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I. Introducti

The seeming tendency for self-fulfilling rumors about potential stock price

fluctuations to result in actual stock price movements has long been noted by

economists. In a famous passage, Keynes, for example, described the stock market

as a certain type of beauty contest, in which judges try to guess the winner of

the contest: speculators devote their "intelligence
to anticipating what average

opinion expects average opinion to be" [1964, p.156]. In recent rational

expectations work, this possibility has been rigorously formalized and the

self-fulfilling rumors dubbed speculative bubbles [Blanchard and Watson, 1982;

Shiller, 1978; Taylor, 1977; Tirole, 1982, 1985]. Recent attempts to detect such

bubbles with formal statistical tests have, however, met with mixed success

[Blanchard and Watson, 1982; Diba and Grossman, 1984; Flood and Garber 1980;

Flood, Garber and Scott, 1984; Hamilton and Whiteman, 1984].

One possible reason for the inability of the empirical tests to detect the

bubbles so often described is that the tests have been few and not very powerful.

This paper develops and applies a test for speculative bubbles that (a)allows for

a wider class of bubbles than did Flood and Garber
[1980] and Flood, Garber and

Scott [1984]; (b)is specifically designed to test against the alternative that

bubbles are present, in contrast to the volatility tests of Shiller [1981a, 1981bJ

and Leroy and Porter [1981]; and (c)may be applied even if prices and dividends

are nonstationary, again in contrast to the volatility tests and to the tests in

Flood and Garber [1980] and Flood, Garber and Scott [1984].

The basic idea of the present paper's test is very simple, and was suggested

by the specification test of Hausman [1978]. The test compares two sets of

estimates of the parameters needed to calculate the expected present discounted

value (PDV) of a given stock's dividend
stream, with expectations conditional on

current and all past dividends, In a constant discount rate model, the two sets



are obtained as follows. One set may be obtained simply by regressing the stock

price on a suitable set
of lagged dividends. The other set may be obtained

indirectly from a pair of equations.
One of the pair is an arbitrage equation

yielding the discount rate,
and the other is the dividend process's ARIMA

equation. The Hansen and Sargent [1981b] formulas, familiar from rational

expectations tests of cross equation
restrictions, may be applied to this pair of

equations's coefficients to obtain a second set of estimates of the expected PDV

parameters.

Under the null hypothesis that the stock price is set in accord with a

standard efficient markets model [Brealey and Myers, 1981, pp42-45], the

regression coefficients in all equations may be estimated consistently. When the

two sets of estimates of the expected
PDV parameters are compared, then, they

should be the same, apart from sampling error.

But this equality of the two sets will not hold under the alternative

hypothesis suggested by, e.g.,
Blanchard and Watson [19821, that the stock price

equals the sum of two components: the price implied by the efficient markets
model

and a speculative bubble. In this case, the equation that relates price to a

suitable set of dividends omits a relevant
regressor--the bubble. As long as the

bubble is correlated with the included regressors,
the coefficients in this

equation will be estimated
inconsistently. The bubble will not, however, cause

estimation of the other two equations to
be inconsistent. So the coefficients in

this pair of equations, as well as
the implied value of the set of expected PDV

parameters, will still be estimated consistently. Therefore, when the two

estimates of the set of expected PDV parameters
are compared, the two will be

expected to be different.

Speculative bubbles are tested for, then, by seeing whether the two sets of

estimates are the same, apart from sampling error.
I check for the equality of
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the two sets in long-term annual data on the Standard and Poor's 500 index

(1871-1980) and the Dow Jones index (1928-1978). The
data reject the null

hypothesis of no bubbles. The rejection appears to result at least in part

because the coefficients in the regression of price on dividends are biased

upwards. As is explained in section II, this is precisely what would be expected

if, as is sometimes argued [Shiller, 1984], bubbles
reflect an overreaction by the

market to news about dividends. A small
amount of investigation of a linearized

time varying discount rate model suggests that such variation may also help

explain the results.

Section II quickly reviews the standard constant discount rate efficient

markets model and the definition of a
speculative bubble and then explains how the

test is performed. Section ILl presents empirical results from a constant

discount rate model and then develops and
applies the specification test for a

linearized time varying discount rate model. Section IV discusses the empirical

results. Some econometric and algebraic details are in an appendix available from

the author.

II.The Mode], and Test

According to a standard efficient markets model, a stock price is
determined by the arbitrage relationship (1) [Brealey and Myers, 1981,

pp42—35):

(1) Pt — bE(pt+i+dti)r.

where p is the real stock price in period t, b the constant ex-ante real
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discount rate, 0 < b = l/(l+r) < 1, r the constant expected return, E denotes

mathematical expectations, assumed to be equivalent to linear projections, d÷i

the real dividend paid to the owner of the stock period t+l, and

information common to traders in period t. is assumed to contain, at a

minimum, current and past dividends, and, in general, other variables that are

useful in forecasting dividends. Time variation in the ex ante discount rate

b is briefly considered in section hID.

Equation (1) may be solved recursively forward to get

(2) Pt Eb'Edt+iIIt + bEPt+ntIt.

If the transversalltY condition

(3) him bEPt+nIIt a 0

holds, then t a p, where

(4) p' a tb'EdtiIIt.

Now, the p defined in (1k) is the .ztque forward solution to (1) as long as

the transversa]ity condition (3) holds. But if this condition fails, there is

a family of solutions to (1) (Blanchard and Watson [1982], Shiller [1978),

Taylor [1977]). Any p that satisfies

* —1
Pt a + 0t' EctIIt_i a b
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is also a solution to (1).
c is by definition a speculative bubble, an

otherwise extraneous event that affects stock prices because everyofl expects

It to do 30. An example of a stochastic process for c, similar to one

described in Blanchard and Watson [1982], is

(6)
f(Ct_i_)/(wtb) with probability ,C—t
lc/[(1w)b] with probability lWt

O<lrcl, >O.

According to (6), strictly positive bubbles grow and pop. In this example,

the probability that a bubble grows is that it collapses is 1—ir.

The bubble may be intimately connected
with fundamentals, with Tr dependent

on news about fundamentals. A simple example is Tr = 1/2 for all t, with

the bubble popping if and only if the innovation in dividends is negative.

If r is constant (if = IT for all t), each bubble has an expected duration

of (l—IT). ( is not an identifiable parameter.) Combination of several

bubbles are possible, each with a different Trt and C; the growth and collapse

of the bubbles may be either tightly or loosely related. See Blanchard and

Watson [1982] for further examples and discussion.

Our aim is to test
Pt p* versus Pt = + c, for some nontrivial c

(possibly one not following the stochastic process (6)). Consider first this

wildly implausible case: (a) There is no doubt that Pt and dt are such that equations

(1) and (2) hold. (b)dt is a zero mean white noise process. Then Edt.jIIt 0

for 1>0 and p — 0 tar all t. It follows from equations (1) to (4), then, that

• 0 for all t it equation (3) holds: given that the stochatjc difference

equation (1) is solved in the forward directIon (2), the terminal condItion (3)

Insures that () is the taique Solution to equation (1), for all t. In this
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blissfully simple environment where (a)there is no doubt about the rational

expectations, constant discount rate specification, and (b)no statistical

inference is necessary, then (c)the null hypothesis that there are no bubbles

should be rejected it Pt . 0 for some t.

Th basis of the empirical work in this paper is the simple logical

proposition illustrated in the previous paragraph: it a univartate stochastic

difference equation is solved in the forward direction, a single terminal

condition ties down a unique solution. Let us now allow for (a) uncertainty

about b and the parameters of the dividend process; (b) the possibility that

dividends are an endogenous variable, e.g., because they are smoothed by manage-

ment; Cc) uncertainty about whether the rational expectations, constant dis-

count rate specification (1) really characterizes the data.

(a) Suppose that the actual value of b is not known. In addition, suppose

that it is known that dividends follow a zero mean, AR(l) process,

(7) dt — •dti + Vt.

In (7), 1,1(1 and Vt is a finite variance white noise process. The value of •

is not known. It is easy to verify that Eb'Edt.ifIt — oidt. • b$/(1—b$).

So if p

(8) Pt 5idt.

The logical proposition described above is applied in this enviror!fleflt by

estimating (1), (7) and (8). Equations (7) and (8) may be estimated by OLS,
6

yielding point estimates and S1. Equation (1) may be estimated by rewriting

it as
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(1)' Pt • b(pt
-

—
b(Pt+i+dti) +

An instrental variables estimator, using as instrnents variables aiown at

time t——say, dt.—_wil]. now produce a b that is a consistent estimate of b.

To apply the specification test, we compare two estimates of 6, the

parameter needed to calculate IbEdt
That is, we test

H0: ói —
b;/(1—;;), and reject the null hypothesis only If

the resulting test statistic

exceeds an appropriate critical value.

(b) Allowing for endogeneity of dividends [Marsh and Merton, 1984] causes

no substantial complications. Let Mt be the set consisting of a constant

and current and lagged dividends, Mt = {i, dji 0}. Since H is a

subset of I equation (4) in conjunction with Pt = Pt implies [Hansen

and Sargent, 1981b]

Pt • EbtEdt+jiHt • z,
z z serially correlated in general,

Ex5zt 0 for x an element of

To apply the specification test, it is necessary to turn (9) into a

regression equation. This can be done conveniently it there is a closed form

expression for tb'Edt+jIHt. Now, Edt+iIHt is by definition the forecast of

dividends given the past history of dividends. It dt is stationary, perhaps

after difterencing, Edt+j iHt may be calculated as the usual ARIMA forecast of

dt+j. And if dt is stationary, possibly after differencing,
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there is a closed form expression for Eb'Edt+jIHt in the form of a distributed

lag on current and past dt [Hansen and Sargent, 1981b]. As in the simple

example (7) and (8), the coefficients of the distributed lag are functions of b

and the parameters of dt's univariate ARIMA process. Exact formulas are given

in section lilA.

When dividends are endogenous, and are characterized by an ARIMA process of

known order (but unknown parameters), the test can proceed essentially as just

described in case (a) above: estimate (1)' by instrLlnental variables; estimate

dt's univariate ARIMA equation; estimate a distributed lag of Pt on dt; compare

the estimates of the parameters of the distributed lag with those of (1)' and

ARIMA equation. (Actually, if differencing is required to induce

staionarity in dt, it is more convenient to estimate a distributed lag of a

difference of Pt on a difference of dt. See section lilA.) So the basic

difference from case (a) is that it is acknowledged that dt's ARIMA equation is

is simply a convenient way to forecast dividends, and not a statement about the

exogeneity of dividends.

It still remains to determine the order of the ARIMA process for dt. To

make the results of as general interest as possible, the empirical work does

not assne any particular structural model for dividends. The order of the

ARIMA process for dt is data rather than theoretically determined, in the

spirit of the usual Box—Jenkins [1970] analysis. Consistent with such an

approach, a variety of ARIMA specifications are tried, tO make sure that the

results are not sensitive to the exact specification chosen.

It is to be noted that this discussion assumes that arithmetic differencing

is sufficient to induce stationarity in dt. This is because such a condition

makes it possible to obtain a closed form 3olutiOn to Eb'Edt+jIHt. While the

usual Box—Jenkins [1970) diagnostics suggest that arithmetic differences
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suffice to induce stationarity in the data used in this paper (see section

IIIB), much research in finance usi.gnes that log differences are required
[Kleidon, 1985). Since it is also possible to obtain a closed form expression

for EbiEdtjjHt when dt follows a lognormal random walk [Kleidon, 1985), the

empirical work (in section IIIC) briefly considers this specification as well.

(c)Suppose that the specification test described in case (b) indicate! that the

difference between the two sets of estimates of the parameters needed to

calculate EbiEdt+jlHt is I.mlikely to result solely from sampling error.

Clearly, this can happen tar many reasons, in addition to the presence of bubbles.

The possibility that a discrepancy between the two sets of parameter

estimates results from certain factors other than bubbles is handled in two

ways. In section hID, a model with time varying discount rates is linearized

as in Shiller [1981a). It is shown that in such a model one can apply a somewhat

more complicated version of the test just described.

The second way that shortcomin, of the present value model are considered

is by applying diagnostic tests to the estimates of (1)'. The diagnostic tests

are chosen in light of two alternatives
that have figured prominently in

related work, that expectations are not
rational [Ackley, 1983; Shiller, 1984J

and that discount rates are time
varying [Leroy, 198k). The particular tests

used are described in section III. The greater th. extent to which these

diagnostics suggest that equation (1) is consistent with the data, the more
plausible it is to discount expectatjona.j irrationality and discount rate
variation as significant sources of a discrepancy between the two sets of
parameter estimates.

To st up: The apecifjcatjon test proceeda by estimating (1)', a variety

of specifjcatio for the univarjate ARIMA process for dt, and, ,r each such
specification, the corresponding distributed lag Of

Pt on dt It applies a
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battery of diagnostic tests to equation (1)', to see whether equation (1)

appears to be consistent with the data. For each specification of the dividend

ARIMA process, it applies diagnostics of the sort often used in ARIMA

estimatiOn to check whether each specification seems to adequately captures the

dynamics of the process. The test then uses each estimate of (1)' and the

parameters of the dt process to calculate an implied value of the parameters

that characterize the expected present discounted value of dt, conditional on

current and lagged dt. it compares these implied values to the estimates

directly obtained by a distributed lag regression of Pt ° dt. One possible

explanation of any difference between the two sets of estimates is bubbles.

This explanation is more compelling the less likely is the difference to result

from sampling error, and the greater the extent to which the diagnostic tests

fail to reject (1)' and the specification of the univariate dividend process.

Four final conents are of interest before the empirical work is presented.

The first comment concerns how reasonable it is to use the past history of

the dividend process to forecast future
dividends. It clearly is not reasonable

at all in everyone's favorite example
of a corporation that has yet to pay out any

dividends. itt also may not be reasonable if there is a "peso problem" and market

participants are rationally considering a
small probability event that has not

occurred in the sample. There are three points
to make. The first is that the

best protection against such a problem is to use a long sample period, which is

what I did. The second is that certain forms of the peso problem in fact are

implicitly allowed under the null, by suitably reinterpreting the parameter b

[Shiller, 1981b]. Finally, I tested for the stability of the dividend process;

this can detect in—sample switches of the dividend process.

The second concerns the distribution of the estimates of the distributed lag of
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Pt when there is a bubble. This is conveniently illustrated when the

univariate dividend process is as in (7). Then Pt - + + c, z defined
in equation (9). When p is regressed on dt, we have

—1 2—1 —1(10) 61 — (T (T Edtpt)

—
61

+
(Ttd)_l(T_1Edtzt) (T1ZdY1(f1zdtc)

——> plim 6i 5 + plim (T'Zd)1(f1zdtct).

(Recall that EdtZt • 0 by construction.) The asymptotic bias in 6. then, is
equal to the asymptotic value of the coefficient of a regression of the bubble
on

dt. An additional check on the Plausibility of bubbles as the source of ey
discrepancy of the two estimates of

6i comes from looking at the value of the

estimate of that comes from the regression of on d. It is orten argued
that bubbles result at least in part from an overreaction to news about

fundamentals (Shiller, 1981]. If bubbles are present, then, one would expect
the point estimate of 6i to be biased upwards. More generally, when

Eb'EdttlHt involves more than one lag of dt, one might expect bubbles to cause

the st of coefficients in the distributed lag projection of Pt onto dt to be

biased upwards)-

The third comment is that this test has a substantial advantage over the

tests undertaken in Flood and Garber [1980] and Flood, Garber and Scott [19841,

and that proposed in Sargent and Wallace [1984]. This is that the specifica-

tion test does not require parametric specification of the bubble process.

bubble that is correlated with dividends can be detected: the

bubble described in (6); a bubble as in (6) whose probability of continuing to

float Irt depends stochasticafly on events such as, say, money supply news,

or GNP growth, or political events; and combinations of any and all such bubbles.
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The fourth comment is that the specification test can be used to test for

bubbles in other infinite horizon linear rational expectations models. The idea

is to compare two sets of estimates. One set is obtained from the dynamic pro-

gramming, or equilibrium, solution to the model (i.e., from the model's analogue

to equation (12a) or (l2b) below). The second set is obtained by applying the relevant

Hansen and Sargent [l981b] formulas to
estimates obtained from two types of

equations. The first is the model's Euler equations, or first—order conditions

(i.e., the model's analogue to equation (1)). The second is A.RIMA equations

for the model's forcing variables (i.e., the model's analogue to equation (lla)

or (lib) below). The null hypothesis of no bubbles should be rejected only if (a)

diagnostic tests on the Euler and ARINA equations suggest that these equations

are acceptably specified, and (b) any
difference between the two sets of esti—

mates is unlikely to result from sampling error.

III.Empirical Results

Section A diacribes data and estimation technique. Section B presents

etnpirial results. Section C extends the specification test to allow for a

dividend process that follows a loormal random walk. Section D extends it to

test a model that allows discount rates to vary over time.

A.Data and Estimation Technique

The data used were those used by Shiller [1981a) in his study of stock

price volatility, and were graciously supplied by him. There were two data

sets, both containing annual aggregate price
and dividend data. One had the

Standard and Poor 500 for 1871—1980 price in January divided by producer

price index (1979 • 100), dt.i — s of dividends from that same January to the
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following December, deflated by the average of that year's producer price

index). The other data set was a inodif led Dow Jones index, 1928-1978 p,
dt1

as above). See Shiller [1981a] for a discussion of the data.

Let me describe in turn: (i)identification of the order of dt's ARIMA

process; (ii)estimatlon of (1)', the d process and the distributed lag of
Pt

Ofl dt; (lii)calculatjon of the variance covarianc. matrix of the parameters;

(iv)calcu].atjon of the basic test statistic; (v)diagnostjc tests performed on

the equations estimated.

(i)For each data set, estimation was done with dt in levels and with dt

arltPnetic first differences. In each case, only pure autoregressions were

estimated, for computational simplicity:

(ha) dt+i • i& •idt+ ... + •qdt_q+i +

(lib) dt+i . + •idt ... •qd_q+

For each data set and for both dt and dt, two different values of the lag

length q were used. One was arbitrarily selected as q a ii. The Other was

selected by the information criterion of Hannan and Quinn [1979), This
criterion chooses the value or q that minimizes a certain function of the

estimated parameters, and asymptotically chooses the correct q if the process

truly has a finite order autoregressive representation.,2
Thus, for each data

set, up to four speclfication were estimated: difterenced and undifferenced, q
- and q — lag length selected by the Hannan and Quinn [1979] criterion. In
one case (Dow Jones, ditterenced) the Hannan and Quinn (1979] criterion chose q
- . So for the Dow Jones, only tIree specifications were estimated.
(ii)It dAR(q), as in (11*), then



(12a) • +
61d,1

+ ... + óqdt_q+2 +

m + oidt+i
+ ... 6qdt_q+2

- b'Edt+j+iiHt+i

wt+1 — Zt+i + Ct,l
—

The formulas linking m and the 6 on the one hand, b and the on the

other, under the null, are given in equation (13a) below. If dAR(). as in

(lib), then projecting a first difference of E b1d +1+111 +1 onto H yields
1

t

(12b) + it • •.. +

m oiAdt + ... + 6qt—q1 — !b'Edt+I+1LHt
— + Acti

— !bi(Edt+j+iIIt+i_Edt.jIIt)
— EbtEdt+j.iIHt.

The z variable is dated t rather than t1 to emphasize that it is orthogonal

to but not Ht+i. Under the null hypothesis that c - U, the disturbances to

(1 2a) and (1 2b) of course depend only a suitably dated z.

The trivariate system estimated for undifferenced specifications therefore

was (1)', (ha) and (12a). For differenced specifications, the system

estimated was (1)', (hib) and (12b). The discount rate b was estimated from

equation (1)' by two step, two stage least squares [Hansen, 1982]. The first

step was standard two stage least squares. The second step obtained the

optima], heteroekedasticitY consistent estimate. The instr%ents used were the

variables on the right hand side of the dividend equation (ha) or (hib).

Equations (ha), (hib), (12a), and (12b) were estimated by OLS, with the

covariance matrix of the parameters adjusted as described in (iii). Under the

null, OLS may be used in (12a) and (12b) since Ezt+iIHt+i - 0 in (12a), EztIHt
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a in (12b).

(iii)For both .r1differenced and ditterenced specifications, the pareter

vector estimated was thu.s 8 a 6 is aslnptotically

normal with a (2q3)x(2q+3) asymptotic variance—covarjance matrix V. V was

calculated by the methods of Hansen [1982], Newey and West [1986], and West

[1986a]. This allows for arbitrary heteroskedasticity conditional on the

instrents. It also allows for an arbitrary ARI'{A process for the disturbance

to equations (12a) and (12b). An appendix available from the author

describes in detail the calculation of V.

(iv)The relationship between the parameters in (12a) and (12b) on the one hand,

and b and the parameters of (ha) and (lib) on the other, may be derived in a

straightforward fashion from the formulas in Hansen and Sargent [1981b).

The corresponding constraints that are implied for stationary specifications

are:

(13a) 0 m

o a — [(b)1)
0 a —

$(b)_lZJbi1$k
— [1—E1b,1].

The constraints for differenced specifications are

(13b) Q a m —

o — —
(•(b)_lE,j.lb1C_Jk Ee(b)11]}

o a 6q — E•(b)1_1)$q
a
[1—Eibi]1.
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Let R(9) denote either of these (q+1)xl constraints. The null hypothesis

is that R(e) - 0. The test statistic was calculated as

(14) R(e)'[(aR/ae)v(aR/e)']1R(e)

The derivative of R(O) was calculated analytically. Under the null hypothesis,

the statistic (14) j asymptotically distributed as a chi-squared random

variable with q1 degrees of freedom?

(v)The final iten discussed before results are presented is diagnostic tests on

the estimated equations.4 As explained in the previous section of the paper,

a significant value of the test statistic (1k) is more compelling as evidence

of bubbles the less the extent to which diagnostic tests on (1)', (ha) and

(llb) indicate that other source of misspeciflcation are present. Possible

sources that have been suggested include failure to allow for expectational

Irrationality [Ackley, 1983] and for time variation in discount rates [Leroy,

1984].

Four diagnostic checks were therefore performed on equations (1)', (ha)

and (lib). The first checked for aerial correlation in the residuals to the

equations, using a pair of tests. Under rational expectations, the

expectational error u1 ahould be serially uncorrelated. It the ARIMA process

for dt is properly specified, so, too, should since is the

Innovation in the process. The first of the pair of serial correlation tests

checked for first order serial correlation in u1 and using the

tachniques described in Pagan and Hall [1983, ppi7O, 191]. The second serial

correlation test, performed only for calculated the Box-Pierce Q
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statistic for the residuals. This statistic tests for first and higher order

serial correlation [Granger and Newbold, 1977, P. 93].

The second of the four diagnostic checks, performed
only on equation (1)',

was Hansen's [1982] test of instrument—residual
orthogonality. Under the null

hypothesis that equation (1) is correctly specified, the test statistic Is

asymptotically distributed as a chi squared random variable with q degrees of

freedom. This test has the power to detect failures of equation (1) such as

expectationa.l irrationality and time variation in discount rates that is

correlated with dividends.

The third of the four diagnostic checks tested for the stability of the
regression coefficients in (1)', (ha) and (hib). This was done by testing for
a midsample shift of the coefficients in these equations. The relevant
statistic is asymptotically distributed as a chi squared random variable, with

one degree of freedom for (1)'. q.1 degrees of freedom for (ha) and (hib).
This test clearly has the power to detect shifts in the discount rate, as well

as in the dividend process.

The fourth and final diagnostic check performed is implicit in the
estimation procedure described above. Several specifications of the dividend

process were used-—differeliced and undifferenced, with a variety of lag
lengths. Since the results did not prove very sensitive to the specification

or the dividend process, it appears unlikely that small changes in the

specification of the dividend process will affect the results.

B.Empiricaj. Results

Regression results for (1)' are reported in Table IA.5 The results in

Table IA suggest that the basic arbitrage equation (1) is a sensible one.

Consider first two diagnostic tests. Coln (14) reports the estimates of the
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first order serial correlation coefficient of the disturbance to (1)'. Since

the entries in the colunn are far from significant at the .05 level, there is

little evidence of serial correlation in this disturbance. In addition, the

entries in colunn (5), which report the Hansen [1982] test of instrxtent

residual orthogonality, does not reject the null hypothesis of no

correlation between the instrunents and residuals. The successful results in

co]unn (5) are perhaps especially noteworthy since failures of rational

expectations models to pass this test are quite coaon [Hansen and Singleton,

1982; West, 1986b].

Most important, the discount rate b is estimated plausibly and precisely in

all re'essions. See coltinn (3) in Table IA. The implied annual real expected

returns are a reasonable six to seven per cent, and are quite close to the

aritMetic means for cx post returns: 8.1 percent for the Standard and Poor's

(S and P) index (1872—1981) and 7•i4 percent for the Dow Jones index

(1929—1979). Moreover, the entries in coltn (6) give little evidence that the

rate was different in the two halves of either sample. The only specification

for which the null hypothesis of equality can be rejected at the five percent

level iS Standard and Poor's. wdiffereflced. q • 2. In addition, no evidence

against the constancy of the discount rate may be found in a comparison of the

two halves' mean cx post returns. For the S and P index, these were (in

percent) 8.09 (1872—1926) versus 8.12 (1927—1981); for the Dow Jones the

figures are 7.87 (1929—1954) versus 6.92 (1955—1979).

The specification of the arbitrage equation (1), then, appears acceptable.

Let us rw consider the estimates for the dividend process, reported in Table

15. The entries in co].tnna (8) and (9) indicate little evidence of serial

correlation in the disturbance to equations (ha) and Cub). Both test

statistics in all regressions are far from significant, except for the estimate
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of the first order serial correlation coefficient P for the S and P Index,

undifferenoeci, lag length q • 2. This regression's Q statistic in coln (9)

does, however, comfortably accept the null hypothesis of no serial correlation.

Overall, then, no serial correlation to the residuals to (ha) and Cub) is

apparent. Also, the estimates of moeb regression coefficients are

statistically significant, at least when the lag length q was chosen by the

Hannan and Quinn E1979J procedtre. Finally, the null hypothesis that the

parameters of the dividend process are the same in the two halves of each

sample can be rejected at the five per cent level only for the S and P index,

undifferenced. See coln (10). In general, then, the specification of the

dividend process seams acceptable, with the possible exception of the S and P

data set, undifferenced.

Estimates of the third and final equation, (12a) or (12b), are in Table IC.
Parameter estimates are fairly precise for aidifferenced specifications, less
so for differenced specifications.

In contrast to the coefficients of the other two equations, however, the

estimates of the coefficients of equations (12a) and (12b) are probably not
sensible from the point of view of the simple efficient markets model that says
Pt - !biEç1I. For th. estimates of these coefficients are txiforsly

incompatible with the estimates of the coefficients of the other two equations.
The test of whether these estimates are in fact compatible--that is, the test

of th. null hypothesis that bubbles are absent--may be found in Table II.
Equation (11$) is calculated in ooltmn (1). Every specification but those for
the S and P ditferersced, rejects the null at any conventional significance
level, One the of the S and P differenced specifications rejects the null at

the 5 percent level, the other at the 10 percent level,
It appears that the reason for the rejection is that the coefficients on
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dividends in the present value equations (12a) and (12b) are biased upwards. In

six of the seven speciticatiOfl3 the sum of the biases in the (not reported

in any table) are positive. (The only exception is the S and P. differenced, q

- 2.) Now, for undifferenced specification.5, if there is a bubble, the bias in

the estimate of the vector (m,&1,...,o) is the probability limit of the vector

of estimates of the parameters of a regression of the bubble on a constant

and d+1P• dt_q+2
(See equation (10).) If bubbles reflect at least in part

a tendency of the market to overreact to dividends or to news about future

dividends [Shiller, 1984] this upward bias is precisely what would be expected.

For differenced specificatiOnS, the asymptotic bias in the estimate of the

vector (m61i...5q) is the Probability limit of estimates of the parameters in

a regression of the bubble on a constant and Adt,ii•••dt_q,i• If changes in

bubbles tend to be associated with changes in lags of dividends, the 6 will

also tend to be biased upward for differenced specifications.6

C.Divideflds Follow a !2m! Random Walk

The diagnostic tests discussed in the previous section found little fault

with the specifications of the dt process. Much research in finance, however,

assumes that logarithmic and not arithmetic differences are necessary to induce

stationarity in dividends [Kleidon, 1985]. As rted in section II, it is

possible to obtain a closed form solution for Eb1Edt.iLHt when A(log dt) is an

lid normal random variable. This section applies the specification test, when

follows this lognormal random walk.

Suppose that (log dt)
- N(u,a2). Let Mt - (dt_i11z01. Then tb1Edt.iIHt -

6idt. 6% — exp(p+o2/2)/tb1_CXP(I140212)] [Kleidon, 1985, p21). Our aim is to

compare an estimate of 6i obtained by regressing Pt on dt with that obtained

from estimates of i. and b. For each of the two data sets, .& and a2 were

obtained as (a)the sample mean and variance of A(]og dt). and (b) • 0, a -
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T1E(Alog d)2.
(T • sample size.) Case (b), which imposes - 0 ri

calculates the variance conditional, on this, was tried because the point

estimate of M in each data set was insignificantly different from zero. b1
was set equal to the mean cx post return. A convenient way to test the null

hypothesis is to note that the formula for 61 implies

(15) — 2log((1/b)[51/(1.1))) —

Since A(log dt) - N(p,2), 2_x2(T) when — 0 is imposed, ;2'2(T-1) when u is

estimated. It is straightforward to construct a 99 percent confidence interval

around a2, as described in Mood et al. [19744, p382). We can then check whether

the point estimates of b'1, 6i, and are such that the right hand side of (15)

falls in this confidence interval. Note that such a procedure ignores sampling

uncertainty In the estimates of b, 6i and . One reason I am nonetheless

applying this procedure is that the usual asymptotic theory does not apply to

the regression that produces 6.

The empirical results are in Table III. The first line for each data set

uses the mean of t(log d) for , the second imposes • 0. Only one point

estimate of 2 is reported for each data set, since a2 was the same to three

decimal places whether or not - 0 was imposed. The lower and upper bounds

f or the 99 percent confidence Interval are reported in coluun (2). The mean ex

post return far each data set is in colun 44. The OLS estimate of 6 that
results from regressing Pt d is in oolLlnn 5. (It may help as a point of
reference to state that the mean Pt/c1t ratio for the S and P is 21 .05, for the

Dow Jones is 22.244.,) Coluun 6 has the sample mean of t(log dt), or zero. Note
that far both data sets, the sample mean is insignificantly different frau
zero, at any Conventional significance level. Coli.inn (7) has the point
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estimate of p, the first order serial correlation coefficient of the residual.

For both data sets, the estimate is insignificantly different from zero at the

10 percent level, but not at the five percent level. Column 3 has the right

hand side of equation (15), calculated fr the figures in columns 4 to 6. The

numbers in this column are all on or above the upper end of the 99 percent

confidence interval for 2, reported in column 2.

Apparently, the point estimates of the right hand side of (15) are too big,

and/or those of the left hand side of (15) too snail, for the data to have been

generated by a constant discount rate, loiormal random walk model, without

bubbles. This is consistent with the section IIIB results: one interpretation

is that 6, the coefficient that results when.p is projected onto is too

big for Pt - p to be correct. Another interpretation, consistent not only

with the earlier results in this paper but of those in a companion paper as

well [West, 1986c, is ttat 2, the variance of the innovation in the

univariate dividend process, is too small.

It does not, however, seem wise to push either of these arguments too far.

One reason is the simple lognormal random walk specification may not adequately

capture the dynamics of the dt process. This figures in column (7) of Table

III suggest some residual serial correlation. A second reason is that the

figures in Table III do not really indicate a rejection of the model at the 99%

level, since sampling uncertainty in the estimates of b1, 61 and is iored.

One way to emphasize that this is a practical and not just pedantic point is to

consider the effects on column (3) of different values of b1. Suppose that

b1 a 1.05, a value within two standard deviations of the point estimates in

Table IA. Then all four column (3) estimates would not only fall below the

upper end of the 99 percent confidence interval in column (2), but would all be

below the point estimate of in column (1).
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In sum, the, the lognorinal specification provides mild evidence
against

the null that Pt = Pt, versus Pt =
Pt

+
Ct.

D.Time Varying Discount Rates

Time variation in discount rates can be allowed under the null, if,

as in Shiller [l981a1, the model is still linear.

Let
r+ be the one period return expected by the market at period t+j-i.

Let p —
E{EZl[gl(1+rtJ)_1]d 1fli Under the null, hypothesis of no

bubbles, Pt — p. Let us linearize Pt around r and d; selection of r and d is

discussed below. Define b (1+r)1, — -d/. Then [Shiller, 1981a]

- (say)

The arbitrage equation corresponding to the null hypothesis that

Pt E{E'_li'[(rt.j_)+dtjJ)lI is

(16)
Pt bE(yt+i+pt i)IIt —

As before, solutions to (16) are of the form Pt — E(E }fI+ct for any

that satisfies Ectilti •
The null hypothesis we wish to test is

that Ct... 0.

This can be done by comparing two sets of estimates of expected present

discounted values, with expectations conditional on the set of current and past

dlvidend. Now, however, the variable being forecast is not Just dt+i but
This will not involve an arbitrage equation; it will involve dividend

and distributed lag equations, as before, and also a new equation, for

forecasting expected returns using current and lagged dividends. A brief

discussion follows. Algebraic details are available on request.
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The linearization parameters r, b and a were chosen as certain simple,

plausible functions of the data. For both ditterenced and undifferenced

specifications, the point of linearization for expected returns was the mean ex

post return, r • T'[(pt+i+dt.,i)/ptJ—1. Then b • (1.r)1. When dividends

were assumed stationary, the point of linearization for d was mean dividends,

- T1Zdt. When dividends were assumed to require (arithe.tic) differences to

induce stationarity, the point was — (1_)E_ltEOdt, E0dt • Eodo4tEAdt, d0

a presample value of dividends. Thus d • do+EAdt/(1.'b). Note that it

dividends are stationary (Eidt - 0) and d0 - Edt. this reduces to linearizing

around mean dividends. For both difterenced and undifferenced specifications,

was calculated as a -d/r. See Table IV for the resulting values of r, b, d

and a.

The dividend equation is precisely that used in the constant discount rate

case, in section IIIB.

For undifferenced specifications, the dietributed lag equation was obtained

by projecting EE1yt+i.iIIt.i onto the space of current and lagged dividends

as in equation (12a). For ditterenced specifications, a difference of

EZbiyt.i+lIIt.l was projected onto Ht. as in equation (12b).

The final relationship involved is a regression to forecast expected

returns. Let Rt.j (Pt.j4dt.j)'Pt.j_i denote the cx poet return. Note that

since Mt is a subset of I, — rt+j with orthogonal to Ht. So

ERt+JIHt
Ert.jIH: a regression to forecast cx post returns also forecasts

expected returns. The regressions are

(17a) Rt+i — g YQdt + ... • 1ndtn
(17b) Rt.i — g YUdt ... + 'nt—n

serially correlated in generaL, EXSnt — 0 for x5 an element of Mt.
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One can use (17a) to solve for
As before, the dividend

equation (ha) yields Eb1dtjIHt. Together these produce the EZb'YtiI}.f
Similarly, (17b) and (lib) yield the distributed lag equation In differenced

specifications.

For computational simplicity, the specification test was performed conditional

j: b and the parameters of equations (17a) and (17b). It may be shown

that the parameters of the distributed lag equation can be estimated from the

regressions

(18a) — m • 6idt+i + ... + 6qdt_q+2

(18b) m • 6idt 6qt$dt_q+i +

The left hand side variables and Ap1 are calculatedtrom and

and lags of dt and dt, using a, b and the estimates of the parameters of (17a)

and (llb). The are fctions of b and the parameters of the dividend

process, as written out in equations (13a) and (13b). If the in equations

(17a) and (17b) are identically zero, then —
APt+iPt+,: if the

return that is expected conditional on past dividends is con3tant, th. test in

this siction reduces to that in section IIIB.

The length of the distributed lag of ex post returns on dividends was set to

30, as in Shiller [1984, Table 1]. This was done because OLS standard errors

suggested insignificant for both the Dow Jones and the S and P for a lag

length of ten years. Because of degrees of freedom limitations resulting from

the thirty—year lag, the test in this section was applied only to the S and P.

An unconstrained lag was used, since both and the sum of the were

estimated more precisely with this lag than with Shiller's [1984] polynomial

distributed lag.
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The regression of returns on dividends is reported in Table VA. In

contrast to the results of the previous section, some predictability of returns

is suggested. Y0, the coefficient on d or was significantly different

from zero at the 95 percent level. So, too, was the sum of the other dis-

tributed lag coefficients. See columns (3) and (4). The significance of

the coefficients is, however, probably somewhat overstated, since, as explained

above, some experimentation was done to obtain a specification with significant

coefficients.

Table VB has estimates of the dividend equations. These look quite

similar to those in Table lB. Table VC has estimates of the distributed lag

equations (18a) and (lSb). Note that the coefficients are woefully insig-

nificant for differenced specifications.

Results of the test of the null hypothesis of no bubbles are reported in

Table VI. The null is strongly rejected for undifferenced specifications,

not at all for differenced specifications. The sum of the biases of the 6.

was positive for all specifications except differenced, lag length = 4.

It is rather disturbing that allowing for time varying discount rates

yields stronger evidence against the model for undifferenced specifica-

tions, weaker evidence for differenced specifications. One possible

explanation is that the equation (17) forecasts of future expected returns

are quite noisy, and very different from the market's actual expected returns.

The fitted values from equation (17a) could then be spuriously leading to a

rejection for undifferenced specification, or conversely, those from (l7b)

could be incorrectly suggesting little evidence against the model for dif—

ferenced specifications. A priority for future research, then, is performing

similar tests with a more tightly constrained parameterization of what

determines expected returns. The evidence in this section does little to pin down
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the extent to which the rejectionsin the
constant discount rate model are

due to variations in discount rates.

IV. Discussion and Conclusions

This section contains some concluding comments on the previous section's results.

The first comment to make is that any diagnostic tests of (1)' will

clearly have arbitrarily small power against "near rational" bubbles that are
*arbitrarily clos, to being rational. This is, t Pt - P • C, and

kct_i tar Some k that is very close to b diagnostic tests on
equation (1)'

may well tail to reject equation (1)'. Sumers [19863 calculated the small
sample power or tests similar (though not identical) to those performed in
section iiis, and, unsurprisingly, found that such tests are ttlikely to detect
variations in expected returns caused by near rational bubbles.

The presence at near rationa.j bubbles certainly means that equation (1) is,
strictly speaking, invalid. This fact does riot, however, seem to me to be of
reat importance tar the intsrpr.tatjon or implications of the results of
section iii. A near rational bubble that tends to generate nearly constant
expected returns will tend to generate nearly the same time serIes Dattern of
pricàs as will a raticna bubble. That th, tests in section iris have little
power to distinguish betw* such a bubble and a Strictly rational is not,

then, very important far the Interpr,tatj of the evidence presented in
section ui, at least at the level of generality of this paper.

The second coement to make concerns what determines whether a constant

expected return specification is a good approximation tar the purposes of the

specification test. The section hID analysis of a linearized model with time

variation In expected returns suggests that the key requirement is not near

constancy of returns expected by the market, but near constancy of the return
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that is expected conditional on the past history of dividends. In the

linearized model, £p*X .aE_1b'E(r+j—r)jH E_ib'Edt+jHt.
In that

model, then, EptIHt E1_1b Edt+iIHt not
only when r.j — r but also when

Er,iH - for 1>0, I.e., when past dividends do not help predict future

expected returns. Intuitively, if only past dividends are used to forecast the

expected present discounted value of future dividends, and variations in

expected returns are independent of past dividends, it is reasonable to

forecast expected returns to be at their unconditional mean and to discount

future dividends at a constant rate. This statenent holds In a strict
mathematical sense in a linearized model, and therefore may hold approximately

in the underlying nonlinear model.

An implication is that most of the mild evidence against the constant

expected return specification in Shiller [1981a, 1984] and all of the somewhat

stronger evidence in Flood, Hodrick and Kaplan [1986] may well not be directly

relevant to the interpretation of the results of this paper.7 It is, of

course, of interest to further investigate whether, for the purposes of the

specification test, it is adequate as an approximation to consider only

variations in expected returns that are predictable from the past history of

dividends, and the extent to which such variations explain what seems to be

anomalous behavior in the data. This is an important task for future research.

What is required is a reconciliation of what appear to be incompatible

price and dividend data. The incompatibility is manifested in an upward bias

in the estimates of the coefficients of the projection of prices onto lagged

dividends. A reconciliation that involves a parametric model for bubbles, or

fads, and which allows for variation in expected returns, is a challenging

task for future research.

Princeton University.
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FOOTNOTES

1. UnfortunatelY, the
disCUssiOn in this paragraph cannot, in general, be

justified rigoroUslY. In
at least certain case, f1dtc will not converge in

mean square to a constant.
This results from the fact that c is growing on

average at a rate faster than T1, i.e., at rate b1. This is briefly

discussed in West [1985] as are
the implications of the explosive growth of

t'or the distribution of under the alternative that bubbles are present.

2. The Hannan and Quinn [1979] procedure selects the q that minimizes

in + T '2qklfl in T, — ThZ_1V,

for q(Q for some fixed Q, with k>1. I set Q — 4, k — 1.001.

3. One troublesome aspect of the distribution of the test statistic should

be noted. This is that the test may not be consistent: if there are bubbles,

the asymptotic probability that the test will reject the null may not be unity,

even though the two sets of parameter estimates will be different with proba-

bility one in an infinite sized sample. See West [1985] for further discussion.

4. These same diagnostic tests were performed in West [1986c], and the

discussiOn that follows is an abbreviated version of the discussion in section

IVA of that paper.

5. Tables IA and lB are identical to Table5 IA and lB in West [1986c], so

the di5cussiOfl that follows is very similar to the discussion in section IVB of

that paper.

6. As noted in West (1985], the limiting distribution of the regression of

on dividends may not in general be a single vector. The statements in this

paragraph therfore should be interpreted with caution.

7. using the same data as In this paper, Shiller [1981a, 198U) and Flood,

Hodrick and Kaplan [1986] obtain coefficients siificant at the five per cent

level when the ex post return Is regrsed on certain sets of lagged prices,

dividend-price ratios and ex post returns. Shiller [1984] also obtains

significant coefficients using lagg1 earnings.
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TABLE 111
Empirical Results, Loorma1 Random a1k

(1) (2) (3)
(44

(5) (6) (7)

Data set 99% CI R.h.s of (15) (1/b)

S and P 0.016 (0.012,0.025) 0.0145 1.081 23.19 0.013 0.176
1872-1980

(0.012) (0.095)

0.071 0.0

Dow Jones 0.0214 (0.015,0.0143) 0.0143 1.0714 23.1414 0.008 0.235
1929—1978

(0.021) (0.137)

0.059 0.0

a.Symbols a2, 1/b, defined above equation (15); p defined below equation (15).
b.The "99% CI" column gives the lower and upper bounds of a 99

percnt confidence
interval around the entry In column (1). These areS, calculated for a x (100) random
variable for the S and P (sample size-lOg), for a (50) random variable for the Dow
Jones (sample size—50), as described in Mood et al. [19714, p382].

c.ln column (3), "R.h.s. of (15)" means "right hand side of equation (15)."
d.The numbers In parentneses in column 6 are standard errors, in column 7 areasymptotic standard errors.
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TABLE VI

Test Statistics

Sample Period Differenced q Degrees of Freedom Equation 1/4 sig

1901—1980 no 2 3 33.72/0.000

1902—1980 yes 2 3 2.00/0.572

1901-1980 no 4 5 30.86/0.000

1902-1980 yes 4 5 2.67/0.750

See Notes to Table II.


