
 Open access Journal Article DOI:10.1145/27623.27624

A specification language for direct-manipulation user interfaces — Source link

Robert J. K. Jacob

Institutions: United States Naval Research Laboratory

Published on: 01 Oct 1986 - ACM Transactions on Graphics (ACM)

Topics: User interface, User interface design, Use Case Diagram, Specification language and State diagram

Related papers:

 A survey of three dialogue models

Supporting concurrency, communication, and synchronization in human-computer interaction—the Sassafras
UIMS

 Extending State Transition Diagrams for the Specification of Human–Computer Interaction

 SYNGRAPH: A graphical user interface generator

 Direct Manipulation: A Step Beyond Programming Languages

Share this paper:

View more about this paper here: https://typeset.io/papers/a-specification-language-for-direct-manipulation-user-
3ofhbg8u5f

https://typeset.io/
https://www.doi.org/10.1145/27623.27624
https://typeset.io/papers/a-specification-language-for-direct-manipulation-user-3ofhbg8u5f
https://typeset.io/authors/robert-j-k-jacob-3674073ypf
https://typeset.io/institutions/united-states-naval-research-laboratory-9ednyo5t
https://typeset.io/journals/acm-transactions-on-graphics-wf36nz9r
https://typeset.io/topics/user-interface-m9tigr1x
https://typeset.io/topics/user-interface-design-11ky9oue
https://typeset.io/topics/use-case-diagram-1rlfbofz
https://typeset.io/topics/specification-language-1555irm5
https://typeset.io/topics/state-diagram-2vkfdw51
https://typeset.io/papers/a-survey-of-three-dialogue-models-77pnxjf8z8
https://typeset.io/papers/supporting-concurrency-communication-and-synchronization-in-4bg50rzkeb
https://typeset.io/papers/extending-state-transition-diagrams-for-the-specification-of-2lo9po9roj
https://typeset.io/papers/syngraph-a-graphical-user-interface-generator-43gb8kzdoj
https://typeset.io/papers/direct-manipulation-a-step-beyond-programming-languages-266253emfp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-specification-language-for-direct-manipulation-user-3ofhbg8u5f
https://twitter.com/intent/tweet?text=A%20specification%20language%20for%20direct-manipulation%20user%20interfaces&url=https://typeset.io/papers/a-specification-language-for-direct-manipulation-user-3ofhbg8u5f
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-specification-language-for-direct-manipulation-user-3ofhbg8u5f
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-specification-language-for-direct-manipulation-user-3ofhbg8u5f
https://typeset.io/papers/a-specification-language-for-direct-manipulation-user-3ofhbg8u5f

A Specification Language for
Direct-Manipulation User Interfaces

ROBERT J. K. JACOB

Naval Research Laboratory

A direct-manipulation user interface presents a set of visual representations on a display and a

repertoire of manipulations that can be performed on any of them. Such representations might

include screen buttons, scroll bars, spreadsheet cells, or flowchart boxes. Interaction techniques of

this kind were first seen in interactive graphics systems; they are now proving effective in user

interfaces for applications that are not inherently graphical. Although they are often easy to learn

and use, these interfaces are also typically difficult to specify and program clearly.

Examination of direct-manipulation interfaces reveals that they have a coroutine-like structure

and, despite their surface appearance, a peculiar, highly moded dialogue. This paper introduces a

specification technique for direct-manipulation interfaces based on these observations. In it, each

locus of dialogue is described as a separate object with a single-thread state diagram, which can be

suspended and resumed, but retains state. The objects are then combined to define the overall user

interface as a set of coroutines, rather than inappropriately as a single highly regular state transition

diagram. An inheritance mechanism for the interaction objects is provided to avoid repetitiveness in

the specifications. A prototype implementation of a user-interface management system based on this
approach is described, and example specifications are given.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques--lcser

interfaces; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning

about Programs-speciftiation techniques; H.1.2 [Models and Principles]: User/Machine Sys-

tems-human factors

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Direct manipulation, specification language, state transition

diagram, user-interface management system (UIMS)

1. INTRODUCTION

A direct-manipulation user interface presents its user with a set of visual
representations of objects on a display and a repertoire of generic manipulations
that can be performed on any of them [26]. Some of these techniques were first
seen in interactive graphics systems; they are now proving effective in user
interfaces for applications that are not inherently graphical. With a direct
manipulation interface, the user seems to operate directly on the objects in the
computer instead of carrying on a dialogue about them. Instead of using a
command language to describe operations on objects that are frequently invisible,
the user “manipulates” objects visible on a graphic display.

Portions of this work were supported by the Space and Naval Warfare Systems Command under the
direction of H. 0. Lubbes.
Author’s address: Naval Research Laboratory, Code 5590, Washington, D.C., 20375.

1987 ACM 0730-0301/86/1000-0283 $00.75

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986, Pages 283-317.

284 l Robert J. K. Jacob

This ability to manipulate displayed objects has been identified as direct
engagement [13]. The displayed objects are active in the sense that they are
affected by each command issued; they are not the fixed outputs of one execution
of a command, frozen in time. They are also usable as inputs to subsequent
commands. The ultimate success of a direct-manipulation interface also requires
directness in the form of low cognitive distunce [13], the mental effort needed to
translate from the input actions and output representations to the operations
and objects of the problem domain itself. The visual metaphor chosen to depict
the problem domain should thus be easy for the user to translate to and from
that domain, and the actions required to effect a command should be closely
related to the meaning of the command in the problem domain.

This paper examines the characteristics of a direct-manipulation dialogue as
seen from the user’s point of view. Then it introduces a specification language
for describing such dialogues, in which the structure of the language is modeled
on the characteristics of the dialogue. Its purpose is to describe direct-
manipulation user interfaces from a high-level view, with a structure designed
to match the user’s perceptions (rather than the programmer’s). Since the new
language can be executed, it can also serve as the basis for a user-interface
management system for direct-manipulation interfaces.

2. SPECIFYING A DIRECT-MANIPULATION USER INTERFACE

It is useful to be able to write a specification of the user interface of a computer
system before building it, because the interface designer can thereby describe
and study a variety of possible user interfaces without having to code them. Such
a specification should describe precisely the user-visible behavior of the interface,
but should not constrain its implementation. Specification techniques for describ-
ing the user-visible behavior of conventional user interfaces without reference to
implementation details are gaining currency; most have been based on state
transition diagrams [6, 15, 18, 22, 29, 331 or BNF [23, 251 (and a few on other
models listed below); there are some reasons to prefer the state diagrams [15].

If the specification language itself can be executed or compiled, it can also
serve as the basis for a user-interface management system (UIMS). To be useful,
a UIMS needs a convenient and understandable way for the user-interface
designer to describe the desired interface. The choice of specification language is
thus at the heart of the design of a UIMS. UIMSs have been built using BNF or
other grammar-based specifications [21], state-transition-diagram-based speci-
fications [4, 14, 24,321, programming-language-based specifications [171, frames
[9], flow diagrams [35], and other models [1, 21. More recently, several investi-
gators have used an object-oriented approach [8, 19, 281. Research is also under
way in describing user interfaces by example, where the interface designer is not
concerned with a programming or specification language [20].

Although direct manipulation can make systems easy to learn and use, such
user interfaces have proved more difficult to construct and specify. Direct-
manipulation interfaces have some important differences from other styles of
interfaces, and these must be understood in order to develop an appropriate
specification technique for them. Although state-transition-diagram-based
notations have proved effective and powerful for specifying conventional user

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 285

interfaces, they must be modified to handle direct-manipulation interfaces. State
diagrams tend to emphasize the modes or states of a system and the sequence of
transitions from one state to another. Although direct-manipulation user inter-
faces initially appear to be modeless and thus unsuited to this approach, they
will be shown below to have a particular, highly regular moded structure, which
can be exploited in devising a specification technique for them.

3. THE STRUCTURE OF A DIRECT-MANIPULATION DIALOGUE

In order to develop an appropriate specification language for direct-manipulation
interfaces, it is necessary to identify the basic structure of such an interface as
the user sees it. The goal of this specification method is not strictly compactness
or ease of programming, but rather capturing the way the end user sees the
dialogue. Many existing specification techniques could be extended in various
ways to describe the unusual aspects of direct-manipulation dialogues. However,
the real problem is not just to find some way to describe the user interface (since,
after all, assembly language can do that job), but to find a language that captures
the user’s view of a direct-manipulation interface as perspicuously as possible
and with as few ad hoc features and extensions to the specification technique as
possible. The object is to describe the interface or dialogue between the system
and its end user, as seen by that user, rather than to describe the structure of
the system or its components at some other level.

First, consider what a dialogue specification should describe. Trying to capture
the layout and precise appearance of the display of a direct-manipulation interface
at every turn would make the top level of the dialogue specification excessively
detailed and complex. Instead, the initial specification should be centered around
the sequence of abstract input and output events that comprise the dialogue. The
syntax of an interactive user interface-whether conventional or direct manipu-
lation-is effectively described by such a sequence of input and output events,
with the specification of the meanings of the events in terms of specific input
actions or display images deferred [14]. The abstract input or output events
themselves are called tokens and are then described individually in separate
specifications. Information about display representation and layout is isolated
there, rather than as part of the description of the syntax of the dialogue.

This decomposition of direct-manipulation dialogues follows the model of
general user-computer dialogues introduced by Foley and Wallace [5, 61. The
sequence of input and output tokens comprises the syntactic level, while the
individual token descriptions comprise the lexical level. The semantic level is
defined by a collection of procedures that implement the functional requirements
of the system; they are invoked from the syntactic-level specification. This three-
level separation has been used to good effect in user-interface management
systems [4, 8, 16, 211. Separating the abstract dialogue sequence and overall
display organization (syntactic) description from the precise input and output
format (lexical) description is of particular importance for direct-manipulation
interfaces, because such interfaces typically provide rapid and rich graphical
feedback and may vary the appearance of the display considerably during a
dialogue. Users may also be permitted to rearrange windows and other images
arbitrarily to suit their preference. Despite such variations there are some

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

286 l Robert J. K. Jacob

underlying cognitive characteristics of the dialogue, which are more stable. A
more fundamental characterization of the dialogue than moment-to-moment
display appearance should thus be identified and used as the foundation for a
clear specification; the sequence of abstract events or tokens is proposed to
provide this foundation.

The issue did not arise with early user interfaces based on teleprinters or
scrolling display terminals. The sequence of specific input and output events
precisely determined the appearance of the display in a simple and straight-
forward way. Later display terminals added some special commands, such as
clear screen, vertical tab, or cursor motions, which disrupted the relationship
between sequence of inputs and outputs and display appearance. These have
required some extensions to conventional specification techniques [25,31]. With
a full graphic display, however, much more complex user interfaces have been
built. It is still true in principle that the sequence of input and output events
completely determines the final appearance of the display, but in a far less
straightforward way-a way that the user-interface specifier should not have to
understand. The specification writer needs to be able to speak about the display
appearance at a higher level: the sequence of input and output events. Details
about graphical representations, sizes, windows, particular input/output devices,
and the like can then be abstracted out of the dialogue specification. Even the
choice of particular modes of user-computer communication can be isolated,
since an output token can be any discrete, meaningful event in the dialogue,
including, for example, an audible or tactile output.

Note that building the syntax specification around the sequences of tokens
does not preclude semantic-level feedback. For example, as a file icon is dragged
over various directory icons, those directories (and only those) into which the
user is currently permitted to move that file might be highlighted. The specifi-
cation technique permits such an operation, but it divides the description of the
feedback into its three appropriate aspects. The decision as to which directories
should be highlighted is given in the semantic-level specification (it will be a
“condition” procedure in the language introduced below); the specification of
when in the dialogue such highlighting will occur is given in the syntactic-level
specification (as transitions that test the condition and call a highlight token);
and the description of the highlighting operation itself is given in the lexical-
level specification (as the definition of the highlight token).

Consider next the basic sequence of events in a direct-manipulation dialogue.
A direct-manipulation user interface resembles an interacting collection of active
and/or responsive objects more than it does a single command language dialogue
with the user. The display typically presents a variety of graphical objects. Users
can select any of them (most often by moving a cursor). Once selected, the user
can begin a dialogue about that object-adjusting a parameter, deleting or moving
an object, etc. Each object thus has its own particular dialogue, which the user
may activate or deactivate at any time. Further, some object dialogues remember
their state between activations. For example, if the user moves the cursor to a
type-in field and types a few characters, moves it somewhere else and performs
other operations, and then returns to the type-in field, the dialogue within that
field would be resumed with the previously entered characters and insertion point

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 287

intact. As a better example, if the user had begun an operation that prompted
for and required him or her to enter some additional arguments, the user could
move to another screen area and do something else before returning to the first
area and resuming entry of the arguments where he or she had left them.

Given this structure, it is unnatural, though possible, to describe the user
interface of a direct-manipulation system as a conventional dialogue by means
of a syntax diagram or other such notation. Instead the user sees a multitude of
small dialogues, each of which may be interrupted or resumed under the control
of a simple master dialogue. Each of the individual objects on the screen thus
has a particular syntax or dialogue associated with it. Each such dialogue can be
suspended (typically if the user moves the cursor away) and later resumed at the
point from which it was suspended. The relationship between the individual
dialogues or branches of the top-level diagram is that of coroutines.

So, the basic structure of a direct-manipulation interface is seen to be a
collection of individual dialogues connected by an executive that activates and
suspends them as coroutines. The specification technique for direct-manipulation
interfaces will thus allow the individual dialogues to be specified individually and
to exchange control with each other through a coroutine call mechanism.

4. MODES IN THE USER INTERFACE

Many traditional user interfaces are highly moded, and this has made it conven-
ient to specify them using state transition diagrams. Modes or states refer to the
varying interpretation of a user’s input. In each different mode, a user interface
may give different meanings to the same input operations [30]. Some use of
modes is necessary in most user interfaces, since there are generally not enough
distinct brief input operations (e.g., single keystrokes) to map into all the
commands of a system. A moded user interface requires that users remember (or
the system remind them) of which mode it is in at any time and which different
commands or syntax rules apply to each mode. Modeless systems do not require
this; the system is always in the same mode, and inputs always have the same
interpretation.

Direct-manipulation user interfaces appear to be modeless. Many objects are
visible on the screen; and at any time the user can apply any of a standard set of
commands to any object. The system is thus nearly always in the same “universal”
or “top-level” mode. This is approximately true of some screen editors, but for
most other direct-manipulation systems, where the visual representation contains
more than one type of component, this is a misleading view. It ignores the input
operation of moving the cursor to the object of interest. A clearer view suggests
that such a system has many distinct modes. Moving the cursor to point to a
different object is the command to cause a mode change, because once it is moved,
the range of acceptable inputs i.s reduced and the meaning of each of those inputs
is determined. This is precisely the definition of a mode change. For example,
moving the cursor to a screen button, such as the “Display” buttons in the
message system shown later in Figures 16 and 17, should be viewed as putting
the system into a mode where the meaning of the next mouse button click is
determined (it displays that message) and the set of permissible inputs is

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

288 - Robert J. K. Jacob

sorToScrollBar sorToScrollBar

Fig. 1. State-diagram specification of the top level of a simple direct-manipu-

lation user interface.

circumscribed (e.g., keyboard input could be illegal or ignored). Moving the cursor
somewhere else would change that mode. As shown in Figure 1, the top level of
a typical direct-manipulation interface such as the message-system example
could thus be described by a large state diagram with one top-level state and a
branch (containing a cursor motion input) leading from it to each mode (marked
with a “+“). Each such branch continues through one or more additional states
before returning to the top-level state. There is typically no crossover between
these branches.

If direct-manipulation user interfaces are not really modeless, why do they
appear to have the psychological advantages over moded interfaces that are
usually ascribed to modeless ones? The reason is that they make the mode so
apparent and easy to change that it ceases to be a stumbling block. The mode is
always clearly visible (as the location of a cursor), and it has an obvious
representation (simply the echo of the same cursor location just used to enter
the mode change command), in contrast to some special flag or prompt. Thus
the input mode is always visible to the user. The direct-manipulation approach
makes the output display (cursor location to indicate mode) and the related input
command (move cursor to change mode) operate through the same visual repre-
sentation (cursor location). At all times the user knows exactly how to change
modes; he or she can never get stuck. It appears, then, that direct-manipulation
user interfaces are highly moded, but they are much easier to use than traditional
moded interfaces because of the direct way in which the modes are displayed and
manipulated.

5. A SPECIFICATION LANGUAGE

Figure 1 shows a typical direct-manipulation user interface represented as a state
transition diagram. Although a simple direct-manipulation interface could be

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 289

specified in this fashion, it has some shortcomings. The top-level state diagram
for each new direct-manipulation interface will be a large, regular, and relatively
uninformative diagram with one start state and a self-contained (i.e., no cross-
over) path to each mode and thence back to start state. It is essentially the same
for any direct-manipulation system and need not be specified anew for each
system. Moreover, since the individual paths are usually self-contained and
interact with each other in very limited ways, it would be clearer to separate their
specifications. A more serious problem with this approach is that there is often
a remembered state within some of the paths (partial type-in on a field, an item
awaiting confirmation, etc.), which are suspended when the cursor leaves the
field and resumed when it reenters. This requires that the paths of the diagram
be handled separately. Each path will thus now be specified separately (as a
coroutine), and an executive will be given for the outer dialogue loop.

A specification language based on the characteristics found in the foregoing
examination of direct-manipulation interfaces can now be described:

-A direct-manipulation interface was found to comprise a collection of many
relatively simple individual dialogues. Thus the specification will be centered
around a collection of individual objects, called interaction objects, each of which
will have a separate specification. Each of the dialogues of the direct-manipula-
tion interface will be specified as a separate interaction object with an indepen-
dent dialogue description.

-The individual dialogues of a direct-manipulation interface were found to be
related to each other as a set of coroutines. Thus the specification language will
permit the dialogue associated with each interaction object to be suspended and
resumed, with retained state, like a coroutine. A simple executive will be defined
to manage the overall flow of control. It specifies the interconnection of the
interaction object dialogues, allocates input events, and suspends the individual
dialogues to relinquish control to others as needed.

-Because of the complexity and variability in the layout of the display of a
direct-manipulation interface, it was found that the dialogue should be specified
as a sequence of abstract input and output events, with layout and graphic details
given separately. Thus the dialogue specification for each interaction object will
be written using input and output tokens, which represent input or output events.
The dialogue specification will define the possible sequences of input and output
tokens. The internals of the tokens themselves will then be specified separately
from the dialogue. These token definitions will contain details of layout, graphical
representation, and device handling.

-Direct-manipulation interfaces were seen to have definite modes or states,
despite their surface appearance. This applied both to the overall structure and
to the retained state within each coroutine. Thus state transition diagrams are a
suitable notation for describing the individual interaction-object dialogues. The
state diagrams will assume coroutine calling between them.

Given this structure, a direct-manipulation user interface will be specified as
a collection of individual, possibly mutually interacting interaction objects,
organized around the manipulable objects and the loci of remembered state in
the dialogue. These objects will often coincide with screen regions or windows,
but need not. A typical object might be a screen button, individual type-in field,

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

290 l Robert J. K. Jacob

scroll bar, or the like. Each such object will be specified separately, and then a
standard executive will be defined for the outer dialogue loop. Thus, to describe
a direct-manipulation user interface, it will be necessary to

(1) define a collection of interaction objects,
(2) specify their internal behaviors, and
(3) provide a mechanism for combining them into a coordinated user interface.

As noted, a goal of this notation is to capture the way the end user sees the
interface. The underlying claim is thus that the user indeed sees the direct-
manipulation dialogue as a collection of small, individual objects or dialogues,
each suspendable and resumable like a coroutine, joined by a straightforward
executive.

The specification language is defined by devising a mechanism for each of the
three tasks in the preceding paragraph:

1. How should the user interface be divided into individual objects? An inter-
action object will be the smallest unit with which the user conducts a meaningful,
step-by-step dialogue, that is, one that has continuity or syntax. It can be viewed
as the smallest unit in the user interface that has a state that is remembered
when the dialogue associated with it is interrupted and resumed. In that respect,
it is like a window, but in a direct-manipulation user interface, it is generally
smaller-a screen button, a single type-in field on a form, or a command line
area. It can also be viewed as the largest unit of the user interface over which
disparate input events should be serialized and combined into a single stream,
rather than divided up and distributed to separate objects. Thus an interaction
object is a locus both of maintained state and of input serialization.

2. How should an input handler for each interaction object be specified? Observe
that, at the level of individual objects, each such object conducts only a single-
thread dialogue, with all inputs serialized and with a remembered state whenever
the individual dialogue is interrupted by that of another interaction object. Thus
a conventional single-thread state diagram is the appropriate representation for
the dialogue associated with an individual interaction object. The input handler
for each interaction object is specified as a simple state transition diagram.

3. How should the specifications of the individual objects be combined into an
“outer loop” or overall direct-manipulation user interface? As noted, a direct-
manipulation interface could be described with a single, large state diagram, but
since the user sees the structure of the user interface as a collection of many
semi-independent objects, that is not a particularly perspicuous description.
Instead, a standard executive will be defined that embodies the basic structure
of a direct-manipulation dialogue and includes the ability to make coroutine calls
between individual state diagrams. This executive operates by collecting all of
the state diagrams of the individual interaction objects and executing them as a
collection of coroutines, assigning input events to them and arbitrating among
them as they proceed. To do this, a coroutine call mechanism for activating state
diagrams must be defined. This means that whenever a diagram is suspended by
a coroutine call to another diagram, the state in the suspended diagram is
remembered. Whenever a diagram is resumed by a coroutine call, it will begin
executing at the state from which it was last suspended. The executive causes

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 291

the state diagram of exactly one of the interaction objects to be active at any one
time. As the active diagram proceeds, it reaches each state, examines the next
input event, and takes the appropriate transition from that state. It continues in
this way until it reaches a state from which no outgoing transition matches the
current input. Then, the executive takes over, suspending the current diagram,
but remembering its state for later resumption. (It follows that a diagram can
only be suspended from a state in which it seeks an input token.) The executive
examines the diagrams associated with all the other interaction objects, looking
at their current (i.e., last suspended from) states to see which of them can accept
the current input. It then resumes (with a coroutine call) whichever diagram has
a transition to accept the input. If there is more than one such diagram, one is
chosen arbitrarily. In typical designs, however, there will be only one diagram
that can accept the input. Since entering and exiting disjoint screen regions will
be important input tokens in a typical direct-manipulation interface, this is
straightforward to arrange when the interaction objects correspond to screen
regions. (In some situations, such conflicts can also be detected by static analysis
of the interface specification.) Depending on the overall system design, an input
token acceptable to no diagrams could be discarded or treated as a user error.
While the language assumes a single top-level executive, the use of component
objects and synthetic tokens described below allows the specification to use a
deeper hierarchy in describing systems.

The initial design for the executive called for a list of acceptable input events
or classes to be associated with each state in each diagram. This list would act
like a guard in a guarded command [ll] or a when clause in a select/accept
statement in Ada. By associating different guards with different states, a diagram
could dynamically adjust the range of inputs that it will accept. The executive
for such a system would examine the guard associated with the current state of
every diagram in execution to decide which diagram should be called to accept
each new input. The current design should be viewed as achieving the same

result, even though it does not identify the guards explicitly. What would have
been given as the guard for each state is now derived implicitly from the range
of inputs on the transitions emanating from that state. This requires somewhat
more care in specifying “catchall” transitions, but greatly reduces the redundancy
and bulk of the specification. (The operation of the executive is described further
in Section 15.)

The new specification language also makes heavy use of techniques of object-
oriented programming. The interaction objects themselves are specified and
implemented as objects, in the sense of Smalltalk [7] or Flavors [34], and diagram
activations and tokens are implemented as messages. The notion of coroutines,
however, is superimposed upon the objects as the means for describing how the
individual interaction objects are bound together into the top-level dialogue that
the user ultimately sees. Other recent work on specifying and building graphical
user interfaces has also used an object-oriented approach [8, 19, 281. Typically,
they model the dialogue by a collection of separate objects, each with an input
handler. However, they have not proposed that the input handlers explicitly
specify their state-dependent responses by means of state transition diagrams or
that they retain their states during execution by coroutine activation. Cardelli

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

292 ’ Robert J. K. Jacob

and Pike [3] achieved a similar result using communicating finite-state machines
with actual concurrency. The use of coroutines in the present language, combined
with the synthetic tokens described below, can also be mapped into the abstract
device model introduced by Anson [l], but that, too, does not use state diagrams
to describe the state and behavior of the abstract devices. Anson points out the
weakness of a single-thread state diagram for describing direct-manipulation
interfaces: “It cannot simulate a device . . . which retains its value between uses
and which can be changed by the user at any time” [l]. The present technique
attempts to remedy this problem without giving up the benefits of state diagrams
for depicting device state and state-dependent behavior.

6. TOKENS IN INTERACTION OBJECTS

To complete the user-interface specification, it will be necessary to define a
collection of low-level inputs and outputs, which can be invoked by the state
diagrams. These will correspond to tokens. Examples for input are button clicks
(both down and, where supported, up), cursor entering or exiting regions, and
keyboard characters; for output, they include highlighting or dehighlighting
regions, displaying or erasing graphical objects, and “rubber band” or other
continuous “dragging” feedback. These tokens can be associated with transitions
in the state diagrams. The internal details of these low-level input and output
operations will be specified separately from the state diagrams that call them
and in a different, more suitable notation, perhaps even as short procedures in a
programming language or calls to an interactive graphics package. In practice,
the use of inheritance discussed in Section 9 will make most tokens easy to
describe irrespective of the choice of notation.

7. AN EXAMPLE SPECIFICATION

Figure 2 shows a specification of a single screen button as an individual interac-
tion object using this approach and a simple Ada-based notation. This particular
button is highlighted whenever the cursor is inside it. If the user presses the left
mouse button while pointing to it, the message tile inbox is displayed. An
interaction object such as the one in Figure 2 is an object, comprising a collection
of variables, methods, and other impedimenta, most of which are subject to
inheritance. Specifically, the specification of an interaction object can contain
the following components:

FROM: A list of other interaction objects from which this one inherits
elements, with ordering rules similar to those for Flavors (i.e., components from
objects listed first override those listed later).

IVARS: A list of the instance variables for this object and their initial values.
These may also include other, lower level interaction objects that will be used as
component parts of this one.

METHODS: Procedure definitions unique to this object. In addition, each
interaction object may be required to supply (possibly by inheriting default
definitions) certain standard procedures, such as Init or Destroy.

TOKENS: Definitions of each of the input and output tokens used in the
syntax diagram for this interaction object. In Figure 2 they are given in English;

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 293

INTERACTION-OBJECT MessageFlleDisplayButton is

IVARS:

position := { 100, 200, 64, 24 }, --i.e., coordinates o/screen rectangle

METHODS:

Draw () (DrawTextButton(position, “Display”);)

TOKENS:

iLEFT { --click left mouse button-- }

iENTER (--locator moues inside rectangle given by position-- }

iEXIT { --locator moues outside rectangle given by position--)

oHIGHLIGHT { --invert video of rectangle given by position-- }

oDEHIGHLIGHT { --same as oHIGHLIGHT-- }

SYNTAX:

main

end INTERACTION-OBJECT;

Fig. 2. Specification of a direct-manipulation screen button.

in practice they could be given as code in a conventional programming language
or in a simple notation specialized for this purpose.

SYNTAX: The input handler for this interaction object, expressed as a
conventional state transition diagram, which will be called by the executive as a
coroutine. The diagram specifies the sequence in which the tokens and other
actions defined above will occur. In the diagram, each state transition can have
an input or output token, the name of another diagram to be called as a
subroutine, an action to be performed, a condition to be tested, or nothing, in
which case it is taken when no other transition can be. Names of input tokens
begin with i, and names of output tokens begin with o. An action, such as
DisplayMf(inbox) in Figure 2, calls a procedure that is defined in the application
(semantic) code, which is separate from the user-interface specification. A con-
dition calls a similar procedure that returns a Boolean value. Further details of
this notation are found in [14] and [16]. For readability, states from which it is
possible for the dialogue to be suspended are marked with U+“; they are a subset
of the user-uisible states [16]. This diagram could also have been entered or
displayed in a text form, rather than the graphical form shown in the figure.
(With the inclusion of arbitrary functions in the condition and action transitions,
this state-diagram language has the formal power of a Turing machine. Without
condition and action transitions, but with recursive calls to subdiagrams permit-

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

294 l Robert J. K. Jacob

ted and nondeterministic execution, the language would be equivalent in power
to a context-free grammar [12, 161.)

SUBS: Additional state diagrams, called as subroutines by the syntax diagram
above.

STATES: A list of “mixin” [34] or “kernel” [27] states, which are used to
define standard sets of behaviors, such as sensitivity to abort or help keys. They
can be applied to states in the above diagrams, as a convenient abbreviation, so
that such descriptions do not have to be repeated for each state.

8. DISCUSSION OF FIGURE 2

How does the syntax diagram given for this interaction object operate with the
executive? When the cursor enters the screen area for this button, the input
token iENTER is generated. This token iENTER is defined locally within
object MessageFileDisplayButton as an event that occurs when the cursor
enters the screen region given by the local variable position. (Other interaction
objects might also use a token named iENTER, but each would provide a
different local definition.) Since no other interaction object will have state
transitions that accept iENTER as defined here, the diagram for this object will
be called as a coroutine by the executive. This diagram will take over, accept the
input, highlight the button, then wait for more input (in the second of the two
states marked with a “+“). If the next input is the button press (iLEFT), this
object performs its action. (At this point, this screen-button object should be the
only interaction object that is in a state ready to accept the iLEFT; hence the
executive will activate this object and no others.) If the next input is the cursor
exiting this region (iEXIT), this object dehighlights itself and returns to its start
state. There it waits only for another iENTER and ignores other inputs. (In
particular an iLEFT or other button click will no longer be accepted by this
object, but would probably be accepted by some other object.) Returning to the
second state marked “+,” if the next input received in that state is anything
other than iLEFT or iEXIT (e.g., a keyboard key), another diagram that has a
transition that can accept that input will be called by the executive. As soon as
another input that this diagram can accept occurs, it will be resumed in the same
state (the second one marked “+“).

Why does the state diagram look so complex for an operation that seems
intuitively simple to describe? The reason is that there are several possible
plausible alternative behaviors for the precise handling of sequences of clicks and
mouse motions in a screen button. There are other ways in which the exiting and
dehighlighting could be handled. Or the screen button could be highlighted when
the mouse button is depressed and perform the action when it is released (see
Figure 5). The writer of the user-interface specification must be able to indicate
exactly which of these possibilities is intended. It is not sufficient to describe the
user interface imprecisely and leave the details up to a coder. Nor is it sufficient
to supply one standard version of a screen button and prevent the designer from
changing it. Given that the user-interface designer must provide this precision,
state transition diagrams are an appropriate notation for so doing.

Where are the semantic ana! lexical levels? The bulk of Figure 2 describes the
syntactic level of the dialogue. The lexical-level specification consists of the

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces l 295

definitions of any input or output tokens used in the dialogue; in Figure 2
they are shown as comments, and in Figure 15 as LISP code for a particular
input/output package. The semantic specification consists of the definitions of
any semantic actions or conditions called by the dialogue (in this example,
DisplayMf); they are written as procedures in a conventional programming
language. The interface from the syntactic level to the lexical level is via calls
from the syntax diagram to the tokens; the interface from the syntactic level to
the semantic level is through calls from the diagram to semantic action and
condition procedures. (Asynchronous feedback from the semantic domain is given
by synthetic tokens, which are discussed in Section 12; an example of such
feedback appears in Figure 11.)

9. INHERITANCE

The remaining problem with this notation is that the interaction-object descrip-
tions for a nontrivial direct-manipulation system are going to become bulky and
repetitive. The solution is inheritance of the parts of the interaction objects. In
the present specification language, an interaction object inherits all of the
IVARS, METHODS, TOKENS, SUBS, and STATES of the objects listed in
its FROM section and adds them to any that the object itself declares. If the
object declares an IVAR, METHOD, TOKEN, SUB, or STATE of the same
name, it overrides the inherited one. In turn, all of an object’s own and inherited
parts are inherited by its children. The entire SYNTAX diagram is also inherited
and may be overloaded as a unit. (A notation for selectively overloading portions
of it may be added in the future. It would allow all the transitions from a state
to be inherited and then supplemented with other transitions from the same
state, or overriden by transitions from the same state that use the same token.
Note also that much of this effect can be achieved with the present implemen-
tation by dividing the diagram appropriately and using inheritance of SUBS and
STATES.)

Figure 3 shows part of a library of generic interaction objects, from which
components can be inherited. The library object GenericItem defines some
tokens that are applicable to a wide range of screen items. Note that the tokens
iENTER and iEXIT are defined generically, in terms of an unspecified instance
variable, position, which is to be supplied by the inheriting object. Like a “mixin”
flavor [34], it is not expected that GenericItem will be instantiated by itself,
but will contribute its token definitions to other, more specific objects by
inheritance. Highlighter is another mixin object that defines items related to
highlighting. By specifying it as a separate object, definitions related to highlight-
ing can be collected together and maintained more easily. It contains the tokens
oHIGHLIGHT and oDEHIGHLIGHT, again defined in terms of the instance
variable position, to be supplied by another object. It also provides an example
of the use of subdiagrams, enterhigh and exitdehigh, which can now be called
as subroutines from the SYNTAX diagram of any object that inherits from
Highlighter. Finally, a generic screen button GenericButton is defined. It is
similar to the one specified in Figure 2, but useful for other applications. This,
too, is a mixin object, not expected to be instantiated by itself. It inherits all the
components of Highlighter and GenericItem. It defines the Draw procedure

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

INTERACTION-OBJECT GenericItem is

TOKENS:

iENTER { --locator mows inside rectangle given by position-- }

iEXIT { --locator moves outside rectangle given by position-- }

--position is a local variable, to be provided by objects that inherit from GenericItem

iLEFT { --click left mouse button-- }

iMIDDLE { --click middle mouse button-- }

iRIGHT { --click right mouse button-- }

iCHAR { --keyboard character, value returned in variable viCHAR--)

end INTERACTION-OBJECT;

INTERACTION-OBJECT Highlighter is

IVARS:

IsHighlighted = false,

TOKENS:

oHIGHLIGHT { if not isHighlighted then

InvertRect(position); isHighlighted = true;

end if; }

oDEHIGHLIGHT { if isHighlighted then
InvertRect(position); IsHighlighted := false;

end if; }

SUBS:

enterhigh

oHIGHLIGHT

exitdehigh

end INTERACTION-OBJECT;

INTERACTION-OBJECT GenericButton is

FROM: Highlighter Genericltem;

METHODS:

Draw () { DrawTextButton(position, legend), }

SYNTAX:

exitdehigh Act: DoAction()

end INTERACTION-OBJECT;

Fig. 3. Some library interaction objects.

A Specification Language for Direct-Manipulation User Interfaces l 297

INTERACTION-OBJECT MessageFileDisplayButton2 is

FROM: GenericButton;

IVARS:
position := { 100, 200, 64, 24 };

legend := "Display",
file := inbox;

METHODS:

DoAction () { DisplayMf(file); }

end INTERACTION-OBJECT,

Fig. 4. Specification of the screen button of Figure 2, using
inheritance from Figure 3.

generically, in terms of an instance variable legend instead of a constant, and it
provides an inheritable syntax diagram that describes a “standard” screen button.
The action in the syntax diagram calls a procedure named DoAction, which
each inheriting object can define in its own way. The SYNTAX diagram also
uses some of the tokens and subdiagrams defined in and inherited from
Highlighter and GenericItem.

Given these primitives, the particular button defined in Figure 2 can now be
written more compactly by inheriting the aspects that are common to other items
and screen buttons and defining only those specific to this particular button. The
specification in Figure 4 defines the same object as that of Figure 2, taking
advantage of the library. It inherits the components of GenericButton and,
through it, Highlighter and GenericItem. It defines only the instance variables
position (which is used by the tokens in GenericItem and Highlighter) and
legend (used by Draw in GenericButton) and the procedure DoAction (called
by the syntax diagram in GenericButton). Everything else is inherited from the
generics, including the syntax diagram itself from GenericButton. If a user-
interface designer did want this particular screen button to be different from the
standard ones, the designer would simply overload those aspects of the generic
objects that he or she wanted to change.

In practice, a more convenient way to assemble a collection of similar screen
buttons would be to define MessageFileDisplayButton2 as a type and then
instantiate it for each individual button and message file, parameterized by the
instance variables of MessageFileDisplayButton2. For example, in Ada-like
notation,

X := new INTERACTION-OBJECT MessageFileDisplayButton2
(position=>[lOO, 250, 64, 241, file=>newbox);

Y := new INTERACTION-OBJECT MessageFileDisplayButton2
(position=>(lOO, 300, 64, 241, file=>anotherfile);

etc.

Given a library of useful generic interaction objects, the job of designing and
specifying a new direct-manipulation interface becomes much less arduous. The
principal aim of the research at the stage reported here, however, is to devise an
appropriate specification language, based on the clearest and simplest adequate
model, rather than to develop a complete library or tool kit. It has been seen that

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

298 l Robert J. K. Jacob

INTERACTION-OBJECT GenerIcButton is

FROM: Highlighter GenericItem;

METHODS:

Draw () { DrawTextButton(posltlon, legend); }

SYNTAX:

mam

end INTERACTION-OBJECT;

INTERACTION-OBJECT GenericButton is

FROM: Highlighter GenerIcItem;

METHODS:

Draw () { DrawTextButton(posltion, legend); }

SYNTAX:

main

end INTERACTION-OBJECT;

Fig. 5. Some alternative types of screen buttons.

this language can be used either to describe individual user interfaces from
scratch, or to describe and build up a library of interaction techniques and then
specify user interfaces built from them.

10. FURTHER EXAMPLES

Figure 5 shows some alternative types of screen buttons. Unlike the one in
Figure 3, these two assume an executive that reports both up and down transitions
of the mouse buttons individually and a version of GenericItem that defines

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 299

INTERACTION-OBJECT TypeinField is

FROM: GenerIcItem;

IVARS:

position;

class ,= “UNCLASSIFIED”;

METHODS:

Draw () (DrawText(posltion, class); }

TOKENS:

oSHOWCLASS { DrawText(position, class); }

SYNTAX:

main

end INTERACTION~OBJECT;

Fig. 6. Specification of a type-in field.

separate tokens for them (i.e., ILEFTUP, iLEFTDN, iMIDDLEUP, etc.).
GenericButton behaves just like GenericButton in Figure 3, but its syntax
diagram has transitions that accept both the iLEFTDN and iLEFTUP tokens
to work with such an executive. The specification clearly shows that the action
occurs after the button goes down, rather than up. It also handles the unusual
case in which the button is depressed, action occurs, the cursor is moved out of
the region, and then other input events occur while the button is still down. In
that case, the other inputs would cause GenericButtonS to be suspended (from
the state shown at the extreme right of the diagram) and another interaction
object, which had a transition for the new input, to be resumed. Some time later,
when the left button is finally released, GenericButton would be resumed and
make the transition (shown as the larger lower loop) back to its initial state.
This is appropriate because that “dangling” iLEFTUP event logically belongs
to this dialogue, despite any delay or intervening interactions. (A more convenient
and general mechanism for translating sequences of up and down events into
simple click events will be given in Figure 10.)

GenericButton shows a screen button with a different behavior. This one
does not highlight itself until the mouse button is depressed, and then it performs
its action when the button is released-provided the cursor is still within the
screen button.

Figure 6 shows a type-in field, like the ones for security classification (“Class”)
that will be seen in Figures 16 and 17. As specified, it allows a user to click on
the field and then type characters into it. Each time the user moves to any other
dialogue, he or she must again click on this field before resuming typing in it.
This is specified in the syntax diagram with the aid of the unlabeled transition
shown leading toward the leftmost state in the diagram. This transition will be

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

300 l Robert J. K. Jacob

INTERACTION-OBJECT ScrollBar is

FROM:

IVARS:

position;

legend

scrollOffset

METHODS:

Draw ()

TOKENS:

iMOVE

iLEFTDN

oSHOWBAR

SYNTAX:

main

GenericItem;

‘= “Scroll:“,

:= 0,

{ DrawBar(posltion, legend, scrollOffset); }

{ --Any mozl~e motion within boundaries of position,

--return scaled X coordinate of mouse in scTollOflset-- }

{ --Overloads standard definition of SEFTDN with one that accepts

--same click then sets scrollOffset:= scaled X coord of mouse -- }

{ --Fill or erase bar up to location corresponding to scrollOffsel-- }

iLEFTDN

end INTERACTION-OBJECT;

Fig. 7. Specification of a scroll bar.

taken whenever no other transition can be taken from the state that normally
accepts and processes the iCHARs. After that transition to the leftmost state is
taken, if the diagram still cannot handle the input, it will be suspended from its
leftmost state. The result is that if, during type-in of the text, an input destined
for another interaction object is received, the TypeinField object makes the
transition to its leftmost state before it is suspended. This guarantees that a new
iENTER and iLEFT must be received before the user can return to typing the
text. The function Edit(line,char) shown on one of the transitions implements
a simple input line editor. The variable viCHAR contains the data returned by
token iCHAR, following a standard naming convention.

Figure 7 shows a simple interactive graphical image-a scroll bar, like those in
Figures 16 and 17. To use it the user points to it and depresses the left mouse
button; then, as the mouse is moved, the bar drags on the screen to follow it.

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 301

When the mouse button is released, the display is scrolled in proportion to the
new position of the bar. As with GenericButton above, this syntax diagram
explicitly handles the unusual case where the user moves the mouse to the scroll
bar, depresses the button, then, while holding it down, exits the scroll bar,
possibly performs other interactions, and then later reenters the scroll bar with
the button still held down. This object will resume dragging the bar when the
cursor reenters it. Other behaviors could have also been specified and distin-
guished in this notation. For example, exiting the scroll bar could finish scrolling
the display and then the subsequent iLEFTUP could be consumed and ignored.

It becomes clear that the state transition diagram notation is being used to
describe interaction down to a rather fine-grained level. For a direct-manipulation
interface, such details are important; and since they may vary significantly across
the objects, this is appropriate. For example, the loop consisting of iMOVE and
oSHOWBAR could have been defined inside a single token that accepts the
mouse motion and echoes it by drawing the bar, but they were shown more
explicitly instead. A slightly different scroll bar might scroll continuously as the
user moves the cursor; releasing the button would then just stop the scrolling.
Its syntax diagram would differ precisely at the point of the iMOVE-
oSHOWBAR loop in Figure 7.

11. COMPONENT OBJECTS

It may also be helpful to describe an interaction object as a combination of
several other components, each of which is a separate interaction object. In
contrast to inheritance, where an object inherits the properties of another type
of object, here one object simply contains one or more smaller objects. Those
component objects are full-fledged interaction objects, possibly with their own
SYNTAX coroutine diagrams. They are automatically instantiated whenever
the enclosing object is created (and at no other time) and similarly automatically
drawn and destroyed. In other respects, the component objects are simply
instance variables of the larger object.

For example, Figure 8 shows a combination object TypeinObject that com-
bines a type-in field and its associated screen button, TypeinField and
TypeinButton, respectively, like the security classification items that will be
seen in Figure 16. By combining them, TypeinField and TypeinButton can
more easily refer to their common variable, class. They are also instantiated,
redrawn, and destroyed simultaneously, and their relative locations are spec-
ified more conveniently. Since they belong together logically, it is helpful to
have a notation that allows them to be combined. The specification of the
TypeinButton component also takes advantage of the GenericButton
specified in Figure 3.

12. SYNTHETIC TOKENS

Such component objects may also be used to provide low-level input or output
operations, such as cursor tracking, and to summarize sequences of such inputs
or outputs into larger units to be processed by the higher level objects [l]. This
design allows modularity by describing low-level tracking operations separately

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

302 l Robert J. K. Jacob

INTERACTION-OBJECT TypeinObject is

IVARS:

position;

class

button

text

:= “UNCLASSIFIED”,

.= “WV INTERACTION~OBJECT TypemButton(

position=> posltion);
:= IWV INTERACTION-OBJECT TypemField(

position=> posltlon + TextSlze(“Class.“),

METHODS:

Draw () { DrawBorder(position), }

end INTERACTION-OBJECT;

INTERACTION-OBJECT TypeinButton is

FROM:

IVARS:

position,

legend

METHODS:

DoAction ()

GenericButton,

:= “Class:“,

{ Reclassify(parent.class), }

--Note: the pseudo-variable parent refem to the object of which

--TypeinButton is itself an instance variable (i.e., TypeinObject)

end INTERACTION.-OBJECT;

INTERACTION-OBJECT TypeinFIeld is

FROM: GenericItem,

IVARS:

position;

METHODS:

Draw () { DrawText(posltlon, parent.class); }

TOKENS:

oSHOWCLASS { DrawText(positlon, parent.class); }

SYNTAX:

main

end INTERACTION-OBJECT;

Fig. 8. Specification of an entire type-in object, using component objects.

from their higher level syntactic meaning. To provide this feature, the syntax
diagrams of interaction objects are extended to be able to send and receive
synthetic “tokens” to or from each other. Thus a lower level object can receive
and respond to a collection of user actions and then summarize them by trans-

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 303

INTERACTION-OBJECT Clicker is

FROM: GenerIcItem;

IVARS:

position; *

METHODS:

Draw () { null; } --Note this interaction object has no smen representation

TOKENS:

sCLICK { SendTo(parent);)

SYNTAX:

main

end INTERACTION-OBJECT;

Fig. 9. Specification of an object that converts individual up and down opera-
tions of a button into single clicks, using synthetic tokens.

mitting a single synthetic token to its higher level object. The higher level object
syntax diagram can have transitions to receive only the synthetic token, rather
than the lower level input actions.

Such a synthetic token can be viewed as a rendezvous between the syntax
diagrams of the lower and higher level objects. The tokens are given names of
the forms sTOKENNAME and rTOKENNAME to send or receive the named
event, respectively. When a diagram traverses a transition that produces
sTOKENNAME, it is suspended in favor of any other diagram that has a
transition that accepts the corresponding rTOKENNAME. The diagrams can
also set and fetch variables of the form vTOKENNAME to communicate
information at the rendezvous. Such tokens will generally be sent and received
among (i.e., will be local to each set of) an interaction object and any of its
component objects. That is, their scope is determined by the hierarchy of
instantiations of interaction objects, rather than the inheritance hierarchy. Any
object that sends a synthetic token declares the scope of that token; that is, it
indicates which other interaction objects will receive the token by means of the
SendTo statement in the token definition of the sending object. The recipient
is normally an interaction-object instance variable of the sending object or else
the containing (“parent”) object of the sender.

Figure 9 shows an interaction object that provides support for receiving up and
down button transitions inside a region and translating them into a single click
event sCLICK. It receives the low-level inputs iENTER, iEXIT, iLEFTDN,
and iLEFTUP and processes them into the simple higher level token sCLICK,

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

304 l Robert J. K. Jacob

INTERACTION-OBJECT TypeinField is

FROM: GenericItem,

IVARS:

position;

class := “UNCLASSIFIED”;

c := new INTERACTION-OBJECT Cllcker(posltlon=>positlon);

METHODS:

Draw () { DrawText(position, class),)

TOKENS:

oSHOWCLASS { DrawText(position, class);)

SYNTAX:

main

end INTERACTION-OBJECT;

Fig. 10. An alternate way to specify the type-in field, using Clicker and synthetic

tokens.

which it sends to the larger object within which it has been created as an instance
variable. In this respect it is used like a process in Squeak [3]. It is intended for
applications where entering and exiting the region are of no interest except
insofar as they determine whether a down click is inside or outside the region,
and up clicks are of no syntactic importance. An example is a simple screen
button that just responds to a click of the mouse button in its region.

Figure 10 shows a revised version of the TypeinField shown in Figure 6, here
using the new Clicker. To use Clicker the enclosing object (TypeinField)
instantiates it as one of its instance variables and provides it the correct value
for its position. Then, TypeinField need not process iENTER, iLEFTDN,
and similar events, but simply waits to receive an rCLICK from the Clicker
object. Clicker is used as a component (IVAR) of TypeinField, rather than as
a mixin (FROM). It is thereby created as a separate interaction object, whose
syntax diagram will run concurrently (as a coroutine) with all the other diagrams.

The synthetic tokens are intended to be used principally to build up composite
input events, in order to build higher level objects with higher level tokens out
of lower ones. By broadening the scope of such a token, it could also be used for
more general interprocess communication, particularly for asynchronous events
from the semantic or application code (which can run concurrently with the user-
interface executive, rather than as a coroutine). An application could send such
a token as a means for indicating an event to which the user interface must
respond. Figure 11 shows a simple display panel meter using this approach. It
responds to some external event (as recognized by the application code) and
continuously displays a value; it has no user input. The application code sends

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces l 305

INTERACTION-OBJECT Meter is

IVARS:

position;

currentvalue

METHODS:

Draw ()

TOKENS:

:= startingvalue;

{ --Draw a meter dial with pointer at currentValue-- }

rVALCHANGED { currentValue:= vVALCHANGED; }

oSH0WVA.L { --erase meter pointer and redraw at location for currentValue-- }

SYNTAX:

main

-

end INTERACTION-OBJECT;

Fig. 11. Specification of a display meter that monitors a value.

the synthetic token sVALCHANGED whenever the monitored value changes.
It can also send data via the associated variable vVALCHANGED. The appli-
cation (semantic) code need not know about the way in which sVALCHANGED
will be handled by the dialogue (syntactic) specification, or even whether it will
cause a change in the display. It merely announces the occurrence of an event
that is meaningful to the dialogue, and the dialogue specification then indicates
how the user interface will respond to it. (If a syntax diagram responds to this
event in the same manner from several different states, the STATES notation
can be used to describe the situation more compactly.)

A further extension would generalize the interface between the syntax diagram
and the application (semantic) code from procedure calling to message passing.
This would permit more complex protocols betwen the semantic and syntactic
parts of the system than the current example. It would also make it easier to
specify user-generated interrupts or aborts that occur during semantic processing.
An individual state transition in the syntax diagram could either send a message
(typically a request to perform a function) or await a message (most often
indicating completion of the function). The procedure call protocol used in the
examples would be a straightforward degenerate case of this scheme (every “send
request” transition would be followed immediately by an “await completion
message” transition).

13. SPECIFYING A FORM

A fill-in form or property sheet would be specified using the component object
and synthetic token mechanisms introduced. Figure 12 shows the specification
of a simple form, such as that for changing a user’s password seen in Figure 17.
The overall form is specified by a composite object FillinForm. It consists of

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

306 l Robert J. K. Jacob

INTERACTION-OBJECT FillinForm is

IVARS:

position;

but

oldpw

METHODS:

Draw ()

TOKENS:

oERRORMSG

SYNTAX:

main

:= new INTERACTION~OBJECT FillmButton(

position=>position);

:- new INTERACTION-OBJECT FillinField(

position=>positron+Height(FillinButton),

legend=>“Old password”,

word=>““);

.= new INTERACTION-OBJECT FillinField(

position=>position+Height(FillinButton)+Height(FillinField)~

legend=>“New password”),

(DrawBorder(position); }

{ ShowErrorMsg(“Please enter old password first”);)

end INTERACTION-OBJECT,

Fig. 12. Specification of a simple form, using synthetic tokens.

three display regions: a button that causes the password to be changed, a type-in
field for entering the old password, and another type-in field for the new password.
They are all specified as components of FillinForm: a FillinButton and two
FillinFields, respectively. FillinForm and its components specify different
levels of the syntax. The FillinButton and FillinFields specify the syntax for
processing mouse clicks and characters within the individual fields. They pass a
synthetic token to the FillinForm. FillinForm specifies the overall syntax of
the form using the synthetic token and provides a scope for the shared variables.
It describes the syntactic relationship of the three individual objects, but not the
internal operation of each of them. It also enforces a simple syntactic constraint
that requires that a value for the old password be entered before the user can
attempt to change the password. In a more complex form or property sheet, the

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces 307

INTERACTION-OBJECT FlllmButton is

FROM: GenericButton;

lvARs:

position;

legend := “Change Password”;

TOKENS:

sDOIT { SendTo(parent); }

--This syntaz section overloads the standard one inherited from GenericButton

SYNTAX:

end INTERACTION-OBJECT;

INTERACTION-OBJECT FillinField is

FROM:

lvARs:

position;

legend;

word;

GenericItem;

METHODS:

Draw () (null; } --does not display word

SYNTAX:

mam

end INTERACTION-OBJECT;

Fig. 12 (continued)

interrelationships of the components would be specified here. The syntax dia-
grams for the enclosing object would specify and restrict the permissible se-
quences in which it will accept the synthetic tokens from its components. For
example, “car radio” buttons or option selections that appear and disappear based
on actions in other fields would be specified in this way. (A better direct-
manipulation interface for the password form shown here would hide or make
inactive the FillinButton whenever its operation was disallowed rather than
give an error message. It requires a slightly more complex diagram than the

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

308 l Robert J. K. Jacob

simple example given, but it would still maintain the separation of specification
of aspects of the dialogue syntax pertaining to the individual components from
specification of the syntactic relationships between those components.)

The present approach also makes it easy to describe a general class of window-
management systems. Most existing window managers permit only one window
to receive user input at a time. While some systems allow several windows to
receive and display outputs simultaneously, one window (the “listener”) still
receives all inputs. There is no fundamental reason for this asymmetry. It is
possible to envision a window system in which text input from the keyboard is
accepted in a typescript command window and simultaneous graphical input
from the mouse is accepted in another window. The specification language can
describe such cases conveniently and naturally. Each window is an interaction
object with a state diagram that accepts a mutually exclusive set of inputs. For
the example given, one diagram would accept mouse events, and the other,
keyboard. It would be equally easy to describe a more unusual user interface, in
which, for example, one window accepts the letter a and another accepts b. The
traditional single-listener paradigm is simply a special case, in which a “change-
listener” command puts one window into a state where it accepts all the inputs
until the next change-listener command, and all the other windows into states
where they accept only the signal resulting from the change-listener command,
similar to the way in which car radio buttons are specified to enable and disable
one another.

14. GRAPHICAL OBJECTS

Figure 13 gives a portion of the specification of a painting system similar to
MacPaint, and Figure 14 shows it in operation. The basic structure of each
command in the specification is like that of ScrollBar shown in Figure 7. For
clarity, Figure 13 shows the operation of only two of the painting commands-
drawing with a “brush” and dragging a “rubber-band” rectangle. The dialogues
for all but two of the other commands (text and polyline) are identical to one of
these two cases. Figure 13 gives the interaction object for the main graphical
window, but it does not show the three other windows containing commands or
option selections. Each of those other windows is implemented as a separate
interaction object containing an array of buttons. The buttons are all specified
similarly to GenericButtonS, shown in Figure 5, but they communicate with
each other through synthetic tokens so that only one button in each of the three
windows can be selected at a time. Choosing a button in either the linewidth or
pattern-selection window changes the value of a global variable used in subse-
quent drawing operations. Choosing a button in the command selection window
sends the synthetic token NEWCMD to the paint window (i.e., the interaction
object specified in Figure 13), with the value of vNEWCMD set to the name of
the chosen command.

Note that a graphics system could have been represented in several other ways,
depending on the nature of the dialogue it conducts with the user. In this and
most typical systems, the main interaction in the graphics area is best described
as a single-thread dialogue with a main command loop. It is thus represented as
a single interaction object with one state diagram. Parameter setting windows,

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

INTERACTION-OBJECT PaintWindow is

FROM:

IVARS:

posltion

prevMove;

METHODS:

Draw ()

TOKENS:

iLEFTDN

iMOVE

oBRUSH

oDRAGRECT

oDRAWRECT

SYNTAX:

main

GenericItem;

:= {200, 20, 300, 240);

{ EraseRect(position); }

{ --Overloads standard definition of SEFTDN with one that accepts

--same click then sets viLEFTDN:= X, Y coordinates 01 mouse-- }

{ --Accepts any mouse motion within boundaries of position

--and sets viMOVE to the X, Y coordinates of the mouse-- }

(--Fill the area defined by viMOVE and CurrentBrushShape

--(a global variable set by a pull-down menu) with currentpattern

--(global variable set in the pattern selection window)-- }

{ --Note: currentLine Width is a global variable

--set in line width selection window

InvertOutline(viLEFTDN, prevMove, currentlinewidth);

InvertOutline(viLEFTDN, viMOVE, currentlinewidth);

prevMove:= viMOVE; }

{ DrawOutline(viLEFTDN, viMOVE, currentlinewldth); }

end INTERACTION-OBJECT;

Fig. 13. Portion of specification of a painting system.

i#
($

[lo
ad

G

en
er

ic
s.

l]
$$

$
t

;&
ii-

>

(lo
ad

'B

ut
to

ns
)

@
[lo

ad

B
ut

to
ns

.1
1

;g
i))

)
t

ig
iji

ii
->

(lo

ad

'P
ai

nt
)

'ii
iii

l!i
i

[lo
ad

P

ai
nt

.1
1

't
;$

i;:
!:$

;f$

$
->

(s

et
q

*t
ra

ce
*

3)

::
::

::
,:

::
j 3

'ii
lli

i
-)

(s

""
:S

et
"p

1

1)

,.w
:,:

.:.
;

::
::

.:
::

;:
: t

sl
is

ii;
-,

@

tq

.,o
s*

0)

$&

il

;,g
i

->

(<
-

(s
et

q
pa

in
tw

in

::
::

::
::

I:
; t

#@

-)

(<
-

(m
ak

e-
in

st
an

ce

i$
$$

G
 n

il

i#
gi

ii
->

(<

-
(m

ak
e-

in
st

an
ce

iii
lii

;i;
"i

l

8%

->

(<
-

(m
ak

e-
in

st
an

ce

.

dw

(m
ak

e-
in

st
an

ce

'P
ai

nt
W

it

'C
m

dl
lin

do
w

)
'In

it)

'L
ln

eW
id

th
W

in
dw

)
‘In

it)

'P
at

te
rn

W
in

do
w

)
'In

it)

F
ig

.
14

.
T

he

pa
in

tin
g

sy
st

em

sp
ec

ifi
ed

in

F

ig
ur

e
13

 i
n

op
er

at
io

n.

A Specification Language for Direct-Manipulation User Interfaces l 311

pull-down menus, and the like each constitute an independent dialogue; they are
appropriately described as separate interaction objects operating as coroutines.

The operation of the various individual painting commands in the main window
could also have been given as separate interaction objects in this language.
However, they do not really appear to the user as separate concurrent dialogues
with saved states. They are more clearly represented as modes or states within a
single main dialogue. The graphical images drawn by the user could also have
been represented in the language as separate interaction objects, instantiated
and destroyed as needed. Again, however, to the user they are essentially passive
objects, which respond to the main command loop; they have no saved state and
no specific individual syntaxes. The specification language allows the description
of more exotic systems, in which the user can create and edit different kinds of
active objects on the screen, which can then respond to commands and have
different syntaxes. They would be described as separate interaction objects and
instantiated dynamically for each new object the user creates.

15. IMPLEMENTATION

To test the specification language, a prototype user-interface management system
has been built. It follows the structure described here and provides an executive
that performs coroutine calls on the individual interaction-object diagrams. The
system accepts the specifications of a set of interaction objects and implements
the resulting user interface. It runs under UNIX’ on a Sun Microsystems 68010-
based workstation; it is written in Franz Lisp with the University of Maryland
Flavors package and some C code to interface to the Sun window system. It has
been used to build and test small systems, including the examples given here and
many similar ones.

The implementation uses object-oriented programming extensively. Each in-
teraction object has an instance variable containing its syntax diagram and
another containing its current state. A coroutine call is implemented as a message
from the executive to the interaction object, which causes the latter to assume
control and execute until it reaches an input it cannot accept. It then returns
control to the executive, which sends the same coroutine call message to each of
the other interaction objects, effectively asking each of them to accept the current
input and proceed. As noted in the language definition, if there is more than one
object that can accept the input, the choice among them is considered non-
deterministic; if there is none, the executive displays a diagnostic message,
discards the unwanted token, and proceeds. Tokens are implemented as messages
within interaction objects, defined locally to each object or else inherited. Since
a single mouse motion may cause several input tokens (entering and exiting
several regions), each interaction object defines a message that accepts a new
mouse position and decides whether any input tokens defined within that object
should be generated. Component objects are dynamically instantiated and
initialized by code automatically appended in the Init procedure of the
parent object (and destroyed similarly by the Destroy procedure). The current
design allows a clean modularization (tokens, state diagram traversals, and

’ UNIX is a registered trademark of AT&T Bell Laboratories.

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

312 - Robert J. K. Jacob

INTERACTION-OBJECT MessageFlleDlsplayButton is

IVARS:

positton = ‘(100 200 64 24), --i.e., coordinates o/screen rectangle

METHODS:

Draw () (DrawTextButton posltlon “Display”),

TOKENS:

ILEFT --Click left mouse button

(cond ((equal (car (NextLexeme)) ‘rLEFTDN)

(ReadLexeme))

(t 4)

IENTER __ Locator moues inside rectangle given by position

(cond ((and (equal (car (NextLexeme)) ‘IENTER)

(equal (cadr (NextLexeme)) self))

(ReadLexeme))

(t nII))

iEXIT --Locator movea outside rectangle given by position

(cond ((and (equal (car (NextLexeme)) ‘IEXIT)

(equal (cadr (NextLexeme)) self))

(ReadLexeme))

(t nil))

oHIGHLIGHT --Invert video ofrectangle given by position

(InvertRect position)

oDEHIGHLIGHT --Same as oHIGHLIGHT

(InvertRect posltion)

SYNTAX:

+st: iENTER -+highlight

highlight: oHIGHLIGHT -+click

+ click:

8

ILEFT -+doit

IEXIT -dehighlight

doit: -+click act: (DisplayMf inbox);

dehighlight: ODEHIGHLIGHT dst

end INTERACTION-OBJECT,

Fig. 15. Specification of the screen button of Figure 2, in the form used

for input to the prototype user-interface management system.

interpretation of mouse motions are all local to the interaction objects) and a
simple (10 lines of code) executive. It leads to some inefficiency whenever one
object yields control to another (all objects are essentially polled at that point)
and whenever a mouse is moved (again, all objects are polled). In a more efficient
implementation, the executive might cache a table of which objects could cur-
rently accept which tokens, and a more efficient input handler would undoubtedly
collect and centralize the processing of mouse motions, both at some cost in
modular structure.

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces l 313

The specification language accepted by the system is the same as that shown
in the figures in this paper, except that the bodies of the procedures and tokens
are given in LISP rather than Ada or pseudocode comments and the state
diagrams are entered in a text form [14, 161. Figure 15 shows the Message
FileDisplayButton of Figure 2 in the form accepted by this implementation,
including the LISP code for the tokens themselves and the text form of the state
diagram.

16. EXAMPLE OF A DIRECT-MANIPULATION SYSTEM

Figures 16 and 17 show the display of a more complete direct-manipulation
military message system, one of a family of prototype message systems being
built at NRL [lo]. Such a message system is much like a conventional electronic-
mail system, except that each message (actually, each field of each message),
each file, and each user terminal has a security classification. On the screen a
message is represented by an image similar to a traditional paper military
message, and a file of messages is represented by a display of a list of the
summaries (called citations) of the messages in the file. Some elements of each
message citation in such a display can be changed directly by typing over them;
they are indicated by borders around their labels. Other elements are fixed
because the application requires it (e.g., the user cannot change the date of a
message that has already been sent). In addition, each citation contains some
screen buttons, which cause the indicated actions to occur. All the commands
that the user could apply to a given message are shown on its citation as buttons.
Specifications for these and most of the other items seen in Figures 16 and 17
have been given above; the type-in fields were specified in Figure 8, the screen
buttons in Figure 4, and the scroll bar in Figure 7, and the “Change Password”
form seen in Figure 17 was specified in Figure 12.

17. CONCLUSIONS

Direct-manipulation user interfaces involve a set of visual representations on a
screen and a standard repertoire of manipulations that can be performed on any
of them. This means that the user has no command language to remember beyond
the standard set of manipulations, few changes of mode (i.e., most commands
can be invoked at any time), and a continuous reminder on the display of the
available objects and their states. Direct manipulation represents a powerful
paradigm for designing user interfaces, but such interfaces have been difficult to
specify and program conveniently.

Direct-manipulation interfaces were found to have a coroutine-like structure
and, despite their surface appearance, a peculiar, highly moded dialogue. The
specification technique introduced here exploits these observations. Each locus
of dialogue is clearly and appropriately described as a separate object with a
single-thread state diagram, which can be suspended and resumed, but always
retains state. The overall direct-manipulation user interface is defined implicitly
by the coroutine-based behavior of a standard executive, rather than inappro-
priately as a large, highly regular state transition diagram. Given a library of
generic interaction objects and an inheritance mechanism, the collection of
interaction-object specifications necessary to describe a nontrivial system need
not become cumbersome or repetitive.

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

I::
~

i.i
:i,

~
lii

li.
:l

““
““

“I,
:.

.‘.
 .‘

,‘,
.,.

,I.
 .

.,
:+

:,
: ,

,.
,,

,,
.,

,,
, (,

,,,
,,,

[C

la
ss

:]
C

O
N

F*
D

E
N

TI
*L

(“

at
o)

!/j
jj:

jjj
jjj

:jj
jjj

jji
:i:

:i:
i:i

iii
ii:

i:i
:~

:~
:~

:~
:~

~
~

~
~

~
~

~
:~

:~
:~

:~
:~

:~
::;

~
:~

:~
::~

,,,

,(
,,,

:.
::

::
::

,:
.:

,:
,:

,:
.:

.:
::

::
::

:‘:
::

::
::

::
::

::
::

::
::

::

:,
:,

:,
::

::
::

::
.:

.:
,:

,
::

::
::

::
::

::
::

:j:
j:j

:/
::

::
::

::
.:

.:
.:

.:
.:

.:
.:

,:
,:

,:
.:

,:

:.
.,

. ,.
..

 .,
.

,,
,,

,,
,.

 :.
:,

:,
‘,:

;
;::

:;j
:!j

 :,

,,
,.

..
..

..
..

..
..

..
,,

.,
,,

,
,,

..

,,
,,

4

84

16

:
38

:

05

[D
is

pl
ay

)
[-S

et
]

[D
el

et
e)

(C

op
y

co
m

m
an

ds
]

[S
en

d
co

m
m

an
ds

)

(C
la

ss
:]

C
O

N
FI

D
E

N
TI

A
L

(n
at

o)

D
at

e:

1
Ju

n
84

17

:2
2

Fr
an

:
la

nd
w

eh
r

T
o:

co

rn
w

el
l

ja
co

b

S
ub

j:
A

no
th

er

pa
pe

r
fo

r
se

cu
rit

y
co

nf
er

en
ce

?

U
N

C
LA

S
S

IF
IE

D

D
at

e:

13

Ju
n

84

13
:4

5
Fr

an
:

ja
co

b

S
ub

j:
Im

po
rta

nt

in
fo

rm
at

io
n

.

T
o:

la

nd
w

eh
r

S
ub

j:
ch

an
ge

to

ed

ito
r.m

l

F
ig

.
16

.
D

ire
ct

-m
an

ip
ul

at
io

n
m

ili
ta

ry

m
es

sa
ge

-s
ys

te
m

pr

ot
ot

yp
e,

sh

ow
in

g
m

es
sa

ge

w
in

do
w

(t

op
)

an
d

m
es

sa
ge

fil

e
w

in
do

w

(b
ot

to
m

).

T
he

se

cu
rit

y
cl

as
si

fic
at

io
ns

sh

ow
n

ar
e

si
m

ul
at

ed

fo
r

de
m

on
st

ra
tio

n
pu

rp
os

es
.

C
la

ss
:

T
O

P
S

E
C

R
E

T

(c
ry

pt
o

na
to

no

fo
rn

)

S
cr

ol
l:

y
[A

cc
es

s
[C

re
at

e
N

ew

Fi
le

]

S
ep

18

85

16

:3
4

ID
E

N
T

IA
L

(c
ry

pt
o

na
to

)

Fi
le

na

m
e:

m

m
sm

ai
l

A
ug

16

85

8:

34

D
at

e:

:
[D

is
pl

ay
]

[-S
et

J
[D

es
tro

y]

[D
up

lic
at

e]

su
b,

:
c

Fi
le

na

m
e:

ne

w
bo

x
[C

la
ss

:]
S

E
C

R
E

T

(n
of

or
n

na
to

)

S
ep

18

5
28

:2
5

S
ub

j:
ch

an
ge

to

ed

ito
r.m

l

F
ig

.
17

.
D

ire
ct

-m
an

ip
ul

at
io

n
m

ili
ta

ry

m
es

sa
ge

-s
ys

te
m

pr

ot
ot

yp
e,

sh

ow
in

g
us

er

ro
le

s,

ac
ce

ss

se
t

ed
ito

r,

an
d

m
es

sa
ge

til

e

di
re

ct
or

y
w

in
do

w
s.

316 - Robert J. K. Jacob

ACKNOWLEDGMENTS

I want to thank Ben Shneiderman for introducing the idea of direct manipulation
and helping me understand it, and Don Norman for insights that have helped to
clarify the idea. Discussions with my colleagues on the WIS Command Language
Task Force-Phil Hayes, Ken Holmes, Joe Hrycyszyn, Tom Kaczmarek, Jon
Meads, and Brad Myers-helped me define the specification language. I thank
Jim Foley, Ben Shneiderman, and several anonymous ACM TOG referees for
their helpful comments on drafts of this paper. Finally, I want to thank Carl
Landwehr for facilitating and encouraging this research.

REFERENCES

1. ANSON, E. The device model of interaction. Corn@. Graph. 26, 3 (July 1982), 107-114.

2. BUXTON, W., LAMB, M. R., SHERMAN, D., AND SMITH, K. C. Towards a comprehensive user

interface management system. Comput. Graph. 17, 3 (July 1983), 35-42.

3. CARDELLI, L., AND PIKE, R. Squeak: A language for communicating with mice. Corn@. Graph.

19, 3 (July 1985), 199-204.

4. FELDMAN, M. B., AND ROGERS, G. T. Toward the design and development of style-independent

interactive systems. In Proceedings of the ACM SIGCHI Human Factors in Computer Systems

Conference (Gaithersburg, Md., Mar. 15-17). ACM, New York, 1982, pp. 111-116.

5. FOLEY, J. D., AND VAN DAM, A. Fundamentals of Interactive Computer Graphics. Addison-

Wesley, Reading, Mass., 1982.

6. FOLEY, J. D., AND WALLACE, V. L. The art of graphic man-machine conversation. Proc. IEEE

62,4 (Apr. 1974), 462-471.

7. GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and Its Implementation. Addison-

Wesley, Reading, Mass., 1983.

8. GREEN, M. The University of Alberta user interface management system. Comput. Graph.

19,3 (July 1985), 205-213.
9. HAYES, P. J. Executable interface definitions using form-based interface abstractions. In

Advances in Human-Computer Interaction, H. R. Hartson, Ed. Ablex, Norwood, N.J., 1985,

pp. 161-189.

10. HEITMEYER, C. L., LANDWEHR, C. E., AND CORNWELL, M. R. The use of quick prototypes in

the military message systems project. Softw. Eng. Notes 7, 5 (Dec. 1982), 85-87.

11. HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),

666-677.

12. HUERAS, J. F. A formalization of syntax diagrams as k-deterministic language recognizers. M.S.

thesis, Computer Science Dept., Univ. of California, Irvine, 1978.

13. HUTCHINS, E. L., HOLLAN, J. D., AND NORMAN, D. A. Direct manipulation interfaces. In User

Centered System Design: New Perspectives in Human-Computer Interaction, D. A. Norman and

S. W. Draper, Eds. Erlbaum, Hillsdale, N.J., 1986.

14. JACOB, R. J. K. Executable specifications for a human-computer interface. In Proceedings of

the ACM SIGCHI Human Factors in Computer Systems Conference (Boston, Mass., Dec. 12-15).

ACM, New York, 1983, pp. 28-34.

15. JACOB, R. J. K. Using formal specifications in the design of a human-computer interface.

Commun. ACM 26,4 (Apr. 1983), 259-264.
16. JACOB, R. J. K. An executable specification technique for describing human-computer inter-

action. In Advances in Human-Computer Interaction, H. R. Hartson, Ed. Ablex, Norwood, N.J.,

1985, pp. 211-242.

17. KASIK, D. J. A user interface management system. Comput. Graph. 16, 3 (July 1982), 99-106.
18. KIERAS, D., AND POLSON, P. G. A generalized transition network representation for interactive

systems. In Proceedings of the ACM SIGCHI Human Factors in Computer Systems Conference

(Boston, Mass., Dec. 12-15). ACM, New York, 1983, pp. 103-106.
19. LIEBERMAN, H. There’s more to menu systems than meets the screen. Comput. Graph. 29, 3

(July 1985), 181-189.

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

A Specification Language for Direct-Manipulation User Interfaces l 317

20. MYERS, B. A., AND BUXTON, W. Creating highly-interactive and graphical user interfaces by
demonstration. Comput. Graph. 20, 4 (Aug. 1986), 249-258.

21. OLSEN, D. R., AND DEMPSEY, E. P. SYNGRAPH: A graphical user interface generator. Comput.
Graph. 17, 3 (July 1983), 42-50.

22. PARNAS, D. L. On the use of transition diagrams in the design of a user interface for an

interactive computer system. In Proceedings of the 24th National ACM Conference. ACM, New

York, 1969, pp. 379-385.
23. REISNER, P. Formal grammar and human factors design of an interactive graphics system.

IEEE Trans. Softw. Eng. SE-7, 2 (Mar. 1981), 229-240.

24. SCHULERT, A. J., ROGERS, G. T., AND HAMILTON, J. A. ADM-A dialog manager. In Proceed-
ings of the ACM SIGCHI Human Factors in Computer Systems Conference (San Francisco, Calif.,

Apr. 14-18). ACM, New York, 1985, pp. 177-183.
25. SHNEIDERMAN, B. Multi-party grammars and related.features for defining interactive systems.

IEEE Trans. Syst. Man Cybern. SMC-12, 2 (Mar. 1982), 148-154.

26. SHNEIDERMAN, B. Direct manipulation: A step beyond programming languages. Computer

16,8 (Aug. 1983), 57-69.

27. SIBERT, J. L., AND HURLEY, W. D. A prototype for a general user interface management system.

Tech. Rep. GWU-IIST-84-47, Institute for Information Science and Technology, George Wash-
ington Univ., Washington, D.C., 1984.

28. SIBERT, J. L., HURLEY, W. D., AND BLESER, T. W. An object-oriented user interface manage-

ment system. Comput. Graph. 20,4 (Aug. 1986), 259-268.

29. SINGER, A. Formal methods and human factors in the design of interactive languages. Ph.D.

dissertation, Computer and Information Science Dept., Univ. of Massachusetts, 1979.

30. SMITH, D. C., IRBY, C., KIMBALL, R., AND VERPLANK, B. Designing the Star user interface.

Byte 7,4 (Apr. 1982), 242-282.

31. WASSERMAN, A. I. Extending state transition diagrams for the specification of human-computer

interactions. IEEE Trans. Softw. Eng. SE-11, 8 (Aug. 1985), 699-713.

32. WASSERMAN, A. I., AND SHEWMAKE, D. T. The role of prototypes in the user software

engineering (USE) methodology. In Advances in Human-Computer Interaction, H. R. Hartson,

Ed. Ablex, Norwood, N.J., 1985, pp. 191-209.
33. WASSERMAN, A. I., AND STINSON, S. K. A specification method for interactive information

systems. In Proceedings of the Specifications of Reliable Software Conference. IEEE Press, New

York, 1979, pp. 68-79. IEEE Catalog no. 79CH1401-9C.
34. WEINREB, D., AND MOON, D. Lisp Machine Manual. Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, Cambridge, Mass., 1981.

35. YUNTEN, T., AND HARTSON, H. R. A supervisory methodology and notation (SUPERMAN)

for human-computer system development. In Aduances in Human-Computer Interaction,

H. R. Hartson, Ed. Ablex, Norwood, N.J., 1985, pp. 243-281.

Received July 1986; revised December 1986; accepted January 1987

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986.

