0.6, pm = 0.05, rm = 0.15, rf = 0.95 again, set
the population size N = 300 (around the optimal value found in Section 4.5.1), and set
the number of generations Ng = 1000. We averaged the results over 30 SCGA runs for
each value of σs. The results obtained are shown in Figure 11.

Figure 11 shows that, as expected, as the species distance is increased, the num-
bers of global optima found decreases. The reason is, of course, that when σs is large
enough, some global optima will be deemed to belong to another species and therefore
be discarded. The SCGA can consistently find all 18 global optima of the 2-D Shubert
function in the time allowed in these tests when σs is set to 1.6 or below. Above this
value the average number of solutions identified drops from 18 to 9 and stabilizes at
this level until σs reaches 12.5.

As can be seen in the 100th generation population shown in Figure 9, the global
optima of the 2-D Shubert function are clustered in pairs. For values of σs between 1.96
and 12.5 these pairs of solutions are indistinguishable (deemed to belong to the same

228 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

-10

-5

0

5

10

x1 x2

-10

-5

0

5

10

x1 x2 x3

-10

-5

0

5

10

x1 x2 x3 x4

two-dimensional three-dimensional

four-dimensional

Figure 13: The distributions of solution groups for three Shubert functions. Values of
x1, ... xn constituting a global optimum in a solution group are joined by straight lines.

species), thus halving the number of global optima that can be identified by the SCGA,
even if the algorithm is run indefinitely. From σs ≥ 12.5 the average number of global
optima identified in these tests decreases further with increasing σs, until when σs ≥ 28
just one solution is identified.

4.6 The Generalized Shubert Function

To further test the effectiveness of the SCGA, and, in particular, to investigate how
its performance scales with problem size, we defined a generalization of the Shubert
function for higher dimensions as follows:

f(x1, x2, ..., xn) =
n∏

i=1

5∑

j=1

j cos[(j + 1)xi + j] (19)

where −10 ≤ xi ≤ 10 for i = 1, 2, ..., n.
The SCGA was tested on the 3-D Shubert function with pc = 0.6, pm = 0.05,

N = 4000, σs = 1.6, rm = 0.15, and rf = 0.95. This problem has 81 global optima,
which, as in the 2-D Shubert function, are clustered in groups. To distinguish optima
within these groups a small value of σs must be used. In order to overcome the prob-
lem of genetic stagnation identified in the previous section, a large population size is
therefore required; hence the choice of N = 4000. When tackling real-world prob-
lems, such a large population size may not be practical, but, when tackling real-world
problems, rather than trying to distinguish between very similar global optima, one
is almost certainly going to be trying to identify dissimilar high-quality solutions. In

Evolutionary Computation Volume 10, Number 3 229

J-P. Li et al.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4
Dimensions

Fu
nc

tio
n

E
va

lu
at

io
ns

0

10

20

30

40

50

60

70

80

90

N
um

ber of G
lobal O

ptim
a G

roups

 Number of global optima groups
◆ Average number of function
 evaluations per solution

Figure 14: Variation in the number of global optima groups and the average number of
function evaluations per solution for n-D Shubert functions.

such a situation a much larger value of σs is appropriate, and the population size can
be correspondingly smaller.

After 280 generations the SCGA had successfully located the 81 global optima at
a computational cost of 10,498 function evaluations per solution. Figure 12 shows the
distribution of these global optima of the 3-D Shubert function.

We conjectured that the n-dimensional (n-D) Shubert function has n · 3n unevenly
distributed global optima and that these global optima can be divided into 3n groups
of n, with the members within each group being close to each other. Based on our
estimates in Section 3, for the SCGA to find all n · 3n global optima at minimal compu-
tational cost, the population size would need to be very large, and, in consequence, so
would the number of function evaluations.

Rather than attempting to find all the global optima of the n-D Shubert function,
we propose finding the 3n groups. The SCGA offers a very convenient way of finding
these groups. Given the maximum distance d between any two solutions in a group,
setting the species distance σs to a value greater than 2d will result in the SCGA finding
at most one member (global optimum) from each group.

We need to note two points about this approach. First, if further solutions need
to be found in any of the groups, this can be done by restricting the search to a hyper-
sphere of radius σs/2 centered around the solution representing the group. Second, the
approach proposed is reasonable from a practical point of view, as in real-world design
problems it is more important to find a few significantly different solutions than many
very similar ones.

For the purpose of demonstrating the above approach, let us consider again the
2-D Shubert function. We know that it has 18 global optima that can be divided into 9
pairs. The members of each pair are a distance 0.98 apart, while solutions in different
groups are much further apart. In order to locate the 9 groups in this problem, σs needs

230 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

to be set to a value between 2 and 12, as shown in Figure 11.
Based on these observations and with the parameters set to pc = 0.6, pm = 0.05,

rm = 0.30, rf = 0.85, and σs = 6.0, the SCGA was tested (30 times in each instance)
on Shubert functions of dimensions 1, 2, 3, and 4. In each case the population size
N was set to be 5 times the number of global optima groups. All the global optima
groups were located in each run. The results obtained are summarized in Table 6. These
show that, at least for the dimensions considered, our conjecture about the number of
groups of global optima in n-D Shubert functions can be verified using the SCGA, and
demonstrate that the SCGA can reliably locate these groups of high-quality solutions.
The distributions of the solution groups found for the 2-, 3-, and 4-dimensional Shubert
functions are illustrated in Figure 13.

Figure 14 shows that the average number of function evaluations required by the
SCGA to find each solution group scales at approximately the same rate as the number
of solution groups for these Shubert functions. Thus, at least on n-D Shubert functions,
the computational cost of the SCGA (as measured in function evaluations) is O(M2),
where M is the number of high-quality solutions to be found.

5 Conclusions and Future Work

5.1 Conclusions

In this paper we presented species conservation, a new technique for evolving parallel
subpopulations for multimodal function optimization. The technique is based on dis-
tributed elitism, which is achieved by selecting from each generation a set of seeds that
are considered to be worth preserving into the next generation. The selection of these
seeds is based on the notion of dominated species.

The only difference between the GA obtained by introducing species conservation
and a classical GA, such as Goldberg’s SGA, is the introduction into the generation loop
of two processes: the selection of seeds and the conservation of species. It is shown in
this paper that the additional overhead associated with these two processes is no higher
than that introduced by fitness sharing.

The species conservation technique can be implemented with any combination of
standard selection, crossover, and mutation operators. Its use introduces just one addi-
tional control parameter, the species distance, and this and the population size are the
only parameters important to the performance of the species conservation technique.

A simple SCGA implementation has been tested on standard trap functions from
the literature and has proved able to solve these deceptive problems consistently and at
computational costs similar to, or substantially lower than, those associated with other
multimodal optimization techniques. Because of the paucity of published results from
applications of other techniques to the sort of problems we are interested in solving,
these results on trap functions are the only concrete performance comparisons we have
been able to make. It is worth reiterating that the genetic operators used in our SCGA
implementation were chosen specifically because they are “diversity unfriendly.” It is
highly likely that the SCGA performance reported here could be improved through the
use of more “diversity friendly” selection, crossover, and mutation operators.

Tests on other well understood multimodal problems from the literature have en-
abled us to demonstrate that the SCGA can reliably find all the global optima of these
problems. The tests on the Shubert functions have enabled us to demonstrate this abil-
ity further, and also to examine features of the SCGA’s performance as its control pa-
rameters are changed, and as the problem size is changed. Lack of other published
results for these problems means our evaluation of the SCGA is necessarily incomplete.

Evolutionary Computation Volume 10, Number 3 231

J-P. Li et al.

The demonstrated ability of the SCGA to locate all the global optima in these test
problems is promising but ultimately of little practical utility. The true test of this tech-
nique must be on problems for which the number, distribution, and quality of optima
are unknown. This represents a much stiffer challenge because of the difficulty inher-
ent in identifying appropriate values of the algorithm’s control parameters, particularly
the species distance, in the absence of a priori problem knowledge.

In conclusion, the species conservation technique, incorporated into the SCGA
presented in this paper, seems to offer the promise of being an effective and efficient
method for inducing niching behavior into GAs with the purpose of finding all the
global optima of a multimodal optimization problem or diverse, high-quality solutions
of difficult, real-world problems, but there is much work in development and evalua-
tion still to be done.

5.2 Future Work

Our first objective for the future is to develop means of automatically, adaptively iden-
tifying suitable values of the key control parameters, the species distance and popula-
tion size, for problems where there is no a priori knowledge about the distribution of
optima available.

Our second task is to apply our technique to hard multimodal engineering design
problems with the expectation of discovering novel solutions. We will also perform
further empirical studies on the effectiveness and efficiency of the SCGA in solving
problems described in the literature, and, in particular, investigate the effects of using
more “diversity friendly” genetic operators than those used here.

On the more theoretical side, we need to investigate the effects on SCGA behavior
of using different definitions of similarity and of different settings of parameters.

Acknowledgments
We are most grateful to the anonymous referees who reviewed the first version of this
paper for their invaluable comments and suggestions of improvements.

References

Ackley, D. H. (1987). An empirical study of bit vector function optimization. In Davis, L., editor,
Genetic Algorithms and Simulated Annealing, pages 170–204, Pitman, London, UK.

Beasley, D., Bull, D. R., and Martin, R. R. (1993). A Sequential Niche Technique for Multimodal
Function Optimization. Evolutionary Computation, 1(2):101–125.

Cavicchio, D. J. (1970). Adaptive Search Using Simulated Evolution. Ph.D. thesis, University of
Michigan, Ann Arbor, Michigan.

Cohoon, J. P. et al. (1987). Punctuated equilibria: a parallel genetic algorithm. In Grefenstette,
J. J., editor, Genetic Algorithms and their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, pages 148–154, Lawrence Earlbaum, Hillsdale, New Jersey.

Cohoon, J. P. et al. (1991). Distributed Genetic Algorithms for the Floorplan Design Problem. IEEE
Transactions on Computer-Aided Design, 10(4):483–492.

Davidor, Y. (1991). A naturally occurring niche and species phenomenon: the model and first
results. In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth International Con-
ference on Genetic Algorithms, pages 257–263, Morgan Kaufmann, San Mateo, California.

Deb, K. (1989). Genetic Algorithms in Multimodal Function Optimization. Master’s thesis, University
of Alabama, Tuscaloosa, Alabama.

232 Evolutionary Computation Volume 10, Number 3

A Species Conserving Genetic Algorithm

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation in genetic
function optimization. In Schaffer, J. D., editor, Proceedings of the Third International Conference
on Genetic Algorithms, pages 42–50, Morgan Kaufmann, San Mateo, California.

Deb, K. and Goldberg, D. E. (1991). Analyzing deception in trap functions. IlliGAL Technical
Report 91009, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Illinois.

De Jong, K. A. (1975). An Analysis of Behavior of a Class of Genetic Adaptive Systems. Ph.D. thesis,
University of Michigan, Ann Arbor, Michigan.

Eby, D. et al. (1999). The optimization of flywheels using an injection island genetic algorithm. In
Bentley, P. J., editor, Evolutionary Design by Computers, pages 167–190, Morgan Kaufmann,
San Francisco, California.

Eshelman, L. J. (1991). The CHC adaptive search algorithm: how to have safe search when en-
gaging in nontraditional genetic recombination. In Rawlins, G. J. E., editor, Foundations of
Genetic Algorithms, pages 265–283, Morgan Kaufmann, San Mateo, California.

Gen, M. and Cheng, R. (1997). Genetic Algorithms and Engineering Design. John Wiley and Sons,
New York, New York.

Glover, F. (1989). Tabu Search – Part I. ORSA Journal on Computing, 1(3):190–206.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading, Massachusetts.

Goldberg, D. E. (1990). A Note on Boltzmann Tournament Selection for Genetic Algorithms and
Population-oriented Simulated Annealing. Complex Systems, 4(4):445–460.

Goldberg, D. E. (1992). Construction of High-order Deceptive Functions using Low-order Walsh
Coefficients. Annals of Mathematics and Artificial Intelligence, 5:35–48.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multimodal func-
tion optimization. In Grefenstette, J. J., editor, Genetic Algorithms and their Applications: Pro-
ceedings of the Second International Conference on Genetic Algorithms, pages 41–49, Lawrence
Earlbaum, Hillsdale, New Jersey.

Gordon, V. S., Whitley, D., and Böhn, A. (1992). Dataflow parallelism in genetic algorithms. In
Männer, R. and Manderick, B., editors, Parallel Problem Solving from Nature 2, pages 533–542,
Elsevier Science, Amsterdam, The Netherlands.

Holland, J. H. (1975). Adaptation in Natural and Artificial System. University of Michigan Press,
Ann Arbor, Michigan.

Hughes, E. J. and Leyland, M. (2000). Using Multiple Genetic Algorithms to Generate Radar
Point-scatterer Models. IEEE Transactions on Evolutionary Computation, 4(2):147–163.

Lienig, J. and Thulasiraman, K. (1993). A Genetic Algorithm for Channel Routing in VLSI Cir-
cuits. Evolutionary Computation, 1(4):293–311.

Mahfoud, S. W. (1995). Niching methods for genetic algorithms. IlliGAL Technical Report 95001,
Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Illinois.

Martin, W. N., Lienig, J., and Cohoon, J. P. (1997). Island (migration) models: evolutionary algo-
rithms based on punctuated equilibria. In Bäck, T., Fogel, D. B., and Michalewicz, Z., editors,
Handbook of Evolutionary Computation, pages C6.3:1–C6.3:16, Institute of Physics Publishing,
Bristol, UK.

Mengshoel, O. J. and Goldberg, D. E. (1999). Probability crowding: deterministic crowding with
probabilistic replacement. In Banzhaf, W., Daida, J., and Eiben, A. E., editors, Proceedings of
the Genetic and Evolutionary Computation Conference 1999, pages 409–416, Morgan Kaufmann,
San Francisco, California.

Evolutionary Computation Volume 10, Number 3 233

J-P. Li et al.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag,
New York, New York.

Parmee, I. C. (1999). A Review of Evolutionary/Adaptive Search in Engineering Design. Evolu-
tionary Optimization, 1(1):13–39.

Sarma, J. and De Jong, K. (1997). Generation gap methods. In Bäck, T., Fogel, D. B., and
Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages C2.7:1–C2.7:5, Insti-
tute of Physics Publishing, Bristol, UK.

Spears, W. M. (1994). Simple subpopulation schemes. In Sebald, A. V. and Fogel, L. J., editors,
Proceedings of the Third Annual Conference on Evolutionary Programming, pages 296–307, World
Scientific, Singapore.

Storn, R. and Price, K. (1997). Differential Evolution — a Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):341–359.

Whitley, D. (1989). The GENITOR algorithm and selection pressure: why rank-based allocation
of reproductive trials is best. In Schaffer, J. D., editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 116–121, Morgan Kaufmann, San Mateo, California.

234 Evolutionary Computation Volume 10, Number 3

