NBER WORKING PAPER SERIES

A SPECIFICATION TEST
FOR SPECULATIVE BUBBLES

Kenneth D. West

Working Paper No. 2067

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
November 1986

I thank Fischer Black, Whitney Newey, Lawrence Summers, an
anonymous referee, and participants in various seminars for helpful
comments and discussions, and the National Science Foundation for
partial financial support. Responsibility for remaining errors is
mine. This paper was revised while I was a National Fellow at the
Hoover Institution. The research reported here is part of the
NBER's research program in Economic Fluctuations. Any opinions
expressed are those of the author and not those of the National
Bureau of Economic Research.



NBER Working Paper #2067
November 1986

A Specification Test for Speculative Bubbles

ABSTRACT

The set of parameters needed to calculate the expected present discounted
value of a stream of dividends can be estimated in two ways. One may test for
speculative bubbles, or fads, by testing whether the two estimates are the
same. When the test is applied to some annual U.S. stock market data, the
data usually reject the null hypothesis of no bubbles.

The test is of general interest since it may be applied to a wide class of
linear rational expectations models.

Kenneth D. West

Woodrow Wilsan School
Princeton University
Princeton, NJ 06544



I. Introduction

The seeming tendency for self-fulfilling rumors about potential stock price
fluctuations to result in actual stock price movements has long been noted by
economists. In a famous passage, Keynes, for example, described the stock market
s a certain type of beauty contest, in which judges try to guess the winner of
the contest: speculators devote their "intelligence to anticipating what average
opinion expects average opinion to be" [1964, p.156]). In recent rational
expectations work, this possibility has been rigorously formalized and the
self-fulfilling rumors dubbed speculative bubbles [Blanchard and Watson,1982;
Shiller, 1978; Taylor, 1977; Tirole, 1982, 1985]. Recent attempts to detect such
bubbles with formal statistical tests have, however, met with mixed success
[Blanchard and Watson, 1982; Diba and Grossman, 1984; Flood and Garber 1980;
Flood, Garber and Scott, 1984, Hamilton and Whiteman, 1984].

One possible reason for the inability of the empirical tests to detect the
bubbles so often described is that the tests have been few and not very powerful.
This paper develops and applies a test for speculative bubbles that (a)allows for
a wider class of bubbles than did Flood and Garber [1980] and Flood, Garber and
Scott [1984]; (b)is specifically designed to test against the alternative that
bubbles are present, in contrast to the volatility tests of Shiller [1981a, 1981b]
and Leroy and Porter [1981]; and (c)may be applied even if prices and dividends
are nonstationary, again in contrast to the volatility tests and to the tests in
Flood and Garber [1980] and Flood, Garber and Scott [1984].

The basic idea of the present paper's test is very simple, and was suggested
by the specification test of Hausman [1978]. The test compares two sets of
estimates of the parameters needed to calculate the expected present discounted
value (PDV) of a given stock's dividend stream, with expectations conditional on

current and all past dividends. In a constant discount rate model, the two sets



-2-

are obtained as follows. One set may be obtained simply by regressing the stock
price on a suitable set of lagged dividends. The other set may be obtained
indirectly from a pair of equations. One of the pair is an arbitrage equation
yielding the discount rate, and the other is the dividend process's ARIMA
equation. The Hansen and Sargent [1981Db] formulas, familiar from rational
expectations tests of cross equation restrictions, may be applied to this pair of
equations's coefficients to obtain a second set of estimates of the expected PDV
parameters.

Under the null hypothesis that the stock price is set in accord with a
standard efficient markets model [Brealey and Myers, 1981, pp42-45], the
regression coefficients in all equations may be estimated consistently. When the
two sets of estimates of the expected PDV parameters are compared, then, they
should be the same, apart from sampling error.

But this equality of the two sets will not hold under the alternative
hypothesis suggested by, e.g., Blanchard and Watson [1982], that the stock price
equals the sum of two components: the price implied by the efficient markets model
and a speculative bubble. In this case, the equation that relates price to a
suitable set of dividends omits a relevant regressor--the bubble. As long as the
bubble is correlated with the included regressors, the coefficients in this
equation will be estimated inconsistently. The bubble will not, however, cause
estimation of the other two equations to be inconsistent. So the coefficients in
this pair of equations, as well as the implied value of the set of expected PDV
parameters, will still be estimated consistently. Therefore, when the two
estimates of the set of expected PDV parameters are compared, the two will be
expected to be different.

Speculative bubbles are tested for, then, by seeing whether the two sets of

estimates are the same, apart from sampling error. I check for the equality of



the two sets in long-term annual data on the Standard and Poor's 500 index
(1871-1980) and the Dow Jones index (1928-1978). The data reject the null
hypothesis of no bubbles. The rejection appears to result at least in part
because the coefficients in the regression of price on dividends are biased
upwards. As is explained in section IT, this is precisely what would be expected
if, as is sometimes argued [Shiller, 1984], bubbles reflect an overreaction by the
market to news about dividends. A small amount of investigation of a linearized
time varying discount rate model suggests that such variation may also help

explain the results.

Section II quickly reviews the standard constant discount rate efficient
markets model and the definition of a speculative bubble and then explains how the
test is performed. Section III presents empirical results from a constant
discount rate model and then develops and applies the specification test for a
linearized time varying discount rate model. Section IV discusses the empirical

results. Some econometric and algebraic details are in an appendix available from

the author.

1I.The Model and Test

’Accordlng to a standard efficient markets model, a stock price is
determined by the arbitrage relationship (1) (Brealey and Myers, 1981,

ppl2-u45]:

(1) -
Py PE(Py,q*dy, ) |I,

where pt is the real stock price in period t, b the constant ex~ante real
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discount rate, 0 < b =1/(l+r) <1, r the constant expected return, E denotes

mathematical expectations, assumed to be equivalent to linear projections, clt+l

the real dividend paid to the owner of the stock period t+l, and It
information common to traders in period t. It is assumed to contain, at a
minimum, current and past dividends, and, in general, other variables that are

useful in forecasting dividends. Time variation in the ex ante discount rate

b 1is briefly considered in section IIID.

Equation (1) may be solved recursively forward to get

n
* DEP |-

n1
(2) Py = fb Ed,,, I,

If the transversality condition

: n
(3) lim __,. D EPy,plly = O

#*
holds, then pt - pt' where

1ga

. s
(4) Py = DEQy [T

Now, the p: defined in (4) is the unique forward solution to (1) as long as
the transversality condition (3) holds. But if this condition fails, there is
a family of solutions to (1) (Blanchard and Watson [1982]), Shiller [1978],
Taylor [1977]). Any p, that satisfies

* -1
(5) Py = Py * Cy» Ectllt_1 =b ¢ _,,
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is also a solution to (1), C, 1s by definition a speculative bubble, an
otherwise extraneous event that affects stock prices because everyone expects
it to do so. An example of a stochastic process for Cy » similar to one

described in Blanchard and Watson {1982], is

(6) (ct-1-C)/('tb) with probablility "

t S/L(1=x,)b] with probability 1-w,

0<n <1, ¢>0.

According to (6), strictly positive bubbles grow and pop. In this example,
the probability that a bubble grows is Wt, that it collapses is l—Wt.
The bubble may be intimately connected with fundamentals, with Wt dependent
on news about fundamentals. A simple example is nt = 1/2 for all t, with
the bubble popping if and only if the innovation in dividends is negative.
If Wt is constant (ﬂt = T for all t), each bubble has an expected duration
of (1—”)-1. (T is not an identifiable parameter.) Combination of several
bubbles are possible, each with a different Nt and c; the growth and collapse
of the bubbles may be either tightly or loosely related. See Blanchard and
Watson‘[l982] for further examples and discussion.

% %
Our aim is to test pt = pt versus pt = pt + c for some nontrivial <,

t’
(possibly one not following the stochastic process (6)). Consider first this

wildly implausible case: (a) There is no doubt that pt and dt are such that equations

(1) and (2) hold. (b)d, is a zero mean white noise process. Then Edtdllt -0

for 1>0 and p: = 0 for all t. It follows from equations (1) to (4), then, that

pt « 0 for all t if equation (3) holds: given that the stochastic difference
equation (1) is solved in the forward direction (2), the terminal condition (3)

insures that (4) {s the unique solution te equation (1), for all t. In this



blissfully simple environment where (a)there is no doubt about the rational
expectations, constant discount rate specification, and (b)no statistical
{nference is necessary, then (c)the null hypothesis that there are no bubbles
should be rejected if Py = O for some t.

The basis of the empirical work in this paper is the simple logical

proposition illustrated in the previous paragraph: if a univariate stochastic

difference equation is solved in the forward direction, a single terminal

condition ties down a unique solution. Let us now allow for (a) uncertainty
about b and the parameters of the dividend process; (b) the possibility that
dividends are an endogenous variable, e.g., because they are smoothed by manage-
ment; (c) uncertainty about whether the rational expectations, constant dis-
count rate specification (1) really characterizes the data.

(a) Suppose that the actual value of b 1is not known. In addition, suppose

that it is known that dividends follow a zero mean, AR(1l) process,

t tv

t-1 t*

i{s a finite variance white noise process. The value of ¢
i

In (T), |¢|<) and v,

is not known. It i - - -
s easy to verify that fb Edtolllt §,dy 0 6, bé/(1-b¢) .

*
So ir pt - pt'

The logical proposition described above is applied {n this environment by
estimating (1), (7) and (8). Equations (7) and (8) may be estimated by OLS,

~ ”~

yielding point estimates ¢ and 51,Equation (1) may be estimated by rewriting

it as
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1" - ‘ - -
(0 Pr = D(Ppoqdp,y) = blpy gy By, 0d, ,,]1,))

" D(Pyyqtdpy) ¢ ug,,.

An instrumental variables estimator, using as instruments vari{ables known at
time t--say, dt,--wlll now produce a b that is a consistent estimate of b.

To apply the specification test, we compare two estimates of 61, the

L]
-~

teg!lps  That s, we test Hy: 6, =

parameter needed to calculate zbiEd
- - 1
b¢/(1-b¢), and reject the null hypothesis only if the resulting test statfstic

exceeds an appropriate critical value.

(b) Allowing for endogeneity of dividends [Marsh and Merton, 1984] causes
no substantial complications. Let Ht be the set consisting of a constant
and current and lagged dividends, Ht = {1, dt-ili > 0}. Since Ht is a

*
subset of It’ equation (4) in conjunction with P, =P, implies {Hansen

and Sargent, 1981b]

i
(9) Py = IDTEd,, [H, Z,,

1l =
1 -
z, = fb (Bd, ,,|14-Edy,,|H,). 2, serially correlated in general,

Exszt = 0 for xs an element of Ht'

To apply the specification test, it is necessary to turn (9) into a
regression équation. This can be done conveniently if there is a closed form
expression for ;blsdt’1|ﬂt. Now, Ed.,,|H, 18 by definition the forecast of
dividends glven,the past history of dividends. 1If dt is stationary, perhaps
after differencing, Edt*ilut may be calculated as the usual ARIMA forecast of

dt*i‘ And if dt is stationary, possibly after differencing,



there is a closed form expression for tbisdtﬂh{t in the form of a distributed
lag on current and past dt (Hansen an; Sargent, 1981b]l. As in the simple
example (7) and (8), the coefficients of the distributed lag are functions of b
and the parameters of dt's univariate ARIMA process. Exact formulas are given
in section IIIA.

when dividends are endogenous, and are characterized by an ARIMA process of
known order (but unknown parameters), the test can proceed essentially as just
described in case (a) above: estimate (1)' by instrumental variables; estimate

dt's univariate ARIMA equation; estimate a distributed lag of Py on dt‘ compare

the estimates of the parameters of the distributed lag with those of (1)' and
dt's ARIMA equation. (Actually, if differencing is required to induce
staionarity in dt' it is more convenient to estimate a distributed lag of a
difference of p, on a difference of d,. See section IIIA.) So the bdasic
difference from case (a) is that it is acknowledged that dt's ARIMA equation is
is simply a convenient way to forecast dividends, and not a statement about the
exogeneity of dividends.

It still remains to determine the order of the ARIMA process for dt' To
make the results of as general interest as possible, the empirical work does
not assume any particular structural model for dividends. The order of the
ARIMA process for dt is data rather than theoretically determined, in the
spirit of the usual Box-Jenkins [1970] analysis. Consistent with such an
approach, a variety of ARIMA specifications are tried, to make sure that the
results are not sensitive to the exact specification chosen.

It is to be noted that this discussion assumes that arithmetic differencing
is sufficient to induce stationarity in dt’ This is because such a condition

1

makes it possible to obtain a closed form sclution to Ib Edt#l'"t' While the
1

usual Box-Jenkins [1970] diagnostics suggest that arithmetic differences



suffice to induce stationarity in the data used in this paper (see section
IIIB), much research in finance assumes that log differences are required
(Kleidon, 1985]. Since it is also possible to obtain a closed form expression
for ;bisdt+1lﬂt when dt follows a lognormal random walk (Kleidon, 1985], the
empiglcal work (in section IIIC) briefly considers this specification as well.
(c)Suppose that the specification test described in case (b) indicatet that the
difference between the two sets of estimates of the parameters needed to

i

calculate fp Edt+1|Ht is unlikely to result solely from sampling error.
1

Clearly, this can happen for many reasons, in addition to the presence of bubbles.
The possibility that a discrepancy between the two sets of parameter

estimates results from certain factors other than bubbles is handled in two

ways. In section IIID, a model with time varying discount rates is linearized

as in Shiller [1981a]. It is shown that in such a model one can apply a somewhat

more complicated version of the test just described.

The second way that shortcomings of the present value model are considered
is by applying diagnostic tests to the estimates of (1)'., The diagnostic tests
are chosen in light of two alternatives that have figured prominently in
related work, that expectations are not rational [Ackley, 1983; Shiller, 1984]
and that discount rates are time varying [Leroy, 1984]. The particular tests
used are described in section III. The greater the extent to which these
diagnostics suggest that equation (1) is consistent with the data, the more
plausible it is to discount eéxpectational irrationality and discount rate
variation as significant sources of a discrepancy between the two sets of
parameter estimates.

To sun up: The specification test proceeds by estimating (1)', a variety
of specifications for the univariate ARIMA process for dt' and, 19or each such

specification, the corresponding distributed lag of pt on dt' It applies a
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pattery of diagnostic tests to equation (1)', to see whether equation (1)
appears to be consistent with the data. For each specification of the dividend
ARIMA process, it applies diagnostics of the sort often used in ARIMA
estimation to check whether each specification seems to adequately captures the
dynamics of the d,  process. The test then uses each estimate of (1)' and the
parameters of the dt process to calculate an implied value of the parameters
that characterize the expected present discounted value of dt' conditional on
current and lagged dt' It compares these implied values to the estimates
directly obtained by a distributed lag regression of P, on dt' One possible
explanation of any difference between the two sets of estimates i{s bubbles.
This explanation is more compelling the less likely is the difference to result
from sampling error, and the greater the extent to which the diagnostic tests

fail to reject (1)' and the specification of the univariate dividend process.

Four final comments are of interest before the empirical work is presented.
The first comment concerns how reasonable it is to use the past history of
the dividend process to forecast future dividends. It clearly is not reasonable
at all in everyone's favorite example of a corporation that has yet to pay out any
dividends. It also may not be reasonable if there is a "peso problem" and market
participants are rationally considering a small probability event that has not
occurred in the sample. There are three points to make. The first is that the
best protection against such a problem is to use a long sample period, which is
what I did. The second is that certain forms of the peso problem in fact are
implicitly allowed under the null, by suitably reinterpreting the parameter b
[Shiller, 1981b]. Finally, I tested for the stability of the dividend process;
this can detect in-sample switches of the dividend process.

The second concerns the distribution of the estimates of the distributed lag of
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Dt on dt when there 1s a bubble. This is conveniently {llustrated when the

univariate dividend process is as in (7). Then pt - 61dt + 2z 0+

t zt defined

tl
in equation (9). When pt is regressed on dt' we have

(10) 5 - (r“zdz)"(r":d

1 tPy)

-6 + (T xd )" Ver! dyz,) + (T xd y V1T tdtct)

==> plim 6, = 6, + plim (T Idt) "(17'za £C )

(Recall that Edtzt = 0 by construction.) The asymptotic bias in 6, then, {s
equal to the asymptotic value of the coefficient of a regression of the bubble
on dt' An additional check on the plausibility of bubbles as the source of any

discrepancy of the two estimates of 61 comes from looking at the value of the

estimate of 61_that comes from the regression of Py on dt‘ It is often argued
that bubbles result at least in part from an overreaction to news about
fundamentals [Shiller, 1984]. If bubbles are present, then, one would expect
the point estimate of 6, to be biased upwards. More generally, when

-

tbiEdt,ilﬂ involves more than one lag of dt' one might expect bubbles to cause
the sum of coefficients in the distributed lag projection of P, onto d, to be

biased upwards.l

The third comment is that this test has a substantial advantage over the
tests undertaken in Flood and Garber [1980] and Flood, Garber and Scott [1984],
and that proposed in Sargent and Wallace [1984]. This is that the specifica-
tion test does not require parametric specification of the bubble process.

Any bubble that is correlated with dividends can be detected: the
bubble described in (6); a bubble as in (6) whose probability of continuing to
float “t depends stochastically on events such as, say, money supply news,

or GNP growth, or political events; and combinations of any and all such bubbles.
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The fourth comment is that the specification test can be used to test for
bubbles in other infinite horizon linear rational expectations models. The idea
is to compare two sets of estimates. One set is obtained from the dynamic pro-
gramming, or equilibrium, solution to the model (i.e., from the model's analogue
to equation (l2a) or (12b) below). The second set is obtained by applying the relevant
Hansen and Sargent [1981b] formulas to estimates obtained from two types of
equations. The first is the model's Euler equations, or first-order conditions
(i.e., the model's analogue to equation (1)). The second is ARIMA equations
for the model's forcing variables (i.e., the model's analogue to equation (lla)
or (11b) below). The null hypothesis of no bubbles should be rejected only if (a)
diagnostic tests on the Euler and ARIMA equations suggest that these equations
are acceptably specified, and (b) any difference between the two sets of esti-

mates is unlikely to result from sampling error.

III.Emgirical Results

Section A describes data and estimation technique. Section B presents
empirical results. Section C extends the specification test to allow for a
dividend process that follows a lognormal random walk. Section D extends it to
test a model that allows discount rates to vary over time.

A.Data and Estimation Technique

The data used were those used by Shiller [1981a] in his study of stock
price volatility, and were graciously supplied by him. There were two data
sets, both containing annual aggregate price and dividend data. One had the
Standard and Poor 500 for 1871-1980 (pt = price in January divided by producer

price index (1979 = 100), ¢:!‘,',1 « sum of dividends from that same January to the
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following December, deflated by the average of that year's producer price
index). The other data set was a modified Dow Jones index, 1928-1978 (pt, di .,
as above). See Shiller {[1981a] for a discussion of the data.

Let me describe in turn: (i)identification of the order of dt's ARIMA
process; (ii)estimation of (1)', the dt process and the distributed lag of Py
on dt; (111)calculation of the variance covariance matrix of the parameters;
(iv)calculation of the basic test statistic; (v)diagnostic tests performed on
the equations estimated. |
(1)For each data set, estimation was done with dt in levels and with d, in

arithmetic first differences. In each case, only pure autoregressions were

estimated, for computational simplicity:

(11a) deey =1 ¢ $1dp* <.+ 0 d +v

q t-q+! t41

(11p) 8y, = u * 6,4d, ¢ ... 0+ 089 o1 * Veoqe
For each data set and for both dt and Ad,, two different values of the lag
length q were used. One was arbitrarily selected as q = 4, The other was
selected by the information criterion of Hannan and Quinn {1979]). This
criterion chooses the value or q that minimizes a certain function of the
estimated parameters, and asymptotically chooses the correct q if the process
truly has a finite order autoregressive representatlon.2 Thus, for each data
set, up to four specifications were estimated: differenced and undifferenced, q
= 4 and q = lag length selected by the Hannan and Quinn (1979] criterion. In
one case (Dow Jones, differenced) the Hannan and Quinn [1979] criterion chose ]
= 4. So for the Dow Jones, only three specifications were estimated.

(11)1r d."AR(q), as in (i1a), then
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(12a) = m+ 6.d + vee * 6

Pyoy 19¢41 q%t-q+2 * Yt

e 1
m o+ §ydp,y ¢ oeee * S8qi2 " fb Edy, s, Hea

w -

et " Zger v C©

t+1

- 1
Zger " fb (Edy, g0yl Tgeq Edp gy ity

The formulas linking m and the 61 on the one hand, b, u and the oy on the
other, under the null, are given in equation (13a) below. If Ad "AR(q), as in

(11b), then projecting a first difference of E Tbla |1

. e4itl onto Ht yields

t+l

(120) 8Py, = @+ 6,80, * «oo * 688, oy * Wy,

.1
m o+ 8 Ady * ... * 8080y, ® fb Eady,,,,IH,

Weep T Zg * 8Ccy

e 1 =1
z, = fb (Edy, g Tgay By yqlTy) fb Ead

t t*i*l‘“t'

The z, variable is dated t rather than t+1 to emphasize that it is orthogonal
to Ht but not Ht¢1. Under the null hypothesis that C, = 0, the disturbances to
(12a) and (12b) of course depend only a suitably dated z.

The trivariate system estimated for undifferenced specifications therefore
was (1)', (11a) and (12a). For differenced specifications, the syastea
estimated was (1)', (11b) and (120). The discount rate b was estimated from
equation (1)' by two step, two stage least squares [(Hansen, 1982]. The firat
step was standard two stage least squares. The second step obtained the
optimal, heteroskedasticity consistent eatimate. The instruments used were the
variables on the right hand side of the dividend equation (11a) or (11b),

Equations (11a), (11v), (12a), and (12b) were estimated by OLS, with the

covariance matrix of the parameters adjusted as described in (111). Under the

null, OLS may be used in (12a) and (12b) since Ez  ,[H, , = 0 in (12a), Ez, [H,
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= 0 in (12b).

(111)For both undifferenced and differenced specifications, the parameter

vector estimated was thus 8 = (b.u,¢1,...,;q,m.61,....Gq). ; is asymptotically
normal with a (2q+3)x(2q+3) asymptotic variance-covariance matrix V. V was
calculated by the methods of Hansen [1982], Newey and West [1986], and West
(1986a]. This allows for arbitrary heteroskedasticity conditional on the
instruments. It also allows for an arbitrary ARMA process for the disturbance
to equations (12a) and (12b). An appendix available from the author
describes in detail the calculation of V.

(1v)The relationship between the parameters in (12a) and (12b) on the one hand,
and b and the parameters of (11a) and (11b) on the other, may be derived in a
straightforward fashion from the formulas in Hansen and Sargent [1981b],

The corresponding constraints that are implied for stationary specifications

are:

(133) 0 =m - b(1-6) Te(b)" ",
0«35 - [e(b) '-1]

e 6 - o(n)-lgQ pk-3l i,
0= &) - ) g oIy 3*2,....q

il T - B ST
The constraints for differenced specifications are

(1) 0 =m - [b(1-b) " Te(b) Tea(p) '-110

- & - -1.q k- J -1
0 =8, - {o(b) Lager® o + [o(D)

- -1
0 aq [e(d) 1]¢q

‘1]¢J} J=i,...,q-1

=1 o r-sQ i -1
o(d) [ 21_1b 01] .
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Let R(8) denote either of these (q+!)x1 constraints. The null hypothesis

{s that R(8) = 0. The test statistic was calculated as

(14) R(8) [ (3R/38)V(3R/38) '] 'R(8)

The derivative of R(a) was calculated analytically. Under the null hypothesis,
the statistic (14) is asymptotically distributed as a chi-squared random
variable with q+1 degrees of rreedqm}
(v)The final item discussed before results are presented is diagnostic tests on
the estimated equations.l' As explained in the previous section of the paper,
a significant value of the test statistic (14) is more compelling as evidence
of bubbles the less the extent to which diagnostic tests on (1)', (11a) and
(11b) indicate thaé other source of misspecification are present. Possible
sources that have been suggested include failure to allow for expectational
irrationality [Ackiey. 1983] and for time variation in discount rates [Leroy,
19841].

Four diagnostic checks were therefore performed on equations (1)', (11a)
and (11b). The first checked for serial correlation in the residuals to the
equations, using a pair of tests. Under rational expectations, the
expectational error u, ., should be serially uncorrelated. If the ARIMA process
for d, 1is properly specified, so, too, should v,,,, since v, , 1s the
innovation in the process. The first of the pair of serial correlation tests
checked for first order serial ocorrelation in U,y and v, ., using the
tachniques described in Pagan and Hall [1983, ppt70, 191)., The second serial

correlation test, performed only for Veepr calculated the Box-Pierce Q
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statistic for the residuals. This statistic tests for first and higher order
serial correlation [Granger and Newbold, 1977, p. 93].

The second of the four diagnostic checks, performed only on equation (1)°',
was Hansen's [1982] test of instrument-residual orthogonality. Under the null
hypothesis that equation (1) is correctly specified, the test statistic {s
asymptotically distributed as a chi squared random variable with q degrees of
freedom. This test has the power to detect failures of equation (1) such as
expectational irrationality and time variation in discount rates that is
correlated with dividends.

The third of the four diagnostic checks tested for the stability of the
regression coefficients in (1)', (11a) and (11b). This was done by testing for
a midsample shift of the coefficients in these equations. The relevant
statistic is asymptotically dlatrlbuted as a chi squared random variable, with
one degree of freedom for (1)', q+! degrees of freedom for (11a) and (11b).
This test clearly has the power to detect shifts in the discount rate, as well
as in the dividend process.

The¢ fourth and final diagnostic check performed is implicit {n the
estimation procedure described above. Several specifications of the dividend
process were used--differenced and undifferenced, with a variety of lag
lengths. Since the results did not prove very sensitive to the specification
of the dividend process, it appears unlikely that small changes in the
specification of the dividend process will affect the results.

B.Empirical Results

Regression results for {(1)° are reported in Table IA.S The results in
Table IA sugzest that the basic arbitrage equation (1) i{s a sensible one.

Consider first two diagnostic tests. Column (&) reports the estimates of the
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first order serial correlation coefficient of the disturbance to (1)'. Since
the entries in the column are far from significant at the .05 level, there is
1ittle evidence of serial correlation in this disturbance. In addition, the
entries in column (5), which report the Hansen {(1982] test of {instrument
residual orthogonality, does not reject the null hypothesis of no
correlation between the instruments and residuals. The successful results {n
colunn (5) are perhaps especially noteworthy since failures of rational
expectations models to pass this test are quite common [Hansen and Singleton,
1982; West, 1986b].

Most important, the discount rate b is estimated plausibly and precisely in
all regressions. See column (3) in Table IA. The implied annual real expected .
returns are a reasonable six to seven per cent, and are quite close to the
arithmetic means for ex post returns: 8.1 percent for the Standard and Poor's
(S and P) index (1872-1981) and 7.4 percent for the Dow Jones index
(1929-1979). Moreover, the entries in column (6) give little evidence that the
rate was different in the two halves of either sample. The only specification
for which the null hypothesis of equality can be rejected at the five percent
ievel -is Standard and Poor's, undifferenced, q = 2. In addition, no evidence
against the constancy of the discount rate may be found in a comparison of the
two halves' mean ex post returns. For the S and P index, these were (in
percent) 8.09 (1872-1926) versus 8.12 (1927-1981); for the Dow Jones the
figures are 7.87 (1929-1954) versus 6.92 (1955-1979) .

The specification of the arbitrage equation (1), then, appears acceptable.
Let us now consider the estimates for the dividend process, reported in Table
IB. The entries in columns (8) and (9) indicate little evidence of serial
correlation in the disturbance to equations (11a) and (11b). Both test

statistics in all regressions are far from significant, except for the estimate
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of the first order serial correlation coefficient 5 for the S and P index,
undifferenced, lag length q = 2. This regression's Q statistic in column (9)
does, however, comfortably accept the null hypothesis of no serial correlation.
Overall, then, no serial oorrelation to the residuals to (11a) and (11b) {s
apparent. Also, the estimates of most regression coefficients are
statistically significant, at least when the lag length q was chosen by the
Hannan and Quinn ([1979] procedure. Finally, the null hypothesis that the
parameters of the dividend process are the same in the two halves of each
sample can be rejected at the five per cent level only for the S and P index,
undifferenced. See column (10). In general, then, the specification of the
dividend process seems acceptable, with the possible exception of the S and P
data set, undifferenced.

Estimates of the third and final equation, (12a) or (12b), are in Table IC.
Parameter estimates are fairly precise for undifferenced specifications, less
80 for differenced specifications.

In contrast to the coefficients of the other two equations, however, the
estimates of the coefficients of equations (12a) and (12b) are probably not

sensiplo from the point of view of the simple efficient markets model that says

ieq

Py = ?b t*illt’ For the estimates of these coefficients are uniformly
incompatible with the estimates of the coefficients of the other two equations.
The test of whether these estimates are in fact compatible--that i{s, the test
of the null hypotheais that bubbles are absent--may be found in Table II.
Equation (14) is calculated in column (4). Every specification but those for
the S and P, differenced, rejects the null at any conventional signiffcance
level., One the of the S and P differenced specifications rejects the null at
the 5 percent level, the other at the 10 percent level.

It appears that the reason for the rejection is that the coefficients on
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dividends in the present value equations (12a) and (12b) are biased upwards. In

aix of the seven specifications, the sum of the biases in the 31 (not reported

{in any table) are positive. (The only exception is the S and P, differenced, q
= 2.) Now, for undifferenced specifications, if there is a bubble, the bias in
the estimate of the vector (m,§,,...,§,) is the probability limit of the vector
of estimates of the parameters of a regression of the bubble C,.q ON 3 constant

and d (See equation (10).) If bubbles reflect at least in part

ETERRYL NP S
a tendency of the market to overreact to dividends or to news about future
dividends [Shiller, 1984] this upward bias is precisely what would be expected.
For differenced specifications, the asymptotic bias in the estimate of the
vector (m.61....,6q) is the probability limit of estimates of the parameters in
a regression of the bubble on a constant and Adt+1""'Adt-q+1' If changes in
bubbles tend to be associated with changes in lags of dividends, the ;1 will
also tend to be biased upward for differenced specit‘ications.6

C.Dividends Follow a Lognormal Random Walk

The diagnostic tests discussed in the previous section found little fault
with the specifications of the dt process. Much research in finance, however,
assumes that logarithmic and not arithmetic differences are necessary to induce
statiénarity in dividends [Kleidon, 1985]. As noted in section II, it is
possible to obtain a closed form solution for ;blsdt¢1|ﬂt when A(log dt) is an
1id normal random variable. This section applles the specification test, when

dt follows this lognormal random walk.

- 2 ol
Suppose that A(log d,) ~ N(u,o ). Let H = {Qt_ilizo}. Then fb Edtdmt -

§.d,., 6, = exp(u002/2)/[b-‘-pr(u402/2)] (Kleidon, 1985, p21]. Our aim is to

1%
compare an estimate of §, obtained by regressing p, on d, with that obtained

from estimates of u, 02 and b. For each of the two data sets, u and 02 were

obtained as (a)the sample mean and variance of A(log dt)' and (b)u = 0, 02 -

1
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T-1£(Alog dt)z. (T = sample size.) Case (b), which imposes , = 0 and
calculates the variance conditional on this, was tried because the point
estimate of u in each data set was insignificantly different from zero, b-1

was set equal to the mean ex post return. A convenient way to test the null

hypothesis is to note that the formula for 61 implies
(15) o = 210g1(1/b)[6,/(1+6,)1) - 2u.

Since A(log dt) = N(u.az). ;z'xz(r) when u = 0 {s imposed, ;Z'xz('l‘-n when y is
estimated. It is straightforward to construct a 99 percent confidence interval
around ;2. as described in Mood et al. [1974, p382]. We can then check whether
the point estimates of b ', &, and u are such that the right hand side of (15)
falls in this confidence interval. Note that such a procedure ignores sampling
uncertainty in the estimates of b ', §, and u. One reason I am nonetheless
applying this procedure is that the usual asymptotic theory does not apply to
the regression that produces 31.

The empirical results are in Tabdle III. The first line for each data set
uses ghe mean of A(log dt) for u, the second imposes y = 0. Only one point
estimate of ;2 is reported for each data set, since ;2 was the same to three
decimal places whether & not u = 0 was imposed. The lower and upper bounds
for the 99 percent confidence interval are reported in column (2), The mean ex
post return for each data set is in column 4. The OLS estimate of 51 that
results from regressing Py on d, 1s in column 5. (It may help as a point of
reference to state that the mean pt/dt ratio for the S and P is 21.05, for the
Dow Jones is 22.24.) Column 6 has the sample mean of A(log dt)' or zerc. Note
that for both data sets, the sampie mean is insignificantly different from

zero, at any conventional significance level. Column (7) has the point
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estimate of p, the first order serial correlation coefficient of the resicual.
For both data set3, the estimate i{s insignificantly different from zero at the
10 percent level, but not at the five percent level. Column 3 has the right
hand side of equation (15), calculated from the figures in columns 4 to 6. The
numbers in this column are all on or above the upper end of the 99 percent

2

confidence interval for P , reported in column 2.

Apparently, the point estimates of the right hand side of (15) are too big,
and/or those of the left hand side of (15) too small, for the data to have been
generated by a constant discount rate, lognormal random walk model, without

bubbles. This is consistent with the section IIIB results: one interpretation

is that 51, the coefficient that results when p, is projected onto d., is too

big for pt - p: to be correct. Another interpretation, consistent not only

with the earlier results in this paper but of those in a companion paper as

well [West, 1986c], is that 02. the variance of the innovation in the

univariate dividend process, is too small.
It does not, however, seem wise to push either of these arguments too far.
One reason is the simple lognormal random walk specification may not adequately

capture the dynamics of the d_ process. This figures in column (7) of Table

t

III suggest some residual serial correlation. A second reason is that the
figures in Table III do not really indicate a rejection of the model at the 99%
level, since sampling uncertainty in the estimates of b-1, 61 and u is ignored.

Cne way to emphasize that this is a practical and not just pedantic point is to

consider the effects on column (3) of different values of o', Suppose that

b~1 = 1,05, a value within two standard deviations of the point estimates in

Table IA. Then all four column (3) estimates would not only fall below the

upper end of the 99 percent confidence interval in column (2), but would all be

2

below the point estimate of ¢ in column (1).
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In sum, the, the lognormal specification provides mild evidence against

* *
= = + .
the null that pt pt, versus Pt Pt Ct

D.Time Varying Discount Rates

Time variation in discount rates can be allowed under the null, if,

as in Shiller [198la], the model is still linear.

Let rt+j be the one period return expected by the market at period t+j-1,

* ® -
Let py = BUZ] (M (1ory, 07" 14, }[I,. Under the null hypothesis of no

#* #* - - - -
bubbles, pt - pt' Let us linearize pt around r and d; selection of r and 4 is

', 3 = -3/F. Then (Shiller, 1981a]

i

discussed below. Define b = (1+r)”
* ® —f - - @ -
Py = Elz, b (a(r, , rivd,  (JHI, = (say) Bl 107y, HI,.

The arbitrage equation corresponding to the null hypothesis that

= - -
Py * E{L b latr, ri«d, I}, 1s

(16) Pp = DE(Yy 1 *Py I, = bE[a(rt¢'-r)*dt¢1*pt¢'J}IIt.

As before, solutions to (16) are of the form P, = Ef 21_151

Yoy} I ve, for any

Cp that satisfies Ec,|I,_, = b 1ct. The null hypothesis we wish to test is

tmt Ct- o-

This can be done by comparing two sets of estimates of expected present
discounted values, with expectations conditional on the set of current and past
dividends. Now, however, the varfable being forecast 1s not Just dt*i but
Yeoqs This will not involve an arbitrage equation; it will involve dividend
and distributed lag equations, as before, and also a new equation, for

forecasting expected returns using current and lagged dividends. A brief

discussion follows. Algebraic details are available on request.



The linearization parameters F, b and a were chosen as certain simple,
plausible functions of the data. For both differenced and undifferenced

specifications, the point of linearization for expected returns was the mean ex

post return, r = T-1£[(pt+1’dt+1)/ptj"' Then b = (1+7) '. wWhen dividends

were assumed stationary, the point of linearization for d was mean dividends, d
- T-1£dt. When dividends were assumed to require (arithmetic) differences to
induce stationarity, the point was d = (1-B)ry 8% 'Ege,, Ej0, = EgdgetEad,, 4
a presample value of dividends. Thus d = doosAdt/(t-B). Note that if

dividends are stationary (EAdt = 0) and do - Edt, this reduces to linearizing
around mean dividends. For both differenced and undifferenced specifications,

3 was calculated as a = -d/I. See Table IV for the resulting values of r, b, d

and a.

The dividend equation is precisely that used in the constant discount rate

case, in section IIIB.

For undifferenced specifications, the distributed lag equation was obtained
by projecting Ezslyt»101|1t+1 onto the space of current and lagéed di vidends

Ht+1' as in equation (12a). For differenced specifications, a difference of

=1
EIb yt01+1l1t*1 was projected onto H,, as in equation (12p).

The final relationship involved is a regression to forecast expected
returns. Let Rt»J - (ptojodtoj)/pt’J_1-1 denote the ex post return. Note that
since H, 1s a subset of I,, RtoJ * Prey * Vgoyo with Veej orthogonal to H,. So

ERtoJIHt - Ert+J|Ht: a regression to forecast ex post returns also forecasts

expected returns. The regressions are

(17a) R -
tel =8 * Yodp * eee Yl p t 0y

(176) R, =8 * Yg8d, * ..o * Y Ad, 7,

serially correlated in general, Exsn e 0 for x_ an element of Ht'

n b s

t



One can use (17a) to solve for ESIES(RtOI-;)]IHt. As before, the dividend
equation (11a) yields Esidtoilﬂt' Together these produce the Etsiyt’ilﬂt.
Similarly, (17b) and (11b) yield the distributed lag equation in differenced
sSpecifications.

For computational simplicity, the specification test was performed conditional
on a, r, b and the parameters of equations (17a) and (17b). It may be shown
that the parameters of the distributed lag equation can be estimated from the
regressions

(18a) =l 8y v et el o Yy

Peey 191

(180)  8py,, = m« &yad oo ¢ 8o0dy 0w,

The left hand side variables Btol and A;toi are calculated from pt*! and Apt*i'
and lags of d. and ad,, using a, b and the estimates of the parameters of (17a)
and (17b). The 61 are functions of b and the parameters of the dividend
process, as written out in equations (13a) and (13b). If the 71 in equations
(17a) and (17b) are identically zero, then ;toi = Preqr A;tol'Apt¢1’ if the
return that is expected conditional on past dividends is constant, the test in
this section reduces to that in section IIIB.

The length of the distributed lag of ex post returns on dividends was set to
30, as in Shiller [1984, Table 1]. This was done because OLS standard errors

suggested insignificant Yi for both the Dow Jones and the S and P for a lag

length of ten years. Because of degrees of freedom limitations resulting from
the thirty-year lag, the test in this section was applied only to the S and P.
An unconstrained lag was used, since both YO and the sum of the Yi were
estimated more precisely with this lag than with Shiller's [1984] polynomial

distributed lag.
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The regression of returns on dividends is reported in Table VA. In
contrast to the results of the previous section, some predictability of returns
is suggested. YO’ the coefficient on dt or Adt’ was significantly different-
from zero at the 95 percent level. So, too, was the sum of the other dis-
tributed lag coefficients. See columns (3) and (4). The significance of
the coefficients is, however, probably somewhat overstated, since, as explained
above, some experimentation was done to obtain a specification with significant
coefficients.

Table VB has estimates of the dividend equations. These look quite
similar to those in Table IB. Table VC has estimates of the distributed lag
equations (18a) and (18b). Note that the coefficients are woefully insig-
nificant for differenced specifications.

Results of the test of the null hypothesis of no bubbles are reported in
Table VI. The null is strongly rejected for undifferenced specifications,
not at all for differenced specifications. The sum of the biases of the 81
was positive for all specifications except differenced, lag length = 4.

It is rather disturbing that allowing for time varying discount rates
yiel@s stronger evidence against the model for undifferenced specifica-

tions, weaker evidence for differenced specifications. One possible

explanation is that the equation (17) forecasts of future expected returns

are quite noisy, and very different from the market's actual expected returns.

The fitted values from equation (17a) could then be spuriously leading to a
rejection for undifferenced specification, or conversely, those from (17b)
could be incorrectly suggesting little evidence against the model for dif-
ferenced specifications. A priority for future research, then, is performing
similar tests with a more tightly constrained parameterization of what

determines expected returns. The evidence in this section does tittle to pin down



the extent to which the rejectionsin the constant discount rate model are

due to variations in discount rates.

IV. Discussion and Conclusions

This section contains some concluding comments on the previous section's results.
The first comment to make is that any diagnostic tests of (1)' will
Clearly have arditrarily small pover against "near rational" bubbles that are

arbitrarily close to being rational. This is, if P, = p: * €. and Ec, 1, -

k 1°t-1 for some k that is very close to b, diagnostic tests on equation (1)’
may well fail to reject equation (1)'. Summers (1986] calculated the smal}
Sample power of tests similar (though not identical) to those performed in
section IIIB, and, unsurprisingly, found that such tests are unlikely to detect
variations {n expected returns caused by near rational bubbdles.

The presence of near rational bubbles certainly means that equation (1) {s,
strictly speaking, invalid. This fact does not, however, seem to me to be of
great importance for the interpretation or implications of the results or
section III. A near rational bubble that tends to generate nearly constant
expected returns will tend to gonerate nearly the same time series battern of
prices as will a rational bubble. That the tests in section IIIB have 1little
power to distinguish between such a bubble and a strictly rational is not,
then, very important for the interpretation of the evidence presented {n

section III, at least at the level of generality of this paper.
The second comment to make concerns what determines whether a constant

expected return specification is a good approximation for the purposes of the

specification test. The section IIID analysis of a linearized model with time

variation in expected returns suggests that the key requirement is not near

constancy of returns expected by the market, but near constancy of the return
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that {s expected conditional on the past history of dividends. In the

- » -4
-r)[H, + I, _,07Ed,  [H . In that

%* - -
linearized model, E e at” i
Pty = al, b E(r {a]

i=1
_i -
b Edt*l'“t not only when r . = r but also when

t+4

& ®
model, then, EptIHt - I,
Er,, |H, = F for 1>0, i.e., when past dividends do not help predict future
expected returns. Intujitively, if only past dividends are used to forecast the
expected present discounted value of future dividends, and variations in
expected returns are independent of past dividends, it is reasonable to
forecast expected returns to be at their unconditional mean and to discount
future dividends at a constant rate. This statement holds in a strict
mathematical sense in a linearized model, and therefore may hold approximately
in the underlying nonlinear model.

An implication is that most of the mild evidence against the constant
expected return specification in Shiller [198la, 1984] and all of the somewhat
stronger evidence in Flood, Hodrick and Kaplan [1986] may well not be directly
relevant to the interpretation of the results of this paper.7 It is, of
course, of interest to further investigate whether, for the purposes of the
specification test, it is adequate as an approximation to consider only
variations in expected returns that are predictable from the past history of
diviéends, and the extent to which such variations explain what seems to be
anomalous behavior in the data. This is an important task for future research.

What is required is a reconciliation of what appear to be incompatible
price and dividend data. The incompatibility is manifested in an upward bias
in the estimates of the coefficients of the projection of prices onto lagged
dividends. A reconciliation that involves a parametric model for bubbles, or

fads, and which allows for variation in expected returns, is a challenging

task for future research.

Princeton University.
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FOOTNOTES

1. Unfortunately, the discussion in this paragraph cannot, in general, be

justified rigorously. In at least certain case, T-1Zdtct will not converge in

mean square to a constant. This results from the fact that c, 1s growing on

P _1;
average at a rate faster than T 1, {.e., at rate b .

This is briefly
discussed in West [1985] as are the implications of the explosive growth of Cy
for the distribution of 31 under the alternative that bubbles are present.
2.  The Hannan and Quinn [1979] procedure selects the q that minimizes
~2 -1.T "2

"2 -1 -
1n o, + T '2gkln 1In T, g, T Zt_1vt,

for q<Q for scme fixed Q, with k>1. I set Q = b, k = 1.001.

3. One troublesome aspect of the distribution of the test statistic should
be noted. This is that the test may not be consistent: if there are bubbles,
the asymptotic probability that the test will reject the null may not be unity,
even though the two sets of parameter estimates will be different with proba-
bility one in an infinite sized sample. See West [1985] for further discussion.

4. These same diagnostic tests were performed in West [1986c], and the
discussion that follows is an abbreviated version of the discussion in section
IVA of that paper.

| 5. Tables IA and IB are identical to Tables IA and IB in west [1986c], so
the discussion that follows is very similar to the discussion in section IVB of
that paper.

6. As noted in West [1985], the limiting distribution of the regression of
ct on dividends may not in general be a single vector. The statements in this
paragraph therfore should be interpreted with caution.

7. Using the same data as in this paper, Shiller [1981a, 1984] and Flood,
Hodrick and Kaplan [1986) obtain coefficients significant at the five per cent
level when the ex post return is regrassed on certain sets of lagged prices,
dividend-price ratios and ex post returns. Shiller [1984] also obtains

significant coefficients using lagged earnings.
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TABLE III
Empirical Results, Lognormal Random walk

(1) (2) (3) (4) (5) (6) (7)

-~ -~ -~

Data set pr 99% CI R.h.s of (15) (1/b) s , 0

S and P 0.016 (0.012,0.026)  0.045 1.081 23.19 0.013  0.176

1872-1980 (0.012)  (0.095)
0.071 0.0

Dow Jones 0.024 (0.015,0.043)  0.043 1.074 23. 44 0.008  0.236

1929-1978 (0.021) (0.137)
0.059 0.0

2

a.Symbols o~, 1/b, &, defined above equation (15); p defined below equation (15).

b.The "99% CI" column gives the lower and upper bounds of a 99 percgnt conf idence
interval around the entry in column (1). These are calculated for a x (100) random
variable for the S and P (sample size=109), for a x“(50) random variable for the Dow
Jones (sample size=50), as described in Mood et al. (1974, p382].

c.In column (3), "R.h.s. of (15)" means "right hand side of equation (15)."

d.The numbers in parentneses in column 6 are standard errors, in column 7 are
asymptotic standard errors.
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TABLE VI

Test Statistics

Sample Period Differenced q Degrees of Freedom Equation 1/4 sig
1901-1980 no 2 3 33.72/0.000
1902-1980 yes 2 3 2.00/0.572
1901-1980 no 4 5 30.86/0.000
1902-1980 yes 4 5 2.67/0.750

See Notes to Table II.



