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. INTRODUCTION

Bose—Chaudhuri-Hocquenghem (BCH) codes are used to
correct errors in communication systems (especially in con-
catenated codes) and digital storage (including flash mem-
ory), as well as for many other purposes. Applying systematic
encoders can often be of interest. Spectral methods in coding
theory have been introduced and popularized by Blahut (see,
for example, [3]). A spectral decoding algorithm for Reed—
Solomon codes was invented by Shiozaki [31] and Gao [18]
independently. A decoding method based on the Euclidean
algorithm was proposed by Sugiyama et al. [32], [25, 12.8].
Currently only one spectral decoding algorithm for system-
atic Reed—Solomon codes by Mateer [27] is known. Thus,
constructing the spectral decoding algorithm for systematic
algebraic codes is a very actual problem.

In this letter we consider only one class of algebraic
codes, the BCH codes. The description of the novel algo-
rithms is simpler than, for example, the classical Peterson—
Gorenstein—Zierler (PGZ) decoding algorithm. The compu-
tational complexity of the novel algorithms for some param-
eters is smaller than the computational complexity of the best
decoding algorithms. A spectral decoding algorithm for BCH
codes is useful, for example, for decoding the first component
codes of the generalized error locating (GEL) code [9].

The novelty of the method proposed in this letter for spec-
tral decoding systematic BCH codes consists of the following
points:

1) the first spectral method for decoding systematic BCH
codes;

2) applying the dimension of the Reed—Solomon code
krs for decoding the BCH code with the same de-
signed error-correction capability;

3) calculating the discrete Fourier subtransform.
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The remainder of this letter is organized as follows. In
Section II, we present basic notations and definitions. In
Section III, the derivation of the main decoding algorithm
is introduced. In Section IV, we propose the novel decoding
algorithms. In Section V, we prove the correctness of the
decoding algorithms. In Section VI, we calculate the com-
putational complexity of the decoding algorithms. In Section
VII, decoding examples are given. In Conclusion, several
results are summarized.

Il. BASIC NOTIONS AND DEFINITIONS

Every vector in the letter is associated with a polynomial.
Definition 1 ( [5, Section 2.5]): An encoder where the data
symbols are explicitly visible in the codeword is called
a systematic encoder. The corresponding code is called a
systematic code.

Definition 2 ( [29]): The discrete Fourier transform (DFT) of
blocklength n of a vector f = (f;), ¢ = 0,1,...,n —1,
n | (p™ — 1), in the finite field GF (p™) is the vector F =
(),

n—1
Fj:Zfiaij7 j:()ala"'an_lv
=0

where « is an element of order n in GF'(p™).

Let us denote the DFT calculation by F' = DFT(f) and
the inverse DFT (IDFT) calculation by f = IDFT(F) =
DFT™(F).

A. SOME PROPERTIES OF THE DISCRETE FOURIER
TRANSFORM

Every vector f = (f;), i =0,1,...,n—1,is associated with
a polynomial f(z) = Z?;OI fix®, and we have F; = f(a).
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FIGURE 1. The first scheme of the spectral decoding algorithm

step time-domain transform-domain
GF(2™) GF(2)
1 T(x) 2rr R(z)
2 solve
the key equation
output: M (x)
3 M (z) e C(x)

Similarly, every vector F' = (Fj), j =0,1,...,n—1,is
associated with a polynomial F'(z) = 27;01 Fjai,

The polynomial F'(z) has a zero at an element o if and
only if the (—4)th time component f_; equals zero, where all
indices are interpreted modulo n [4, Theorem 6.1.5]

Fla)=0 <= f,;=0. (1)

Further, we consider only the finite fields of characteristic
2, and the computation field is the finite field GF'(2™).
Theorem 1 ( [3, Theorem 8.2.1], [4, Theorem 6.3.1]): Let
f be a vector of blocklength n of elements f; € GF(2™)
where n is a divisor of 2™ — 1. The codeword components
F = (F;), j=0,1,...,n — 1, belong to the binary field
GF(2) if and only if the conjugacy constraints are satisfied:

fi2 = f2ia

We assume that the blocklength of the DFT over GF'(2™)
isn = 2™ — 1. Let a be a primitive element of the finite field
GF(2™).

i=0,1,...,n—1.

B. THE SPECTRAL DECODING ALGORITHM
The idea of spectral decoding was first introduced in the
original paper by Reed and Solomon in 1960 [30].

Let a codeword, a data polynomial, an error vector, and a
received vector belong to the transform-domain. Any vector
after the inverse discrete Fourier transformation belongs to
the time-domain. In our algorithm a message polynomial,
an error locator polynomial, and an interpolating polynomial
belong to the time-domain.

The spectral decoding algorithm can be written as

1) The inverse transformation of the received vector into
the time-domain.

2) The calculations in the time-domain.

3) The discrete Fourier transformation of the result of the
previous step into the transform-domain (optional, if
necessary).

We can see the schemes of the spectral decoding algo-
rithms in Figures 1 and 2. The definitions of the received
vector R(zx), the interpolating polynomial 7'(x), the message
polynomial M (x), the codeword C(z), the error locator

2

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

FIGURE 2. The second scheme of the spectral decoding algorithm

step time-domain transform-domain
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3 W(x) 2EL roots of W(z); E(x)

polynomial W (z), and the error vector E(x) are given in
Section III.

Spectral decoding is a different way of looking at decoding
algebraic codes and for some classes of codes and their
parameters it may have the least computational complexity.

These definitions can be found in popular books on coding
theory 3], [4], [5], [25].

lll. THE DERIVATION OF THE MAIN DECODING
ALGORITHM

Let G be the binary (n,k) BCH code, where n is the
blocklength of the code, k is the dimension of the code, the
spectrum of this code lies in the extension field GF'(2™),
n| (2™ —1), g(x) is a generator polynomial for the code
with 2t roots {al,a?, .- a2}, t is the designed error-
correction capability for the BCH code. The BCH code with
this generator polynomial g(z) is called a narrow-sense BCH
code. The designed Hamming distance d of this BCH code G
isd=2t+1.

For a binary symmetric channel, with error probability
p [25, Fig. 1.1], a codeword error rate Pogewora =~ 1 —
S (M)pH(L—p)" " [25, (26)]. A bit error rate Py sat-
isfies the inequalities %Pcodeword < Pyt < P.odeword 125,
Problem 25].

The remainder polynomial Remg,[a(x)] is the calcula-
tion result of a long division of polynomial a(z) by polyno-
mial g(z).

The codeword of the systematic code is

C(z) = ﬂc”_k'D(x) — Remy(,) [asn_kD(x)}, 2)

where D(x) is the data polynomial, deg D(z) < k.
The received vector is represented as a polynomial

n—1 n—1 n—1

R(z) = Z rixt = CO(x) + E(z) = Z et + Z e;xt,
i=0 i=0 i=0

where C(z) is the codeword, F(x) is the error vector.
The ith error in the error vector E(x) has a locator Z; €

{a® al,a?, .- o™ 1}. The error locator polynomial is
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where 7 is the actual number of errors, 7 < ¢. By definition
W (z) = 1if there are no errors.

Let M(z) = IDFT(C(z)) = Y27, miz’ be a message
polynomial of the BCH code for the codeword C'(x), where
m; € GF(2™), i = 0,1,...,n — 1, and the conjugacy
constraints are satisfied according to Theorem 1.

Let us define a dimension of the (n, krs) Reed—Solomon
code krs = n — 2t, where n is the blocklength of the
BCH code and t is the designed error-correction capability
for the BCH code. Note that we use the parameter krg for
decoding BCH codes. Since (1), we have deg M (z) < krs
and M (z) = ijgil m;at.

The derivation of the decoding algorithm is based on the
patent [35] and the papers [21, Appendix], [11], [13]. An
important novelty is in using the parameter krg instead the
code dimension k.

Since C(z) = DFT(M (x)), we see that ¢; = M (a?),
1=0,1,...,n— 1. From

ri =c; = M(ab), ifr; =c;,
W(a®) =0, if r; # ci,
it follows that
W(a)yr; =W (@) M(a'), i=0,1,...,n— 1.
Let P(z) = W(x)M (x). Then
W(a')r; = P(a®), i=0,1,...,n—1.
Let us construct an interpolating polynomial
T(x) = IDFT(R(z)) such that
T()=ry, i=0,1,...,n—1,
where deg T'(z) < n. Further,
W(a)T(a') = P(a*), i=0,1,...,n—1,
W(ac)T(sc)fP(:c):(:rfoﬂ)qz(x), izoalv"'anfla

W(2)T(x) = P(x) = (2" = 1)g(x),
for some quotient polynomials ¢;(x) and ¢(z).

Then the key equation is

W(z)T(x) = P(x) mod z™ —1
degW(x) <t
maximize deg W ().
Considering that deg P(x) = deg M (x) + deg W (z) <
(krs — 1)+t < n —t, we have
W(x)T(x) = P(x) mod 2™ — 1
deg P(x) <n—t 3)
maximize deg P(x).
We solve the key equation by applying the extended Eu-
clidean algorithm for polynomials (EXEAp) to 2™ — 1 and
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T(x), and we obtain polynomials P(z) and W (x). The

message polynomial is M (z) = VI:,((Z)), the codeword is

C(z) = DFT(M (z)), and the data polynomial is

D(z) = ¢k + Cpnps1T + . cpgzt !

— D= (Cnfk;cn7k+17"'7cn71)‘

“

IV. THE DECODING ALGORITHMS

The received vector R(z) = 27— ryat
— R:(’/‘(),T‘l,...,’l“n_l)

Output:  The data polynomial D(z) = Zf;ol d;x’
— D:(do,dl,...,dk_l)

Input:

Algorithm 1: The main decoding algorithm

) T=IDFT(R) +«— T(x)

2) Solve the congruence
W(z)T(x) = P(z) mod 2™ — 1
deg P(z) <n—t
maximize deg P(z)

3) M(z)= i «— M
4) € = DET(M)

5) D= (Cnk Cnkt1r-++1Cn—1)

Algorithm 2: The alternative decoding algorithm

1) T=IDFT(R) +— T(x)
2) Solve the congruence
W(z)T(x) = P(z) mod z™ —1
deg P(z) <n—t
maximize deg P(x)
3) Find the roots of W (x).
The error vector is E = (eg, e1, . .
0, if W(at)#0,
1, ifW(a%) =0,
4) D = (’I"n,k — €n—kyn—k+1 — En—k+1,--
6n71>

A enfl)a

where e; = 1=0,1,...,n—1

5 Tn—1 —

We can see the differences of the proposed decoding
algorithms and the algorithm [18], [11] in Table 1.

V. THE CORRECTNESS OF THE ALGORITHMS
There are one-to-one correspondences between the data poly-
nomial D(z) and the codeword C(x) (see formulae (2)
and (4)); and between the codeword C(x) and the message
polynomial M (x) (M(z) = IDFT(C(z)) and C(z) =
DFT(M (x))).

For decoding up to the designed error-correcting capability
t for the BCH code the existence of a solution is obvious. The
following theorem implies the correctness of the algorithms.
Theorem 2: For decoding up to the designed error-correcting
capability ¢ for the BCH code the decoding algorithm pro-
duces a unique data polynomial D(x).
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TABLE 1. The differences of the proposed decoding algorithms and the algorithm [18], [11]

property [ algorithm [18]. [11]

novel method ‘

class of codes

non-systematic Reed—Solomon codes

systematic BCH codes

message polynomial M (z)

all nonzero coefficients are independent

all coefficients are under the conjugacy constraints (Theorem 1)

the binary DFT calculation

using the trace function

degree of message polynomial deg M(z) < k degM(z) < krs =n —2t

additional step absent C(xz) = DFT(M (x)) or roots of W(z)
stopping rule for solving the congruence || deg P(x) < "TH“ deg P(z) <n—t

possibility of application absent available

Proof: Let us prove the unique solution for the congru-
ence (3). The congruence (3) is satisfied by the true solution,
which leads to the message polynomial M (x), the codeword
C(z), and the data polynomial D(x).

We solve the key equation (3) by applying the EXEAp
to #" — 1 and T'(x), the process stops when a remainder
polynomial degree deg P(z L) < n —t, and we obtain the pair
of polynomials P(z) and W (). If P(z) is divisible by W (x)

P()

then the polynomial M (x) = B becomes the message

x
polynomial for BCH code and leads to the codeword C(z)
and the data polynomial D(x).

Note that the EXEAp must be carried out from zero (pre-
liminary) step, not from the first step, as usual. It is necessary
to finish the EXEAp satisfying the constraint on the remainder
polynomial degree deg P(x) < n — t, and sometimes at the
additional (with zero remainder) step.

First, consider two singular cases.

Case 1. If the received vector is R(x) = 0 then T'(x) =
0, and a formal notation of zero (preliminary) step for the
ExEAp has the form

(z" —1)0+ T(z)1 =0

and W(z) =1, P(z) = M(z) = C(z) = D(z) = 0.

Case 2. If no errors occur and the received vector is
R(z) # 0, then zero (preliminary) step for the EXEAp has
the form

(" - 10+ T(x)1 =T(x),

where T'(z) = M(z), degT(z) = deg M(x) <
n—tW(x)=1T(x)=Px) = M(z) = M(z),
C(z), and D(z) = D(z).

Next, consider the main case when there are errors.

Case 3. E(z) # 0.

The ExEAp is finished when it satisfies the constraint on
the remainder polynomial degree deg P(z) < n — t. From
the property for the Bézout polynomials [25, 12.8] it follows
that at this step degW(z) < n — (n — t) = t. After the
calculations

krs
C(x )
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=W (x)P(z)

we get the congruence

mod z" — 1,

P(z)W(z) = W(z)P(z) mod 2" — 1.

The degree of each side of this congruence is less than n and
we obtain the equation for polynomials

P(2)W (z) = W(z)P(x).

After two divisions we have P(z) =

M(2)W (2), M(z) = %z)) — M(z), C(z) = C(x), and

D(z) = D(z).

Both solutions of the congruence (3) coincide, as well
as the codewords and data polynomials. This completes the
proof of the theorem. ]

VI. COMPUTATIONAL COMPLEXITY OF THE DECODING
ALGORITHMS

A. NUMBER OF OPERATIONS FOR THE DECODING
ALGORITHMS

Let us write the upper bounds on the number of arithmetic
operations in the computation field GF'(2™). First, consider
direct methods for computing each step of decoding algo-
rithm 1.

Algorithm 1: The main decoding algorithm

1. The product of a vector by a matrix: 2n2.

2. The solution of the congruence consists of ¢ steps. At
each step, division of polynomials (4n operations) and
calculation of one Bézout polynomial (4¢ operations)
are performed: ¢(4n + 4t) = 4t(n + t).

3. The division of a polynomial P(x) of degree n — ¢ by
a polynomial W (z) of degree ¢ is performed in n — 2t
steps, each step is performed in 2¢ operations:
2t(n — 2t).

4. The product of a vector by a matrix: 2n2.

Extracting a subvector D from a vector C' does not
require arithmetic operations: 0.

bt
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TABLE 2. The number of arithmetic operations for decoding algorithms 1
for some BCH codes

’ code parameters ‘ t ‘ PGZ algorithm | algorithm 1
(63, 36) 5 2995 17766
(63, 30) 6 4249 18144
(63,24) 7 5922 18522
(63,18) 10 14615 19656
(63,16) 11 19184 20034
(63,10) 13 31759 20790
(63, 7) 15 50110 21546

The main decoding algorithm requires about 4n? + 6tn
arithmetic operations in the computation field GF'(2™). For
comparison, the complexity of the direct implementation of
the classical PGZ decoding algorithm [3, Fig. 7.1] is about
6tn + 3t* + 0% 4 5% + £t arithmetic operations.

Table 2 presents the complexity in terms of the number
of arithmetic operations in the computation field GF(2™)
of novel decoding algorithm 1 and the classical Peterson—
Gorenstein—Zierler (PGZ) decoding algorithm [3, Fig. 7.1].
The BCH codes have parameters (blocklength, dimension)
and ¢ is the designed error-correction capability for the BCH
code.

Algorithm 2: The alternative decoding algorithm
To solve the key equation (3), one can use not only the
extended Euclidean algorithm for polynomials (EXEAp), but
also the Berlekamp—Massey (BM) algorithm. Using the poly-
nomial 7'(z), which contains redundant coefficients, the error
locator polynomial W (z) is calculated under the constraint
degW(z) < t.
The BM and ExEAp (especially its fast implementation)
algorithms are equivalent and have almost the same complex-
ity [10], [22], [26]. Moreover, the description of the EXEAp
is much simpler than the description of the BM algorithm.
Further, consider alternative decoding algorithm 2.
1. The IDFT calculations via binary IDFT [17].
2. The fast calculation of an error locator polynomial
W (zx) of degree t via fast EXEAp [18, Algorithm la,
Step 2], [28].

3. The DFT calculations via cyclotomic DFT [33] and
improved Goertzel-Blahut algorithm [15].

4. Subtracting a subvector from a subvector.

The classical PGZ decoding algorithm with the BM algo-
rithm for solving the key equation [3, Fig. 7.5] has complex-
ity about (2tn+t)m+ (6t2-2m? +4t>m) +tn(2m? +m)+t
binary operations. Algorithm 2 with fast EXEAp calculating
for GF(25) has complexity about (50m +552) + (6t (2m? +
m)) + (88 - 2m? + 805m) + ¢ binary operations.

Table 3 presents the complexity in terms of the number of
binary operations of novel decoding algorithm 2 and the clas-
sical Peterson—-Gorenstein—Zierler decoding algorithm with
the Berlekamp-Massey (PGZ/BM) algorithm.
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TABLE 3. The number of binary operations for fast decoding algorithm 2
for some BCH codes

’ code parameters ‘ t ‘ PGZ/BM algorithm | algorithm 2
(63, 36) 5 39785 23723
(63, 30) 6 50478 28872
(63,24) 7 62083 34957
(63,18) 10 102370 58828
(63,16) 11 117623 68657
(63,10) 13 150865 91123
(63, 7) 15 187755 117333

B. APPLICATIONS OF FAST ALGORITHMS FOR
COMPUTING EACH STEP OF THE DECODING
ALGORITHMS

Next, consider fast methods for computing each step of the
decoding algorithms.

Algorithm 1: The main decoding algorithm
1: The DFT (or IDFT) calculations over finite fields
with the best asymptotic complexity were pub-
lished in the papers [19], [23], [24]. To minimize
the number of multiplications, there is the cyclo-
tomic DFT algorithm [33], [12]. There are sev-
eral improvements of this algorithm to reduce the
number of multiplications [1], [14], [15], and the
number of additions [1], [2], [7], [8], [34], [36],

[37].

2: The fast EXEAp is introduced in [28].

3: The fast division algorithm with remainder is re-
ported in [20, Algorithm 9.5].

4. The calculation of the discrete Fourier subtrans-

form can be performed using the trace function
[17]. Example is considered in Subsection VII.C.
5: It is trivial.

Algorithm 2: The alternative decoding algorithm
3: The new review of the best methods for finding
roots of polynomials over finite field GF'(2"™) is
published in [16].
4: It is trivial.

C. ASYMPTOTIC COMPLEXITY OF THE DECODING
ALGORITHMS

Finally, consider the asymptotic complexity for computing
each step of the decoding algorithms.

Algorithm 1: The main decoding algorithm

I: O(nlogn)

2: O(n(logn)?)

3: O(nlognloglogn)
4: O(nlogn)

5: O(n)



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3215005

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 2: The alternative decoding algorithm

1: O(nlogn)

2: O(n(logn)?)
3: O(nlogn)

4: O(n)

The asymptotic complexity of the decoding algorithms is
about O(n(logn)?). Note that the asymptotic complexity
of algebraic codes decoding lies between O(nlogn) and
O(n(logn)?) [25, Notes on Chapter 12].

Vil. EXAMPLES

Let G be the binary (7,4) BCH code, where n = 7 is the
blocklength of the code, & = 4 is the dimension of the code,
the spectrum of this code lies in the extension field GF(23),
« is a root of the primitive polynomial 2% + 2 + 1. Let
the designed error-correction capability for the BCH code
be t = 1. Then the elements {a', a2} are the roots of the
generator polynomial, and the generator polynomial for the
code G is g(x) = 2% + x + 1. The dimension of the Reed-
Solomon code is kgrs = n — 2t = 5. The position locations
are (¥, at, a?,a3,a%, o’ af).

Let the received vector be R = (0001001).

A. THE MAIN DECODING ALGORITHM
1) T = IDFT(R) = (0001001)

X
S oL Lo
o o o o o o' o
S o000 Q0
e A N - =)
Qe R R QLR
v R o m W oo
Q QL R QLR
w o o h o
Qe LR QLR
e = oo w o
QoL R QLR
G R o e o
QLo QDR
ool W = o

= (0a2ata?atatat)
— o?x + ot2? + 23 + olat + alad® 4+ atab =
T(x).

2) Solve the congruence

W(z)T(z) = P(z) mod 2" — 1.
Step EXEAp 0: (27 — 1)0 + T'(2)1 = T(x).
Step EXEAp 1: 27 — 1 = T(z)(a® + a®2)
+(a®+a?z+a’2? +ab23 +ab2x* 4 a25); we obtain
P(z) = a® + oz + a%2? + b2 + ab2* + o2ad,
W (z) = a®+ a3z, the condition deg P(z) =5 < n—
t = 6 is the stopping rule, and (2" —1)1+T (z)W (z) =
P(z).

3) M(z) = L&)

oV + o’x + aVz? + a3 + alaxt + o?z?
od + o3z

=a% + Pz + P22 4+ bzt
+—— (a%a®a30a00) = M.
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4) C =DFT(M) = (aa’a?0a’00)
a® a® a® a® ¥ a? af
a® ol a? P ot o of
A a2 ot of ol ad of
X a® o af a2 & ol ot (®)]
a® ot ol a® a? af o
a® ab a® ol o ot a?
a® af b ot & a? ol
= (0001101).
5) D= (1101).
B. THE ALTERNATIVE DECODING ALGORITHM
1) T= IDFT(R)
— oz + a*z? + o?ad + alzt 4+ a2 + atab =

T(x).
2) W(z) =a®+ oz +— (a®a?00000) = W.
3) Find the roots of W (z).

DFT(W) = (a®a200000)

a¥ ¥ a® ¥ a® Q¥ Af
a¥ al a2 o ot a® af
a® o ot af ol o o
x| a¥ a3 af o o® o' ot
a¥ at ol a® o o B
O[O 0[5 OZB Oél OLG 054 012
a¥ o ab ot o a? Al
= (ala®a*a?0a3ab).
The error vector is E = (0000100).
4) C =R —E=(0001101). D = (1101).

C. THE DISCRETE FOURIER SUBTRANSFORM

Consider implementation of the union of steps 4 and 5 for
the main decoding algorithm. The DFT is called the discrete
Fourier subtransform if zero rows and columns of the trans-
form matrix are deleted. We delete zero rows and columns of
the transform matrix (5), and get the formula for the discrete
Fourier subtransform calculation

D= (ozooz‘r’a?’ozG)

a o w O

a 0 0
a 4 5
a 1 3
a 2 6

o o0
S o o0
S QL9
w oo o

= (14 trace(a'), 1 + trace(a?), 1 + trace(a?),

1+ trace(a*)) = (1101), where the binary trace of an

element 3 € GF(23) is trace(B3) = B + B2 + .
Depending on the implementation, the multiplication ope-

rations may not be required at all. The details of the calcula-

tion of the DFT using the trace function will be published in

a separate paper [17].

VIIl. CONCLUSION
A novel method of spectral decoding for systematic BCH
codes has been proposed. The computational complexity of
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the novel method’s direct implementation for some parame-
ters is smaller than the computational complexity of the direct
implementation of the classical decoding algorithms. The fast
implementation of the novel method requires fewer opera-
tions than the fast implementation of the classical decoding
algorithms. The new method is recommended especially for
large values of the designed error-correction capability.
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