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1 Introduction

Constraints on particle interactions seem to grow more and more stringent with increas-

ing spin. Most famously, massless particles of spin 1 and 2 must couple to charge or

energy-momentum if they are to mediate long-range forces, while higher spin particles

must decouple at long distances [1, 2].

More general constraints on massive higher spin particles can be derived from causal-

ity [3], ruling out some effective field theories and circumscribing the allowed UV com-

pletions of others. Consistent quantum field theories (QFTs) may also be constrained by

rather different bounds relating to the total number of particle species [4–9] or the relative

strength of the gravitational force [10]. Our goal is to demonstrate a connection between

these constraints in the case of confining large N gauge theories. In short, bounds on the

interactions of long-lived higher spin hadrons in large N gauge theories imply a relation

between their effective coupling 1
N2 and the gravitational coupling GN .

In this paper, we explore when large N gauge theories can be coupled to gravity in

a way that preserves unitarity, causality, and Lorentz invariance. In general, it is easier

to show that a QFT is not well behaved than to show it is well behaved — a single

inconsistency is sufficient to conclude that the QFT is in the swampland. We argue that

large N gauge theories such as quantum chromodynamics (QCD) when coupled to Einstein

gravity can lead to such inconsistencies. In particular, in (3 + 1)-dimensions we conclude

that if a large N gauge theory (i) is a confining theory and (ii) contains glueballs and

mesons of spin J > 2, it violates causality unless

N .
MP l

ΛQCD

, (1.1)

where, ΛQCD is the confinement scale and MP l is the Planck scale. This bound also implies

that the gauge forces between the hadrons must be stronger than the gravitational forces

between these particles, a result reminiscent of the weak-gravity conjecture [10].

Much of our discussion will concern the distinction between fundamental and composite

particles, as our goal is to establish when the bounds of [3] apply to composites. Composite

particles may differ due to their finite size and substructure, which leads to the breakdown

of effective field theory descriptions at distances of order their size. Relatedly, high-energy

scattering of composites may be dominantly inelastic, so that composites shatter when

struck hard. We find that this last issue plays a leading role, making causality bounds

inapplicable for macroscopic objects and weakly bound states such as hydrogen atoms.

We will examine causality bounds from both AdS/CFT, with a large N gauge theory

in the bulk of AdS, and from flat space scattering. The CFT analysis of sections 3 and 4 is

simpler and clearer, as there are unambiguous causality bounds on CFT correlators [11–13],

and the correlators themselves can be explicitly decomposed in conformal blocks. Thus in

the AdS/CFT analysis we can directly point to the conformal blocks that alleviate causality

bounds on gravitational scattering for weakly bound composites. Free two-particle states

in AdS with angular momentum J ≥ 2 provide an illustrative extreme example of a weakly

bound composite state where we can see explicitly why causality bounds do not apply. In
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addition, CFT analysis of high energy gravitational scattering of weakly bound composites

also demonstrates that these particles do not have hard centers.

In contrast, the eikonal scattering analysis of section 5 requires some subtle tricks [14],

such as the use of Bose-enhancement of the initial states, in order to derive a general

causality bound. However, the flat space thought experiment naturally imposes a stronger

constraint replacing ΛQCD of bound (1.1) with the UV cut-off scale of the combined1 gauge

and gravity theory, so that

ΛUV .
MP l

N
. (1.2)

Furthermore, we examine how mixings and inelastic scattering affect the argument, and

conclude that it cannot be applied to large objects like Kerr black holes or weakly bound

composites. The eikonal scattering argument is not merely the flat space limit of the

AdS/CFT analysis.

The outline of this paper is as follows. In section 2 we provide abbreviated reviews

of large N scalings and the causality bounds of [3, 11–13, 15]. In section 3 we critically

examine the AdS/CFT causality constraints to understand if and when they should apply

to composite particles. We apply this analysis to confining large N gauge theories in AdS

in section 4. In section 5 we provide an independent analysis based on eikonal scattering

in flat space. We review a somewhat hand-waving argument for a similar species bound in

section 6, and we summarize our conclusions in section 7.

2 Brief reviews

In this section we provide a quick summary of the large N limit of gauge theories, CFT

causality constraints, and specific constraints on higher spin particles interacting with

scalars via gravity.

2.1 Large N expansion of gauge theories

Let’s briefly review2 expectations for the spectrum and interactions of large N gauge the-

ories in (3 + 1) spacetime dimensions. These theories are characterized by a confinement

scale ΛQCD where the ’t Hooft coupling λ becomes strong. This determines the charac-

teristic physical size of hadrons bound together by the confining force. It also sets the

mass scale of generic mesons, with exceptions including light pseudo-goldstone bosons and

mesons formed from heavy quarks.

In the large N limit, only the subset of planar Feynman diagrams survive, leading to

major simplifications. In particular, in the exact N = ∞ limit the mesons and glueballs

behave as stable particles that are free and non-interacting [16–18]. This property of

confining large N gauge theories will allow us to study the extension of the bound of [3] to

higher spin mesons and glueballs.

1Here the cutoff is the scale at which massive particles or strings outside the gauge sector contribute to

the scattering amplitudes. Also note that MPl in both (1.1) and (1.2) is the physical Planck scale.
2For a more extensive classic review see [16].

– 3 –
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In the large N limit, masses of mesons and glueballs scale as mπ,mG ∼ O(N0). Meson

decay rates are of order O(1/
√
N) and hence the lifetime of a meson is rather long ∼ O(N).

Glueballs are even more stable with typical lifetime of order O(N2). Mixing of mesons with

glueballs are also suppressed by the factorO(1/
√
N). In fact, one way to distinguish mesons

(π) and glueballs (G) is via the scaling of their largeN couplings, which we list below [16–18]

〈πππ〉 ∼ 1√
N

, 〈GGG〉 ∼ 1

N
,

〈ππG〉 ∼ 1

N
, 〈πGG〉 ∼ 1

N3/2
,

〈ππππ〉 ∼ 1

N
, 〈GGGG〉 ∼ 1

N2
. (2.1)

These results describe the scaling of the correlators or scattering amplitudes, assuming

that amplitudes for free propagation 〈ππ〉 ∼ 〈GG〉 ∼ N0 are normalized so that they are

independent of N . Baryons may also be present, but their mass will scale as ∼ NΛQCD,

and so at large N they will be very heavy.

Later we will be interested in coupling G and π to gravity, and so we need to know the

scaling of matrix elements of these particles with Tµν , the stress-energy tensor operator.

It has a natural normalization, determined by the fact that integrals of Tµν generate the

Poincaré group. This means that, for example

〈ππTµν〉 ∼ 1 , 〈GGTµν〉 ∼ 1 ,

〈πππTµν〉 ∼
1√
N

, 〈GGGTµν〉 ∼
1

N
. (2.2)

When we couple to gravity, this produces the usual expectations for scaling with GN and

N , so in particular 2-to-2 scattering via graviton exchange is proportional to GN but has

no N -dependence. Also note that off-diagonal matrix elements 〈GG′Tµν〉 may be present

(particularly for higher spin particles) without any 1/N suppression.

The correlators and scattering amplitudes of hadrons will be weakly coupled, but these

composite particles may not be described3 by a convenient effective field theory. This is

due to the fact that both the mass of these states and the putative cutoff will be of order

ΛQCD. Nevertheless, we can estimate the magnitude and rough behavior of interactions

using symmetry, unitarity, and large N scaling.

Although we do not have a rigorous proof, we expect that large N gauge theories

contain meson and glueball bound states of general spin. On physical grounds, we would

expect that it’s possible to construct color singlet states with high angular momentum by

‘spinning’ quarks and gluons. More formally, it is easy to construct gauge invariant local

operators such as tr[Fµ1µ2
· · ·Fµℓ−1µJ

] with arbitrary spin, and when acting on the vacuum

these should create high-spin hadrons. In principle hadrons with spin J ≥ 2 could have

large masses, but we do not expect their masses to scale with N . In what follows we will

assume that spin J hadrons with mass of parametric order ΛQCD exist in the spectrum.

3In the standard model, an EFT description is available because pions and other mesons are pseudo-

goldstone bosons, and are therefore parametrically lighter than ΛQCD.
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2.2 Summary of CFT causality constraints

Let us assume that our CFTd≥3 includes a higher spin (J ≥ 2) primary operator GJ and a

scalar primary O.

Four-point function. We will begin with a normalized Rindler reflection symmetric4

Lorentzian four-point function

F =
〈ε.GJ(B)O(u, v)O(−u,−v)ε.GJ(B)〉
〈ε.GJ(B)ε.GJ(B)〉〈O(u, v)O(−u,−v)〉

, (2.3)

as shown in figure 1, where our abbreviated notation implies

ε.GJ(B) = ε.GJ(t = iB, y1 = 1, y2 = 0) , (2.4)

and ε is a polarization tensor. The operator ε.GJ is the Rindler reflection of the operator

GJ , defined via

ε.GJ(B) = ε.G†
J(t = iB, y1 = −1, y2 = 0) , (2.5)

where the Hermitian conjugate on the right-hand side does not act on the coordinates

(see [12] for a detailed discussion on the Rindler reflection), and ε is the Rindler reflection

of the polarization ε:

εµν··· ≡ (−1)P (εµν···)∗ (2.6)

The parameter P is the number of t-indices plus y1-indices.

Regge limit. Following [13], we parametrize the coordinates

u =
1

σ
, v = −σB2ρ (2.7)

with B > 0, σ > 0 and 0 < ρ < 1. The Regge limit is defined as

σ → 0 (2.8)

with ρ,B fixed.

Statement of causality. Let us first write the correlator as F = 1 + δF . A CFT is

causal if and only if δF obeys the following conditions in the Regge limit [13]:

• Im(δF ) does not grow faster than 1/σ,

• Im(δF ) ≤ 0

which are precisely the chaos growth and sign bounds of [19]. It is important to note that

the above constraints are applicable only when δF is perturbatively small. This happens

naturally for CFTs with large central charge.5 We will be using these bounds and discussing

their applicability in the remainder of this paper.

4In CFT3 coordinates of points are given by: (t, y1, y2). Null coordinates u and v are defined as follows:

u = t− y1, v = t+ y1. For simplicity, whenever some coordinates are set to zero we will omit them.
5For generic CFTs, δF is perturbatively small in the lightcone limit ρ → 0. Hence, in the lightcone limit

causality also imposes non-trivial constraints [11, 12, 20, 21].
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vu

∫

GJ

∫

GJ

O(u, v)

O(−u,−v)

Figure 1. Example of a Rindler symmetric four-point function. The operators GJ ’s can be smeared

over some regions in a Rindler reflection symmetric way as well. Note that this is just a schematic

representation of the actual four-point function that we will use to derive the bound. In the actual

correlator F , the operators GJ ’s are smeared around an imaginary time value.

2.3 A simple constraint on higher spin particles

Now let us discuss the simplest example of a causality constraint on higher spin particles.

In order to do that we consider holographic CFTs — CFTs with large central charge

and a sparse spectrum, in d ≥ 3 spacetime dimensions. Furthermore, let us make the

strong assumption that GJ and O are primary operators dual to a massive higher spin

particle and a scalar particle in AdS, and that the only interactions in this AdS theory

(at least at this order in perturbation theory, or at energies below the gap) are due to

gravity [13, 15, 22]. Then we can write the conformal block decomposition of the correlator

from equation (2.3) as

F =

GJ

GJ 1
O

O
+

GJ

GJ T
O

O
(2.9)

+

GJ

GJ
∑

[OO] O

O
+

GJ

GJ
∑

[GJGJ ] O

O
+ · · ·

where each diagram indicates a set of contributing conformal blocks, and the ellipsis

denotes higher order gravitational interactions. These diagrams are simply the conformal

block decomposition of a bulk Witten diagram involving a single graviton exchange

between GJ and O.

For simplicity, let us now take O to be a heavy operator: ∆O ≫ ∆GJ
. This allows us

to ignore the third set of conformal blocks in (2.9). Causality of this simplified correlator

– 6 –
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was studied in [3] which ruled out all operators GJ with J > 2 (see section 3 of [3]). Let

us briefly sketch the argument of [3]. First, we smear F following [13] in such a way that

it projects out the double trace contributions of GJ without spoiling the Rindler reflection

symmetry of the correlator (see appendix A)

δFsmeared =

Gsmeared
J

Gsmeared
J T

O

O
+ · · · . (2.10)

After smearing, δFsmeared is a function of ρ, various OPE coefficients, and polarization

of the operator GJ . It was argued in [3] that the condition Im(δFsmeared) ≤ 0 for all

polarizations of the operator GJ cannot be satisfied in the limit ρ → 1 for J > 2.

3 Causality constraints for composites in AdS?

In section 2.3 we summarized a result from [3], which appears to put very strong constraints

on the existence of elementary higher spin particles in AdS/CFT. But higher spin composite

particles are ubiquitous in physics — indeed we ourselves are higher spin ‘particles’ ! So

from the point of view of these constraints, we would like to investigate in what sense

composite and fundamental particles are different.

We will begin with the simplest possible case, and understand why the constraint

does not apply to two-particle states in AdS, which can be viewed as ‘bound states’ due

to the AdS curvature. Two-particle states are represented in the CFT as double-trace

operators with arbitrarily large spin, so we will study correlators involving a pair of these

double-trace operators. We will see that the causality bound doesn’t apply because there

are extra contributions to these correlators as compared to the case of fundamental higher

spin particles. This result should also apply to other weakly bound states, explaining why

the existence of hydrogen atoms is not constrained by causality.

It would be surprising if causality bounds apply to unstable particles with short life-

times. We will discuss this issue in the context of AdS/CFT, where unstable bulk particles

are dual to CFT operators that include large admixtures of multi-trace operators. These

effects may complicate or eliminate the causality bounds.

3.1 No constraint on free two-particle states in AdS

In this section we will demonstrate that free two-particle states bound only by the effect of

the AdS curvature are not constrained by causality. Physically, this result seems very obvi-

ous, but the goal is to establish it from the point of view of correlators and conformal blocks.

We study a simple toy model in AdS, working in (4 + 1)-dimensions as it will simplify

some algebraic expressions. We consider two free scalar fields φ1 and φ2 in AdS which are

dual to two primary scalar operators O1 and O2 with dimensions ∆. There are various

double trace operators in this theory such as [O1O1]n,ℓ, [O2O2]n,ℓ, [O1O2]n,ℓ. We are

interested in the mixed double trace operator of dimension 2∆ + 2n+ ℓ and spin ℓ which

can be schematically written

[O1O2]n,ℓ ∼ O1�
n∂µ1

∂µ2
· · · ∂µℓ

O2 + · · · (3.1)

– 7 –
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with the exact expressions in appendix B. Our goal is to show that the argument of sec-

tion 2.3 when applied to [O1O2]n,ℓ does not lead to a constraint for any ℓ.

3.1.1 Four-point function

We start with the correlator 〈[O1O2]0,ℓ[O1O2]0,ℓψψ〉 for ℓ = 3, where ψ is a heavy scalar that

only interacts with φ1 and φ2 through gravity (this bulk theory is manifestly dual to a CFT

with large central charge and a sparse spectrum). This correlator can be straightforwardly

computed from the bulk Witten diagrams of figure 2, and we find

〈ψ(x1)ε2 · O3(x2)ε3 · O3(x3)ψ(x4)〉
〈ψ(x1)ψ(x4)〉

= 〈ε2 · O3(x2)ε3 · O3(x3)〉+
D[G̃]

〈ψ(x1)ψ(x4)〉
, (3.2)

where O3 ≡ [O1O2]0,ℓ=3 (see equation (B.8)) and ε · O3 ≡ εµ1
εµ2

εµ3
Oµ1µ2µ3

3 . Correlator G̃

in the above equation is the partially connected six-point function

G̃ = 〈ψ(x1)O1(x2)O1(x3)ψ(x4)〉h〈O2(x
′
2)O2(x

′
3)〉

+ 〈ψ(x1)O2(x
′
2)O2(x

′
3)ψ(x4)〉h〈O1(x2)O1(x3)〉 (3.3)

where, subscript h stands for the graviton exchange Witten diagram and the operator D
can be obtained from equation (B.8)

D = N2
3 lim
x′
2→x2,x′

3→x3

(

D3
1 −

6

∆
D2

0D1

)(

D′3
1 −

6

∆
D′2

0D
′
1

)

(3.4)

with

D1 = (ε2.∂2 − ε2.∂2′) , D2
0 = ε2.∂2ε2.∂2′ ,

D′
1 = (ε3.∂3 − ε3.∂3′) , D′2

0 = ε3.∂3ε3.∂3′ . (3.5)

3.1.2 Smeared Regge correlator and causality

To simplify calculations, let us further restrict to ∆ = 2 in d = 4. Since ψ is a heavy scalar

operator, we can use the Regge OPE of ψψ [15] to explicitly compute the Regge correlator

(see appendix C)

〈ψ(x1)O1(x2)O1(x3)ψ(x4)〉h
〈ψ(x1)ψ(x4)〉〈O1(x2)O1(x3)〉

=
〈ψ(x1)O2(x2)O2(x3)ψ(x4)〉h
〈ψ(x1)ψ(x4)〉〈O2(x2)O2(x3)〉

= −i
80∆ψ

cTπ3

zz̄

(z + z̄)3
, (3.6)

where, cT is the central charge of the dual CFT. Now, we choose the points (A.1) and take

the Regge limit (2.8).

Then we choose the following (null) polarizations for O3

ε2 = (1, ξ, iλ, λ) , ε3 = (−1,−ξ,−iλ, λ) , (3.7)

where, ξ = ±1. It is easy to compute the smeared two-point function following appendix A

∫

dτd~y〈O3(x2)O3(x3)〉 =
π2
(

56λ6 + 105λ4 + 60λ2 + 10
)

524288
. (3.8)

– 8 –
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Next we use the scalar correlator (3.6) to compute the Regge correlator (3.2) of O3.

After performing the smearing for d = 4 and ∆ = 2, in the limit ρ → 1, we finally obtain

∫

dτd~y〈ψ(x1)ε2O3(x2)ε3.O3(x3)ψ(x4)〉
〈ψ(x1)ψ(x4)〉

∫

dτd~y〈O3(x2)O3(x3)〉
≈ 1− 10i∆ψ

(

98λ6 + 343λ4 + 405λ2 + 190
)

7π3σcT (56λ6 + 105λ4 + 60λ2 + 10)
.

(3.9)

Note that Im(δF ) is negative which is already consistent with causality.

3.1.3 Comparison between single trace and double trace operators

Let us now point out certain key differences between the double trace result (3.9) and the

single trace results of [3].

• First of all, note that the smeared correlator δFsmeared is finite in the limit ρ → 1.

This limit corresponds to a high energy scattering deep into the bulk and in this

limit, smeared correlators of single trace operators have singularities. In particular,

δFsmeared for a single trace primary operator of spin ℓ in the limit ρ → 1 has the

following form [3]

δFsmeared ∼ −i
P (λ)

cTσ(1− ρ)d+2ℓ−3
(3.10)

which grows even for ℓ = 0. Whereas, the smeared correlator of double trace opera-

tors (3.9) is finite in the limit ρ → 1 for spin ℓ = 3. It is not difficult to see that the

same is true for all free two-particle states (with or without spin) bound only by the

effect of the AdS curvature. First, note that for the single trace operator O1 or O2,

the singularity at ρ = 1 in (3.10) comes from the following volume integral (for any

∆ in d = 4), which is approximately

δFsmeared ∼
∫

dτd2~y

τ2 + ~y2
(3.11)

at large τ2 + ~y2. Whereas, for the double trace operator [O1O2]0,0 the above volume

integral at ρ = 1 and at large τ, ~y becomes

δFsmeared ∼
∫

dτd2~y

(τ2 + ~y2)1+∆
(3.12)

which is finite when ∆ satisfies the unitarity bound. For double trace operators with

n, ℓ > 0, the above integrand schematically has the following structure

∂∂ · · · ∂ 1

(τ2 + ~y2)1+∆

which decays at least as fast as the scalar case. Disappearance of the singularity at

ρ = 1 for free two-particle states signifies that the two-particle states do not have

hard centers and hence it is expected that the same feature persists in any d ≥ 3.

• P (λ) in the above expression is a polynomial in λ2 and causality requires that each

power of λ2 in P (λ) must be individually positive [13]. For single trace operators,

– 9 –
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coefficients of individual powers of λ2 generally change sign — this leads to non-trivial

constraints on the OPE coefficients. However, for double trace operators, each power

of λ2 in P (λ) has the same sign which implies that causality does not impose any

non-trivial constraints.

• As we discuss in detail in section 3.2 below, the absence of constraints can be traced

to the presence of certain double-trace operators made from the constituents of the

two-particle state we have been studying.

3.2 Why hydrogen atoms in AdS aren’t ruled out

In the last section we showed that causality constraints do not apply to generalized free

theory double trace operators like

[O1O2]n,ℓ ∼ O1�
n∂µ1

∂µ2
· · · ∂µℓ

O2 + · · · . (3.13)

Now let’s imagine adding interactions that bind particle 1 and 2 together in AdS, forming

analogs of ‘hydrogen atoms’. Such interactions will give these states anomalous dimensions

(corresponding to binding energies), and mix them with states involving the dual of the

bulk force carrier. In the CFT language, it is natural to ask: to what extent can we

approximate the primary double-trace operator [O1O2] as a single-trace6 primary?

This question can be addressed by considering a four-point function 〈ψψ[O1O2][O1O2]〉
in a CFT with large central charge cT and a sparse spectrum of higher spin operators. At

the leading order in 1/cT , the t-channel expansion of this four-point function necessarily

receives contributions from the following conformal blocks:

〈ψψ[O1O2][O1O2]〉 =
[O1O2]

[O1O2]
1

ψ

ψ

+

[O1O2]

[O1O2]
T

ψ

ψ

+

[O1O2]

[O1O2] ∑

[O1O1]
ψ

ψ

+

[O1O2]

[O1O2] ∑

[O2O2]
ψ

ψ

+

[O1O2]

[O1O2] ∑

[[O1O2][O1O2]]
ψ

ψ

+ · · · , (3.14)

where we have ignored contributions from [ψψ] because ψ is heavy. We have also assumed

that all cubic interactions between φ1 and φ2 are small (since such couplings are not

obligatory). The first line in equation (3.14) always contributes to the four-point function

〈ψψ[O1O2][O1O2]〉.
On the other hand, the relative strength between the second and the third line depends

on the type of interactions between bulk fields φ1 and φ2. Moreover, the presence of the

6The conventional n-trace terminology is a bit artificial here; really we are asking to what extent com-

posite particles in AdS behave as though they are fundamental.
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Figure 2. The correlator 〈ψψ[O1O2][O1O2]〉 when bulk fields φ1 and φ2 are free or weakly inter-

acting is completely determined from the above Witten diagrams. For [O1O2]n,ℓ with nonzero n

and/or ℓ, the left hand side should be acted on by the appropriate derivative operator.

Figure 3. The double trace operator [O1O2] in the correlator 〈ψψ[O1O2][O1O2]〉 effectively behaves

like a single trace primary when bulk fields φ1 and φ2 are strongly interacting.

second line is particular to correlators of composite states. The terms in the second line

have arbitrarily large spin, and thus they can easily compete with the stress-tensor exchange

block on the first line of equation (3.14).

Let us consider two extreme scenarios. First, if the bulk fields φ1 and φ2 are free

or weakly interacting, the four-point function can be approximated by the Witten dia-

grams 2 and hence we can neglect the third line of equation (3.14). In this case, as we

saw in section 3.1, there are no causality constraints. In CFT language, the causality vio-

lations are avoided because of the exchanges of [O1O1] and [O2O2] in the conformal block

decomposition of equation (3.14).
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On the other hand, if bulk fields φ1 and φ2 are strongly interacting then we can no

longer treat O1 and O2 individually, as shown in figure 3. In this case the last line of

equation (3.14) dominates over the second line, implying [O1O2] can be approximated as

a single trace primary operator. Glueballs and mesons of confining large N gauge theories

belong to this class and hence the argument of [3] still applies. Whereas, hydrogen atoms

obviously are more similar to the scenario of figure 2 and hence hydrogen atoms with spin

more than two are not ruled out in AdS.

One might still wonder what happens if, beginning with a Hydrogen-like bound state,

we increase the strength of the coupling holding the constituents together. Is there a

transition to a regime where the causality bounds apply? In fact, we expect that even

for order-one couplings, Hydrogen-like composites will not be constrained by the causality

bound, as the operators from the second line of equation (3.14) can still contribute. Thus

we only expect causality constraints to apply to bound states that are parametrically

lighter than their constituents. Confining theories are an extreme example, since quarks

and gluons do not exist as finite-energy states at all. But our bounds may help to rule out

proposals for parametrically light bound states with large spin. In this sense, our bounds

may be viewed as an extension of the Weinberg-Witten theorem [23].

3.3 Unstable particles and operator mixing

On physical grounds, we might not expect causality constraints to be applicable to ‘par-

ticles’ with very short lifetimes, because these particles may decay before any causality

violation can be unambiguously detected. Let us see how particle instability in AdS man-

ifests in the dual CFT, and how it might affect causality constraints.

When we study a completely free QFT in AdS, the single particle ground states cor-

respond to CFT primaries (which are typically denoted ‘single-trace’ operators). Multi-

particle states with fixed particle number can also be organized into primaries and de-

scendants as well. Once AdS interactions are turned on, states with different numbers of

particles mix, and at finite coupling the exact CFT primaries will not have definite particle

number. This effect becomes especially pronounced in the presence of unstable particles,

which devolve into admixtures7 dominated by their decay products.

In order to illustrate these effects, let us imagine a toy bulk theory with two scalar

fields and an action

S =

∫

dd+1X

(

1

2
(∇Φ)2 +

1

2
(∇χ)2 − 1

2
M2Φ2 − 1

2
m2χ2 − g

2
Φχ2

)

(3.15)

where we can vary M and m, allowing us to study the case ∆Φ > 2∆χ where Φ → 2χ

decays are allowed. When g = 0 the boundary dual is a theory of generalized free fields

OΦ and Oχ, whose spectra include double and multi-trace operators.

Our interest is in the decomposition of primaries at g 6= 0 into the Hilbert space of

g = 0 states. In particular, we would like to understand to what extent OΦ mixes with

7Similar observations would apply whenever a QFT lives in a compact space and thus has a discrete spec-

trum. The only feature unique to AdS is the decomposition of states in terms of primaries and descendants,

which is a consequence of conformal symmetry.
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double-trace operators [OχOχ]n,ℓ. Since OΦ is a scalar, and perturbation theory preserves

angular momentum, OΦ can only mix with the ℓ = 0 double traces. Via the operator/state

correspondence, we can study mixing of operators by considering the perturbative mixing

of states, and vice-versa. Eigenstates of the global AdS Hamiltonian correspond to CFT

states with definite scaling dimension.

To study operator mixing effects, it’s convenient to use old-fashioned perturbation

theory, as it provides a formula for the mixing of Hamiltonian eigenstates. Adapting to

the CFT context [24], the textbook formula becomes

OΦ = OΦ0
+
∑

n

〈OΦ0
|V |[OχOχ]n,0〉

∆Φ − (2∆χ + 2n)
[OχOχ]n,0 + · · · (3.16)

where the operators on the right hand side create states in the g = 0 Hilbert space. The

OΦ on the left-hand side is the exact (or at least perturbative in g) primary.

When the denominator is order 1, as is possible when the Φ → 2χ decay channel

is open, we may have a very large8 mixing. This is because when we interpret CFT

dimensions as bulk energies, operator dimensions naturally have units of 1/RAdS. If for

example we are in AdS4, then g has units of energy, and so we could be in the regime

M & m ≫ g ≫ 1/RAdS. In this case we would still say that we have a very weakly coupled

bulk field theory, since the coupling is small compared to the masses of the particles. But

the mixing effect for unstable particles would be very large, so that the true primary OΦ

behaves very differently from the naive generalized free field OΦ0
. In this regime correlators

of OΦ may behave almost exactly like correlators of [OχOχ]n,0, which are automatically

free from causality constraints.

Quantitative estimate. Now let us estimate to what extent operator mixing alleviates

causality bounds. Our goal will be to determine how small the mixing must be to be

confident that causality bounds apply.

We will parameterize the exact primary as

O =
1√

1 + α2
O0 +

α√
1 + α2

[OO] (3.17)

where [OO] denotes a combination of double-trace operators, and we have chosen this

representation to keep O normalized. When the mixing α ≫ 1, correlators of O will be

dominated by the double-traces, which manifestly preserve causality.

When we study the correlator F = 〈OψψO〉 and smear as described in section 2.3, we

obtain two contributions which take the parametric form

δFsmeared ∼ i∆ψ∆O

cTσ(1 + α2)

(

α2 +

p
∑

i=0

1

(1− ρ)d−3+i
+ finite part

)

(3.18)

where p = 0 for scalar external operators, however, if operator O has spin ℓ then p = 2ℓ.

In the case d = 3 and p = 0 the power-law is replaced with a log(1− ρ). For the theory to

8The singularity is unphysical; it comes from expanding a formula like
√

(M2 − 4m2)2 + g4 in small g.

Near the singularity we must instead use degenerate perturbation theory.
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remain under control, we must take 1 − ρ > 1
∆gap

. This means that mixing effects do not

influence causality constraints only if

α2 ≪ log(∆gap) (3.19)

in the case d = 3. Typically α will grow with RAdS, so these mixing effects obstruct the

flat space limit of the AdS causality bounds. Physically, this result has a very simple

interpretation: we cannot obtain causality bounds from particles that decay before they

can scatter.

4 Constraining a gauge theory inside the AdS bulk

In this section we will place a confining large N gauge theory inside AdS and study the

implications for causality in the dual boundary CFT. Note that when we refer to ‘the gauge

theory’ or ‘N ’ we will always be referring to a d+ 1 dimensional gauge theory in AdSd+1,

and not to the boundary CFTd. We focus on d = 3, as we do not expect confinement in

higher dimensions, and causality constraints on higher spin particles do not apply in lower

dimensions. The central charge of the CFT3 will be related to the AdS scale and bulk

Planck scale by [25]

cT =
24R2

AdSM
2
P l

π2
(4.1)

and is a priori completely unrelated to the N of the bulk gauge theory. Our AdS/CFT

setup only includes the gauge theory, gravity, and perhaps some spectator fields in the bulk

of AdS below a cutoff scale ΛUV.

A bulk gauge theory might be in either a confining or Coulomb phase, and the difference

will have a marked effect on the spectrum of the boundary CFT. In the Coulomb phase,

free charges have finite energy, and so the bulk gauge field will act on the vacuum to create

finite-energy gluons. Such a bulk gauge field would then be dual to a conserved current in

the boundary CFT. However, in the confining phase bulk colored states will have infinite

energy, decoupling from the spectrum. In particular, if the bulk gauge theory confines, then

the boundary CFT will not include any symmetry currents9 dual to the bulk gauge field.

We will be studying both the large N limit of our bulk gauge theory and the large cT
limit of the boundary CFT. In more physical terms, we will imagine fixing RAdS and ΛQCD

while taking N, MPl

ΛQCD
→ ∞. This means that glueballs and mesons will have lifetimes

much larger than the RAdS timescale. So we will not need to worry about meson or

glueball decays, or mixing of single and multi-trace operators. Note that this scaling does

not commute with the flat space limit, as in flat space, for any finite but large N , hadrons

would have a finite lifetime. We will be interested in comparing the gravitational and 1/N

couplings, and so we will choose scalings so that these couplings are similarly tiny.

9Since AdS acts as an IR regulator [26], we expect that the confinement scale ΛQCD cannot be much

smaller than the AdS scale 1
RAdS

without transitioning back to the Coulomb phase. Conversely, bulk gauge

fields and their dual currents in the CFT cannot be too strongly coupled in the Coulomb phase. We can inter-

pret bootstrap bounds [27] on the maximum current OPE coefficients 〈JJJ〉 as indicative of this transition.
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In this section, we derive a bound on N under the assumption of confinement of the

bulk gauge theory and the presence of higher spin glueballs/mesons. The CFT based

argument has several advantages. First of all, as summarized in section 2, the statement of

causality is well understood in CFT [11–13, 20, 21]. It provides a condition on how certain

four-point functions in CFT must behave. It was shown in [3] that single trace primary

operators with spin J > 2 violate this causality constraint, ruling out elementary higher

spin particles in AdS.

The argument of [3] is not obviously applicable for CFT operators G and Π (with

spin J > 2) which are dual to the glueball G and meson π, respectively. In our setup,

the traditional notion of ‘single-trace’ vs ‘double-trace’ primary operator is not so well-

defined. One might take the viewpoint that the operators G and Π are double-trace, as a

consequence of the fact that mesons and glueballs are not elementary particles. However,

in the strict limit of N → ∞, we will argue that operators G and Π behave exactly like

‘single-trace’ operators and hence the bound of [3] should be applicable. Moreover, a simple

estimation of 1/N contributions for large but finite N implies that causality in the dual

CFT can only be restored if the bound (1.1) is satisfied.

4.1 Bound from the dual CFT

We consider CFT operators G and Π which are dual to glueballs G and mesons π, respec-

tively. We will assume that gauge theories contain infinite towers of G’s and π’s with all

spins and hence the dual operators G and Π must also come in infinite towers. For sim-

plicity, we will also include a colorless bulk scalar field φ dual to a scalar CFT primary O,

which we assume only interacts with the gauge sector via gravity. We will obtain bounds

with and without φ, but its inclusion provides a simple and stark demonstration of how

causality bounds constrain gauge theories coupled to gravity.

In AdS, we also have a bulk graviton h that couples to G, π, and φ with parametric

strength
√
GN fixed by the equivalence principle. In the CFT side this implies that the

three-point functions with the stress tensor T are suppressed by the central charge

〈GGT 〉
√

〈TT 〉
∼ 1√

cT
,

〈ΠΠT 〉
√

〈TT 〉
∼ 1√

cT
,

〈OOT 〉
√

〈TT 〉
∼ 1√

cT
(4.2)

where cT is the central charge defined from the stress tensor two-point function [28, 29].10

We are at the holographic limit cT ≫ 1 with a sparse spectrum. From the perspective

of the dual CFT, there are two small parameters: 1/N and 1/cT — a priori these are

10Note that this Tµν is the CFT stress tensor and hence it is different from the Tµν appeared in equa-

tion (2.2). In (2 + 1) dimensions, the two-point function of the CFT stress tensor T is given by

〈Tµν(x)Tρσ(0)〉 =
cT

2x6

(

Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x)−
2

3
ηµνηρσ

)

, (4.3)

where Iµν(x) is completely fixed by conformal invariance

Iµν(x) = ηµν −
xµxν

x2
. (4.4)
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independent parameters. However, next we will argue that the scenario N ≫ √
cT leads to

violations of causality.

4.2 Constraints on large N gauge theories in AdS

Now let us discuss how causality constrains large N gauge theories in AdS. We begin with a

warm-up example involving a spectator field interacting with a high-spin glueball or meson,

and then discuss interactions between scalar and high-spin hadrons.

High-spin glueball and a spectating scalar. Consider a simple Regge correlator in-

volving two higher spin glueball operators GJ and two spectating scalar operators O. Since

the gauge sector can only interact with O via gravity, this correlator can be approximated

as [13, 15, 22]

F =

GJ

GJ 1
O

O
+

GJ

GJ T
O

O

+

GJ

GJ
∑

[OO] O

O
+

GJ

GJ
∑

[GJGJ ] O

O
+ · · · (4.5)

where each diagram indicates a set of contributing conformal blocks, and the ellipsis denotes

higher order gravitational interactions. These diagrams are simply the conformal block

decomposition of a bulk Witten diagram involving graviton exchange between GJ and O.

We can further simplify by making O heavy: ∆O ≫ ∆GJ
. This allows us to ignore

the third set of conformal blocks in (4.5). The correlator (4.5) is now identical to the

correlator (2.9) implying that the bound of [3] is applicable here as well. We again smear

F following [13] in order to project out the double trace contributions of GJ

δFsmeared =

Gsmeared
J

Gsmeared
J T

O

O
+ · · · . (4.6)

This correlator, as shown in [3], violates causality for any J > 2. If we replaced GJ with a

meson ΠJ we would obtain the same result.

As discussed in section 3.3, at large but finite N these bounds may be alleviated

by the effects of operator mixing. If GJ or πJ can decay to multi-hadron states, then

the corresponding CFT operators GJ and ΠJ will contain large admixtures of multi-trace

operators. In this case the correlator F will receive additional and potentially very im-

portant contributions from other multi-trace operators, and the causality bounds may not

apply. Mixing of glueballs will be suppressed by 1
N , but it may be enhanced by a power of

(ΛQCDRAdS) ∼ ∆J . This suggests that the bounds may not apply when N . ∆J , though

the specific dependence will be theory-dependent.
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Constraints from bulk gauge theory correlators. Now let us consider the correlator

or AdS scattering amplitude between GJ and a spin-zero glueball or meson G0 in the Regge

limit. This case is more complicated because these particles’ interactions are also mediated

by the gauge-theory.

In general, it is not possible to precisely compute gauge theory correlators in the

Regge limit, unless we know more about the gauge theory or its boundary dual. But we

can approximate the correlator using the conformal block decomposition [13, 15, 22]

F =

GJ

GJ 1
G0

G0

+

GJ

GJ T
G0

G0

+

GJ

GJ
∑

[G0G0]
G0

G0

+

GJ

GJ
∑

[GJGJ ]
G0

G0

+

GJ

GJ
∑G G0

G0

+

GJ

GJ
∑

Π G0

G0

+O
(

1

c2T
,
1

N3

)

(4.7)

where, the first term is ∼ N0c0T and the second line is ∼ 1/cT . Whereas, the third line

of conformal blocks are suppressed by 1/N2 and hence they can be ignored in the limit

N ≫ √
cT ≫ ∆gap.

11 We can also choose G0 to be heavy, which allows us to ignore12 the

exchange of [G0G0] as well. So, we only need to consider the conformal blocks

δF =

GJ

GJ T
G0

G0

+

GJ

GJ
∑

[GJGJ ]
G0

G0

+ · · · . (4.8)

In the bulk, this corresponds to the graviton exchanged Witten diagram

(4.9)

where, on the left side the integral is only over the geodesic that connects the two G0

operators, because we assumed that they are heavy.

11Note that in this limit, we can also ignore the mixing effect from section 3.3.
12This isn’t strictly necessary, as we could project out these operators using an additional smearing.

However, since this would add technical complication, for simplicity we assume G0 are heavy.
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Bounds. The operators G0 and GJ may not be single-trace, however, the correlator (4.8)

is identical to the correlator of single trace operators considered in [3]. We smear operators

GJ ’s (as shown in appendix A) to project out the double trace contributions of GJ without

spoiling the Rindler reflection symmetry of the correlator

δFsmeared =

Gsmeared
J

Gsmeared
J T

G0

G0

+ · · · . (4.10)

The resulting smeared correlator is a function of ρ, various OPE coefficients, and the

polarization of the operator GJ . This smeared correlator is causal only if it satisfies the

condition Im(δFsmeared) ≤ 0 for any polarization of GJ and 0 ≤ ρ ≤ 1 (see section 2.3).

However, it was shown in [3] that the correlator (4.10) for J > 2 cannot satisfy the causality

condition for all polarizations of GJ in the limit ρ → 1. However, we expect that large-N

gauge theories contain states like GJ for J ≥ 2, and hence N cannot be parametrically

larger than
√
cT . On the AdS side, this implies that hadrons with spin J > 2 violate

causality when we take N → ∞ first and then GN → 0.

4.3 Restoring causality and parametric bounds

One way causality can be restored is by tuning N such that 1/N2 effects can compete with

the 1/cT effects. In other words, our previous argument will break down if contributions

from the third line of (4.7) are comparable to the contribution from stress tensor exchange.

Before we proceed, let us note that mass of glueball states are mG ∼ ΛQCD and so

if RAdSΛQCD ≫ 1 then the dimension of the dual operator GJ is large: ∆J ≫ 1. The

contribution from the stress tensor exchange can be schematically written as [3]

δFsmeared|T ∼ i
∆0∆J

cT

1

σ
f(ρ) (4.11)

where, f(ρ) is a function of ρ and the polarization of the operator GJ . The factor of ∆J

comes from the three-point function 〈GJGJT 〉. The Ward identity requires that at least

one of the OPE coefficients of 〈GJGJT 〉 must grow with ∆J . Similarly, the factor of ∆0

comes from the OPE coefficient of 〈G0G0T 〉.
As we mentioned earlier δFsmeared|T violates causality. However, now we should con-

sider other exchanged conformal blocks. For example, exchange of a spin s primary Gs and

its descendants contribute

δFsmeared|s ∼ i
1

N2

1

σs−1
fs(ρ) . (4.12)

Individually, all of these contributions violate causality for s > 2. So, these exchanges

can only make the correlator causal if the spectrum of operators and their OPEs are

highly fine tuned. In particular, the sum
∑

s δFsmeared|s should not grow faster than 1/σ.

Furthermore, the sum should cancel the causality violating contributions from the stress

tensor. However, for that to occur, it is necessary that 1/N2 is not too small

∆0∆J

cT
.

1

N2
, (4.13)
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where we are assuming that the sum over s does not scale with N . The above relation can

be rewritten as a bound on N

N .

√
cT√

∆0∆J
. (4.14)

Note that we find the strongest bound by considering the heaviest glueball states where

the theory is under control, which would mean setting ∆0,∆J ∼ ∆gap. However, using

states much heavier than ΛQCD could introduce large, uncontrolled, theory-dependent form

factors which could greatly alter our analysis. Thus to be conservative, we choose ∆0 ∼
∆J ∼ RAdSΛQCD = ∆QCD, which leads to

N .

√
cT

∆QCD

. (4.15)

On the gravity side, this translates into the bound

N .
MP l

ΛQCD

. (4.16)

It’s worth noting that for causality to be restored, there must be a seemingly fine-tuned

connection between these 1/N2 corrections and the graviton-exchange effects, which is in

itself surprising.

Before we conclude this section, we should clarify one thing. GJ is a heavy operator.

For heavy operators, the smearing in (2.10) is not required to project out [GJGJ ] exchanges.

However, the smearing procedure serves one other important function. It leads to optimal

bounds on CFT three-point functions from causality. This property of the smearing pro-

cedure was first shown in [12]. This fact was later used in the context of holographic CFTs

in [3, 13, 15, 22] to derive optimal constraints.

It is natural to extend this argument to mesons. Most of the analysis is exactly the

same. Causality can be restored by exchanging a tower of mesonic operators Πs

δFsmeared|Π ∼
∑

s

i
1

N

1

σs−1
fs(ρ) (4.17)

which leads to a parametric bound

√
N .

MP l

ΛQCD

. (4.18)

The bound from glueballs is both more general and stronger. Unfortunately, we cannot

determine the order one factors in these bounds without more precise information about

the QCD sector and its form factors.

Both (4.16) and (4.18) are independent of the AdS radius RAdS. However, we have

implicitly assumed that we do not need to include operator mixing effects associated with

particle decay in AdS, which we discussed in section 3.3. We would expect (conservatively)

that these effects could alter our analysis unless N ≫ ΛQCDRAdS, and so we cannot apply

our bounds in the flat space limit RAdS → ∞. However, in subsequent sections we will

take a different approach by directly studying causality bounds on flat space scattering.
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p3

p1

p4

p2

q

graviton

GJ

GJ

G0

G0

Figure 4. Eikonal scattering of glueballs in large N gauge theory. In the limit N → ∞, the leading

non-trivial contribution comes from a graviton exchange.

5 Eikonal scattering in large N gauge theory

Causality constrains eikonal scattering amplitudes, and these may be used to obtain a

bound relating N and GN in flat spacetime. It was shown in [14] that the eikonal phase

shift determines the Shapiro time delay and hence should be positive. The same argument

was used in [3] to rule out massive elementary particles with spin J > 2. In this section,

we will argue that the proof of [3] also holds for eikonal scattering of a spin zero glueball

with a higher spin glueball in certain limits, implying the bound (1.2) for confining large

N gauge theories in flat space. Bounds could also be obtained from the scattering of a

higher spin glueball with a spectator field or graviton.13

We will also explain why our bounds do not apply when they should not. For instance,

our bounds do not constrain Kerr black holes because of finite size effects. And they do

not constrain hydrogen atoms because the Bose-enhancement trick [14] cannot be applied,

as a high-energy scattering process with a hydrogen atom will be overwhelmingly likely to

shatter it into its constituents.

5.1 Eikonal scattering and causality

Let us now summarize the main argument that we will use to derive (1.2). First, we extend

the argument of [14] to constrain eikonal scattering of glueballs in confining large N gauge

theories. In particular, we study 2 → 2 scattering of a spin zero glueball G0 with a higher

spin glueball GJ with J > 2, as shown in figure 4, in (3+1)−dimensional flat spacetime.14

We will use the following null coordinates in R
1,3

ds2 = −dudv + d~x2⊥ . (5.1)

13We should note that self-interactions of isolated higher spin particles also lead to inconsistencies even

before they are coupled to gravitons, for example see [30].
14Let us note that it is not essential to study eikonal scattering of glueballs to derive the bound. In

fact, one can replace the spin-zero glueball G0 by a graviton and study the scattering: graviton+GJ →

graviton+GJ . The argument is almost identical, however, the eikonal scattering with a graviton has one

clear advantage. In this setup, it is easier to estimate the contributions to the phase shift from other

exchanges (or loops) to show that they are indeed negligible in the eikonal limit.
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In the eikonal limit, both particles are highly boosted such that they are moving almost

in the null directions. In other words, we are in the regime: s ≫ |t|,m0,mJ , where the

Mandelstam variables are

s = −(p1 + p2)
2 , t = −(p1 − p3)

2 = −q2 ≈ −~q 2 . (5.2)

The masses of the glueball states are m0 and mJ respectively.

The tree-level scattering amplitude, when expressed in the impact parameter space ~b,

is known as the phase shift:

δ(s,~b) =
1

2s

∫

d2~q

(2π)2
ei~q·

~bMtree(s, ~q ) . (5.3)

It is expected that only ladder diagrams contribute in the eikonal limit and hence the total

amplitude is given by the exponential of the tree level phase shift. This phase shift, when

exponentiated, can be interpreted as the Shapiro time-delay experienced by either of the

particles and hence must be non-negative [14] (also see section 2 of [3])

δ(s,~b) ≥ 0 . (5.4)

However, it is not completely obvious that the tree-level amplitude must exponentiate in

the eikonal limit. Furthermore, glueballs/mesons have finite size and hence the statement

of causality should be modified as well.

5.2 Causality condition for a particle with a finite size

Let us now revisit the N -shockwave setup of [14] but for particles with finite size. This

setup has several advantages, for example in this setup the phase shift (5.3) naturally

exponentiates.

First, let us note that the eikonal scattering can be thought of as the particle GJ

traveling in a shockwave sourced by the other particle G0. At tree-level, the amplitude is

1 + iδ, where δ ≪ 1 in order for the theory to be weakly coupled. The Shapiro time delay

of the particle GJ is related to the phase shift in the following way

∆v =
δ

pu
, (5.5)

where, pu > 0 is the u-component of the momentum of particle GJ (see figure 5). Naively,

one would expect that causality requires δ ≥ 0. However, that is not exactly correct. In

order for a time advance to imply causality violation, |∆v| should be larger than all uncer-

tainties associated with the thought experiment [14]. There are two types of uncertainties:

(i) the quantum mechanical uncertainty of the wave packet

∆quanv ∼ 1

pu
, (5.6)

and (ii) uncertainty due to the finite size of the particle

∆sizev ∼ mJr

pu
, (5.7)
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where, r is the size of the particle with mass mJ . The particle GJ is highly boosted and

the factor of mJ/p
u takes into account the requisite length contraction.

The finite size effect is important because in order for us to detect a time advance, we

first need to find the lightcone associated with the initial state. ∆sizev can be thought of

as a source of error in determining the lightcone of the particle. If a particle of mass m

satisfies mr ≪ 1, we can consider the particle effectively elementary. However, for mesons

or guleballs mr & 1 and hence the finite size effect is more important than the quantum

effect. So, to be conservative, for glueballs a causality violation can only be detected if

|δ| > mJr . (5.8)

Perturbation theory requires that |δ| ≪ 1. This small perturbative effect can be ampli-

fied by studying the propagation of the particle GJ in a background with N independent

shockwaves created by G0 particles [14] (for a pictorial representation see figure 5). For

amplification, it is required that the phase shift δ is the same for each of these N -processes.

This happens naturally if the polarization of the outgoing GJ is the complex conjugate of

that of the incoming GJ . This post selection can be achieved through Bose enhancement

— replacing the incoming particle GJ by a coherent state of particles with a fixed polar-

ization [14]. Since mesons and glueballs are weakly interacting in the large N limit, we can

tune the mean occupation number to be large but still have small δ at each step. Then

Bose enhancement ensures that the incoming and outgoing states are exactly the same. Of

course, when N is large but finite the process of post selection by Bose enhancement is

more subtle; we will address this at the end of this section.

In the limit δ → 0 and N → ∞ with N δ fixed, the total amplitude is

(1 + iδ)N ≈ eiN δ . (5.9)

Therefore, the total phase-shift is N δ. The absolute value of this quantity should be larger

than mJr if we are to definitively observe a time advance.

Next, we also need to make sure that the center of the particle GJ remains localized

on the transverse plane at a distance b through the entire process. Let us assume that the

entire process of scattering through N shocks takes null time U . In that null time, the

wavefunction for the center of the particle GJ spreads along the transverse direction by [14]

∆b ∼
√

U

pu
. (5.10)

The particle G0 (or rather a coherent state of particle G0) with momentum P v that

creates a shock can only be localized over a distance15

∆quanu ∼ 1

P v
. (5.12)

15For now let us assume that the particle G0 has zero size for simplicity. It is straightforward to include

the finite size effect of G0 by considering

∆sizeu ∼
m0r

′

P v
, (5.11)

where, m0 is the mass and r′ is the size of the particle G0.
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Figure 5. Total time delay for a coherent state of incoming particles after crossing N independent

shockwaves can be large enough to violate asymptotic causality.

Therefore, we can only get N independent shocks if

U =
N
P v

(5.13)

implying

∆b ∼
√

N
s
. (5.14)

Therefore, the particle GJ can only be localized at a distance b, if

N ≪ b2s . (5.15)

Moreover, using N ∼ mJr/|δ|, we obtain

mJr

b2s
≪ |δ| ≪ 1 . (5.16)

Note that causality violation, if any, shows up in the phase-shift only in the regime

b . 1/mJ . So, taking s ∼ Λ2
UV and b ∼ 1/mJ we get a bound on the size of the particle

which can be constrained using eikonal scattering
(

mJ

ΛUV

)2

mJr ≪ 1 . (5.17)

Both mesons and glueballs have m ∼ ΛQCD and mr ∼ 1 and hence they obey this

condition. Note that a macroscopic black hole would not obey this condition, and hence

Kerr black holes with spin more than two are not ruled out by this argument.

Finally, let us consider an eikonal scattering where particle G0 also has a finite size r′

with m0r
′ > 1. In that case,

U =
Nm0r

′

P v
(5.18)
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and hence the condition (5.16) now becomes

(mJr)(m0r
′)

b2s
≪ |δ| ≪ 1 . (5.19)

Mesons and glueballs are stable particles strictly in the N → ∞ limit. For, large

but finite N , both mesons and glueballs do decay. The lifetime of a meson is ∼ O(N).

Whereas, typical lifetime of a glueball is O(N2). However, these decay processes do not

immediately invalidate our argument. If we perform our experiment with an ensemble of

incoming particles, the finite lifetime implies that only a fraction of these incoming particles

can experience a Shapiro time delay/advance. Detection of time advance even for a single

particle is sufficient to conclude that the theory is acausal.

The discussion of section 3.2 implies that the condition (5.17) is just a necessary con-

dition but not sufficient. For example, naively the condition (5.17) suggests that hydrogen

atoms can be treated as elementary particles in the regime of interest. However, hydrogen

atoms with spin more than two are not ruled out because in gravitational eikonal scattering

hydrogen atoms cannot be approximated as elementary particles. In fact, the leading con-

tribution to the hydrogen phase shift comes from the protons and the electron interacting

with the graviton individually. The weak electromagnetic interaction between the electron

and the proton can only contribute to the phase shift at the subleading order. Whereas,

confinement ensures that glueballs and mesons behave as elementary particles in the large

N limit.

5.3 Bose enhancement and mesons/glueballs mixing

For glueball or meson scattering there can be mixing between different states when a

high energy graviton hits a glueball/meson. One might expect that this kind of mixing

should not contribute to our causality argument because of the post selection through Bose

enhancement. Let us now make that expectation more precise by studying when the Bose

enhancement argument of [14] can breaks down. We will see that for dominantly inelastic

scattering processes, such as high energy scattering of Hydrogen atoms, our bounds do not

apply.

5.3.1 Bose enhancement

Let us consider the operator a† that creates a single particle state (elementary or composite)

with a particular polarization. For our flat space positivity argument it is essential that the

phase shift exponentiates. This was achieved by considering N -shockwaves following [14].

Moreover, our argument requires that the higher spin particle (glueball state) should be

replaced by a coherent state of the same higher spin particles (glueballs)

|i〉 = eλa
† |0〉 , (5.20)

where, λ is real. Before we introduce interactions, note that 〈i′|i〉 where |i′〉 = eλ
′a† |0〉:

〈i′|i〉 = eλλ
′

. (5.21)
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We now introduce the following interaction

Hint = δ1a
†a+ δ2b

†a+ δ∗2a
†b (5.22)

where, δ1 is the phase shift for the process: state a goes to state a. Similarly δ2 is the

phase shift for the process: state a goes to state b.

We can now consider a basis of outgoing states:

|λ′; 0〉 = eλ
′a† |0〉 , |λ′; 1〉 = b†eλ

′a† |0〉 , |λ′; 2〉 = (b†)2eλ
′a† |0〉 , · · · . (5.23)

Matrix elements can be obtained by using equation (5.21), yielding (after properly normal-

izing all states)

〈λ; 0|Hint|i〉 = λ2δ1 , 〈λ; 1|Hint|i〉 = λδ2 (5.24)

and all other matrix elements are zero.

5.3.2 A condition for Bose enhancement

From the above matrix elements it appears like |i〉 → |i〉 is enhanced when λ ≫ 1. However,

one should be more careful when there is a parametric separation between δ1 and δ2. First

of all, the theory is weakly coupled only when

|δ1| ≪ 1 , |δ2| ≪ 1 . (5.25)

For an enhancement of the process |i〉 → |i〉, we require that the mean occupation number

should be large enough so that we can neglect the second process

λ2|δ1| ≫ λ|δ2| . (5.26)

However, the mean occupation number should also be small enough that the total scattering

amplitude is still small

λ2|δ1| ≪ 1 , λ|δ2| ≪ 1 . (5.27)

All these conditions can only be satisfied if

|δ1| ≫ |δ2|2 . (5.28)

Therefore, the Bose enhancement argument cannot be trusted if δ22 ∼ δ1.

5.3.3 Failure of Bose enhancement for hydrogen atoms

There is one more possibility that we must consider — the final state b can be highly

degenerate. Physically, this includes scenarios where the scattering process is dominantly

inelastic, and the interaction may shatter the initial state into a large number of final states.

We can parameterize the Hamiltonian as

Hint = δ1a
†a+

ndeg
∑

i=1

[

δ2b
†
ia+ δ∗2a

†bi

]

(5.29)
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where generally δ2 will depend on the final state, but we have suppressed this for simplicity.

We can Bose-enhance the process a → a if

λ2|δ1| ≫ λndeg|δ2| , (5.30)

This can only be achieved without going beyond the weakly coupled regime if

|δ1| ≫ n2
deg|δ2|2 . (5.31)

Therefore, the Bose enhancement trick will fail if the degeneracy of the other states bi is

very large, in particular it fails once

ndeg &

√
δ1
δ2

. (5.32)

This condition explain why the causality bound cannot be applied to hydrogen atoms with

spin J > 2. The derivation of the causality bound heavily relies on the post selection of the

final state with the help of Bose enhancement. But in an eikonal scattering of hydrogen

atoms, when the energy of the exchanged graviton is large compared to the mass of a

hydrogen atom, the scattering process will almost always shatter the atom into a proton,

an electron, and many photons. The condition (5.32) immediately implies that the Bose

enhancement trick breaks down for high energy eikonal scattering of hydrogen atoms.

This reasoning does not invalidate the bound for hadrons in confining large N gauge

theories, because the processes that shatter the hadrons are suppressed by additional pow-

ers of 1/N as compared to scattering that preserves the initial hadron, as shown for the

scalings in equation (2.2).

5.3.4 Mixing

We want to enhance the process of figure 4 where the polarization ǫ3 of the outgoing GJ is

the complex conjugate of the polarization ǫ1 of the incoming GJ . This can be done using

Bose enhancement because the phase shift for ǫ3 = ǫ∗1 is of the same order as the phase

shift for ǫ3 6= ǫ∗1 and the condition (5.28) is trivially satisfied.

The same is true even for mixing between different glueball (or meson) states. Since

glueballs and mesons are composite particles, a high energy graviton can change the internal

state of a glueball (or meson) by converting it into a different hadron which may have

different mass and/or spin. This type of mixing is not suppressed by the large N limit (see

equation (2.2)) and hence a priori these mixings should not be ignored for glueball/meson

eikonal scattering.
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If we start with an incoming glueball state GJ , there are two things that can happen

as shown below

, (5.33)

where, for simplicity we only consider mixing of the spinning glueball GJ but not G0. We

can estimate δ1 and δ2. In the eikonal limit, the behavior of the phase shift is completely

fixed by the exchanged particle and hence δ1, δ2 ∼ s/M2
P l. Thus, we can project to the first

process by Bose enhancement.

5.4 A bound on N

The proof of [3] holds for eikonal scattering of a spin zero glueball with a higher spin

glueball in a confining large N gauge theory, however, there are several subtleties as we

explained before. There is an additional technical subtlety exclusively in (3+1)-dimensional

spacetime because of the glueball mixing which we will address next.

Tree-level eikonal scattering. Let us now come back to the tree-level eikonal scattering

amplitude of a higher spin glueball GJ with a scalar glueball G0 for a large N gauge theory,

as shown in figure 4.16 The Bose enhancement trick implies that the polarization ǫ3 of

the outgoing GJ is the complex conjugate of the polarization ǫ1 of the incoming GJ and

we can ignore mixing. If N is the largest quantity of the theory, then we only need to

consider graviton exchanges and the phase shift is completely fixed by the on-shell three-

point amplitude GJGJhµν , where hµν is the graviton. In general the on-shell three-point

amplitude GJGJhµν can be any linear combination of 2J + 1 parity even and 2J parity

odd structures (see section 2.5 of [3]). The phase shift is schematically given by

δ(s,~b) ∼ s

M2
P l

f

(

~∂b
mJ

)

ln

(

L

b

)

(5.34)

where, L is the IR regulator and f is some known function described in [3]. Causality

requires that this phase shift should be positive for any polarization of the incoming particle

GJ . As shown in [3], this phase shift in the limit mJb ≪ 1 violates causality for all

glueballs with spin J > 2 unless the on-shell three-point amplitude GJGJhµν is a very

16There is nothing special about G0. For example, one can replace the glueball G0 by a graviton and

make the same argument.
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p3

p1

p4

p2

q

graviton

αGJ + βG′
J ′

α′GJ + β′G′
J ′

G0

G0

Figure 6. A setup to bound glueball mixing in large N gauge theories. In the limit N → ∞, the

leading non-trivial contribution still comes from a graviton exchange.

specific combination of only parity even structures. This specific combination corresponds

to a non-minimal coupling between glueballs and gravitons. The same conclusion holds for

higher spin mesons as well.

This remaining non-minimal coupling can be ruled out by applying interference bounds,

as shown in [3]. However, for composite particles such as glueballs we need to be more

careful because on-shell three-point amplitudes of mixing G′
J ′GJhµν can contribute signifi-

cantly in the interference setup. So, first we need to bound the mixing amplitude G′
J ′GJhµν

from causality.

A bound on on-shell mixing amplitudes. We now consider an eikonal scattering:

1, 2 → 3, 4, where, 1 and 3 are linear combinations αGJ + βG′
J ′ and α′GJ + β′G′

J ′ respec-

tively with real coefficients α, α′, β, β′ (see figure 6). Particles 2 and 4 are again a scalar glue-

ball G0. Causality now can be expressed as semi-definiteness of the phase shift matrix δ13:

δ13 ≡
(

δGG δGG′

δ∗GG′ δG′G′

)

� 0 . (5.35)

The above condition can also be restated as a bound on δGG′ :

|δGG′ |2 ≤ δGGδGG′ . (5.36)

Positivity of δGG and δGG′ for all polarizations implies that [3]

δGG = a1
s

M2
P l

ln

(

L

b

)

, δG′G′ = a′1
s

M2
P l

ln

(

L

b

)

, (5.37)

where, a1 and a′1 are dimensionless coefficients. Hence, δGG′ should not grow faster than
s

M2
Pl

ln
(

L
b

)

in the limit ΛUV ≫ 1/b ≫ mG,mG′ .

One immediate consequence of the above growth bound is that in the limit N → ∞,

the on-shell three-point amplitude (see appendix D for details)

G′
J ′GJhµν .

1

MP l

ln(ΛUVL)

Λn
UV

with n ≥ 1 . (5.38)

Since GGhµν ∼ 1/MP l, the glueball mixing GG′hµν is always suppressed by the UV cut-off

scale. The same conclusion holds even for the meson mixing ππ′hµν .
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p4

p2

q

h,GJ

1

3

2

4
h+GJ

h+GJ

αh+ βGJ

α′h+ β′GJ

Figure 7. Graviton interference bound: in-states are linear combinations of GJ and the graviton h.

Graviton interference bound. Let us now study the eikonal scattering shown in fig-

ure 7 — states 1 and 3 are linear combinations of GJ and the graviton: αh + βGJ and

α′h+β′GJ respectively, where α, α′, β, β′ are some arbitrary real coefficients. States 2 and

4 are a fixed combination of GJ and the graviton: h+GJ . Suppression of glueball mixing

GG′hµν ensures that only gravitons and GJ can be exchanged in the limit N → ∞ — this

is exactly the interference setup of section 2.5 of [3]. This implies that the interference

bound of [3] applies here yielding

GJGJhµν = 0 for J > 2 (5.39)

which contradicts the equivalence principle. The same conclusion holds even for πJπJhµν .

Therefore, there is no consistent way of coupling higher spin glueballs/mesons with gravity

in the limit N → ∞.

Exchange of an infinite tower of glueball states. Confining large N gauge theories

can still have higher spin mesons/glueballs if large N effects can compete with MP l. In this

scenario, an infinite tower of massive higher spin glueballs will also contribute to the phase

shift. The contribution of a glueball with mass mj and spin j to the phase shift is given by

δj ∼
1

N2

( s

Λ2

)j−1

fj

(

~∂b
mj

)

K0(mjb) , (5.40)

where, Λ is some mass scale, K0 is the Bessel-K function and fj is a differential operator

that can be found following [3]. For large j, δj can be order 1 for s > Λ2 and hence we can

think of Λ as the cut-off scale ΛUV. Also note that if mj ≫ mJ , then at the scale b ∼ 1/mJ ,

the phase shift δj ∼ e−mj/mJ . So, in order to get a significant contribution mj ∼ mJ .

Even without knowing the details, we can estimate the total contributions from the

exchange of an infinite tower of glueball states. First, let us ignore gravity completely. The

phase shift now is given by a sum of the above expression (5.40) over all particles exchanged

in the process. Since, the individual contribution violates causality, it must be an infinite

sum. Moreover, the sum should not grow faster than s or else the infinite sum will also

violate causality [14]. We also expect that this sum will cancel the causality violation of
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the graviton exchange after we turn on gravity. Hence, this sum must grow so that it can

compete with (5.34)
∑

j

δj ∼
1

N2

(

s

Λ2
UV

)a

(5.41)

with a . 1. A comparison of the above expression with (5.34) leads to an approximate up-

per bound on N . The strongest bound is obtained at largest energies s ∼ Λ2
UV which yields

N .
MP l

ΛUV

. (5.42)

One can repeat the same argument for mesons which again leads to a weaker bound√
N . MP l/ΛUV due to the different large N scalings of meson scattering amplitudes.

6 A species bound from entropy

Let us now present a simple entropic argument17 that provides the same upper bound on

N . Consider large N QCD in (3+1)-dimensional flat spacetime at temperature T . In this

thermal theory, we imagine a spherical region of radius r, where r satisfies

r =
1

4πT
. (6.1)

Note that this is exactly the relation between the Hawking temperature of a spherical black

hole and its radius.

A simple dimensional analysis suggests that the entropy of this spherical region is given

by

S ∼ r3T 3N2 . (6.2)

Finite temperature lattice computations support this expectation above the critical decon-

finement temperature [31]. If we now increase N , this spherical region of radius r will have

the same entropy as a black hole when

S = 8π2r2M2
P l , (6.3)

where the right hand side is the Bekenstein-Hawking entropy of a Schwarzschild black hole

of radius r. This equality holds when

N

MP l
∼ r . (6.4)

The large N QCD plasma has more entropy than a black hole with radius . N/MP l.

However, this may be avoided if r is smaller than the UV cut-off r < 1/ΛUV which translates

to an upper bound on N :

N .
MP l

ΛUV

. (6.5)

Since this bound is derived from UV considerations, the same is expected to be true for

large N QCD in AdS4.

17Similar arguments and bounds are well-known, see for example [4, 6–9].
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It is interesting that this simple and naive argument led to the same bound on N .

It is tempting to interpret this observation as an evidence in favor of the entropic argu-

ment (or something similar) presented in this section. However, it seems that the bound

obtained in this section is stronger than that of previous sections because the entropic

argument does not require any assumption about confinement or presence of stable higher

spin glueballs/mesons. This suggests that a more formal argument along this line might

be applicable to any large N theories yielding similar bounds.

7 Summary & discussion

A weak-gravity like species bound. In this paper we analyzed the implications of

Lorentz invariance, unitarity, and causality on large N gauge theories coupled to gravity in

(3+ 1)-dimensions. We found that confining large N gauge theories must obey the species

bound

N .
MP l

ΛQCD

,

though this bound is parametric, and the (unknown) order-one factors will be theory-

dependent. A simple consequence of the species bound is that the typical mass of a baryon

M ∼ NΛQCD must be below the Planck scale MP l.

The above species bound is precisely the weak-gravity bound for hadrons of confining

large N gauge theories in (3 + 1)-dimensions. The gravitational interaction between two

glueballs with typical masses ΛQCD scales as ∼ Λ2
QCD

M2
Pl

. The species bound ensures that

gravitational interaction is weaker than the gauge interaction between these glueballs which

scales as ∼ 1/N2.

The species bound was obtained by exploring causality constraints on gravitational

interactions of massive composite particles with spin J > 2 in both AdS and flat spacetime.

We showed that gravitational interactions between higher spin glueballs and mesons in any

confining large N gauge theory, by itself, violate causality at N = ∞. Hence, a confining

large N gauge theory can be coupled to gravity in a consistent way only if the gravitational

interaction between hadrons is weaker than the gauge interactions between them.

Moreover, the eikonal scattering thought experiment in flat space as well as a rough

entropic argument impose a stronger constraint which can be interpreted as a parametric

bound on a UV cut-off scale of the combined gauge and gravity theory

ΛUV .
MP l

N
.

Bounds on composite particles. We discussed various reasons why causality bounds

may not apply, including finite size effects, mixings or instabilities, and large inelastic

scattering cross sections at high energy. Weakly bound states are not constrained by

causality, as high-energy scattering will simply dissociate them. We have argued that our

bounds should still apply to high-spin hadrons with masses near the QCD scale. But we

cannot determine the order-one factors in the bounds without a much better understanding

of form factors in the scattering process. So our bounds are only parametric.
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Figure 8. Eikonal scattering of hadrons (XJ ) in large N gauge theory with a spectating scalar ψ.

The scalar can only interact with other particles via gravity.

AdS vs flat spacetime. In spite of the apparent similarities between the AdS argu-

ment and the flat space argument, there are some clear differences. The AdS argument is

conceptually cleaner because the statement of causality in CFT is better understood. The

flat space argument appears to impose a stronger bound on N , though it depends on a

much more intricate argument for its justification. The flat space argument also relies on

the positivity of the phase-shift, which is believed to hold in all UV complete Lorentzian

QFTs. However, a rigorous S-matrix based proof is still lacking. Furthermore, the dif-

ference between the two methods becomes even more significant if we add a spectating

scalar field to the confining large N gauge theory. In this case, the flat-space bound on

N remains unchanged, whereas the CFT-based argument leads to a stronger but theory-

dependent bound. These differences, though surprising, do not indicate any contradiction.

The operator-mixing effects in CFT associated with particle decays in AdS imply that the

AdS bounds we have derived are not applicable in the flat space limit.

Universality of gravitational interactions of hadrons at large N . It is important

to note that the bound (1.1) is a necessary condition but not sufficient. Confining large

N gauge theories that obey the bound (1.1) might still violate causality. In particular, in

the presence of a spectator scalar field, glueballs and mesons of all confining large N gauge

theories in (3 + 1) spacetime dimensions must interact with gravity in a universal way.

Again we can consider an eikonal scattering of a glueball or meson (which we will

denote as XJ) of arbitrary spin with the spectator scalar (see figure 8). The phase-shift,

even when N obeys the bound (1.2), is completely fixed by the on-shell three-point ampli-

tude XJXJhµν . A priori, the on-shell three-point amplitude XJXJhµν can be any linear

combination of 2J + 1 parity even and 2J parity odd structures (see section 2.5 of [3])

〈XJ(p1, z1)XJ(p3, z3)h(q, z)〉 = A2
J+1
∑

i=1

ai(z1 · z3)J−i+1(z1 · q)i−1(z3 · q)i−1 (7.1)

+AB
J
∑

i=1

aJ+i+1(z1 · z3)J−i(z1 · q)i−1(z3 · q)i−1 + parity odd ,
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where, ai with i = 1, · · · , 2J + 1 are the coupling constants and A = (z · p3), B = (z ·
z3)(z1 · q)− (z · z1)(z3 · q). Positivity of the phase shift for this eikonal scattering strongly

constrains the on-shell three-point amplitude XJXJhµν . Following section 2.5 of [3], we

conclude that the parity odd part the on-shell three-point amplitude XJXJhµν must vanish

and the parity even part is completely fixed

an+1

an
=

(n− J)(n+ J − 1)

n(2n− 1)

1

m2
, n = 1, · · · , J ,

aJ+n+2

aJ+n+1

=
n2 − J2

n(2n+ 1)

1

m2
, n = 1, · · · , J − 1 , (7.2)

with aJ+2 = Ja1 and m being the mass of XJ . Note that the coefficient a1 is also fixed

by the soft theorem. Therefore, spinning hadrons of any confining large N gauge theory

in (3 + 1)-dimensions must couple to graviton in a specific non-minimal way if we want to

include spectator fields such as dark matter. Moreover, in the presence of a spectator field,

the mixing bound (5.38) also applies to any confining large N gauge theory.

Higher dimensions. Main results of this paper are derived for confining gauge theories

in (3 + 1)-dimensions, however, the analysis can be easily extended to higher dimensions.

In fact, causality leads to stronger constraints in higher dimensions. For example, a simple

extension of the flat space eikonal scattering argument of [3] (for the setup shown in figure 8)

implies that in the presence of a spectator field any confining large N gauge theory would

violate causality in d ≥ 5 spacetime dimensions. This is consistent with the fact that

there is no confining gauge theory in d ≥ 5 dimensions. On the other hand, the entropic

argument of section 6 suggests that there is a bound on N even for non-confining gauge

theories in d ≥ 5 dimensions.
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A Smearing of Regge correlator

Consider the correlator

G = 〈ψ(x1)O(x2)O(x3)ψ(x4)〉

in d-spacetime dimensions, where we choose the points as follows:

x1 = (u, v,~0) , x2 = (t = iB, y1 = −1,~0) ,

x4 = (−u,−v,~0) , x3 = (t = i(B + τ), y1 = 1, ~y) , (A.1)
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First, we take the Regge limit:

u =
1

σ
, v = −σB2ρ with σ → 0 . (A.2)

with 0 < ρ < 1 and B fixed. Next, we integrate over τ and ~y after taking the large B limit:

Gsmeared =

∫ ∞

−∞
dτ

∫

dd−2~y lim
B→∞

lim
σ→0

G . (A.3)

B Double trace operators

We consider two free scalar fields φ1 and φ2 in AdS which are dual to two primary scalar

operators O1 and O2 with dimensions ∆. In this appendix we explicitly construct double

trace primary operators

[O1O2]n,ℓ ∼ O1�
n∂µ1

∂µ2
· · · ∂µℓ

O2 + · · ·
that are dual to free two-particle states bound only by the effect of the AdS curvature.

ℓ = 0. Let us first write [O1O2]0,0

[O1O2]0,0 = lim
x1→x2

O1(x1)O2(x2) . (B.1)

ℓ = 1. For ℓ = 1, let us first introduce the following notation

D1 = (ε.∂2 − ε.∂1) , D2
0 = ε.∂1ε.∂2 , (B.2)

where, εµ is the null polarization vector. In this notation, [O1O2]0,1 is given by

[O1O2]0,1 =
1√
4∆

lim
x1→x2

D1O1(x1)O2(x2) . (B.3)

ℓ = 2. For ℓ = 2, we have

[O1O2]0,2 = N2 lim
x1→x2

(

D2
1 −

2

∆
D2

0

)

O1(x1)O2(x2) (B.4)

with

N2
2 =

1

16(∆ + 1)(2∆ + 1)
. (B.5)

ℓ = 3. Let us now write [O1O2]0,3 as follows

[O1O2]0,3 = lim
x1→x2

a1O1(x1)(ε.∂2)
3O2(x2) + a2(ε.∂1)O1(x1)(ε.∂2)

2O2(x2)

+ a3(ε.∂1)
2O1(x1)(ε.∂2)O2(x2) + a4(ε.∂1)

3O1(x1)O2(x2) (B.6)

where, ε is a null polarization vector. The operator [O1O2]0,3 has dimension 2∆ + ℓ and

spin ℓ = 3. We will determine ai’s by demanding that this operator is primary and the

two-point function of this operator is appropriately normalized. In particular, we obtain

a2 = −a3 = −
(

3 +
6

∆

)

a1 , a21 =
1

192(∆ + 1)(∆ + 2)(2∆ + 3)
, a4 = −a1 (B.7)

Therefore,

[O1O2]0,3 = N3 lim
x1→x2

(

D3
1 −

6

∆
D2

0D1

)

O1(x1)O2(x2) (B.8)

with N3 = a1.
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ℓ = 4. Similarly, for ℓ = 4, we have

[O1O2]0,4 = N4 lim
x1→x2

(

D4
1 −

12

∆
D2

0D
2
1 +

12

∆(∆ + 1)
D4

0

)

O1(x1)O2(x2) (B.9)

with

N2
4 =

1

1536(∆ + 2)(∆ + 3)(2∆ + 3)(2∆ + 5)
. (B.10)

C Heavy-heavy-light-light Regge correlator

In this appendix, we show the derivation of the four-point function

〈ψ(x1)O(x2)O(x3)ψ(x4)〉 in the Regge limit for holographic CFTs. The scalar pri-

mary ψ is heavy: cT ≫ ∆ψ ≫ 1, whereas, the operator O is light. Conformal invariance

guarantees that the four-point function can be written in the following form

〈ψ(x1)O(x2)O(x3)ψ(x4)〉 =
1

x
2∆ψ

14 x2∆O

23

G(z, z̄) (C.1)

where, cross-ratios z and z̄ are defined in the usual way

zz̄ =
x214x

2
23

x213x
2
24

, (1− z)(1− z̄) =
x212x

2
34

x213x
2
24

, (C.2)

where, xij = |xi − xj |2. Let us now choose the points as follows:

x1 = (u, v,~0) , x2 = (t = 0, y1 = −1,~0) ,

x4 = (−u,−v,~0) , x3 = (t = 0, y1 = 1,~0) , (C.3)

with

u =
1

σ
, v = −ση . (C.4)

In the Regge limit σ → 0 cross-ratios are given by

z̄ = 4ησ , z = 4σ . (C.5)

We can calculate the Regge four-point function by using the Regge OPE of ψψ follow-

ing [15]. For holographic CFTs, at the leading order in 1/cT we obtain

〈ψ(x1)O(x2)O(x3)ψ(x4)〉
〈ψ(x1)ψ(x4)〉

=
1

22∆ψ
+

40∆O

cTπ2σ

∫ ∞

−∞
duΠuu(x1, x2;u, v = 0, ~y = ~0, z =

√
η)

(C.6)

where, Πα′β′ is given by

Πα′β′(x1, x2; z
′, x′) = −

∫

dd+1x
√

gAdSGµν
α′β′(z, x; z

′, x′)T bulk
µν (Dφ(z, x;x1);D

φ(z, x;x2)) .

(C.7)
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Gµν
α′β′(z, x; z′, x′) is the bulk-to-bulk graviton propagator and T bulk

µν is the bulk stress tensor

of a scalar field φ which is dual to the operator O. For, d = 4, following [32] (see also [33]

and [15]), we can derive

Πα′β′(x1, x2; z
′, x′) =

∆O

4π2

1

x2∆12

1

z′2

(

1

3
ηα′β′ − Jα′z′(X

′ −X1)Jβ′z′(X
′ −X1)

)

f(t) + · · · ,
(C.8)

where dots represent terms that do not contribute to the final correlator because they are

gauge dependent. In the above expression X ′ = (z′, x′), X1 = (z = 0, x1) and the inversion

tensor is18

Jαβ(X
′ −X1) = ηαβ − 2(X ′ −X1)α(X

′ −X1)β
z′2 + |x′ − x|2 . (C.9)

The function f(t) is given by

f(t) =
t(1− t∆O−1)

(1− t)
, t =

z′2x212
(z′2 + (x′ − x1)2)(z′2 + (x′ − x2)2)

. (C.10)

We can perform the remaining u-integral by a residue and for integer ∆O, we obtain

〈ψ(x1)O(x2)O(x3)ψ(x4)〉
〈ψ(x1)ψ(x4)〉〈O(x2)O(x3)〉

= 1− i

(

10∆ψ∆O

cTπ3

)

ηP2∆O−4(η)

σ(1 + η)2∆O−1
, (C.11)

where, P2∆O−4(η) is a polynomial of degree (2∆O − 4) and P2∆O−4(0) = 1. For simplicity,

let us restrict to ∆O = 2 for which P0(η) = 1. So, at the leading order in 1/cT we find that

the Regge correlator is given by

〈ψ(x1)O(x2)O(x3)ψ(x4)〉
〈ψ(x1)ψ(x4)〉〈O(x2)O(x3)〉

≈ 1− i
80∆ψ

cTπ3

zz̄

(z + z̄)3
, (C.12)

where, we have used equation (C.5) to write the final result in terms of conformal cross-

ratios.

D Bounding the on-shell mixing amplitudes

Let us now consider the three-point interaction between a glueball with spin J and mass

m1, another glueball with spin J ′ and massm3 and a graviton. The on-shell three-point am-

plitude is completely fixed by symmetries.19 The conservation of momentum, on-shell con-

ditions and gauge invariance of the graviton imply that the on-shell three-point amplitude

should be constructed using the following building blocks (see figure 9 for our notations):

z1 ·z3 , z1 ·q , z3 ·q , (z ·z3)(z1 ·q)−(z ·z1)(z3 ·q)≡B (D.1)

(z ·p3)(z3 ·q)−
1

2
(z ·z3)(m2

3−m2
1)≡A1 , (z ·p3)(z1 ·q)−

1

2
(z ·z1)(m2

3−m2
1)≡A2 .

Note that in (3 + 1)-dimensions A1, A2 and B are not completely independent structures.

They obey the following identities:

(z1 · q)A1 − (z3 · q)A2 =
1

2
(m2

3 −m2
1)B ,

m2
3B

2 + 2(z1 · z3)A1A2 + 2(z1 · q)A1B = 0 . (D.2)
18Note that indices raised and lowered with ηαβ .
19See section 2 of [3] for a review.
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G′
J ′/π′

J ′

p3, z3

GJ/πJ

p1, z1

hµν
q, z

Figure 9. The three-point interaction between a glueball/meson with spin J , another glue-

ball/meson with spin J ′ and a graviton.

J ′ > J . Now the most general form of on-shell amplitude can be represented as a linear

combination of the following structures (J ′ > J ≥ 2):

A1 = A2
1(z1 · z3)J0(z1 · q)J−J0(z3 · q)J

′−J0−2 , (D.3)

A2 = A2
1(z1 · z3)J0−1(z1 · q)J−J0+1(z3 · q)J

′−J0−1 ,

...

AJ0+1 = A2
1(z1 · q)J(z3 · q)J

′−2 ,

AJ0+2 = A1B(z1 · z3)J
′
0−1(z1 · q)J−J ′

0(z3 · q)J
′−J ′

0−1 ,

AJ0+3 = A1B(z1 · z3)J0−2(z1 · q)J−J ′
0+1(z3 · q)J

′−J0 ,

...

AJ0+J ′
0+1 = A1B(z1 · q)J0−1(z3 · q)J

′−2 .

where,

J0 = min(J, J ′ − 2) , J ′
0 = min(J, J ′ − 1) for m1 6= m3 ,

J0 = J ′
0 = J for m1 = m3 . (D.4)

Therefore, the three-point amplitude for J ′ > J is given by

CJJ ′2 =
√

32πGN

J0+J ′
0+1

∑

n=1

anAn , (D.5)

where, an’s are coupling constants. This allows us to compute the phase shift δGG′ (or δππ′

for mesons) for the process 10. In the limit ΛUV ≫ 1/b ≫ mG,mG′ , the phase-shift grows as

δGG′ ∼ a1
s

M2
P l

1

bn
, (D.6)

where n ≥ 1. This phase shift violates the interference bound (5.36) implying that the

on-shell mixing amplitudes must be suppressed by the cut-off scale

G′
J ′GJhµν .

1

MP l

ln(ΛUVL)

Λn
UV

. (D.7)
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p3

p1

p4

p2

q

graviton

GJ

G′
J ′

G0

G0

Figure 10. The phase-shift δGG′ for glueball mixing in the limit N → ∞ is obtained from this

process.

J ′ = J . For this case, the set (D.3) still contributes, however, there is an additional

structure which is independent when m1 6= m3

B = A1A2(z1 · z3)J−1 . (D.8)

The most general on-shell three-point amplitude for J ′ = J is given by

CJJ2 =
√

32πGN

(

2J−2
∑

n=1

ãnAn + b̃B
)

. (D.9)

In the limit ΛUV ≫ 1/b ≫ mG,mG′ , the phase-shift now grows at least as fast as

δGG′ ∼ b̃
s

M2
P l

1

b2
. (D.10)

This phase shift again violates the interference bound (5.36) implying

G′
JGJhµν .

1

MP l

ln(ΛUVL)

Λ2
UV

. (D.11)

For the special case, J ′ = J and m1 = m3, there is a particular on-shell three-point

interaction which is consistent with the growth bound. However, this interaction does

not have the right soft limit for non-identical particles. In particular, if we impose that

the amplitude G′
J ′GJhµν has the right soft limit: G′

JGJhµν(q) → 0 when q → 0 — that

necessarily requires a ΛUV suppression

G′
JGJhµν .

1

MP l

ln(ΛUVL)

ΛUV

. (D.12)

Note that the analysis of this appendix holds for meson mixing ππ′hµν as well.
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