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. ABSTRACT

documentation. The primitives to be used in this specification fanguage,
calied a Condition Specification, are carefully defined. A specification for the
classical patrolling repairman model is used as an example to illustrate this
language. Some types of diagnostics which are possible based on such a
repreéentation are summarized, as wel| as some model specification properties

which are untestable.

CR Categories and Subject Descriptors - D.2.1 [Software Engineering]:
Requirements/Specifications -~ languages, methodologies: D.2.2 [Software
Engineering]: Tools and Techniques; 1.6.2 [Simulation and Modeling]:
Simulation Languages.

General Terms: Design, Documentation, Languages.

Additional Key Words and Phrases:- discrete event simulation, model

analysis tools, model specification languages, model development environments.
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7.0 INTRODUCTION

1.7 CONTEXT OF PROBLEM

Simulation is a widely used problem solving technique [SHANSO] which
has had mixed success [WATTT77]. Several authors, most notably [NANCS81b,
OREN82, HENRS82, ZEIG83], argue that a first step in improving the effec- .
tiveness of simulation is to recognize the need for a model development and
management environment in which tools can be used to support modeling and
analysis. Such an environment is supported by a model management system
(MMS), which is defined in [INANC81c] as

- @ set of tools that assist in the efficient creation and use of an

effective model whose application is expected to extend in scope and

time bevond the original study objectives.
The role of a MMS extends to all phases of the model life cycle, illustrated in
Figure 1; however, the focus of this work is those phases representing model
development activities and the role of a mode! development system (MDS) in
support of the nesded mode} development environment (MDE)®. The objective
of a MMS is to provide tools which can reduce the costs of constructing simu-

fation experiments while also improving the quality of the information pro-

duced by those experiments.

! The set of tools comprise the "system” (MMS or MDS) that combined with
other less tangible factors to form the "environment."
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In [NANC81a] Nance describes the Conijcal Methodology (CM) that could
underlie an MDS. The CM provides a carefully structured approach for the
construction of documented, effective model specifications. A MDS, based on
the CM, should support the production of a model representation in a form
which can be analyzed (1) to detect potential problems with a model specifica-
tion, (2) to assist in the construction of an executable representation of the
model, and (3} to construct useful model documentation. This paper
describes a model specification language -- the Condition Specification -- that
can be used in a MDS to satisfy these objectives.

The Condition Specification (CS) described in the following sections is
not intended as an expressive tool for a modeler; that is, the language is not
designed to meet the human needs for transiation of concepts into a communi-
cative representation. Rather, the CS provides the primitives by which the
time and state relationships can be formalized so that analysis of a model spe-
cificat_ion can be conducted and certain documentation can be extracted. Sec-
tion 2 provides a description of the CS language. The language is illustrated
in Section 3 by a detailed example. Section 4 describes how the above three
objectives are met by this type of representation. Section 3 summarizes these
results.

The evaluation of a modael specification language should be based on both
its ability to contribute to an improved theory of simulation and the utility of
the language; that is, its ability to assist in the construction of effective
model specifications and their implementations. Some contributions to simula~
tion theory, based on this model specification fanguage, are identified in Sec-

tion 4,



1.2 RELATED WORK

Two research areas in discrete event simulation relate most directly to
this work: the development of modeling methodologies and the development of
support tools. The following paragraphs briefly sumrﬁarize methodological
approaches and tools supporting the modeling task.

One wide-spread modeiing methodology is the network representation.
The wide use of network oriented languages speaks well of their ease of
application to a wide variety of problems. GPSS uses a network representa-
tion as do the activity cycle based languages [HUTC75]. Interestingly,
Nygaard and Dahi in discussing the development of Simula, state that early in
its design Simula was to be a network oriented fanguage. The network
approach was dropped, howeéver, when the developers became convinced of its
tack of gerierality [NYGATS, p. 249].

Several authors have suggested the process concept [BLUNG7, KIVI67,
FRANS0] or the entity-attribute-set approach of Simscript [MARK79] as a
basis for modeling methodologies. While neither provides a theory supporting
the simulation process, both provide powerfui representational and conceptual
tools for model specification.

Zeigler's work is the most significant effort to provide a sound theoret|~
cal basis for simulation. Based on finite state machines and general systems
theory, this approach provides powerful conceptual tools for dealing with the
dynamics of the simulation process, including the concept "model state trajec-
tories.” Also Zeigler's "experimental frames" provide both a theoretical basis
and some practical guidance for dealing with model validation [ZEIGTS6,

ZEIG83].



Kindler's set-theoretic approach Provides a basis for g categorization of
models, systems, and simulation pProgramming languages, although the impact
on the practical issues of model development, validation, and varification is

vet to be demonstratad [KIND7S, KIND79].

Program generators have been used for more than a decade to assist in
modei.implementatién. A program generator typically consists of g component
to build a mode} specification which is then used by another component to
éen_erate code in a particular simulation programming language. Mathewson's
DRAFT systems [MATHT7s, MATH77] use a family of generators (one for each
target simulation language) to produce programs based on entity-cycle dia-
grams. Davies' approach is to build a "language-independent description of a
situation” [DAVI76]. Other work in simulation program generators includes
Ciementson's CAPS/ECSL system [CLEM73], Lafferty's S4 system [LAFF73],
and more recently, Vidallon's GASSNOL system [VIDARBO].

that of GASP [PRIT74] and Visontay's DOCUM program for Simula [VISO79].
Zeigler, et al., have an interactive system to assist a modealer in_the con-
struction of model object descriptions [ZEIG80]. Oren's GEST language com-
bines model implementations with Zeigler's experimental frames to construct
simulation executions [OREN83]. The most ambitious attempt in this area is
the DELTA Project, which seeks to allow a modefer to develop a complete exe-
cutable simulation program [HOLB77].

Several authors discuss a formal simulation model specificatior{ and docu-

mentation language (SMSDL), first defined in [NANC77]. Kieine describes an



SMSDL which, by progressive refinement, is intended to lead to executable
Simscript programs [KLEI77]. Frankowski and Franta propose a process (and

Simula) oriented SMSDL [FRANSO].

Little evidence is found of analytic techniques to aséist in construction
of efficient model implementations. DeCarvalho and Crookes describe analyses
to improve the efficiency of an activity scanning time flow mechanism and to
identify components whose output can be saved and reused in subsequent
executions [DECA76]. Schruben analyzes "event graphs" in order to simplify

a model specification and to identify other properties of the mode! [SCHR82].

2.0 MODEL SPECIFICATION

2.7 PRELIMINARY DEFINITIONS

In order to present what follows, sorhe definitions are usafyl. To prop-
erly deal with these concepts, a distinction is made between four terms: a
system, a mode!l, a2 modeal specification, and a model implementation, each
defined below. While the distinction between a system and a model is stan-
- dard, often no distinctions are made among the last three, contribufing to the
difficulty in developing a body of theory supporting simulation. One reason
for this lack of distinction is that the characteristic properties accumulate as
one moves through this list, so that a modal implementation is also a model
specification, a model, and a system.

A starting term for these definitions is "system" as defined in the Delta
Project report [HOLB77, p. 15]:

separated from the rest of the world for some period of consideration, a

whole which we choose to consider as containing a collection of compo-
nents, :



This system may be real or imagined.

We extend this definition to allow communication between the system and
its surroundings: the system may have inputs and outputs. Inputs are items
to which the system is in some way sensitive. but which are at least partly
beyond its control. The outputs are items which the system provides for the
benefit of its surroundings; they may or may not be used by the system
itself.

Each system has an environment which may be undefined except to iden-
tify the inputs of the environment to the system and the outputs of the sys-
tem to the environment. A system may be viewed as a "black box" by its
environment so long as the communication links (here called inputs and out-
buts) between the two are adequately specified.

A mode! is an abstraction of a syst'em intended to replicate properties of
that system.

The level of detail and the type of abstraction depend on the properties the
mode!l is intended to replicate.

The study of even a very simple system can lead to several dissimilar
models, each intended to replicate particular properties of the system to some
degree of precision. The collection of properties the model is intended to
replicate is the mode/ objective. No model exists in a vacuum; each model
requires both a referent system and a set of properties that it js intended to
replicate.

The definitions for objects and attributes below are taken directly from
Nance [NANCS81b, p. 175].

A mode! of a system is comprised of objects and the relationships among
objects.

An object is anything that can be characterized by one or more attri-
butes to which values are assigned,



Values assigned to attributes conform to an attribute typing much the same as
a standard problem-oriented programming language.
If, in order to replicate the properties of the system which a model
represents, the model uses the technique of progressing through a ser-
ies of changes in a time ordered fashion, then the model is a simulation
mode! (see [GORD78, p. 39]).
The representation of time (or some indexing attribute used as a surrogate)
is fundamental to the simulation technique, although its representation is usu-
ally artificial, that is, a model may either replicate several hours of behavior
of the simulated system in a fraction of that time or require several minutes

of "real” time to replicate a few seconds of simulated time.

An jinstantiation of a model specification is the act of using a simulation
model to provide data about the behavior of the model.

A simulation model is a discrete event model if all object attributes,

other than system time, are represented as changing value only a coun-
table number of times during any instantiation.

2.2 A MODEL SPECIFICATION FORMALISM
A model specification (MS) is defined as a quintuple:
< input specifications,
output specifications,
object definition set,
indexing attribute,
transition specification >.
Each element of this quintuple is discussed below.

Each MS is embedded in an environment. This formalism requiras that
the communication links between a model and its environment be completely
specified. Any information used by the model, but controlied even partially
by ‘its environment, must bhe defined in an input specification. Likewise,
information about the behavior of the model that is communicated to its envi-

ronment is described in the output specification. Taken together, the input

and output specifications form the interface specification.



Attributes included in an output specification may serve two possible
functions_: (1) providing coordinating information about the behavior of one
component that is required by other components, or (2) reporting model
behavior as required by the model objectives (although _additional_ reporting
attributes may be specified to assist in model validation). These two roles
are not mutually exclusive since a single attribute can serve both functions.
From the.perspective of the model, the attributes used for reporting and
those used for coordination are similar since both serve a communicative func-

tion.

An object definition is an ordered pair,
< object type, object attribute set >,
All attributes associated with a particular object form the object's attribute
set. The attributes record information about the object that is useful for the
modeling task; they assume values as needed to r;ecord changes in the
object's state.

During an instantiation, several instances of the same object may exist.
For example, a queueing model might have several instances of the object
"customer,” each with its own instance of the "customer” attribute set.

For some MSs the association of an attribute with a particufar object can
be quite arbitrary, particularly if the attribute is used to coordinate actions
involving more than one object. To improve the analysis of a specification, a
single attribute may be associated with several mode] objects. Changing the
attr'_ibute value of one object changes the attribute vaiue for all the objects
sharing the common attribute.

Since the model analyses of current interest concentrate on the transition

specification, our treatment of object specifications is abbreviated. For many



compiex models, the simple approach used here is inadequate. For complex
models it may be necessary to regard some model objects as composed of both
attributes and other model objects. For example, a set is a model object
which has attributes, such as cardinality, and contains other model objects.

See [NANC79, ZEIG83] for a more complete treatment of this topic.

The mode! specification must contain an indexing attribute commonly
called "system time." (System time is a model input and a model specification
does not describe how it changes value. This is the same as saving that a

time flow mechanism is not part of the MS.)

The transition specification for a model specification defines each of the

- following:

1. " An initial state for the model. The initial state defines values for
all attributes of objects that exist at initiation (or mode] start-up)
including an initial value for system time. Different initial states
may be created for different instantiations of the same MS by
reading attribute values at modei initiation.

2. Termination conditions, that is, a definition of the conditions under

which an instantiation is to be stopped.

3. A definition of the dynamic behavior of the modet, specifying the
effect of each model component on other model components, the
model response to inputs, and how outputs are generated.

The form of this specification depends on the language used. An activity
cycle diagram specification and a Simscript specification for the .same model
are syntactically dissimilar, but both provide a transition specification. Wha-
tever descriptive tool is used, it must unambiguously define the model behav-
ior. The language presented below illustrates one form a transition specifica-
tion can assume.

In terms of the eventual implementation of the specification on a compu-

ter system, the transition specification is analogous to a program and the

10



object definitions to the data structures manipulated by the program. The
object attributes play the role of program variables, although an actual imple-
mentation normally requires additional variables.

Model specifications and model implementations are distinguished on the
basis of state variables.

Let A(M,t) be the model attribute set for a model specification M at
system time t. A model specification is a3 model implementation if, (1)
for any value of system time t, A{(M,t) contains a set of state varia-
bles' and (2) the transition function describes all value changes of
those attributes. i
Thus, if "system variables” have been added to the model attribute set so
that A(M,t) will always contain a state set, then the transition specification
should be augmented to contarlnl"-a corhplete description of how these additional
attributes change value. Since A(M,t) typically will not contain a set of state
variables, a primary function of a simulation programming language such as

GPSS or Simula is to augment the model attribute set as necessary to create a

state set,

2.3 SPECIFICATION PRIMITIVES

in order to define a set of primitives to be ﬁsed for transition specifica-
tions, we must first decide how model dynamics are to be described. Several
approaches are possibie; the one used here is that of describi'ng mode! res-
- ponses to each of a series of conditions. The transition specification is then
represented as set of ordered pairs: conditions and associated actions.
While the list of conditions in a transition specifica{ion should have certain

properties (some are discussed in [OVERS82]), in this section we define a

! Stated very briefly, a set of variables for 3 system form a state set if the
set, together with future system inputs, contain enough information to com-

pletely determine future system behavior. See [HENNG8] for a more complete
discussion.
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basic set of actions thét can be used for model specification. Five action
types are defined: changing values of attributes, time sequencing actions,
object generation and deletion, production of output, and termination of an
instantiation. The first three are used for controlling mode! behavior and the
fourth for communication with the model environment. The actions paired
with a condition in the set of ordered pairs can include any combination of
these actions. Each action is discussed in turn below.

The condition in each ordered pair is a Boolean expression composed of
model attributes.

2.3.1 VALUE CHANGE DESCRIPTIONS

One model response to a condition being met is to change one or more
attribute values. A vaiuve change description (VCD) defines this action._
VCDs consist of three components: input attributes, output attributes and an
evaluation procedure. The evaluation procedure is an algorithm specification.
Each mode! attribute used as input to the evaluation procedure is an input
attribute. Each attribute whose value is altered by the evaluation procedure
is an output attribute.

whenever queue_size > 0 and
server_status = free

then begin
queuUe_size := queue_size - ]
server_status := busy
SET ALARM( end_of_service, t )
end.

FIGURE 2: Example Condition and Actions

Figure 2 contains an example of a VCD. This figure is intended to

illustrate the concept of a VCD rather than a particular syntax.



Here "queue_size," "server_status,” and "end_of_service” are object
attributes. The condition for these mode| actions is the Boolean expression
bounded by whenever and then. The model responses to this condition
becoming true consist of three actions: two VCDs and a time sequencing
action which "schedules” a future_action (scheduling is described below). In
the first VCD, "queue_size" is both an input and output attribute. Thus
when the.specified condition is met, the only information required to deter-
mine the new value of "queue_size" is its current value. The second VCD
has no input attributes; the output attribute is "server_status " In this
case, whenever the condition is met no additional model information is
required to determine the new value of "server_status."

For several types of model analysis, we are interested in the information
required for the evaluation procedure (the input) and the attribute values
that are changed in a VCD' (the output) rather than the particular syntax
used for the transition specification. Examples in this paper u’se a Pascal-like
syntax in the VCD (see [JENS74] for a description of Pascal), although any
syntax would be satisfactory as long as input and output attributes are easily
identifiable.

An evaluation procedure may require "local variables" used to define an
algorithm which are not model attributes {("loop" indices are. an example).
2.3.2 TIME SEQUENCING

In defining the behavior of a model, enough information often exists
when a condition is met to unconditionally prescribe a future model action at 3
known value of system time. For example, when the conditions for a begin-
ning of service are met, often no information about future actions is required

to determine when the end of service should occur. Thus at points during

13



dependent, that is, dependent only upon the value of system time. (ln fact
in [OVERS82, p. 260], a proof is given that at all "times" during an instantia-
tion, at least one model action will be strictly time dependent.)

Some primitives are required to specify the relationships between state
and time. Wwe choose constructs based on Dijkstra’'s sequencing primitives.
As with Dijkstra's semaphores (see [DIJKB8]), two types of primitives are
required: one primitive for setting a signal and a second for responding to
it. In the simulation environment, canceling a signal js often useful and a
third primitive is included to support this.

The statement describing the setting of a signal has the syntax

SET ALARM( < alarm hame > [ ( < argument list > ) 1,

< time delay > )
‘where:

< alarm name > s the name of an alarm (a modei may have several
different alarms). '

alarm is signaled.
< time delay > s & nonnegative real valued expression defining the
length of the delay until the alarm is to be signaled.
An alarm name, which must be an object attribute, is described in an object
attribute specification as having the dats type time-based signal .
The semantics of this statement differ from Dijkstra's in that the state-
ment requests that a signal (here called an alarm) be set for a future point
in time rather than the current time. The mechanism s intended to be analo-

gous to setting an alarm 1o go off at a prescribed point in the future,
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aithough our alarm clock is unusually versatile in that it can be set to go off
at several different values of time simultaneously. For example, at 7:00
o'clock, the alarm could be set to go off at 8:15, 9:30, twice at 10:00 and
finally at 11:30. The time at which the alarm is to be signaled is one of the
arguments of the statement. During an instantiation of an MS the execution
of additional SET ALARM statements can add new times for the alarm to be
signaled without affecting the times that are already set.

When the alarm is signaled, a common model action is to'change the
values of some attributes. Often the values the attributes should assume
when the alarm is eventually signaled depend on the state of the model when.
the alarm is set. To provide for this in the model specification, the SET
ALARM statement may have an argument list. If so, it consists of one or
more expressions that are evaluated when the signal is set; these values are
saved and then used to assign values to attributes when the alarm is sig-

rnaled.

Each alarm name that occurs in a SET ALARM statement should also
occur in at least 6ne

WHEN ALARM( < alarm name expression >
[ ( < parameter fist > ) 1)

condition; otherwise, there can be no response to the alarm. The WHEN
ALARM condition is Boolean valued and is false except at an instant of time
that the alarm is to be signaled. The WHEN ALARM condition cannot occur as
an element in a compound condition expression; it must be the only term in
the expression. (For contrast, see the AFTER ALARM condition described
below.) As an example, if the statement "SET ALARM( machine_failure,

250 )" has been executed during an instantiation of an MS and no other

15



alarms for the name have been set, the condition "WHEN ALARM(
machine_failure )" has the value "false" until 250 units of time have passed.
The condition becomes "trye" during the instant when 250 units of time have
passed and false in the next instant (unless the alarm has also been set for
that time by some other model action). The parameter list should match that
of any corresponding WHEN ALARM action.

An alarm name expression of the form "WHEN ALARM( < alarm name 1>
& NOT < alarm name 2 > )" can be used to handle the concurrant scheduling
of two alarms. For example, in a queueing system simulation we may require
that end-service alarms be processed before arrival alarms if they are sche-
duled for the same instant. The WHEN ALARM condition for the arrival might
take the form "WHEN ALARM( arrival & NOT end_service )." In any instant
for which both an arrival and end-service alarm have been set, this condition
will be true in the same instant as the end-service alarm, but only after it
has been processed,

Model behavior is sometimes more srmp[y described if the modei is allowed

ture of a model specification language, but it can simplify some mode! specifi-
cations. The cancel statement has the syntax
CANCEL ALARM( < alarm name > [, < alarm identifier > 1.

If an alarm is to be canceled which can be set for several different
values of time simultaneously (or severa times for the same value}, the
proper one to be canceled must be identified; this is the purpose of the alarm
identifier. How the proper alarm is identified is not of particular interest

here and is not prescribed; it could be in terms of values of the arguments

16



for the SET ALARM statement, the alarm time, or the relative position in the

alarms that are set.

Some model specifications are more easily generated if conditions that
depend both on the value of system time and other model attributes are
allowed, that is, if a compound condition of the form

AFTER ALARM( < alarm name > ) & < Boolean expression > -
[ ( < parameter list > ) 13

is permitted. While the AFTER ALARM statement is similar to the WHEN
ALARM statement, it differs in the following respect. Rather than having the
vaiue "true” only at the instant in time that the alarm is to be signaled, it
remains true until its associated Boolean expression has also become true.
This constitutes a second sequencing primitive, one that when signéied con-
.tinues to "alarm” until some additional condition is also met. While this state-
ment can be implemented in terms of the WHEN ALARM statement and an addi-.
tional attribute used as a Boolean flag, we include both statements in order to
Incorporate concepts fundamental to the simulation task and those that can
simplify model sfzecifications. The Boolean expression can contain additional
AFTER ALARM elements or Boolean expreassions in model attributes.

The WHEN ALARM expression never occurs as an element in a compound
expression; it describes model actions that are strictly determined by the
value of system time.

Any condition consisting of a WHEN ALARM expression is a determined
condition.

expression and describes actions that depend on both system time and
other attributes. Such a condition ts called a mixed condition.

If a condition contains neither 'a WHEN ALARM nor an AFTER ALARM
element, it is a contingent condition.

17



For the analyses in which we are interested, it is useful to treat the initiali-
zation as both determined and contingent.

After their associated alarm has been set, the Boolean value of the det-
ermined conditions is based only on the attribute system time. Contingent
conditions are based on attributes other than system time; mixed conditions
are based on system time and some additional attributes.

2.3.3 OBJECT GENERATION
Two commands are defined to control the existence of model objects,

They have syntax

CREATE( < object type > [, < object identifier > ] )
and

DESTROY( < object type > [, < object identifier > ]}

with the obvious meanings. The creation of an object is actually the creation
of a set of attributes that can be used to affect future model behavior. If
multiple instances of an object type can exist.simultaneousiy, some mechanism
must exist to uniquely identify individual instances of objects and object
attributes when necessary. This is the purpose of the optional object identi-
fier argument in these two primitives. As before, the mechanism for object
identification is not prescribed.
2.3.4 ENVIRONMENT COMMUNICATION

The fourth primitive required for model specification provides a mechan-
ism for the model to produce output to report its activity. While an output
statement is a necessary part of a model specification language, the execution
of such a statement during an instantiation cannot affect future model behav-
ior during an instantiation: it serves a communicative rather than a control

function.
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2.3.5 TERMINATION OF AN INSTANTIATION

Some mechanism must exist to terminate an instantiation once termination
conditions are met. The termination action could be as simple as halting exe-
cution of the simulation program; it could be more sophisticated to support
the design of the simulation experiment by reinitializing the model for another
execution. While the utility for these types of actions is recognized they are
not developed here. The statement is represented here as STOP.
2.3.6 ADDITIONAL PRIMITIVES

Many model specifications can be simplified by the use of additional con-
structs such as looping structures to repeat actions and additional data
structures such as sets .and queues. Additional primitives are required to
provide these constructs, but we choose not to expand the development in
tﬁis way. Additional constructs are freely used in the examples in this papar
whenever useful -- provided their meaning is unambiguous and the input and
output attributes. are clearly identifiable.

A summary of these primitives is presented in Table 1 which gives the
syntax and summarizes the function of each primitive. Note that we use Pas-

~ cal syntax for comments.

2.4 CONDITION SPECIFICATION DEFINITION

A model specification language for discrete event simulation models based
on the above primitives can now be defined. A condition specification (CS$)
of 2 mode! consists of three components:

1. An interface specification that identifies the input and output
attributes for the model by name, data type, and communication
type. The communication type for each attribute in the specifica-
tion must be input, or output. Any CS must include at least one

output attribute.

2. A specification of modsl dynamics, composed of:

18
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Table 1:

Syntax_ and Function of Specification Primitives

T T
Name | Syntax | Function
I
Value Not specified | Assign attribute
change | values.
description | See page 12.
|
Set Alarm SET ALARM( < alarm name > | Scheduie an
[{ <arglist >)], I alarm.
< alarm time > ) | See page 14.
' |
When Alarm WHEN ALARM( < alarm name > ) | Time sequencing
| condition.
! See page 15.
|
After Alarm AFTER ALARM( < alarm name > ) Time sequencing
condition.
See page 17.
|
Cancel Alarm CANCEL ALARM( < alarm name > | Cancel scheduled
[, <alarm id > 1) alarm.
. See page 186,

Create

Destroy

Output

Stop

Comment

Not specified.

Not specified.

a 'I}l! > }

I
I
l
!
i
|
I
}l
|
I
i
f
,i
|
i
|
I
|
;
l
|
!
|
l
l
|
l
;
i
l
|
l
f
|
I
|

CREATE( < object type >
[, < object id >

DESTROY( < object type >
[, < object id >

{ < any text not including

Generate new
model object.
See page 18.

Eliminate a
model object.
See page 18.

Produce output.
See page 18.

Terminate
instantiation.
See page 19.

Comment.
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a. A set of object specifications. Each specification consists of a3
name for an object type and a list of attributes associated
with each object of this type. A range must also be specified
for each attribute. The set of object definitions must include
the special object, ENVIRONMENT, which has at least one
attribute, SYSTEM TIME. Model inputs, if any, are associ-

- ated with the environment object; that is, they are attributes
of the environment object.

b. A set of ordered pairs called the transition specification.
~ Each element in this set is called a condition action pair

(CAP) and consists of a condition and an action. This set
must include two special pairs, one called the initiali zation
pair with the condition INITIALIZATION, and a second called
the termination pair. The condition INITIALIZATION js true
only at the start of an instantiation, before the first value
change of SYSTEM TIME. The termination condition describes
the conditions under which an instantiation is to be terminated
and the actions to be taken on termination.

3. A report specification of the data that are to be produced as a
result of an instantiation. The form of this specification is not
prescribed; it could use the CAPs as defined above. Other speci-
fication techniques might be more desirable depending on the com-
plexity of the data collection and computation process,

The cohdition is a Boolean expression composed of standard operators,
model attributes, and the special sequencing primitives WHEN ALARM and
AFTER ALARM. The actions are composed of the primitives of Section 2.3.

in interpreting a CS, each CAP is to be treated as a "while” structure
rather than an "if" structure. . The difference is this: as an "if" the actions
of the CAP would occur exactly once when the condition is met; as a "while"

the actions repeat until the condition is no longer met.

2.5 CONDITION SPECIFICATION STRUCTURE

- Much of the syntax for a C$ is of little general interest. We only define
3 concrete systax for part of 3 CS in order to present s complete example.
A CS consists of two parts: a description of the interface between the model

and its environment (that is, the boundary and the report specifications) and
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a specification of the objects contained in the model and their dynamics. We
are much more interested in the model dynamics than the communication inter-
face. For this reason we define a syntax for object specifications and for the
transition specifications only. A complete example is presented in Section 3
which illustrates forms that the interface an-d report specification could
assume.
2.5.1 OBJECT SPECIFICATION

Each object specification consists of a set of object descriptions. Each
object description is composed of an object name and a set of attribute names.
Each attribute name has an associated attribute type. Standard conventions
for vélid object and attribute naming are used in these examples. Also,
attribute typing will be similar to that used in Pascal: integer, réai, test,
Boolean, or a list of values that the attribute can assume. The special attri-
bute type time-based signal is used to indicate a sequencing attribute.
| While significantly more robust cénventions for object and attribute spe-
cifications can be developed, these are sufficient for the example presented
here. See [DAHLS81] for the conventions used in Simula or [CACI82] for
those used in Simscript.
2.5.2 TRANSITION SPECIFICATION

As defined above, the transition specification consists of a set of ord-
“ered pairs, called condition action pairs (CAPs), each pair composed of a
condition and an action. For convenience the transition specification may also
include a set of functions to simplify expressions in the conditions and
actions.

The semantics of a CAP are straightforward: whenever the condition is

"true" during an instantiatic_m of the CS, the associated actions are to occur.



Since it is possible for several conditions to be "trye" simultaneously, the

actions are considered to occur simultaneousiy.
3.0 EXAMPLE

In this section a detailed example is presented. The example is the
classical machine repairman model ysed in studies by Nance [NANCTT,

NANC81a] and is from [PALM47, coxpe2].

- 3.7 SYSTEM DESCRIPTION

A single repairman services a group of n identical semiautomatic machines.
Each machine requires service randomly based on a Poisson distribution with
mean lambda. The repairman starts in an tdle location and, when one or more
machines requires service,‘ the repairman traveis to the closest machine need-
ing service. Service time for a machine follows a negative exponential distri-
bution with mean mu.  After completing service for a machine, the repairman
travels to the closest machine needing service or to the idle location to await
the next service request otherwise. The closest machine is determined by
shortest travel time. Traveltime between any two machines or between the

idle location and a machine is functionaliy determined.

3.2 OBJECTIVE
The objective of the simulation is to provide estimates of the average

percentage of up time for each of the machines.

3.3 SPECIFICATIONS
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(

I Input;:

| n { Number of machines } 1 positive integer

! mean_uptime { Lambda } ¢ positive real

| mean_repairtime { Mu } : positive real

| max_repairs { Number of repairs }

] { for termination } 1 positive integer
|

| Output:

f { Percentage up time for each machine nonnegative real;
| { Average uptime for all machines } ¢ nonnegative real:
i ,
L

T T e e e e

FIGURE 3: Machine Repairman Interface Specification

{ Object:: Attribute Type }

environment: : system_time positive real;

idle position::

n
mean_uptime
mean_repairtime
max_repairs

mean_repairtime
status

positive integer constant;
positive real constant;
positive real constant;
positive integer constant;

facilities: : n positive real constant;
max_repairs positive integer constant;
mean_uptime positive real constant;
mean_repairtime positive real constant:
fac[ 1..n ] constant;
failure[ 1..n ] time-based signal;
faited{ 1..n ] Boolean;
end_repair time-based signal;
arr_fac time-based signal;
num_repairs nonnegative integer;
repairman:: max_repairs positive integer constant;

positive real constant:
{ avail, travel, busy };

location ( idle, fac[ 1..n ] };
end_repair time-based signal;
arr_fac time-based signal;

num_repairs

arr_idle

nonnegative integer;

time-based signal;

FIGURE 4:
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{ Initialization }
INITIALIZATION:
AR i : 1 .. n; :
READ( n, Max_repairs, mean_uptime, mean_repairtime );
CREATE( repairman );

FORE:=TTOnDO
CREATE( facility (i ) );
fac( i ) := i;

failed{ i ) := false;
SET_ALAR ( failure( j ), neg_exp( mean_uptime ) );
END FOR:

num_repairs := Q;

location := idle;

status := avaijl

{ Termination }
num_repairs > max_repairs
STOP

{ Failure }
WHEN ALARM( failure | : 1 c.on):
failed( | ) .= true

{ End repair } '
WHEN ALARM( end_repair i : 1 .oon )
SET_ALARM( failure( i ), neg_exp{ mean_uptime ) );
failed( i ) .= false;
status := avail;
Num_repairs := NUM_repairs + ]

{ Travel to idle }
( FOR ALL 1 < i £ n, NOT failed| i 1) ¢
status = av3zjl g location # idle:.
SET_ALARM( arr_idle, traveltime( location, idle ):
status := trayal

{ Arrive idie }
WHEN ALARM( arr_idie )
status := avail:
1= jdle

I location
FIGURE 5. Machine Repairman Transition Specification



.
|

! { Travel to facility }

| status = avail & ( FOR SOME 1 < < n, failed[ i 1) ):

| VAR i : 1 .. n;

| io:= closest_failed_fac( failed, location }:

| SET_ALARM( arr_fac, traveltime( location, fac( i ) ), i):
i status := travel

j .

L

FIGURE 5: Machine Repairman Condition Specification
(Continued)

r

{ Function Arguments Type }

closest_failed_fac { failed : 1 .. n) 1 .. n;
begin .. end:

traveltime ( location : 0 .. n,
begin .. end;

neg_exp ( mean :real ) : positive real;
begin .. end;

|
|

i

|

l

|

!I ' destination : 0 .. p ) * positive reai;
|

f

|

i

L

FIGURE 6: Machine Repairman Function Specifications

In this example, we assume that an execution is to terminate when a
specified number of repairs, defined at model initialization, have occurred.
The number of machines, the average uptfme for machines and the average
service time are also defined at model injtialization.

The interface specification for the machine repairman model iIs presented
in Figure 3. n this example, four values must be provided the model, The
model irj turn produces two values. The model objects, along with the attri-

butes of each object, are listed in Figure 4.
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{ Monitored Attribute Action }
failed WRITE( system_time, j )

r 7
| %
I |
| |
| { Other report actions. } |
|  WHEN start of simulation: !
| WRITE( n ); |
i FORi :=1T0O n |
[ IF failed( i ) THEN WRITE( system_time, i ) i
| END FOR |
i |
l l
l |
f |
L

WHEN end of simulation:
WRITE( system_time, 0 )j

FIGURE 7: Machine Repairman Report Sp.ecificationr (Part |)

In the transition specification of Figures 5 and 6, each CAP is named in
a8 comment to facilitate discussion. The structure of each CAP consists of a
name (in a comment), a Boolean condition, 3 declar‘atioln of parameters (if
any), a declaration of local variables (if any}, and the actions that are to
occur when the condition is met.

We describe a few of the CAPs :.;)f Figure 5 briefly. At modei initializa-
tion, all run-time parameters are read, all model objects are created, some
model attributes are initialized, and aﬁ initial failure is scheduled for each
machine (initialization CAP). An instantiation is~to terminate after 3 specified
number of repairs (termination CAP). When the repairman finishes repairing
a machine (end repair CAP), the next failyre for the machine is scheduled,
attributes are changed to show that the machine is working, the repairman is
shown as available, and the repair count is incremented. These actions will
Cause either the condition for the "travel to idle” or the "travel to facility"”
CAP to become true. If it is the "travel to facility” condition, a function is

called to determine the closest failed facility, an arrival at that facility is
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program average_u P_percentage

{ This program reads pairs consisting of a system time }
and a facility identifier. Each machine is assumed }
up until it is reported down. Each subsequent re- 3
port is assumed to be g change (from up to down or }
down to up). The first value in the file is }
assumed to be the number of facilities. }

L W e T ]

real system_time,
sum_up_time
real array
totai_up_time[ 1 .. n 1,
start_up_time[ 1 n
Boolean array
facility_.up[ 1 .. n ]
integer n,
facility_id

f

|

I

|

l

P

|

|

|

read { n ) ]
for i := 1 ton do l
total_up_time[ i ] :=0.0 J
facility_up[ i ] := true |
start_up_time[ i | := 0.0 |
end do : |
{

|

|

F

|

|

|

II

i

|

|

|

\

I

|

|

l

read { system_time, facility_id )
while facility_id # 0 do

if facility_up[ facility_id i
then
facility_up| facility_id 1 := false
total_up_time[ facility_id ] :=
total_up_time + ( system_time -
start_up_time[ facility_id 1)
end then
else
start_up_time[ facility_id ] 1= system_time
end else

read ( system_time, facility_id )

end while

FIGURE 8: Machine Repairman Report Specification (Part [})



] }
r
| for i := 1 ton do f
[ if facility_up[ i ] I
j then |
| total_up_time[ j ] := total_up_time[ i ] + |
{ ( system_time - start_up_time[ i ] ) I
| end then |
i end fo" o !-A
| |
| sum_up_time := o o
i for i := 1 to n do -
I sum_up_time := sum_up_time * total_up_time[ i ] |
| write ( "Facility " i, " percentage up time: ", I
J 100.0 * total_up_time[ i ] / system_time ) l
| end for f
| write ( "Average up time: ", 100.0 * sum_up_time / n ) !
| !
[ end program |
| . |
FIGURE 8: Machine Repairman Report Specification (Part 1)
{Continued)
scheduled, and the repairman's statys is changed. Interpretations of the |

other CAPs are .simi!ar‘.

All functions referenced jn Figure 5 are partially defined in Figure 6.
For brevity, the Pparameters for these functions are decia-red, but their code
is not included.

in Figures 7 and 8, a report specification .is presented. The approach
taken in this example is to have each instantiation create a record of its
actions that can be analyzed on model termiﬁation. The structure of the
report specification reflects this. Figure 7 describes the actions to be taken
during execution of an instantiation. The concept of a monitored variable
used in this specification is from Simscript [CACI82]: every time the value
of the monitored variable is altered, the associated action is to occur. Figure

8 describes the analysis which is to occur on model termination.
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4.0 UTILITY OF APPROACH

Proper evaluation of using a CS to assist in the simulation process
requires some demonstration of its utiity. Due to the length required for a
proper development, those demonstrations are only summarized here.

In [OVERB2], it is shown that any CS can be transformed into a modei
specification in any of the three traditionali world views -- event scheduling,
activity scanning, or process interaction (see [FISH73] for a discussion of
these world .views). The transformations emphasize the ability of each world
view to make use of different contextual information to simplify a model speci-
fication.

In addition to world view transformations, several types of specification
analyses are shown to be possible (although the list presented here is not
" complete since description of some analyses requires additionai definitions).

. Tests for attribute utilization can be performed.

. Some types of ambiguity and incompleteness in a model specification
can be identified.

. Analysis of the CS can identify all model actions that can occur as.a
direct result of each particular action.

° If the model specification is decomposed into activities, events, pro-
Cesses, or some other user-defined units, documentation on interac-
tions between units can be generated automatically.

. Complexity measures can be applied to alternate decompositions to
indicate which best simplifies the model specification.

Several resuits are proved that show that no general test procedures can
be constructed for a number of important specification properties. To indi-
cate the flavor of these results, we list some here, with informal definitions
of the terms involved. No general test can be constructed to show if a con-
dition specification is-

. finite (that is, if sach execution must terminate);
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. ambiguous (that is, if two nonequivalent implementations are
possible);

. complete (that is, no execution can get into a state not described in
the CS);

. connected (that is, the CS does not consist of several independent
systems, none of which can influence the behavior of any other).

Theorems are also proved which show that all contingent actions must be
caused by a determinad action which occurs in the same value of system time.
In addition, results are proved which indicate a symmetry of representational

power between the event scheduling and activity scanning world views.
5.0 SUMMARY

The defini{on of another language for model specifications (MSs) is based
on our desire to introduce an intermediate form between a conceptual model
(the model as it exists in the mind of the modeler} and an implementation of
that conceptual model. A modei implementation, even using a simulation pro-
gramming language, oftén includes many features either to accommocate the
programming language used or code for particu!ar‘. implementation techniques,
both of which may obscure the conceptual model being implemented. Creation
of a "correct” implementation is offen difficult since the "conceptual distance"
from a conceptual model to an implementation of that medel in a particular
programming language is often large.

To be useful, a MS should support (1) error detection (even of partially
specified models), (2) analysis to assist in implementation, and (3) automated
production of some types of useful documentation. A MS should be broad in
scope, at least as broad as current simulation programming languages such as
Simula or Simscript, and place few constraints on implementation techniques
such as time flow mechanisms or the world view in the choice of programming
fanguages.
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We assert that the CS language presented here exhibits eéch of these
properties, at least to some degree. We recognize that a proper evaluation of
the language requires the implementation of a variety of nontrivial models.

We are currently engaged in such a process and look forward to reporting the

results of these experiments.,

32



BIBLIOCRAPHY

BLUNB7

CACI82

CLEM73

DAHLS1

DAVI76

DECATs

DIJK6S

FRANBSO

GORD78

HENR82

HOLB77

HUTC75

JENST74

Blunden, G. P., and H. §S. Krasnow, "The Process Concept as a
Basis for Simulation Modeling," Simulation, Vol. 9, No. 2, August
1967, pp. 89-93.

C.A.C.1, SIMSCRIPT 1l.5 Programming Language, CACI,
Inc.-Federal, Los Angeles, CA, 1982.

.Clementson, A. T., "The New Extended Control and Simulation Lan-

guage,” Department of Engineering Production, University of Birm-
tngham, England, 1973.

Dahl, 0. J., B. Myhrhaug, and K. Nygaard, Simuia 67 Common
Base Language, NCC Publications, 3rd edition, 1987.

Davies, N. R., "A Modular Interactive System for Discrete Event
Simulation Modelling, " Proceedings Ninth Hawaji Internationa! Con-
ference in System Sciences, Western Periodical Company, January
1976, pp. 296-299. ‘

DeCarvatho, R. S. and J. G. Crookes, "Cellular Simulation,” Oper-
ational Research Quarterly, Vol. 27, No. 1, 1976, pp. 31-40.

Dijkstra, E. Ww., "Cooperating Sequential Processes," in Program-
ming Languages, F. Gerneys, ed., Academic Press, New York, NY,
1968, pp. 43-112.

Frankowski, E. N. and W. R. Franta, "A Process Oriented Simula-
tion Model Specification and Documentation Language,” Software --

Practice and Experiences, Vol, 10, No. 9, September 1980, pp.
721-742.

Gordon, Geoffrey, System Simulation, second edition, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1978.

Henriksen, James O., "The Integrated Simuiation Environment:
(Simulation Software of the 1990's), Wolverine Software Corporation,
Annandale, VA, December 1982.

Holbaek-Hanssen, E., P, Handlykken and K. Nygaard, System
Description and the Delta Language, Report No. 4, Norwegian Com-
puting Center, Oslo, 1977.

Hutchinson, G. K., "Introduction to the Use of Activity Cycles as a
Basis for System's Decomposition and Simulation,” Simuletter, Vol.
7, No. 1, October 1975, pp. 15-20.

Jensen, K., and N. Wirth, PASCAL User Manual and Report,
Springer-Veriag, New York, N.Y., 1974.

33



KIND78
KIND79
KIVie7

KLEI77
LAFF73

MARKT9

MATHT76

Kindler, E., "Classification of Simulation Programming Languages:
. Declaration of Necessary System Conceptions," Elektronische
Informationsvercrrbeitung und Kybernetick, Vol. 14, No. 10, 1978,
pp. 519-526.

Kindler E., "Dynamic Systems and Theory of Simulation," Kyberne-
tika, Vol. 15, No. 2, 1979, pp. 77-87.

Kiviat, P. J., "Digital Computer Simulation: Modeling Concepts, "
Rand Memorandum RM-5378-PR, Rand Corporation, Santa Monica,
Ca., August 1967.

Kieine, H., "SDDL: Software Design and Documentation Language, "
Publication 77-24, Jet Propulsion Laboratory, Pasadena, Ca., July
1977.

Lafferty, H. H., "Sheffield Simplified Simulation System - 54
Manual,” The University of Sheffield, Department of Applied Mathe-
matics and Computer Science, January 1973.

Markowitz, H. M., "Simscript: Past, Present, and Some Thoughts
about the Future,” in Current Issues in Computer Simulation, N. R.
Adam and A. Digramaci, eds., Academic Press, New York, N.Y,.,
1979, pp. 27-60.

Mathewson, S. C. and J. E. Beasley, "DRAFT/SIMULA," Proceed-
ings of Fourth SIMULA Users Conference, National Computer Con-

- ference, 1978.

MATH77

MCLET73

NANC77

NANC79

NANC81a

NANC81b

Mathewson, S. C. and J. H. Allen, "DRAFT/GASP -- a Program
Generator for GASP," FProceedings Tenth Annual Simulation Sympo-
sium, Tampa, 1977, pp. 211-225°

Mcleod, J., "Simulation: From Art to Science for Society," Simulq-
tion, Vol, 21, No. 6, December 1973, pp. 77-80.

Nance, R. E., "The Feasibility and Methodiogy for Developing Feder
Documentation Standards For Simulation Modeis," Prepared for the
National Bureay of Standards, Department of Computer Science,
Virginia Tech, June 1977.

Nance, R, E., "Model Representation in Discrete Event Simulation:
Prospects for Developing Documentation Standards,"” in Current
Issues in Computer Simulation, N.R. Adam and A. Dogramaci, eds.,
Academic Press, New York, N.Y., 1979, pp. 83-97.

Nance, R. E., "Model Representation in Discrete Event Simulation:
The Conical Methodology,” Technical Report C$81003-R, Department
of Computer Science, Virginia Tech, March 1981,

Nance, R. E., "The Time and State Relationships in Simulation

Modeling," Communications ACM, Vol. 24, No. 4, April 1981, pp.
173-1789. :

34



NANC81c Nance—, Richard E., Ahmed L. Mezaache, and C. Michael Overstreet,

NYGAT78
ORENS82

ORENS3

OVERS2

PRIT74

SCHR82
SHANSO
VIDASO

VISO79
WATT77
ZEIGT76

ZEIG80

ZEIG83

"Simufation Mode| Management: Resolving the Technological Gaps,"
Proceedings Winter Simulation Conference, Altanta, GA, December
1981, pp. 173-179.

Nygaard, K. and O. Dahl, "The Development of the SIMULA Lap-
guages,” SIGPLAN Notices, Vol. 13, No. 4, August 1978, pp.
245-272, : '

Oren, T. I., "Computer Aided Modeling Systems," in Progress in
Modelling and Simulation, F. E. Cellier, ed., Academic Press, Lon-
don, 1982,

Oren, T. {., "GEST -- A Modelling and Simulation Language Based
on System Theoretic Concepts,” in Simulation and Model-Based
Methodology: An Integrative View, T. |. Oren et al., eds.,
Springer-Verlag, New York, 1983.

Overstreet, C. M., Model Specification and Analysis for Discrete
Event Simulation, doctorial dissertation, Virginia Tech, Blacksburg,
1982.

Pritsker, A. A. B., The GASP v Simulation Language, John Wiley
and Sons, Neerork, N.Y., 1974.

Schruben, Lee, "Simulation Modeling With Event Graphs, Technical
Report 498, School of Operations Research and industrial Engineer-
ing, Cornell University, August 1982.

Shannon, R. E., §. s, Long, and B. P. Buckles, "Operating
Research Methodologies in industriai Engineering,™ A//E Transae-
tions, Vol. 17, No. 4, December 1880, pp. 364-387.

Vidallon C., "GASSNOL: A Computer Subsystem for the Generation
of Network Oriented Languages with Syntax and Semantic Analysis,"
Simulation '80, Interiaken, Switzeriand, June 25-27 1980,

Visontay G. and P. Csaki, "DOCUM -- for Automatic Documentation
of SIMULA Programs,"” SIMULA Newsletter, Vol. 7, No. 2, May 1979.

Watt, K. |., "Why Won't Anyone Believe Us," Simuiation, Vol. 28,
No. 1, January 1877, pp. 1-3.

Zeigler, B. P., Theory of Modeling and Simulation, John Wiley and
Sons, New York, N.Y., 1976.

Zeigler, B. P., D. Belogus, and A. Beishoi, "ESP: An Interactive
Tool for System Structuring,” in Proceedings European Meeting
Cybernetics and Systems Research, Vienna, Hemisphere Press, New
York, 1980.

Zeigler, B. p., Multifacetted Modelling and Discrete Event Simula-
tion, manuscript to be published by Academic Press, 1983,

33



