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A Specification Language for 
Direct-Manipulation User Interfaces 

ROBERT J. K. JACOB 

Naval Research Laboratory 

A direct-manipulation user interface presents a set of visual representations on a display and a 

repertoire of manipulations that can be performed on any of them. Such representations might 

include screen buttons, scroll bars, spreadsheet cells, or flowchart boxes. Interaction techniques of 

this kind were first seen in interactive graphics systems; they are now proving effective in user 

interfaces for applications that are not inherently graphical. Although they are often easy to learn 

and use, these interfaces are also typically difficult to specify and program clearly. 

Examination of direct-manipulation interfaces reveals that they have a coroutine-like structure 

and, despite their surface appearance, a peculiar, highly moded dialogue. This paper introduces a 

specification technique for direct-manipulation interfaces based on these observations. In it, each 

locus of dialogue is described as a separate object with a single-thread state diagram, which can be 

suspended and resumed, but retains state. The objects are then combined to define the overall user 

interface as a set of coroutines, rather than inappropriately as a single highly regular state transition 

diagram. An inheritance mechanism for the interaction objects is provided to avoid repetitiveness in 

the specifications. A prototype implementation of a user-interface management system based on this 
approach is described, and example specifications are given. 

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques--lcser 

interfaces; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning 

about Programs-speciftiation techniques; H.1.2 [Models and Principles]: User/Machine Sys- 

tems-human factors 

General Terms: Design, Human Factors, Languages 

Additional Key Words and Phrases: Direct manipulation, specification language, state transition 

diagram, user-interface management system (UIMS) 

1. INTRODUCTION 

A direct-manipulation user interface presents its user with a set of visual 
representations of objects on a display and a repertoire of generic manipulations 
that can be performed on any of them [26]. Some of these techniques were first 
seen in interactive graphics systems; they are now proving effective in user 
interfaces for applications that are not inherently graphical. With a direct 
manipulation interface, the user seems to operate directly on the objects in the 
computer instead of carrying on a dialogue about them. Instead of using a 
command language to describe operations on objects that are frequently invisible, 
the user “manipulates” objects visible on a graphic display. 
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This ability to manipulate displayed objects has been identified as direct 
engagement [13]. The displayed objects are active in the sense that they are 
affected by each command issued; they are not the fixed outputs of one execution 
of a command, frozen in time. They are also usable as inputs to subsequent 
commands. The ultimate success of a direct-manipulation interface also requires 
directness in the form of low cognitive distunce [13], the mental effort needed to 
translate from the input actions and output representations to the operations 
and objects of the problem domain itself. The visual metaphor chosen to depict 
the problem domain should thus be easy for the user to translate to and from 
that domain, and the actions required to effect a command should be closely 
related to the meaning of the command in the problem domain. 

This paper examines the characteristics of a direct-manipulation dialogue as 
seen from the user’s point of view. Then it introduces a specification language 
for describing such dialogues, in which the structure of the language is modeled 
on the characteristics of the dialogue. Its purpose is to describe direct- 
manipulation user interfaces from a high-level view, with a structure designed 
to match the user’s perceptions (rather than the programmer’s). Since the new 
language can be executed, it can also serve as the basis for a user-interface 
management system for direct-manipulation interfaces. 

2. SPECIFYING A DIRECT-MANIPULATION USER INTERFACE 

It is useful to be able to write a specification of the user interface of a computer 
system before building it, because the interface designer can thereby describe 
and study a variety of possible user interfaces without having to code them. Such 
a specification should describe precisely the user-visible behavior of the interface, 
but should not constrain its implementation. Specification techniques for describ- 
ing the user-visible behavior of conventional user interfaces without reference to 
implementation details are gaining currency; most have been based on state 
transition diagrams [6, 15, 18, 22, 29, 331 or BNF [23, 251 (and a few on other 
models listed below); there are some reasons to prefer the state diagrams [15]. 

If the specification language itself can be executed or compiled, it can also 
serve as the basis for a user-interface management system (UIMS). To be useful, 
a UIMS needs a convenient and understandable way for the user-interface 
designer to describe the desired interface. The choice of specification language is 
thus at the heart of the design of a UIMS. UIMSs have been built using BNF or 
other grammar-based specifications [21], state-transition-diagram-based speci- 
fications [4, 14, 24,321, programming-language-based specifications [ 171, frames 
[9], flow diagrams [35], and other models [ 1, 21. More recently, several investi- 
gators have used an object-oriented approach [8, 19, 281. Research is also under 
way in describing user interfaces by example, where the interface designer is not 
concerned with a programming or specification language [20]. 

Although direct manipulation can make systems easy to learn and use, such 
user interfaces have proved more difficult to construct and specify. Direct- 
manipulation interfaces have some important differences from other styles of 
interfaces, and these must be understood in order to develop an appropriate 
specification technique for them. Although state-transition-diagram-based 
notations have proved effective and powerful for specifying conventional user 
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interfaces, they must be modified to handle direct-manipulation interfaces. State 
diagrams tend to emphasize the modes or states of a system and the sequence of 
transitions from one state to another. Although direct-manipulation user inter- 
faces initially appear to be modeless and thus unsuited to this approach, they 
will be shown below to have a particular, highly regular moded structure, which 
can be exploited in devising a specification technique for them. 

3. THE STRUCTURE OF A DIRECT-MANIPULATION DIALOGUE 

In order to develop an appropriate specification language for direct-manipulation 
interfaces, it is necessary to identify the basic structure of such an interface as 
the user sees it. The goal of this specification method is not strictly compactness 
or ease of programming, but rather capturing the way the end user sees the 
dialogue. Many existing specification techniques could be extended in various 
ways to describe the unusual aspects of direct-manipulation dialogues. However, 
the real problem is not just to find some way to describe the user interface (since, 
after all, assembly language can do that job), but to find a language that captures 
the user’s view of a direct-manipulation interface as perspicuously as possible 
and with as few ad hoc features and extensions to the specification technique as 
possible. The object is to describe the interface or dialogue between the system 
and its end user, as seen by that user, rather than to describe the structure of 
the system or its components at some other level. 

First, consider what a dialogue specification should describe. Trying to capture 
the layout and precise appearance of the display of a direct-manipulation interface 
at every turn would make the top level of the dialogue specification excessively 
detailed and complex. Instead, the initial specification should be centered around 
the sequence of abstract input and output events that comprise the dialogue. The 
syntax of an interactive user interface-whether conventional or direct manipu- 
lation-is effectively described by such a sequence of input and output events, 
with the specification of the meanings of the events in terms of specific input 
actions or display images deferred [14]. The abstract input or output events 
themselves are called tokens and are then described individually in separate 
specifications. Information about display representation and layout is isolated 
there, rather than as part of the description of the syntax of the dialogue. 

This decomposition of direct-manipulation dialogues follows the model of 
general user-computer dialogues introduced by Foley and Wallace [5, 61. The 
sequence of input and output tokens comprises the syntactic level, while the 
individual token descriptions comprise the lexical level. The semantic level is 
defined by a collection of procedures that implement the functional requirements 
of the system; they are invoked from the syntactic-level specification. This three- 
level separation has been used to good effect in user-interface management 
systems [4, 8, 16, 211. Separating the abstract dialogue sequence and overall 
display organization (syntactic) description from the precise input and output 
format (lexical) description is of particular importance for direct-manipulation 
interfaces, because such interfaces typically provide rapid and rich graphical 
feedback and may vary the appearance of the display considerably during a 
dialogue. Users may also be permitted to rearrange windows and other images 
arbitrarily to suit their preference. Despite such variations there are some 
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underlying cognitive characteristics of the dialogue, which are more stable. A 
more fundamental characterization of the dialogue than moment-to-moment 
display appearance should thus be identified and used as the foundation for a 
clear specification; the sequence of abstract events or tokens is proposed to 
provide this foundation. 

The issue did not arise with early user interfaces based on teleprinters or 
scrolling display terminals. The sequence of specific input and output events 
precisely determined the appearance of the display in a simple and straight- 
forward way. Later display terminals added some special commands, such as 
clear screen, vertical tab, or cursor motions, which disrupted the relationship 
between sequence of inputs and outputs and display appearance. These have 
required some extensions to conventional specification techniques [25,31]. With 
a full graphic display, however, much more complex user interfaces have been 
built. It is still true in principle that the sequence of input and output events 
completely determines the final appearance of the display, but in a far less 
straightforward way-a way that the user-interface specifier should not have to 
understand. The specification writer needs to be able to speak about the display 
appearance at a higher level: the sequence of input and output events. Details 
about graphical representations, sizes, windows, particular input/output devices, 
and the like can then be abstracted out of the dialogue specification. Even the 
choice of particular modes of user-computer communication can be isolated, 
since an output token can be any discrete, meaningful event in the dialogue, 
including, for example, an audible or tactile output. 

Note that building the syntax specification around the sequences of tokens 
does not preclude semantic-level feedback. For example, as a file icon is dragged 
over various directory icons, those directories (and only those) into which the 
user is currently permitted to move that file might be highlighted. The specifi- 
cation technique permits such an operation, but it divides the description of the 
feedback into its three appropriate aspects. The decision as to which directories 
should be highlighted is given in the semantic-level specification (it will be a 
“condition” procedure in the language introduced below); the specification of 
when in the dialogue such highlighting will occur is given in the syntactic-level 
specification (as transitions that test the condition and call a highlight token); 
and the description of the highlighting operation itself is given in the lexical- 
level specification (as the definition of the highlight token). 

Consider next the basic sequence of events in a direct-manipulation dialogue. 
A direct-manipulation user interface resembles an interacting collection of active 
and/or responsive objects more than it does a single command language dialogue 
with the user. The display typically presents a variety of graphical objects. Users 
can select any of them (most often by moving a cursor). Once selected, the user 
can begin a dialogue about that object-adjusting a parameter, deleting or moving 
an object, etc. Each object thus has its own particular dialogue, which the user 
may activate or deactivate at any time. Further, some object dialogues remember 
their state between activations. For example, if the user moves the cursor to a 
type-in field and types a few characters, moves it somewhere else and performs 
other operations, and then returns to the type-in field, the dialogue within that 
field would be resumed with the previously entered characters and insertion point 
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intact. As a better example, if the user had begun an operation that prompted 
for and required him or her to enter some additional arguments, the user could 
move to another screen area and do something else before returning to the first 
area and resuming entry of the arguments where he or she had left them. 

Given this structure, it is unnatural, though possible, to describe the user 
interface of a direct-manipulation system as a conventional dialogue by means 
of a syntax diagram or other such notation. Instead the user sees a multitude of 
small dialogues, each of which may be interrupted or resumed under the control 
of a simple master dialogue. Each of the individual objects on the screen thus 
has a particular syntax or dialogue associated with it. Each such dialogue can be 
suspended (typically if the user moves the cursor away) and later resumed at the 
point from which it was suspended. The relationship between the individual 
dialogues or branches of the top-level diagram is that of coroutines. 

So, the basic structure of a direct-manipulation interface is seen to be a 
collection of individual dialogues connected by an executive that activates and 
suspends them as coroutines. The specification technique for direct-manipulation 
interfaces will thus allow the individual dialogues to be specified individually and 
to exchange control with each other through a coroutine call mechanism. 

4. MODES IN THE USER INTERFACE 

Many traditional user interfaces are highly moded, and this has made it conven- 
ient to specify them using state transition diagrams. Modes or states refer to the 
varying interpretation of a user’s input. In each different mode, a user interface 
may give different meanings to the same input operations [30]. Some use of 
modes is necessary in most user interfaces, since there are generally not enough 
distinct brief input operations (e.g., single keystrokes) to map into all the 
commands of a system. A moded user interface requires that users remember (or 
the system remind them) of which mode it is in at any time and which different 
commands or syntax rules apply to each mode. Modeless systems do not require 
this; the system is always in the same mode, and inputs always have the same 
interpretation. 

Direct-manipulation user interfaces appear to be modeless. Many objects are 
visible on the screen; and at any time the user can apply any of a standard set of 
commands to any object. The system is thus nearly always in the same “universal” 
or “top-level” mode. This is approximately true of some screen editors, but for 
most other direct-manipulation systems, where the visual representation contains 
more than one type of component, this is a misleading view. It ignores the input 
operation of moving the cursor to the object of interest. A clearer view suggests 
that such a system has many distinct modes. Moving the cursor to point to a 
different object is the command to cause a mode change, because once it is moved, 
the range of acceptable inputs i.s reduced and the meaning of each of those inputs 
is determined. This is precisely the definition of a mode change. For example, 
moving the cursor to a screen button, such as the “Display” buttons in the 
message system shown later in Figures 16 and 17, should be viewed as putting 
the system into a mode where the meaning of the next mouse button click is 
determined (it displays that message) and the set of permissible inputs is 
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sorToScrollBar sorToScrollBar 

Fig. 1. State-diagram specification of the top level of a simple direct-manipu- 

lation user interface. 

circumscribed (e.g., keyboard input could be illegal or ignored). Moving the cursor 
somewhere else would change that mode. As shown in Figure 1, the top level of 
a typical direct-manipulation interface such as the message-system example 
could thus be described by a large state diagram with one top-level state and a 
branch (containing a cursor motion input) leading from it to each mode (marked 
with a “+“). Each such branch continues through one or more additional states 
before returning to the top-level state. There is typically no crossover between 
these branches. 

If direct-manipulation user interfaces are not really modeless, why do they 
appear to have the psychological advantages over moded interfaces that are 
usually ascribed to modeless ones? The reason is that they make the mode so 
apparent and easy to change that it ceases to be a stumbling block. The mode is 
always clearly visible (as the location of a cursor), and it has an obvious 
representation (simply the echo of the same cursor location just used to enter 
the mode change command), in contrast to some special flag or prompt. Thus 
the input mode is always visible to the user. The direct-manipulation approach 
makes the output display (cursor location to indicate mode) and the related input 
command (move cursor to change mode) operate through the same visual repre- 
sentation (cursor location). At all times the user knows exactly how to change 
modes; he or she can never get stuck. It appears, then, that direct-manipulation 
user interfaces are highly moded, but they are much easier to use than traditional 
moded interfaces because of the direct way in which the modes are displayed and 
manipulated. 

5. A SPECIFICATION LANGUAGE 

Figure 1 shows a typical direct-manipulation user interface represented as a state 
transition diagram. Although a simple direct-manipulation interface could be 
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specified in this fashion, it has some shortcomings. The top-level state diagram 
for each new direct-manipulation interface will be a large, regular, and relatively 
uninformative diagram with one start state and a self-contained (i.e., no cross- 
over) path to each mode and thence back to start state. It is essentially the same 
for any direct-manipulation system and need not be specified anew for each 
system. Moreover, since the individual paths are usually self-contained and 
interact with each other in very limited ways, it would be clearer to separate their 
specifications. A more serious problem with this approach is that there is often 
a remembered state within some of the paths (partial type-in on a field, an item 
awaiting confirmation, etc.), which are suspended when the cursor leaves the 
field and resumed when it reenters. This requires that the paths of the diagram 
be handled separately. Each path will thus now be specified separately (as a 
coroutine), and an executive will be given for the outer dialogue loop. 

A specification language based on the characteristics found in the foregoing 
examination of direct-manipulation interfaces can now be described: 

-A direct-manipulation interface was found to comprise a collection of many 
relatively simple individual dialogues. Thus the specification will be centered 
around a collection of individual objects, called interaction objects, each of which 
will have a separate specification. Each of the dialogues of the direct-manipula- 
tion interface will be specified as a separate interaction object with an indepen- 
dent dialogue description. 

-The individual dialogues of a direct-manipulation interface were found to be 
related to each other as a set of coroutines. Thus the specification language will 
permit the dialogue associated with each interaction object to be suspended and 
resumed, with retained state, like a coroutine. A simple executive will be defined 
to manage the overall flow of control. It specifies the interconnection of the 
interaction object dialogues, allocates input events, and suspends the individual 
dialogues to relinquish control to others as needed. 

-Because of the complexity and variability in the layout of the display of a 
direct-manipulation interface, it was found that the dialogue should be specified 
as a sequence of abstract input and output events, with layout and graphic details 
given separately. Thus the dialogue specification for each interaction object will 
be written using input and output tokens, which represent input or output events. 
The dialogue specification will define the possible sequences of input and output 
tokens. The internals of the tokens themselves will then be specified separately 
from the dialogue. These token definitions will contain details of layout, graphical 
representation, and device handling. 

-Direct-manipulation interfaces were seen to have definite modes or states, 
despite their surface appearance. This applied both to the overall structure and 
to the retained state within each coroutine. Thus state transition diagrams are a 
suitable notation for describing the individual interaction-object dialogues. The 
state diagrams will assume coroutine calling between them. 

Given this structure, a direct-manipulation user interface will be specified as 
a collection of individual, possibly mutually interacting interaction objects, 
organized around the manipulable objects and the loci of remembered state in 
the dialogue. These objects will often coincide with screen regions or windows, 
but need not. A typical object might be a screen button, individual type-in field, 
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scroll bar, or the like. Each such object will be specified separately, and then a 
standard executive will be defined for the outer dialogue loop. Thus, to describe 
a direct-manipulation user interface, it will be necessary to 

(1) define a collection of interaction objects, 
(2) specify their internal behaviors, and 
(3) provide a mechanism for combining them into a coordinated user interface. 

As noted, a goal of this notation is to capture the way the end user sees the 
interface. The underlying claim is thus that the user indeed sees the direct- 
manipulation dialogue as a collection of small, individual objects or dialogues, 
each suspendable and resumable like a coroutine, joined by a straightforward 
executive. 

The specification language is defined by devising a mechanism for each of the 
three tasks in the preceding paragraph: 

1. How should the user interface be divided into individual objects? An inter- 
action object will be the smallest unit with which the user conducts a meaningful, 
step-by-step dialogue, that is, one that has continuity or syntax. It can be viewed 
as the smallest unit in the user interface that has a state that is remembered 
when the dialogue associated with it is interrupted and resumed. In that respect, 
it is like a window, but in a direct-manipulation user interface, it is generally 
smaller-a screen button, a single type-in field on a form, or a command line 
area. It can also be viewed as the largest unit of the user interface over which 
disparate input events should be serialized and combined into a single stream, 
rather than divided up and distributed to separate objects. Thus an interaction 
object is a locus both of maintained state and of input serialization. 

2. How should an input handler for each interaction object be specified? Observe 
that, at the level of individual objects, each such object conducts only a single- 
thread dialogue, with all inputs serialized and with a remembered state whenever 
the individual dialogue is interrupted by that of another interaction object. Thus 
a conventional single-thread state diagram is the appropriate representation for 
the dialogue associated with an individual interaction object. The input handler 
for each interaction object is specified as a simple state transition diagram. 

3. How should the specifications of the individual objects be combined into an 
“outer loop” or overall direct-manipulation user interface? As noted, a direct- 
manipulation interface could be described with a single, large state diagram, but 
since the user sees the structure of the user interface as a collection of many 
semi-independent objects, that is not a particularly perspicuous description. 
Instead, a standard executive will be defined that embodies the basic structure 
of a direct-manipulation dialogue and includes the ability to make coroutine calls 
between individual state diagrams. This executive operates by collecting all of 
the state diagrams of the individual interaction objects and executing them as a 
collection of coroutines, assigning input events to them and arbitrating among 
them as they proceed. To do this, a coroutine call mechanism for activating state 
diagrams must be defined. This means that whenever a diagram is suspended by 
a coroutine call to another diagram, the state in the suspended diagram is 
remembered. Whenever a diagram is resumed by a coroutine call, it will begin 
executing at the state from which it was last suspended. The executive causes 
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the state diagram of exactly one of the interaction objects to be active at any one 
time. As the active diagram proceeds, it reaches each state, examines the next 
input event, and takes the appropriate transition from that state. It continues in 
this way until it reaches a state from which no outgoing transition matches the 
current input. Then, the executive takes over, suspending the current diagram, 
but remembering its state for later resumption. (It follows that a diagram can 
only be suspended from a state in which it seeks an input token.) The executive 
examines the diagrams associated with all the other interaction objects, looking 
at their current (i.e., last suspended from) states to see which of them can accept 
the current input. It then resumes (with a coroutine call) whichever diagram has 
a transition to accept the input. If there is more than one such diagram, one is 
chosen arbitrarily. In typical designs, however, there will be only one diagram 
that can accept the input. Since entering and exiting disjoint screen regions will 
be important input tokens in a typical direct-manipulation interface, this is 
straightforward to arrange when the interaction objects correspond to screen 
regions. (In some situations, such conflicts can also be detected by static analysis 
of the interface specification.) Depending on the overall system design, an input 
token acceptable to no diagrams could be discarded or treated as a user error. 
While the language assumes a single top-level executive, the use of component 
objects and synthetic tokens described below allows the specification to use a 
deeper hierarchy in describing systems. 

The initial design for the executive called for a list of acceptable input events 
or classes to be associated with each state in each diagram. This list would act 
like a guard in a guarded command [ll] or a when clause in a select/accept 
statement in Ada. By associating different guards with different states, a diagram 
could dynamically adjust the range of inputs that it will accept. The executive 
for such a system would examine the guard associated with the current state of 
every diagram in execution to decide which diagram should be called to accept 
each new input. The current design should be viewed as achieving the same 

result, even though it does not identify the guards explicitly. What would have 
been given as the guard for each state is now derived implicitly from the range 
of inputs on the transitions emanating from that state. This requires somewhat 
more care in specifying “catchall” transitions, but greatly reduces the redundancy 
and bulk of the specification. (The operation of the executive is described further 
in Section 15.) 

The new specification language also makes heavy use of techniques of object- 
oriented programming. The interaction objects themselves are specified and 
implemented as objects, in the sense of Smalltalk [7] or Flavors [34], and diagram 
activations and tokens are implemented as messages. The notion of coroutines, 
however, is superimposed upon the objects as the means for describing how the 
individual interaction objects are bound together into the top-level dialogue that 
the user ultimately sees. Other recent work on specifying and building graphical 
user interfaces has also used an object-oriented approach [8, 19, 281. Typically, 
they model the dialogue by a collection of separate objects, each with an input 
handler. However, they have not proposed that the input handlers explicitly 
specify their state-dependent responses by means of state transition diagrams or 
that they retain their states during execution by coroutine activation. Cardelli 
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and Pike [3] achieved a similar result using communicating finite-state machines 
with actual concurrency. The use of coroutines in the present language, combined 
with the synthetic tokens described below, can also be mapped into the abstract 
device model introduced by Anson [l], but that, too, does not use state diagrams 
to describe the state and behavior of the abstract devices. Anson points out the 
weakness of a single-thread state diagram for describing direct-manipulation 
interfaces: “It cannot simulate a device . . . which retains its value between uses 
and which can be changed by the user at any time” [l]. The present technique 
attempts to remedy this problem without giving up the benefits of state diagrams 
for depicting device state and state-dependent behavior. 

6. TOKENS IN INTERACTION OBJECTS 

To complete the user-interface specification, it will be necessary to define a 
collection of low-level inputs and outputs, which can be invoked by the state 
diagrams. These will correspond to tokens. Examples for input are button clicks 
(both down and, where supported, up), cursor entering or exiting regions, and 
keyboard characters; for output, they include highlighting or dehighlighting 
regions, displaying or erasing graphical objects, and “rubber band” or other 
continuous “dragging” feedback. These tokens can be associated with transitions 
in the state diagrams. The internal details of these low-level input and output 
operations will be specified separately from the state diagrams that call them 
and in a different, more suitable notation, perhaps even as short procedures in a 
programming language or calls to an interactive graphics package. In practice, 
the use of inheritance discussed in Section 9 will make most tokens easy to 
describe irrespective of the choice of notation. 

7. AN EXAMPLE SPECIFICATION 

Figure 2 shows a specification of a single screen button as an individual interac- 
tion object using this approach and a simple Ada-based notation. This particular 
button is highlighted whenever the cursor is inside it. If the user presses the left 
mouse button while pointing to it, the message tile inbox is displayed. An 
interaction object such as the one in Figure 2 is an object, comprising a collection 
of variables, methods, and other impedimenta, most of which are subject to 
inheritance. Specifically, the specification of an interaction object can contain 
the following components: 

FROM: A list of other interaction objects from which this one inherits 
elements, with ordering rules similar to those for Flavors (i.e., components from 
objects listed first override those listed later). 

IVARS: A list of the instance variables for this object and their initial values. 
These may also include other, lower level interaction objects that will be used as 
component parts of this one. 

METHODS: Procedure definitions unique to this object. In addition, each 
interaction object may be required to supply (possibly by inheriting default 
definitions) certain standard procedures, such as Init or Destroy. 

TOKENS: Definitions of each of the input and output tokens used in the 
syntax diagram for this interaction object. In Figure 2 they are given in English; 
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INTERACTION-OBJECT MessageFlleDisplayButton is 

IVARS: 

position := { 100, 200, 64, 24 }, --i.e., coordinates o/screen rectangle 

METHODS: 

Draw () ( DrawTextButton(position, “Display”); ) 

TOKENS: 

iLEFT { --click left mouse button-- } 

iENTER ( --locator moues inside rectangle given by position-- } 

iEXIT { --locator moues outside rectangle given by position-- ) 

oHIGHLIGHT { --invert video of rectangle given by position-- } 

oDEHIGHLIGHT { --same as oHIGHLIGHT-- } 

SYNTAX: 

main 

end INTERACTION-OBJECT; 

Fig. 2. Specification of a direct-manipulation screen button. 

in practice they could be given as code in a conventional programming language 
or in a simple notation specialized for this purpose. 

SYNTAX: The input handler for this interaction object, expressed as a 
conventional state transition diagram, which will be called by the executive as a 
coroutine. The diagram specifies the sequence in which the tokens and other 
actions defined above will occur. In the diagram, each state transition can have 
an input or output token, the name of another diagram to be called as a 
subroutine, an action to be performed, a condition to be tested, or nothing, in 
which case it is taken when no other transition can be. Names of input tokens 
begin with i, and names of output tokens begin with o. An action, such as 
DisplayMf(inbox) in Figure 2, calls a procedure that is defined in the application 
(semantic) code, which is separate from the user-interface specification. A con- 
dition calls a similar procedure that returns a Boolean value. Further details of 
this notation are found in [14] and [16]. For readability, states from which it is 
possible for the dialogue to be suspended are marked with U+“; they are a subset 
of the user-uisible states [16]. This diagram could also have been entered or 
displayed in a text form, rather than the graphical form shown in the figure. 
(With the inclusion of arbitrary functions in the condition and action transitions, 
this state-diagram language has the formal power of a Turing machine. Without 
condition and action transitions, but with recursive calls to subdiagrams permit- 
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ted and nondeterministic execution, the language would be equivalent in power 
to a context-free grammar [12, 161.) 

SUBS: Additional state diagrams, called as subroutines by the syntax diagram 
above. 

STATES: A list of “mixin” [34] or “kernel” [27] states, which are used to 
define standard sets of behaviors, such as sensitivity to abort or help keys. They 
can be applied to states in the above diagrams, as a convenient abbreviation, so 
that such descriptions do not have to be repeated for each state. 

8. DISCUSSION OF FIGURE 2 

How does the syntax diagram given for this interaction object operate with the 
executive? When the cursor enters the screen area for this button, the input 
token iENTER is generated. This token iENTER is defined locally within 
object MessageFileDisplayButton as an event that occurs when the cursor 
enters the screen region given by the local variable position. (Other interaction 
objects might also use a token named iENTER, but each would provide a 
different local definition.) Since no other interaction object will have state 
transitions that accept iENTER as defined here, the diagram for this object will 
be called as a coroutine by the executive. This diagram will take over, accept the 
input, highlight the button, then wait for more input (in the second of the two 
states marked with a “+“). If the next input is the button press (iLEFT), this 
object performs its action. (At this point, this screen-button object should be the 
only interaction object that is in a state ready to accept the iLEFT; hence the 
executive will activate this object and no others.) If the next input is the cursor 
exiting this region (iEXIT), this object dehighlights itself and returns to its start 
state. There it waits only for another iENTER and ignores other inputs. (In 
particular an iLEFT or other button click will no longer be accepted by this 
object, but would probably be accepted by some other object.) Returning to the 
second state marked “+,” if the next input received in that state is anything 
other than iLEFT or iEXIT (e.g., a keyboard key), another diagram that has a 
transition that can accept that input will be called by the executive. As soon as 
another input that this diagram can accept occurs, it will be resumed in the same 
state (the second one marked “+“). 

Why does the state diagram look so complex for an operation that seems 
intuitively simple to describe? The reason is that there are several possible 
plausible alternative behaviors for the precise handling of sequences of clicks and 
mouse motions in a screen button. There are other ways in which the exiting and 
dehighlighting could be handled. Or the screen button could be highlighted when 
the mouse button is depressed and perform the action when it is released (see 
Figure 5). The writer of the user-interface specification must be able to indicate 
exactly which of these possibilities is intended. It is not sufficient to describe the 
user interface imprecisely and leave the details up to a coder. Nor is it sufficient 
to supply one standard version of a screen button and prevent the designer from 
changing it. Given that the user-interface designer must provide this precision, 
state transition diagrams are an appropriate notation for so doing. 

Where are the semantic ana! lexical levels? The bulk of Figure 2 describes the 
syntactic level of the dialogue. The lexical-level specification consists of the 
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definitions of any input or output tokens used in the dialogue; in Figure 2 
they are shown as comments, and in Figure 15 as LISP code for a particular 
input/output package. The semantic specification consists of the definitions of 
any semantic actions or conditions called by the dialogue (in this example, 
DisplayMf); they are written as procedures in a conventional programming 
language. The interface from the syntactic level to the lexical level is via calls 
from the syntax diagram to the tokens; the interface from the syntactic level to 
the semantic level is through calls from the diagram to semantic action and 
condition procedures. (Asynchronous feedback from the semantic domain is given 
by synthetic tokens, which are discussed in Section 12; an example of such 
feedback appears in Figure 11.) 

9. INHERITANCE 

The remaining problem with this notation is that the interaction-object descrip- 
tions for a nontrivial direct-manipulation system are going to become bulky and 
repetitive. The solution is inheritance of the parts of the interaction objects. In 
the present specification language, an interaction object inherits all of the 
IVARS, METHODS, TOKENS, SUBS, and STATES of the objects listed in 
its FROM section and adds them to any that the object itself declares. If the 
object declares an IVAR, METHOD, TOKEN, SUB, or STATE of the same 
name, it overrides the inherited one. In turn, all of an object’s own and inherited 
parts are inherited by its children. The entire SYNTAX diagram is also inherited 
and may be overloaded as a unit. (A notation for selectively overloading portions 
of it may be added in the future. It would allow all the transitions from a state 
to be inherited and then supplemented with other transitions from the same 
state, or overriden by transitions from the same state that use the same token. 
Note also that much of this effect can be achieved with the present implemen- 
tation by dividing the diagram appropriately and using inheritance of SUBS and 
STATES.) 

Figure 3 shows part of a library of generic interaction objects, from which 
components can be inherited. The library object GenericItem defines some 
tokens that are applicable to a wide range of screen items. Note that the tokens 
iENTER and iEXIT are defined generically, in terms of an unspecified instance 
variable, position, which is to be supplied by the inheriting object. Like a “mixin” 
flavor [34], it is not expected that GenericItem will be instantiated by itself, 
but will contribute its token definitions to other, more specific objects by 
inheritance. Highlighter is another mixin object that defines items related to 
highlighting. By specifying it as a separate object, definitions related to highlight- 
ing can be collected together and maintained more easily. It contains the tokens 
oHIGHLIGHT and oDEHIGHLIGHT, again defined in terms of the instance 
variable position, to be supplied by another object. It also provides an example 
of the use of subdiagrams, enterhigh and exitdehigh, which can now be called 
as subroutines from the SYNTAX diagram of any object that inherits from 
Highlighter. Finally, a generic screen button GenericButton is defined. It is 
similar to the one specified in Figure 2, but useful for other applications. This, 
too, is a mixin object, not expected to be instantiated by itself. It inherits all the 
components of Highlighter and GenericItem. It defines the Draw procedure 
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INTERACTION-OBJECT GenericItem is 

TOKENS: 

iENTER { --locator mows inside rectangle given by position-- } 

iEXIT { --locator moves outside rectangle given by position-- } 

--position is a local variable, to be provided by objects that inherit from GenericItem 

iLEFT { --click left mouse button-- } 

iMIDDLE { --click middle mouse button-- } 

iRIGHT { --click right mouse button-- } 

iCHAR { --keyboard character, value returned in variable viCHAR-- ) 

end INTERACTION-OBJECT; 

INTERACTION-OBJECT Highlighter is 

IVARS: 

IsHighlighted = false, 

TOKENS: 

oHIGHLIGHT { if not isHighlighted then 

InvertRect(position); isHighlighted = true; 

end if; } 

oDEHIGHLIGHT { if isHighlighted then 
InvertRect(position); IsHighlighted := false; 

end if; } 

SUBS: 

enterhigh 

oHIGHLIGHT 

exitdehigh 

end INTERACTION-OBJECT; 

INTERACTION-OBJECT GenericButton is 

FROM: Highlighter Genericltem; 

METHODS: 

Draw () { DrawTextButton(position, legend), } 

SYNTAX: 

exitdehigh Act: DoAction() 

end INTERACTION-OBJECT; 

Fig. 3. Some library interaction objects. 
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INTERACTION-OBJECT MessageFileDisplayButton2 is 

FROM: GenericButton; 

IVARS: 
position := { 100, 200, 64, 24 }; 

legend := "Display", 
file := inbox; 

METHODS: 

DoAction () { DisplayMf(file); } 

end INTERACTION-OBJECT, 

Fig. 4. Specification of the screen button of Figure 2, using 
inheritance from Figure 3. 

generically, in terms of an instance variable legend instead of a constant, and it 
provides an inheritable syntax diagram that describes a “standard” screen button. 
The action in the syntax diagram calls a procedure named DoAction, which 
each inheriting object can define in its own way. The SYNTAX diagram also 
uses some of the tokens and subdiagrams defined in and inherited from 
Highlighter and GenericItem. 

Given these primitives, the particular button defined in Figure 2 can now be 
written more compactly by inheriting the aspects that are common to other items 
and screen buttons and defining only those specific to this particular button. The 
specification in Figure 4 defines the same object as that of Figure 2, taking 
advantage of the library. It inherits the components of GenericButton and, 
through it, Highlighter and GenericItem. It defines only the instance variables 
position (which is used by the tokens in GenericItem and Highlighter) and 
legend (used by Draw in GenericButton) and the procedure DoAction (called 
by the syntax diagram in GenericButton). Everything else is inherited from the 
generics, including the syntax diagram itself from GenericButton. If a user- 
interface designer did want this particular screen button to be different from the 
standard ones, the designer would simply overload those aspects of the generic 
objects that he or she wanted to change. 

In practice, a more convenient way to assemble a collection of similar screen 
buttons would be to define MessageFileDisplayButton2 as a type and then 
instantiate it for each individual button and message file, parameterized by the 
instance variables of MessageFileDisplayButton2. For example, in Ada-like 
notation, 

X := new INTERACTION-OBJECT MessageFileDisplayButton2 
(position=>[lOO, 250, 64, 241, file=>newbox); 

Y := new INTERACTION-OBJECT MessageFileDisplayButton2 
(position=>(lOO, 300, 64, 241, file=>anotherfile); 

etc. 

Given a library of useful generic interaction objects, the job of designing and 
specifying a new direct-manipulation interface becomes much less arduous. The 
principal aim of the research at the stage reported here, however, is to devise an 
appropriate specification language, based on the clearest and simplest adequate 
model, rather than to develop a complete library or tool kit. It has been seen that 
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INTERACTION-OBJECT GenerIcButton is 

FROM: Highlighter GenericItem; 

METHODS: 

Draw () { DrawTextButton(posltlon, legend); } 

SYNTAX: 

mam 

end INTERACTION-OBJECT; 

INTERACTION-OBJECT GenericButton is 

FROM: Highlighter GenerIcItem; 

METHODS: 

Draw () { DrawTextButton(posltion, legend); } 

SYNTAX: 

main 

end INTERACTION-OBJECT; 

Fig. 5. Some alternative types of screen buttons. 

this language can be used either to describe individual user interfaces from 
scratch, or to describe and build up a library of interaction techniques and then 
specify user interfaces built from them. 

10. FURTHER EXAMPLES 

Figure 5 shows some alternative types of screen buttons. Unlike the one in 
Figure 3, these two assume an executive that reports both up and down transitions 
of the mouse buttons individually and a version of GenericItem that defines 
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INTERACTION-OBJECT TypeinField is 

FROM: GenerIcItem; 

IVARS: 

position; 

class ,= “UNCLASSIFIED”; 

METHODS: 

Draw () ( DrawText(posltion, class); } 

TOKENS: 

oSHOWCLASS { DrawText(position, class); } 

SYNTAX: 

main 

end INTERACTION~OBJECT; 

Fig. 6. Specification of a type-in field. 

separate tokens for them (i.e., ILEFTUP, iLEFTDN, iMIDDLEUP, etc.). 
GenericButton behaves just like GenericButton in Figure 3, but its syntax 
diagram has transitions that accept both the iLEFTDN and iLEFTUP tokens 
to work with such an executive. The specification clearly shows that the action 
occurs after the button goes down, rather than up. It also handles the unusual 
case in which the button is depressed, action occurs, the cursor is moved out of 
the region, and then other input events occur while the button is still down. In 
that case, the other inputs would cause GenericButtonS to be suspended (from 
the state shown at the extreme right of the diagram) and another interaction 
object, which had a transition for the new input, to be resumed. Some time later, 
when the left button is finally released, GenericButton would be resumed and 
make the transition (shown as the larger lower loop) back to its initial state. 
This is appropriate because that “dangling” iLEFTUP event logically belongs 
to this dialogue, despite any delay or intervening interactions. (A more convenient 
and general mechanism for translating sequences of up and down events into 
simple click events will be given in Figure 10.) 

GenericButton shows a screen button with a different behavior. This one 
does not highlight itself until the mouse button is depressed, and then it performs 
its action when the button is released-provided the cursor is still within the 
screen button. 

Figure 6 shows a type-in field, like the ones for security classification (“Class”) 
that will be seen in Figures 16 and 17. As specified, it allows a user to click on 
the field and then type characters into it. Each time the user moves to any other 
dialogue, he or she must again click on this field before resuming typing in it. 
This is specified in the syntax diagram with the aid of the unlabeled transition 
shown leading toward the leftmost state in the diagram. This transition will be 
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INTERACTION-OBJECT ScrollBar is 

FROM: 

IVARS: 

position; 

legend 

scrollOffset 

METHODS: 

Draw () 

TOKENS: 

iMOVE 

iLEFTDN 

oSHOWBAR 

SYNTAX: 

main 

GenericItem; 

‘= “Scroll:“, 

:= 0, 

{ DrawBar(posltion, legend, scrollOffset); } 

{ --Any mozl~e motion within boundaries of position, 

--return scaled X coordinate of mouse in scTollOflset-- } 

{ --Overloads standard definition of SEFTDN with one that accepts 

--same click then sets scrollOffset:= scaled X coord of mouse -- } 

{ --Fill or erase bar up to location corresponding to scrollOffsel-- } 

iLEFTDN 

end INTERACTION-OBJECT; 

Fig. 7. Specification of a scroll bar. 

taken whenever no other transition can be taken from the state that normally 
accepts and processes the iCHARs. After that transition to the leftmost state is 
taken, if the diagram still cannot handle the input, it will be suspended from its 
leftmost state. The result is that if, during type-in of the text, an input destined 
for another interaction object is received, the TypeinField object makes the 
transition to its leftmost state before it is suspended. This guarantees that a new 
iENTER and iLEFT must be received before the user can return to typing the 
text. The function Edit(line,char) shown on one of the transitions implements 
a simple input line editor. The variable viCHAR contains the data returned by 
token iCHAR, following a standard naming convention. 

Figure 7 shows a simple interactive graphical image-a scroll bar, like those in 
Figures 16 and 17. To use it the user points to it and depresses the left mouse 
button; then, as the mouse is moved, the bar drags on the screen to follow it. 
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When the mouse button is released, the display is scrolled in proportion to the 
new position of the bar. As with GenericButton above, this syntax diagram 
explicitly handles the unusual case where the user moves the mouse to the scroll 
bar, depresses the button, then, while holding it down, exits the scroll bar, 
possibly performs other interactions, and then later reenters the scroll bar with 
the button still held down. This object will resume dragging the bar when the 
cursor reenters it. Other behaviors could have also been specified and distin- 
guished in this notation. For example, exiting the scroll bar could finish scrolling 
the display and then the subsequent iLEFTUP could be consumed and ignored. 

It becomes clear that the state transition diagram notation is being used to 
describe interaction down to a rather fine-grained level. For a direct-manipulation 
interface, such details are important; and since they may vary significantly across 
the objects, this is appropriate. For example, the loop consisting of iMOVE and 
oSHOWBAR could have been defined inside a single token that accepts the 
mouse motion and echoes it by drawing the bar, but they were shown more 
explicitly instead. A slightly different scroll bar might scroll continuously as the 
user moves the cursor; releasing the button would then just stop the scrolling. 
Its syntax diagram would differ precisely at the point of the iMOVE- 
oSHOWBAR loop in Figure 7. 

11. COMPONENT OBJECTS 

It may also be helpful to describe an interaction object as a combination of 
several other components, each of which is a separate interaction object. In 
contrast to inheritance, where an object inherits the properties of another type 
of object, here one object simply contains one or more smaller objects. Those 
component objects are full-fledged interaction objects, possibly with their own 
SYNTAX coroutine diagrams. They are automatically instantiated whenever 
the enclosing object is created (and at no other time) and similarly automatically 
drawn and destroyed. In other respects, the component objects are simply 
instance variables of the larger object. 

For example, Figure 8 shows a combination object TypeinObject that com- 
bines a type-in field and its associated screen button, TypeinField and 
TypeinButton, respectively, like the security classification items that will be 
seen in Figure 16. By combining them, TypeinField and TypeinButton can 
more easily refer to their common variable, class. They are also instantiated, 
redrawn, and destroyed simultaneously, and their relative locations are spec- 
ified more conveniently. Since they belong together logically, it is helpful to 
have a notation that allows them to be combined. The specification of the 
TypeinButton component also takes advantage of the GenericButton 
specified in Figure 3. 

12. SYNTHETIC TOKENS 

Such component objects may also be used to provide low-level input or output 
operations, such as cursor tracking, and to summarize sequences of such inputs 
or outputs into larger units to be processed by the higher level objects [l]. This 
design allows modularity by describing low-level tracking operations separately 
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INTERACTION-OBJECT TypeinObject is 

IVARS: 

position; 

class 

button 

text 

:= “UNCLASSIFIED”, 

.= “WV INTERACTION~OBJECT TypemButton( 

position=> posltion); 
:= IWV INTERACTION-OBJECT TypemField( 

position=> posltlon + TextSlze(“Class.“), 

METHODS: 

Draw () { DrawBorder(position), } 

end INTERACTION-OBJECT; 

INTERACTION-OBJECT TypeinButton is 

FROM: 

IVARS: 

position, 

legend 

METHODS: 

DoAction () 

GenericButton, 

:= “Class:“, 

{ Reclassify(parent.class), } 

--Note: the pseudo-variable parent refem to the object of which 

--TypeinButton is itself an instance variable (i.e., TypeinObject) 

end INTERACTION.-OBJECT; 

INTERACTION-OBJECT TypeinFIeld is 

FROM: GenericItem, 

IVARS: 

position; 

METHODS: 

Draw () { DrawText(posltlon, parent.class); } 

TOKENS: 

oSHOWCLASS { DrawText(positlon, parent.class); } 

SYNTAX: 

main 

end INTERACTION-OBJECT; 

Fig. 8. Specification of an entire type-in object, using component objects. 

from their higher level syntactic meaning. To provide this feature, the syntax 
diagrams of interaction objects are extended to be able to send and receive 
synthetic “tokens” to or from each other. Thus a lower level object can receive 
and respond to a collection of user actions and then summarize them by trans- 
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INTERACTION-OBJECT Clicker is 

FROM: GenerIcItem; 

IVARS: 

position; * 

METHODS: 

Draw () { null; } --Note this interaction object has no smen representation 

TOKENS: 

sCLICK { SendTo(parent); ) 

SYNTAX: 

main 

end INTERACTION-OBJECT; 

Fig. 9. Specification of an object that converts individual up and down opera- 
tions of a button into single clicks, using synthetic tokens. 

mitting a single synthetic token to its higher level object. The higher level object 
syntax diagram can have transitions to receive only the synthetic token, rather 
than the lower level input actions. 

Such a synthetic token can be viewed as a rendezvous between the syntax 
diagrams of the lower and higher level objects. The tokens are given names of 
the forms sTOKENNAME and rTOKENNAME to send or receive the named 
event, respectively. When a diagram traverses a transition that produces 
sTOKENNAME, it is suspended in favor of any other diagram that has a 
transition that accepts the corresponding rTOKENNAME. The diagrams can 
also set and fetch variables of the form vTOKENNAME to communicate 
information at the rendezvous. Such tokens will generally be sent and received 
among (i.e., will be local to each set of) an interaction object and any of its 
component objects. That is, their scope is determined by the hierarchy of 
instantiations of interaction objects, rather than the inheritance hierarchy. Any 
object that sends a synthetic token declares the scope of that token; that is, it 
indicates which other interaction objects will receive the token by means of the 
SendTo statement in the token definition of the sending object. The recipient 
is normally an interaction-object instance variable of the sending object or else 
the containing (“parent”) object of the sender. 

Figure 9 shows an interaction object that provides support for receiving up and 
down button transitions inside a region and translating them into a single click 
event sCLICK. It receives the low-level inputs iENTER, iEXIT, iLEFTDN, 
and iLEFTUP and processes them into the simple higher level token sCLICK, 
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INTERACTION-OBJECT TypeinField is 

FROM: GenericItem, 

IVARS: 

position; 

class := “UNCLASSIFIED”; 

c := new INTERACTION-OBJECT Cllcker(posltlon=>positlon); 

METHODS: 

Draw () { DrawText(position, class), ) 

TOKENS: 

oSHOWCLASS { DrawText(position, class); ) 

SYNTAX: 

main 

end INTERACTION-OBJECT; 

Fig. 10. An alternate way to specify the type-in field, using Clicker and synthetic 

tokens. 

which it sends to the larger object within which it has been created as an instance 
variable. In this respect it is used like a process in Squeak [3]. It is intended for 
applications where entering and exiting the region are of no interest except 
insofar as they determine whether a down click is inside or outside the region, 
and up clicks are of no syntactic importance. An example is a simple screen 
button that just responds to a click of the mouse button in its region. 

Figure 10 shows a revised version of the TypeinField shown in Figure 6, here 
using the new Clicker. To use Clicker the enclosing object (TypeinField) 
instantiates it as one of its instance variables and provides it the correct value 
for its position. Then, TypeinField need not process iENTER, iLEFTDN, 
and similar events, but simply waits to receive an rCLICK from the Clicker 
object. Clicker is used as a component (IVAR) of TypeinField, rather than as 
a mixin (FROM). It is thereby created as a separate interaction object, whose 
syntax diagram will run concurrently (as a coroutine) with all the other diagrams. 

The synthetic tokens are intended to be used principally to build up composite 
input events, in order to build higher level objects with higher level tokens out 
of lower ones. By broadening the scope of such a token, it could also be used for 
more general interprocess communication, particularly for asynchronous events 
from the semantic or application code (which can run concurrently with the user- 
interface executive, rather than as a coroutine). An application could send such 
a token as a means for indicating an event to which the user interface must 
respond. Figure 11 shows a simple display panel meter using this approach. It 
responds to some external event (as recognized by the application code) and 
continuously displays a value; it has no user input. The application code sends 
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INTERACTION-OBJECT Meter is 

IVARS: 

position; 

currentvalue 

METHODS: 

Draw () 

TOKENS: 

:= startingvalue; 

{ --Draw a meter dial with pointer at currentValue-- } 

rVALCHANGED { currentValue:= vVALCHANGED; } 

oSH0WVA.L { --erase meter pointer and redraw at location for currentValue-- } 

SYNTAX: 

main 

- 

end INTERACTION-OBJECT; 

Fig. 11. Specification of a display meter that monitors a value. 

the synthetic token sVALCHANGED whenever the monitored value changes. 
It can also send data via the associated variable vVALCHANGED. The appli- 
cation (semantic) code need not know about the way in which sVALCHANGED 
will be handled by the dialogue (syntactic) specification, or even whether it will 
cause a change in the display. It merely announces the occurrence of an event 
that is meaningful to the dialogue, and the dialogue specification then indicates 
how the user interface will respond to it. (If a syntax diagram responds to this 
event in the same manner from several different states, the STATES notation 
can be used to describe the situation more compactly.) 

A further extension would generalize the interface between the syntax diagram 
and the application (semantic) code from procedure calling to message passing. 
This would permit more complex protocols betwen the semantic and syntactic 
parts of the system than the current example. It would also make it easier to 
specify user-generated interrupts or aborts that occur during semantic processing. 
An individual state transition in the syntax diagram could either send a message 
(typically a request to perform a function) or await a message (most often 
indicating completion of the function). The procedure call protocol used in the 
examples would be a straightforward degenerate case of this scheme (every “send 
request” transition would be followed immediately by an “await completion 
message” transition). 

13. SPECIFYING A FORM 

A fill-in form or property sheet would be specified using the component object 
and synthetic token mechanisms introduced. Figure 12 shows the specification 
of a simple form, such as that for changing a user’s password seen in Figure 17. 
The overall form is specified by a composite object FillinForm. It consists of 
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INTERACTION-OBJECT FillinForm is 

IVARS: 

position; 

but 

oldpw 

METHODS: 

Draw () 

TOKENS: 

oERRORMSG 

SYNTAX: 

main 

:= new INTERACTION~OBJECT FillmButton( 

position=>position); 

:- new INTERACTION-OBJECT FillinField( 

position=>positron+Height(FillinButton), 

legend=>“Old password”, 

word=>““); 

.= new INTERACTION-OBJECT FillinField( 

position=>position+Height(FillinButton)+Height(FillinField)~ 

legend=>“New password”), 

( DrawBorder(position); } 

{ ShowErrorMsg(“Please enter old password first”); ) 

end INTERACTION-OBJECT, 

Fig. 12. Specification of a simple form, using synthetic tokens. 

three display regions: a button that causes the password to be changed, a type-in 
field for entering the old password, and another type-in field for the new password. 
They are all specified as components of FillinForm: a FillinButton and two 
FillinFields, respectively. FillinForm and its components specify different 
levels of the syntax. The FillinButton and FillinFields specify the syntax for 
processing mouse clicks and characters within the individual fields. They pass a 
synthetic token to the FillinForm. FillinForm specifies the overall syntax of 
the form using the synthetic token and provides a scope for the shared variables. 
It describes the syntactic relationship of the three individual objects, but not the 
internal operation of each of them. It also enforces a simple syntactic constraint 
that requires that a value for the old password be entered before the user can 
attempt to change the password. In a more complex form or property sheet, the 
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INTERACTION-OBJECT FlllmButton is 

FROM: GenericButton; 

lvARs: 

position; 

legend := “Change Password”; 

TOKENS: 

sDOIT { SendTo(parent); } 

--This syntaz section overloads the standard one inherited from GenericButton 

SYNTAX: 

end INTERACTION-OBJECT; 

INTERACTION-OBJECT FillinField is 

FROM: 

lvARs: 

position; 

legend; 

word; 

GenericItem; 

METHODS: 

Draw () ( null; } --does not display word 

SYNTAX: 

mam 

end INTERACTION-OBJECT; 

Fig. 12 (continued) 

interrelationships of the components would be specified here. The syntax dia- 
grams for the enclosing object would specify and restrict the permissible se- 
quences in which it will accept the synthetic tokens from its components. For 
example, “car radio” buttons or option selections that appear and disappear based 
on actions in other fields would be specified in this way. (A better direct- 
manipulation interface for the password form shown here would hide or make 
inactive the FillinButton whenever its operation was disallowed rather than 
give an error message. It requires a slightly more complex diagram than the 
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simple example given, but it would still maintain the separation of specification 
of aspects of the dialogue syntax pertaining to the individual components from 
specification of the syntactic relationships between those components.) 

The present approach also makes it easy to describe a general class of window- 
management systems. Most existing window managers permit only one window 
to receive user input at a time. While some systems allow several windows to 
receive and display outputs simultaneously, one window (the “listener”) still 
receives all inputs. There is no fundamental reason for this asymmetry. It is 
possible to envision a window system in which text input from the keyboard is 
accepted in a typescript command window and simultaneous graphical input 
from the mouse is accepted in another window. The specification language can 
describe such cases conveniently and naturally. Each window is an interaction 
object with a state diagram that accepts a mutually exclusive set of inputs. For 
the example given, one diagram would accept mouse events, and the other, 
keyboard. It would be equally easy to describe a more unusual user interface, in 
which, for example, one window accepts the letter a and another accepts b. The 
traditional single-listener paradigm is simply a special case, in which a “change- 
listener” command puts one window into a state where it accepts all the inputs 
until the next change-listener command, and all the other windows into states 
where they accept only the signal resulting from the change-listener command, 
similar to the way in which car radio buttons are specified to enable and disable 
one another. 

14. GRAPHICAL OBJECTS 

Figure 13 gives a portion of the specification of a painting system similar to 
MacPaint, and Figure 14 shows it in operation. The basic structure of each 
command in the specification is like that of ScrollBar shown in Figure 7. For 
clarity, Figure 13 shows the operation of only two of the painting commands- 
drawing with a “brush” and dragging a “rubber-band” rectangle. The dialogues 
for all but two of the other commands (text and polyline) are identical to one of 
these two cases. Figure 13 gives the interaction object for the main graphical 
window, but it does not show the three other windows containing commands or 
option selections. Each of those other windows is implemented as a separate 
interaction object containing an array of buttons. The buttons are all specified 
similarly to GenericButtonS, shown in Figure 5, but they communicate with 
each other through synthetic tokens so that only one button in each of the three 
windows can be selected at a time. Choosing a button in either the linewidth or 
pattern-selection window changes the value of a global variable used in subse- 
quent drawing operations. Choosing a button in the command selection window 
sends the synthetic token NEWCMD to the paint window (i.e., the interaction 
object specified in Figure 13), with the value of vNEWCMD set to the name of 
the chosen command. 

Note that a graphics system could have been represented in several other ways, 
depending on the nature of the dialogue it conducts with the user. In this and 
most typical systems, the main interaction in the graphics area is best described 
as a single-thread dialogue with a main command loop. It is thus represented as 
a single interaction object with one state diagram. Parameter setting windows, 
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INTERACTION-OBJECT PaintWindow is 

FROM: 

IVARS: 

posltion 

prevMove; 

METHODS: 

Draw () 

TOKENS: 

iLEFTDN 

iMOVE 

oBRUSH 

oDRAGRECT 

oDRAWRECT 

SYNTAX: 

main 

GenericItem; 

:= {200, 20, 300, 240); 

{ EraseRect(position); } 

{ --Overloads standard definition of SEFTDN with one that accepts 

--same click then sets viLEFTDN:= X, Y coordinates 01 mouse-- } 

{ --Accepts any mouse motion within boundaries of position 

--and sets viMOVE to the X, Y coordinates of the mouse-- } 

( --Fill the area defined by viMOVE and CurrentBrushShape 

--(a global variable set by a pull-down menu) with currentpattern 

--(global variable set in the pattern selection window)-- } 

{ --Note: currentLine Width is a global variable 

--set in line width selection window 

InvertOutline(viLEFTDN, prevMove, currentlinewidth); 

InvertOutline(viLEFTDN, viMOVE, currentlinewidth); 

prevMove:= viMOVE; } 

{ DrawOutline(viLEFTDN, viMOVE, currentlinewldth); } 

end INTERACTION-OBJECT; 

Fig. 13. Portion of specification of a painting system. 
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pull-down menus, and the like each constitute an independent dialogue; they are 
appropriately described as separate interaction objects operating as coroutines. 

The operation of the various individual painting commands in the main window 
could also have been given as separate interaction objects in this language. 
However, they do not really appear to the user as separate concurrent dialogues 
with saved states. They are more clearly represented as modes or states within a 
single main dialogue. The graphical images drawn by the user could also have 
been represented in the language as separate interaction objects, instantiated 
and destroyed as needed. Again, however, to the user they are essentially passive 
objects, which respond to the main command loop; they have no saved state and 
no specific individual syntaxes. The specification language allows the description 
of more exotic systems, in which the user can create and edit different kinds of 
active objects on the screen, which can then respond to commands and have 
different syntaxes. They would be described as separate interaction objects and 
instantiated dynamically for each new object the user creates. 

15. IMPLEMENTATION 

To test the specification language, a prototype user-interface management system 
has been built. It follows the structure described here and provides an executive 
that performs coroutine calls on the individual interaction-object diagrams. The 
system accepts the specifications of a set of interaction objects and implements 
the resulting user interface. It runs under UNIX’ on a Sun Microsystems 68010- 
based workstation; it is written in Franz Lisp with the University of Maryland 
Flavors package and some C code to interface to the Sun window system. It has 
been used to build and test small systems, including the examples given here and 
many similar ones. 

The implementation uses object-oriented programming extensively. Each in- 
teraction object has an instance variable containing its syntax diagram and 
another containing its current state. A coroutine call is implemented as a message 
from the executive to the interaction object, which causes the latter to assume 
control and execute until it reaches an input it cannot accept. It then returns 
control to the executive, which sends the same coroutine call message to each of 
the other interaction objects, effectively asking each of them to accept the current 
input and proceed. As noted in the language definition, if there is more than one 
object that can accept the input, the choice among them is considered non- 
deterministic; if there is none, the executive displays a diagnostic message, 
discards the unwanted token, and proceeds. Tokens are implemented as messages 
within interaction objects, defined locally to each object or else inherited. Since 
a single mouse motion may cause several input tokens (entering and exiting 
several regions), each interaction object defines a message that accepts a new 
mouse position and decides whether any input tokens defined within that object 
should be generated. Component objects are dynamically instantiated and 
initialized by code automatically appended in the Init procedure of the 
parent object (and destroyed similarly by the Destroy procedure). The current 
design allows a clean modularization (tokens, state diagram traversals, and 

’ UNIX is a registered trademark of AT&T Bell Laboratories. 
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INTERACTION-OBJECT MessageFlleDlsplayButton is 

IVARS: 

positton = ‘( 100 200 64 24), --i.e., coordinates o/screen rectangle 

METHODS: 

Draw () (DrawTextButton posltlon “Display”), 

TOKENS: 

ILEFT --Click left mouse button 

(cond ((equal (car (NextLexeme)) ‘rLEFTDN) 

(ReadLexeme)) 

(t 4) 

IENTER __ Locator moues inside rectangle given by position 

(cond ((and (equal (car (NextLexeme)) ‘IENTER) 

(equal (cadr (NextLexeme)) self)) 

(ReadLexeme)) 

(t nII)) 

iEXIT --Locator movea outside rectangle given by position 

(cond ((and (equal (car (NextLexeme)) ‘IEXIT) 

(equal (cadr (NextLexeme)) self)) 

(ReadLexeme)) 

(t nil)) 

oHIGHLIGHT --Invert video ofrectangle given by position 

(InvertRect position) 

oDEHIGHLIGHT --Same as oHIGHLIGHT 

(InvertRect posltion) 

SYNTAX: 

+st: iENTER -+highlight 

highlight: oHIGHLIGHT -+click 

+ click: 

8 

ILEFT -+doit 

IEXIT -dehighlight 

doit: -+click act: (DisplayMf inbox); 

dehighlight: ODEHIGHLIGHT dst 

end INTERACTION-OBJECT, 

Fig. 15. Specification of the screen button of Figure 2, in the form used 

for input to the prototype user-interface management system. 

interpretation of mouse motions are all local to the interaction objects) and a 
simple (10 lines of code) executive. It leads to some inefficiency whenever one 
object yields control to another (all objects are essentially polled at that point) 
and whenever a mouse is moved (again, all objects are polled). In a more efficient 
implementation, the executive might cache a table of which objects could cur- 
rently accept which tokens, and a more efficient input handler would undoubtedly 
collect and centralize the processing of mouse motions, both at some cost in 
modular structure. 

ACM Transactions on Graphics, Vol. 5, No. 4, October 1986. 



A Specification Language for Direct-Manipulation User Interfaces l 313 

The specification language accepted by the system is the same as that shown 
in the figures in this paper, except that the bodies of the procedures and tokens 
are given in LISP rather than Ada or pseudocode comments and the state 
diagrams are entered in a text form [14, 161. Figure 15 shows the Message 
FileDisplayButton of Figure 2 in the form accepted by this implementation, 
including the LISP code for the tokens themselves and the text form of the state 
diagram. 

16. EXAMPLE OF A DIRECT-MANIPULATION SYSTEM 

Figures 16 and 17 show the display of a more complete direct-manipulation 
military message system, one of a family of prototype message systems being 
built at NRL [lo]. Such a message system is much like a conventional electronic- 
mail system, except that each message (actually, each field of each message), 
each file, and each user terminal has a security classification. On the screen a 
message is represented by an image similar to a traditional paper military 
message, and a file of messages is represented by a display of a list of the 
summaries (called citations) of the messages in the file. Some elements of each 
message citation in such a display can be changed directly by typing over them; 
they are indicated by borders around their labels. Other elements are fixed 
because the application requires it (e.g., the user cannot change the date of a 
message that has already been sent). In addition, each citation contains some 
screen buttons, which cause the indicated actions to occur. All the commands 
that the user could apply to a given message are shown on its citation as buttons. 
Specifications for these and most of the other items seen in Figures 16 and 17 
have been given above; the type-in fields were specified in Figure 8, the screen 
buttons in Figure 4, and the scroll bar in Figure 7, and the “Change Password” 
form seen in Figure 17 was specified in Figure 12. 

17. CONCLUSIONS 

Direct-manipulation user interfaces involve a set of visual representations on a 
screen and a standard repertoire of manipulations that can be performed on any 
of them. This means that the user has no command language to remember beyond 
the standard set of manipulations, few changes of mode (i.e., most commands 
can be invoked at any time), and a continuous reminder on the display of the 
available objects and their states. Direct manipulation represents a powerful 
paradigm for designing user interfaces, but such interfaces have been difficult to 
specify and program conveniently. 

Direct-manipulation interfaces were found to have a coroutine-like structure 
and, despite their surface appearance, a peculiar, highly moded dialogue. The 
specification technique introduced here exploits these observations. Each locus 
of dialogue is clearly and appropriately described as a separate object with a 
single-thread state diagram, which can be suspended and resumed, but always 
retains state. The overall direct-manipulation user interface is defined implicitly 
by the coroutine-based behavior of a standard executive, rather than inappro- 
priately as a large, highly regular state transition diagram. Given a library of 
generic interaction objects and an inheritance mechanism, the collection of 
interaction-object specifications necessary to describe a nontrivial system need 
not become cumbersome or repetitive. 
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