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A SpectralAnalysisof theInternetTopology
DanicaVukadinović,Polly Huang,ThomasErlebach

Abstract— In this paper we investigateproperties of the
Inter net topology on the AS (autonomous system) level.
Among techniquesin spectralgraph theory, wefind the nor-
malizedLaplacian spectrum( ����� ) of AS graphs1) unique in
spiteof the explosivegrowth of the Inter netand2)distinctive
in settingAS graphs apart fr om syntheticones.Theseprop-
erties suggestthat ����� is an excellentcandidateasa concise
fingerprint of Inter net-likegraphs.

Further analysisinto the theory of ����� leadsus to a new
structural classification of AS graphs with plausible inter-
pretations in networking terms. Extensive analysisby AS-
level data supports this claim. Mor e importantly , along the
way, new power-law relationshipsare unveiled, giving rise
to a hybrid modelencompassingboth structural and power-
law properties.Wethink that thesenew insightsmay havea
profound impact on futur eprotocolevaluation and design.

Keywords— Inter net topology, network modeling, Lapla-
cian eigenvalues,power-laws,AS domain connectivity.

I . INTRODUCTION�
IGNIFICANT researchefforts have recentlybeenin-
vestedin the analysisof the Internettopology. The

currentInternet is the result of rapid, distributed growth
without controlledplanningby a centralauthority. There-
fore, its topology is not the productof a deliberateengi-
neeringattemptaimedatobtainingthebestglobalsolution
possible,but ratherreflectsin greatpartsthe choicesand
decisionsmadeby individualorganizationswhosesubnet-
worksform theInternet.As a consequence,thecharacter-
isticsof the Internettopologycanonly be investigatedby
analyzingthe availabledataaboutthe currentconnectiv-
ity of routersor autonomoussystemsor snapshotsof that
connectivity takenatanearliertime.

Gaining additionalknowledgeabout the propertiesof
the Internet topology is important for several reasons.
First, it canleadto an improved understandingof the In-
ternet,e.g., behavior in the presenceof overloador link
failures. Then, it allows new algorithms,protocols,and
applicationsto be designedand tunedso as to make the
bestpossibleuseof the available topology. In particular,
optimizationproblemsrelatedto resourceallocation,call
admissioncontrol androuting, that areprovably difficult
to solve for generaltopologies,might allow efficient so-
lutions for a classof networks containingthe real Inter-
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net.Furthermore,topologycharacteristicshaveevolvedin
astablemannerover thelastfew yearswhichallows more
accuratepredictionsaboutwhat the Internetmight look
like a few yearsin the future. Besides,if certainaspects
of thetopologyarefoundto bedetrimentalto theefficient
operationof the Internet, this knowledgemight encour-
agenetwork providers to implementthe requiredtopol-
ogychanges.Finally, agoodunderstandingof theInternet
topology can lead to improvementsin network topology
generatorsin orderto generate“Internet-like” networksof
varioussizesfor simulations. Network simulationswith
realistictopologiescanagainhelpto design,tuneandeval-
uatenew algorithmsandmechanisms.It iswell recognized
[1] thatthelackof anappropriatemodelhasmadeit diffi-
cult to analyzeandsimulatenew proposalsin thisfield.

A. Existingmodelsandgenerators

Progressin topology generationhasbeenmadefrom
simpleregularmodelssuchas“tree” or “mesh”to moreso-
phisticatedonesusingrandomnessandhierarchy. Param-
eterizedgeneratorsof more realistic topologiesare now
available,but they tendto emphasizeeitherthehierarchi-
cal or thestatisticalaspect,thusmissingouton theother.

The first wide-spreadrandomgenerationmodel is due
to Waxman[2]. It wascreatedto fit topologicalproperties
of the Internetat the endof the eightiesfor the purpose
of comparingminimumSteinertreealgorithms(for multi-
point connections).In this model,a fixed setof nodesis
placedin a squarein theplaneuniformly at random.The
probabilityof addinga link betweentwo nodes� and 	 is
givenby 
�����
�	���������������� �!#" � , where$&%'�(
�)+*-, are
parameters,. is the Euclideandistancefrom � to 	 , and/

is themaximumdistancebetweenany two nodes.The
modelhasundergoneanumberof changesandextensions.

In ,102043 , Calvert et al. [3] proposednew eclecticmod-
els, Transit-stuband Tiers, combining the good charac-
teristicsof regular and randommodelsand accentuating
the existing hierarchyof the Internet. In the Transit-stub
model,domainsareclassifiedinto stubdomains(domains
throughwhichtraffic is routedonly if its sourceor destina-
tion is within that domain)andtransitdomains(domains
thatroutealsotraffic whosesourceanddestinationarenot
insidethat domain). Subgraphsarerepeatedlygenerated
randomlyaccordingto thedesirededgecount,andtheun-
connectedexamplesarediscarded.In theend,extra-edges
areaddedfrom randomlyselectedstubdomainsto tran-
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sit nodesandfrom stubto stubdomainsrespectinggiven
parameters.This model is part of the Georgia Tech In-
ternetwork TopologyModels(GT-ITM) generator. In the
Tiers model there are three levels of hierarchy: WAN,
MAN and LAN. Connectedsubgraphsare producedby
creatinga minimum spanningtree in a single level. Re-
dundantedgesin andbetweenlevelsareaddedrespecting
Euclideandistance(closerfirst). Zeguraet al. [4] madea
comparative studyof themostpopularmodelsat thattime
andpointedout that someapplicationsarevery sensitive
to theassumedtopology.

A majornew insight into propertiesof the real Internet
topologywasgainedby Faloutsoset al. [5]. They found
four power-laws1 thatappearto hold for variousrelations
betweenpopulargraphmetricsin theInternet: �5
&,6� node
degreevs. noderank; �5
�74� degreefrequency vs. degree;�5
�84� thenumberof nodeswithin acertainnumberof hops
vs. numberof hops; �5
:9;� 20 largesteigenvaluesof the
adjacency matrixvs. their ranks.Theconjecturethatthese
power-laws areinvariantsof theInternettopologyhashad
a big impact on the researchdealingwith generatorsof
realisticInternettopologies.

Medinaetal. [6] haverunexperimentsto checktheexis-
tenceof power-laws in differenttopologiesandto explore
their possiblecauses;their resultsshowed that �5
�84� and�5
:9;� arefound also in grid graphsandWaxmantopolo-
gies,with differentparameters.They have giventwo rea-
sonsfor thefirst two power-laws, incrementalgrowthand
preferential connectivity, andusedtheseprinciplesfor the
constructionof a new topologygeneratorcalledBRITE.
In BRITE,nodesaredistributedin acoarsegrid eitheruni-
formly or usingaboundedParetodistribution to decidethe
numberof nodesin eachbig square.Thenthe respective
numberof nodesareplacedrandomlyin smallersquares
avoiding collision. A small, randomlyconnectedcore is
first generatedandthenothernodesareaddedincremen-
tally togetherwith their links. Links canbe addedusing
Waxman’s probability function or usingpreferentialcon-
nectivity. Whenpreferentialconnectivity is selected,the
destinationof a link from thenew nodeto anodein theset<

of existingnodesis chosento benode= with probability�?>@:ACB�D � A , where .FE is the degreeof node = . In addition,a

hybrid probabilitycanbeused,i.e., G >H�C>@:A�BID G A � A , where JKE
is thelink probabilityin Waxman’s model.

Jin et al. [7] proposeda modelcalledInet. For a given
numberof nodesandpercentageof nodeswith degree , ,�5
&,6� and �5
�74� areusedto determinethedegreedistribu-L

A power-law holdsbetweentwo propertiesM and N if M is roughly
proportionalto NPO for someconstantexponent Q . If RSNUTVMXW datapairs
areplottedwith bothaxesin logarithmicscale,theresultingpointslie
closeto a straightline with slope Q .

tion of the resultinggraph. A spanningtree using only
nodeswith degreeat leasttwo is created. The degree ,
nodesarethenattachedto thetreewith proportionalprob-
ability. The remaining“free degrees”areconnectedran-
domlystartingfrom thenodewith thelargestdegree.As a
consequenceof this generationprocedure,Inet graphsre-
sembletheInternettopologymorethanthoseproducedby
othermodels,at leastconsideringpower-law properties.

B. Topology data

TheInternettopologyis usuallyrepresentedasagraph.
On the router level, individual hostsand routersare the
nodesof the graph, and physical connectionsbetween
hostsaretheedges.It is difficult to obtainaccuratetopol-
ogydataof theInterneton therouterlevel.

On a more abstractlevel, onecan investigatethe AS-
level topologyof theInternet.Here,eachnodeof thegraph
representsan autonomoussystem(AS, seeRFC 1930),
i.e., a subnetwork underseparateadministrative control.
An edgebetweentwo nodesmeansthat the two AS do-
mainsappearconsecutively onsomeBGPpath,indicating
that thereis a direct connectionbetweenthe two AS do-
mains.ReasonablyaccuratedataabouttheAS-level topol-
ogyof theInternetcanbeinferredfrom BGProutingtables
andis availableontheNLANR website.Therefore,wefo-
cusour researchon theanalysisof theAS-level topology.
For our analysis,we usedsnapshotsof the AS topology
from November8, 1997to March16,2001takenroughly
every 3 months.We treatthegraphsassimple,undirected
graphs,i.e.,we remove parallellinks.

We notethatanalternative approachto determiningthe
AS-level topology using router-level path traceswas re-
cently proposedin [8]. They report that their method
resultedin an AS-graphcovering 62% of existing ASs
(found in BGP routing tables)andabout61% of the AS-
level connectivity of thoseASs. On theotherhand,their
approachdetectsparallellinks, discoversASsthatarehid-
den in BGP routing tablesdue to AS aggregation, and
identifiesAS borderrouters.Sinceweareinterestedin us-
ing realAS graphswith maximumcoverageanddonotan-
alyzetheadditionaldetailsrevealedby theapproachin [8],
we found it moreappropriateto usethe AS-level topolo-
giesobtainedfrom BGProutingdataasexplainedabove.

In order to comparepropertiesof the AS graphswith
graphsproducedby a state-of-the-artnetwork topology
generator, weselectedInet-2.1.For eachof theAS graphs
wegenerateanInetgraphwith thesamenumberof nodes.
Inet-2.1allows to specifythefractionof verticeswith de-
gree1. Wespecifiedthis fractionidenticalto theonemea-
suredfor the correspondingAS graph. Nevertheless,the
Inet-2.1generatorproducesgraphswith a small amount
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of paralleledges.We removed thoseparalleledgessince
wedealspecificallywith simple,undirectedgraphs.As an
effect, thefractionof nodeswith degree1 in thesenormal-
izedInetgraphswasslightly higherthanspecified.

Wechooseto compareAS only with Inetgraphsfor two
reasons.First of all, Inet explicitly modelsa numberof
power-law propertiesand is very successfulin that. Be-
fore pursuingwork further in this direction, we needto
verify if it implicitly capturesspectralpropertiesaswell.
Secondly, it is difficult to generatecomparablegraphsus-
ing BRITE or GT-ITM. Currentimplementationof BRITE
generatesgraphswith integer averagedegree,and those
graphswith averagedegreegreaterthan2 do nothave any
leaves.GT-ITM requiresseveral levelsof structuralinfor-
mationthatarenoteasilyaccessible,for exampledistribu-
tion of transit-stubor stub-stublinks.

C. Our contribution

We analyzeInternetAS graphsfrom 1997to 2001us-
ing normalizedLaplacianspectraltechniquesasatool and
identify new structuralpropertiesof theAS graphsthatare
not capturedby thepreviously known power-laws. These
propertiesarestablein theAS graphsfrom 1997to 2001in
spiteof theexplosive growth of thenumberof nodesand
edges.We give intuitive explanationsof theseproperties
andpresentideashow new andimprovednetwork genera-
torscouldpossiblybebuilt basedon theseproperties.

Theoutlineof thepaperis asfollows: In SectionII we
give thedefinitionsandbasicpropertiesof thenormalized
Laplacianspectrumof a graph. We derive a lower bound
onthemultiplicity of eigenvalue , thatturnsoutto beclose
to therealvalueon theAS graphs.Thequantitiesusedin
the computationof this boundform the basisof the new
structuralmodelof AS graphsthatweexplainandinterpret
in SectionIII. In SectionIV, statisticsandcomparisons
basedon thestructuralmodelarepresented,anda hybrid
graphgenerationmodelis proposed.Finally, in SectionV,
we summarizeour resultsanddiscussfuturework.

I I . NORMALIZED LAPLACIAN EIGENVALUES

Previousstudiesin thecontext of network modelshave
consideredthelargesteigenvaluesof theadjacency matrix
of a graph,but it wasnotedin [6] that theseeigenvalues
seemto satisfyapower-law relationshipfor many different
topologiesso that they arenot very usefulin distinguish-
ing graphs.Therefore,we proposeto look not only at the
largesteigenvalues,but at the (multi-)setof all eigenval-
ues,called the spectrum. In addition,we do not usethe
standardadjacency matrix, but the normalizedLaplacian
of thegraph[9]. Amongotherreasons,thishastheadvan-
tagethatall eigenvaluesarecontainedin theinterval Y $�
?7XZ

sothatit becomeseasyto comparethespectraof different
graphsevenif thegraphshave very differentsizes.

Let [\�]�_^(
C`a� beanundirected,simplegraph,where^ is the set of verticesand ` is the set of edges. Letb ^ b �dce
 b ` b �df , and .4g bethedegreeof node	 .
Definition1: ThenormalizedLaplacianof thegraph [

is thematrix hi�_[j� definedasfollows:

hi�_[j������
�	��k� lmon , if �p�d	 and .4grq�s$�
� tu �Cv6�Cw if � and 	 areadjacent
$ otherwisex
Note that if y is the adjacency matrix of the graph [

(where z E|{ �}, if there is an edgebetween	 E and 	 { ,
and z;Eo{:�-$ otherwise)and ~ is a diagonalmatrix having.4E�E�� .4g > , then h��_[��j��~�� L� �5~���yi��~ L� . Thenormal-
izedLaplacianspectrum( c��V� ) is thesetof eigenvaluesofhi�_[j� , i.e., all values � suchthat h��_[j���s����� for some�����e��
��+q�s$ .

The spectrumof a graphdoesnot determinethe graph
uniquely, i.e., thereare non-isomorphicgraphswith the
samespectrum.However, it determinesthenumberof ver-
tices, edgesand, as we will see,someother topological
properties. A first naturalquestionis: What is the nor-
malizedLaplacianspectrumfor simpletopologiessuchas
stars,chains,gridsandrandomtreesof c nodes?The c��V�
of astar � � is $�
1, (n-2 times)
?7 , andthe c��V� of achain 
 �
is ,������4�X���#�� ��t ��
?����$�
I I I 6
�c¡�¢, . For grids andtrees,
plots of the numerically computedspectrumare shown
in Fig. 1. To generateour c��V� plots, we computeall c
eigenvalueswith MATLAB, sort themin non-decreasing
order, andplot themsothatthe = -th smallesteigenvalue ��E ,,j*£=k*£c , is drawn at ��¤�
�¥�� with ¤¦�§��=F��,6��¨���cj�©,6� and¥&�-� E . In thisway, theplot is alwayswithin Y $�
1,ªZ�«�Y $�
?7XZ
andit becomesconvenientto comparethe c��V� of graphs
with differentnumbersof nodes.

A. Propertiesof normalizedLaplacianspectrum

Onecanseein [9] thatthespectrumof hi�_[j� , for any [ ,
is containedin theclosedinterval Y $�
?7XZ andthatthesmall-
esteigenvalueis always $ . Themultiplicity of eigenvalue$ (i.e.,how many of the c eigenvaluesare $ ) is equalto the
numberof connectedcomponentsof [ . Thelargesteigen-
valueis lessthanor equalto 7 , whereequalityholdsfor a
bipartiteconnectedcomponent.The spectrumof a graph
is theunionof thespectraof theconnectedcomponents.

Lookingat AS connectivity mapsof theInternetduring
theperiodfrom ,102043 to 7#$2$�, , weobservedthatin spiteof
an increasingnumberof nodesandedges,thenormalized
Laplacianspectrumof thegraphsstaysthesame.A closer
look at the c��V� of thesegraphshasshown a large multi-
plicity of theeigenvalue , . Thishasmotivatedour interest
in thedistribution of thespectrumof hi�_[j� , particularlyin
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Fig. 1. The normalizedLaplacianspectrumof grids andran-
dom trees. The treesweregeneratedby startingwith one
nodeandthenrepeatedlyaddinga new nodeandmakingit
adjacentto anexistingnodechosenuniformly at random.

the developmentof a lower boundfor the multiplicity of
eigenvalue , in termsof structuralpropertiesof graphs.

B. Multiplicity of theeigenvalue ,
We will usea techniquesimilar to [10] to find a lower

bound for the multiplicity of eigenvalue , . Denoteby
��_[j����¬1	­��^�®�. g �¯,P° thesetof leavesin [ , called
“pendants” , and by ±��_[j�²�³¬1	´� ^ ®�µUJ�
6��	¶
�Ji�£�`&
�J·�s
¸° the setof the neighborsof the leaves,called
“quasi-pendants”. Let ¹&�_[j�(�¢^aº��_±��_[j��»¼
��_[���� bethe
setof nodesthatarenotleavesandthatarenotneighborsof
leaves,called“inners” . Let ½�
C¾;
�¿ respectively bethecar-
dinalitiesof thesets
��_[j� , ±��_[j� , and ¹&�_[j� . We call the
subgraphof [ inducedby ¹&�_[j�ÁÀ�Â¶ÂÄÃ�Å��_[j� . By ÆÇÂ¶Â we
denotethe numberof isolatedverticesin À�Â�ÂÄÃIÅ��_[j� . Letf©È���,6� denotethe multiplicity of the eigenvalue , . Then
we obtainthefollowing lowerbound.

Theorem1: Themultiplicity of eigenvalue , of thenor-
malized Laplacian is boundedfrom below by the sum
of the numberof pendants,the numberof isolatedinner
nodes,andthenegative of thenumberof quasi-pendants.f©È���,6��É²½Ê�Ë¾�ÌdÆ�Â�Â (1)

Proof: We can assumethe following labeling
of the nodes,becausethe eigenvalues are independent
of the labeling: 	 t 
IxSxSxS
�	 � where 	 t 
I I I 6
�	#ÍÎ�Ï¹&�_[j� ,	 ÍCÐ t 
I I I X
�	 Í�ÐÒÑ �Ó±��_[j� , and 	 ÍCÐÒÑ�Ð t 
I I I 6
�	 � ��
Ê�_[j� .
Also, we canassumethat ��	PÍCÐ E 
�	#Í�ÐÒÑ�Ð E �p�-`�
�=Ô�Õ,#xSx|¾;x

Then,thestructureof thenormalizedLaplacianis

hi�_[j�(� Ö× ¹ ¿4± $¿F±�Ø ± ¾#
$ ¾#
 Ø Ù�Ú
ÛÜ

Here ¹ is an ¿ -by-¿ matrix, ¿F± is ¿ -by-¾ , ± is ¾ -by-¾ , ¾P

is ¾ -by-½ and Ù�Ú is the ½ -by-½ identity matrix. From the
basicequations���Ý�Îhi�_[j��� , we obtain that f©È���,6�r�
nullity �5hi�_[j�P� Ù � � , whereÙ � is the c -by-c identitymatrix.

Using the labeling assumptions,we observe that ¾P

containsa principalsubmatrix~ÔÑ which is diagonal,hav-
ing � tÞ � wàßàá > 
�=(�§,#xSx|¾ on thediagonal.Now let

/ Ù �_[j���hi�_[j��� Ù � . Using ~ Ñ andelementarytransformationsthat
do not changethe rank (addinga multiple of onerow to
anotherrow, or the samefor columns),we obtaina new
matrix

/ ÙFâ �_[�� from
/ Ù �_[j� :

/ Ù â �_[j��� Öãã× ¹�� Ù�Í $ $ $$ $ ~ Ñ $$ ~�ØÑ $ $$ $ $ $
ÛIääÜ

Now it is enoughto prove that nullity � / Ù â �_[j���­�åc��
rank� / Ù4â �_[j���KÉ­½i�r¾�Ì­Æ�Â�Â . Wehave thatrank�5~ Ñ �e�s¾ ,
thus c:� rank� / Ù â �_[j���KÉ�ci�&7#¾æ� rank�5¹²� Ù�Í �(�¡½Á�Ô¾�Ì¿�� rank�5¹Ý� Ù�Í � . Now, if Æ�Â�Â is thenumberof isolated
verticesin À�Â�ÂÄÃIÅ��_[j� , eachrow that containsan isolated
vertex will have $ at the first ¿ columnsof

/ Ù â �_[j� , thus
rank�5¹�� Ù�Í �ç*£¿:�£Æ�Â�Â andthestatementfollows.

Remark1: Theboundcanbeimprovedasfollows:f©È���,6��É­½Ê�Ë¾�ÌdÆ�Â�ÂÔÌ�� (2)

where ���åèséEHê t �2E���, , where �2E is the numberof the
mutuallynon-adjacentnodeswith thesameneighborhood
in À�Â¶ÂÄÃ�Å��_[j� andthereare � suchclassesof nodes.In the
matrix �5¹ë� Ù�Í � thosenodeswill have exactly the same
entries,whichwill additionallydecreasetherank.

I I I . A NEW STRUCTURAL MODEL

In this section,we presentour new structuralview of
the Internet topology that is motivated by our observa-
tions concerningthe normalizedLaplacianspectraof AS
andInet graphs.Subsequently, we interpretthestructural
modelin networkingtermsandprovideevidencessupport-
ing theinterpretations.

A. Theoretical derivation

Recall that we considerthe Internet topology at the
AS-level, so that we have an undirectedsimple graph
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C`a� wherevertices(nodes)areAS domainsand
anedge¬1��
�	�°a�©` meansthatthetwo AS domains� and	 areconnected.Wefoundremarkablysimilarplotsof thec��V� for all real InternetAS-level snapshotsfrom Novem-
ber ,102043 to March 7#$2$�, . The sameconsistency wasde-
tectedfor Inetgraphswith differentnumbersof nodes,but
the c��V� of Inet graphswasclearly different from the c��V�
of realAS graphs(seeFig. 2). Togetherwith thefactsand
plotsaboutthe c��V� of gridsandrandomtreespresentedin
theprevioussection,thisshows thatthe c��V� canbeusedas
akind of “fingerprint” for network topologies(evenfor ar-
bitrary largegraphsthataredifficult to comparedirectly).
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Fig. 2. ThenormalizedLaplacianspectrumof selectedgraphs.

In particular, we founda significantdifferencebetween
themultiplicity of theeigenvalue , in the c��5� of therealAS
graphsandtheInetgraphswith thecorrespondingnumber
of nodes.Theorem1 givesalowerboundonthemultiplic-
ity of eigenvalue , in termsof pendants,quasi-pendants,
andisolatedinnernodes.We foundthat this lower bound
is closeto therealmultiplicity observed in theAS graphs
andInet graphs. Therefore,we classify the nodesof the
graphsinto sets
 , ± , ¹ and Ù asfollows, andinvestigate
their cardinalities.A nodeis
. in 
 if its degreeis , (i.e., if it is a leaf),
. in ± if it hasat leastone 
 neighborin [ ,
. in Ù if it is an isolatednodein Ù c�c�îI¿��_[j� , thesubgraph
inducedby nodesnotbeingin 
 or ± , and
. in ¹ if it is containedin a connectedcomponentofÙ c�c�î1¿��_[j� with at least 7 nodes.

B. Physicalinterpretation

Theclasses
 , ± , ¹ and Ù aredefinedin graph-theoretic
termsmotivatedby theanalysisof theLaplacianspectrum.
To relatethesenotionsto ASsin therealInternet,we now
proposeplausibleinterpretationsof thefour nodesetsand
give someevidencesobtainedfrom AS nametables.

B.1 ± nodes,best-connectednodesof theInternet.

Theclass± containsonly asmallnumberof nodescom-
paredto the size of the whole graphand to the sizesof

theotherclasses,but thebest-connectednodes(largestde-
gree)belongto ± . Thesubgraphinducedby ± nodeshas
asimilarstructurefor all observedgraphs:it containsabig
connectedcomponentwith acharacteristicc��V� (seeFig.3)
andabout ï4ð of isolatednodes.
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Fig. 3. Thedistinctive ���Ç� of ñ subgraphs.

We interpretthenodesin thebig connectedcomponent
ascorenodes(seeTABLE I). Notethat ± nodeshave leaf
neighborsby definition.Theisolatednodes,whichhaveno± neighbors,canbeexplainedasexchangepointsserving
to connect
 , ¹ , and Ù nodes(seeTABLE II).

TABLE I
EXAMPLE ñ NODES AS PART OF THE CORE

AS number AS name

209 ASN-ASN-QWESTQwest
701 ASN-ALTERNETUUNET Technologies,Inc.
1239 ASN-ICM-INRIA Sprint
2548 ASN-ICIX-MD-AS BusinessInternet,Inc.
2914 ASN-VERIO Verio, Inc.
3257 NacamarGlobalASN
3356 ASN-LEVEL3 Level 3 Communications,LLC
3549 ASN-GBLX GlobalCrossing
3561 ASN-CWUSACable& WirelessUSA
6453 ASN-TELEGLOBE-ASTeleglobeInc.
7018 ASN-ATT-INTERNET4AT&T

TABLE II
EXAMPLE ñ NODES AS EXCHANGE POINTS

AS number AS name

8961 EmiratesInternetExchangeMCI Peerrouter
7656 TWNAP-ADMIN-AS-AP TaiwanInternetExchangeCenter

B.2 ¹ nodes,coreandalliances.

The subgraphinducedby ¹ consistsof a larger num-
ber of connectedcomponents.Their sizeand frequency
exhibit power-law relationships(see Section IV). The
biggestconnectedcomponentdominatesby its size and
nodesdegrees.We interprettheconnectedcomponentsof¹ nodes,with theexceptionof thebiggestone,asASal-
liances. Alliancescanbebuilt on national,regional,com-
mercial,or othergrounds.TABLE III shows an example
of an AustrianAS alliance,a connectedcomponentof ¹
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with 3 nodesin the AS graphof March 16, 2001. The
connectionswithin thatcomponentaredepictedin Fig. 4.

TABLE III
AN EXAMPLE NATIONAL ò ALLIANCE

AS number AS name

5385 TELEPORT ConsultingundSystemmanagementGmbH
8447 TelekomAustriaAutonomousSystem
8562 DatakomInformationsserviceGmbH
8670 UTIC AS=20
9023 OesterreichischeLotterienGmbH
12762 VTG
15824 DATAKOM-MEHRWERTDIENSTE

Fig. 4. Interconnectionof AustrianAS alliance.

Whenexaminingthestructureof thebiggest¹ compo-
nent,we concludedthata consistentinterpretationof that
componentis notpossible,becausesignificantfluctuations
in the membersof that componentarepresentduring the
observedthree-yearperiod(seeFig. 5).
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Fig. 5. The percentageof the nodesin the biggest ò compo-
nentthat arestill in the biggest ò componentin the direct
successorAS graph.

In orderto gain further insights,we investigatedthe � -
coresof theAS graphs.The � -coreof agraphis definedto
bethesubgraphobtainedby recursively deletingall nodes
with degreelessthan � . Intuitively, the deepercoresof
an AS-graph(i.e., the � -coresfor larger valuesof � , say�¦É�ï ) shouldcorrespondroughlyto morewell-connected
“backbones”of the Internetat that time. We found that
mostof the nodesin the deepercoresarein ± andsome
aremembersof the biggest ¹ component.This fact mo-
tivatesaninterpretationof thebiggestcomponentof ¹ as
beingmadeuppartlyof AS domainsbelongingto thecore

and partly of multi-homedstubsor alliances. Note that
corenodesin ¹ do not have any leaf neighbors.Exam-
plesof thesetwo nodetypesin ¹ aregivenin TABLE IV
andV. Nodesthatwerein thebiggestcomponentof ¹ in
all observedgraphsareshown in TABLE VI.

TABLE IV
EXAMPLE STUB ò NODES IN THE BIGGEST COMPONENT

AS number AS name

159 ASN-SONNETTheOhioStateUniversity
15896 Yahoo!DE

TABLE V
EXAMPLE CORE ò NODES IN THE BIGGEST COMPONENT

AS number AS name

2551 ASN-ICG ICG NetAhead,Inc
3220 kpnQwestSweden
3333 RIPENCC
3914 ASN-DX-NET DataXchangeNetwork,Inc
5056 ASN-INS-NET-2 IowaNetworkServices
5413 XO CommunicationsEuropean
5459 LINX-AS
6427 ASN-LIGHTNING Lightning InternetServices
8933 TheTEN-155IP Service
12179 ASNBLK-INTERNAP-2BLK InterNAP NetworkServices

TABLE VI
EXAMPLE PERSISTENT ò NODES IN THE BIGGEST

COMPONENT

AS number AS name

559 ASN-SWITCH-ASSWITCH TeleinformaticsServices
3333 RIPENCC
5496 Wirehub! Internetglobalbackbone

B.3 
 and Ù nodes,stubdomains.
 nodesareleaves(nodeswith degree , ) by definition.
Therefore,they mustbestubnodes(nodesthatdo not for-
wardtraffic thatneitheroriginatesin thatnodenor is des-
tined for that node). Ù nodes,whosedegreeis small in
mostcases(i.e., they have just two or threeneighborsin± ), aremostly multi-homedstubdomains. The percent-
ageof Ù nodesis increasingin the AS graphsover time,
and the percentageof 
 nodesis decreasing.Currently,
the Ù classis the biggestpart of the Internet. It became
biggerthanthe 
 classat thebeginningof 7#$2$�, . Thispos-
itive trendin thenumberof Ù nodesandnegative trendin
thenumberof 
 nodesagreeswith thefact thatmoreand
moreleafdomainswantto becomemulti-homedfor better
fault-tolerance[11].

Thenumberof Ù nodeswith highdegreeis rathersmall:
for example, in the AS graphof March 16, 2001, there
areonly 72ó nodeswith degreegreateror equalto ô , and
themaximumdegreeof an Ù nodeis ,2, . Thesenodesare
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mainly big companiesor universitieswith multiple con-
nectionsto the backbone,but not providing forwarding
services.Examplesof Ù nodesareshown in TABLE VII.

TABLE VII
EXAMPLE õ NODES

AS number AS name

33 ASN-DECDigital EquipmentCorporation
103 ASN-NWU NorthwesternUniversity
109 ASN-CISCOCiscoSystems,Inc.
151 ASN-IND-NTC Hewlett-PackardCompany
1889 HP-EUROPE-ASHewlett-PackardCompany
3608 ASN-NBNIC-NCA NationalComputerizationAgency
4983 ASN-INTEL-SCIntel Corporation
5779 ASN-Y-BR-SERV Yahoo!BroadcastServices,Inc.
6200 AS-UICUniversityof Illinois atChicago
6201 ATEXT Architext
6245 ASN-INTERNIC InterNIC RegistrationServices
6716 NetKonectCommunicationsUSA
8153 ASN-NORTELRCH2Nortel (NorthernTelecom)
10627 ASN-CRITICALPATH Critical Path,Inc.
13756 ASN-INFLOW-NET Inflow Inc.

In summary, theclasses
 and Ù representtheoutskirts
of the Internet,andin a sensethey correspondto thestub
domainsin theTransit-Stubmodel. Althoughthesmaller
alliancesin ¹ arearguablyalsotheoutskirtsof the Inter-
net,for thesake of simplicity andsincesomenodesin the
biggest¹ componentarefoundin theinnerpartof theAS
graphs,we referto, for thedetailedanalysisbelow, ± and¹ asthecore,and 
 and Ù astheedgeof theInternet.

IV. ANALYSIS

Having unveiled a sound theory as a succinct way
to identify Internet topologiesand proposeda structural
model with plausibleexplanation,we look into how the
Internetevolves in this structuralsenseandhow it com-
paresto graphsgeneratedby existing tools. Throughour
analysis,we find bothstructuralandpower-law properties
importantandin two countsobserveapower-law in thein-
ternalstructureof ¹ andtheinter-connectivity between

and ± . Thesegive rise to a hybrid generatorthatencom-
passesbothstatisticalandstructuralproperties.

A. Methodology

Thesetof graphsundergoneanalysishasbeendescribed
earlierin SectionI-B. To observe how AS graphsevolve
structurallyandhow they compareto Inetgraphs,we look
at thefollowing threesetsof metrics.
1. Ratioof nodesin 
 , Ù , ± , ¹
2. Ratioof links connecting
�± , Ù ± , ±�± , ¹�± , ¹:¹
3. Degreeof connectivity in core( ± , ¹ ) andedge( 
 , Ù )
It is not to our surprisethat thenumbersof nodesin each
componentandthenumbersof links inter-connectingthe
componentsare increasing. Thus we focus our analysis
on how thecomponentsexpandor shrinkrelatively to the
wholegraphandomit discussionson absolutenumbers.

Resultsare depictedin Fig. 6, 7, and 8 respectively.
Eachplot shows changesof the AS graphsin the corre-
spondingmetric(Y axis) in time (X axis). In thenext two
subsections,wehighlight importanttrendsin theevolution
of AS graphsandsignificantdifferencesto Inetgraphs.

B. Evolutionof ASgraphs

Observation 1. We seefrom the top plots of Fig. 6
that ratio of nodesin 
 is decreasingwhile that of Ù is
increasing.That means,applyingour interpretationof 

and Ù , the areaof single-homedleaf nodesis shrinking
while thatof multi-homedstubnodesis rapidly increasing.
Thisagreeswith abig ISP’sobservation[11] onincreasing
demandfor multi-homeaccessfrom its clients.

Observation 2. Theratioof nodesin 
 and Ù combined
has increasedfrom approximately67% to 74%. ± and¹ components,containingthe core of the Internet,each
remainsstableandthecombinedratiodecreasesfrom 33%
to 26%(bottomplotsof Fig. 6). In termsof ratioof nodes,
theedgeof theInternetis growing fasterthanthecore.

Observation 3. Given that the ratio of nodesin 
 is
decreasing,it is not surprisingto seethattheratio of links
interconnecting±:
 is decreasingandsimilarly for ± Ù be-
ing increasingas Ù increases(topplotsof Fig. 7). ±j
 and± Ù combinedincreasesfrom 54 to 60%. ±�± , ±:¹ , and¹:¹ , eachremainsrelatively stableandthe combinedra-
tio decreasesfrom 46 to 40%. This onceagainshows that
in termsof the ratio of links, the edgeof the Internetis
growing fasterthanthecore.

Observation 4. More interestingly, theratio of links in± and ¹ decreasesby 6%, which is slightly lower than
the7% decreasein ratio of nodes.The ratio of links out-
growing the ratio of nodesin the coreindicatesthat con-
nectivity of thecore( ± and ¹ ) is increasing.This canbe
confirmedby themiddleplot of Fig. 8.

All four observationseitheragreewith practicalexpe-
rienceor canbe linked to oneanother. Theseleadus to
believe thatwe have aplausibleinterpretationof 
 , ± , ¹ ,
and Ù . That makesabstractgraphtheory termseasierto
understandandmoreaccessiblefor network engineers.

C. Comparisonto Inetgraphs

Similarity . AS and Inet graphsare similar in size of
 and size of 
�± (top-left plot of Fig. 6 and 7). This
is becauseInet specificallymodelsthe ratio of degree ,
nodeswhicharein essence
 nodes.

Difference1. While we seetheratiosof Ù and ± Ù ex-
pandin AS graphs,they remainstablein Inet graphs(top-
right plot of Fig. 6 and7). Thiscorrespondsto theleft plot
of Fig. 8, wherewe observe connectivity of theedgecom-
ponents( 
 and Ù ) in AS graphsincreasingwhereasthatof
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Fig. 6. Ratioof nodesin ö , õ (top), ñ , ò (bottom)
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Inetgraphsremainsstable.
Difference 2. The ratio of ¹ remains stable in

AS graphswhile it expandssignificantly in Inet graphs
(bottom-right plot of Fig. 6). Similar contrastscan be
foundin link statisticsin Fig. 7: ±:¹ (bottom-middle)and¹:¹ (bottom-right).

Difference3. Inet graphs,similar to AS graphs,have
stable± and ±�± ratios.However, theratio level is higher
thanthatin AS graphs(bottom-leftplot of Fig. 6 and7).

Difference2 and 3, contradictingto how AS graphs
evolve, indicate that the core of Inet graphsis not only
largerbut alsoexpandingwhile theedgelosingits ground.

Difference4. It appearsthat in thecoreof Inet graphs
the ratio of links is growing just as fast as the ratio of
nodes;thus resultingin a ratherconstantdegreeof con-
nectivity (middleplot of Fig. 8).

Thesedifferencesshow thatalthoughsuccessfulin mod-
eling thepower-law properties,Inet fails to capturestruc-
tural changesin AS graphs.In particular, the coreof the
Internetis becomingrelatively smallerandtheedgelarger,
but theevolution of Inet graphsshows theexactopposite.
More interestingly, the Internet is structuredso that the
core and edgeeachhasincreasingconnectivity. On the
contrary, connectivity of thecoreandedgeof Inet graphs
eachremainsconstant.

D. Towardsa hybrid model

Thesestructuraldifferencesarepotentiallycritical when
studyingpropertiesof routingprotocols,for examplequal-
ity of path, route convergence,and fault tolerance. To
be moreconcrete,onecanexpectglobal effectivenessof
analternative routecomputationalgorithmto bedifferent
whenevaluatedusinggraphswith a higherratio of multi-
homedstubnodes( Ù ) andbetterconnectedcore ( ± and¹ ). Below weoutlineastructuralmodelthatwill allow us
to verify this conjecturein thefuture.

Our premiseis to modelAS graphsencompassingboth
statisticalandstructuralproperties.By that,wemeanto 1)
generatea degreesequencethatobeys power-law proper-
tiesobservedearlier, 2) form 
 , Ù , ± , and ¹ cloudsbased
on the size dynamics,and finally 3) inter-/intra-connect
thesecloudswith analysison their connectivity.

First resultsshow thatapower-law existsnotonly in the
overall degreesequencebut alsowithin thestructure.For
instance,while investigatingways to form the ¹ cloud,
we find that the sizesof the connectedcomponentsin R
have a power-law distribution. Fig. 9 shows the sizesof
theconnectedcomponentsin ¹ rankedfrom thelargestto
thesmallest(rank-sizeplot), andoccurrencesof different
sizes(size-occurrenceplot). Thelinearrelationshipof the
two plots in log-log scalerevealsa power-law propertyin

theinternalstructureof R.
A power-law is alsopresentin theway 
 and ± clouds

are inter-connected. The left plot in Fig. 10 shows, for
eachnodein ± , its rankon nodedegree(Y axis)andrank
on numberof degree , or 
 neighbors(X axis). Those±
nodeswith onedegree-oneneighborareranked the411th
(lowest)in X axis;thosewith 2,3, 4,and5 degree , neigh-
borsareranked 275th,191st,147th,and109th,gradually
improving. Eachcolumnin theplot showsthatavarietyof± nodes,with differentnodedegrees,mayhave thesame
amountof 
 neighbors. The middle plot of Fig. 10 il-
lustratesthe distribution of such ± nodes.The linear re-
lationshipin the log-log scaleplot hints on a power-law
distribution for ± nodeshaving one 
 neighbor.

This power-law property persistsacrossdifferent de-
gree , neighborranks,until datapointsaretoofew to show
a clearlinear relationshipin log-log plots. The right plot
of Fig. 10 is anotherexampleof sucha power-law exist-
ing for ± nodeshaving five 
 neighbors.Furtheranalysis
verifiesthat thesamepower-law propertybetween
 and± cloudsexistsin othersnapshotsof theInternet.

Thesepower-law propertieswithin or betweensub-
structuresof the AS graphscould be the missing links
betweenthe state-of-the-artgenerators,i.e., Inet andGT-
ITM. Eachof themidentifiesoneimportantaspectof the
Internettopology— Inet for thestatisticalaspectandGT-
ITM for thestructuralaspect— but unfortunatelymisses
outon theother. We think thata realisticmodelcannotdo
withouteither. Ouranalysis,althoughprimitive,givesrise
to a hybrid modelthatwill leadto a promisingAS graph
generator. This might in turn have a profoundimpacton
how routing mechanismsareevaluatedandhow Internet
routingor otherprotocolsevolve in thefuture.

V. CONCLUSIONS AND FUTURE WORK

In thissection,wefirst summarizeourwork andexplain
thesignificanceof our contribution. Thenwe give anout-
look on interestingopenquestionsfor futureresearch.

A. Contribution

Wehave appliednormalizedLaplacianspectrumanaly-
sis to Internettopologygraphs.It turnedout that the c��V�
canbe usedasa concisefingerprintof a graph. RealAS
graphsfrom 1997to 2001producednearly identical c��V�
plots in spite of the significantdifferencein the number
of nodes(from 3015 in 1997 to 10515in March 2001).
Similarly, graphsgeneratedwith theInet-2.1generatorhad
a characteristicc��V� independentof the numberof nodes,
which was different from the c��V� of real AS graphs,in
particularwith respectto themultiplicity of eigenvalue1.

We adapteda lower boundon themultiplicity of eigen-
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value1 in termsof thecardinalitiesof differentnodesets
 , ± , ¹ , and Ù to the normalizedLaplacianof a graph.
For therealAS graphs,we foundplausibleinterpretations
for thenodesin 
 , ± , ¹ , and Ù . In particular, theclassifi-
cationof nodesinto thesefour typesprovidesa structured
view of the graph, featuring leaf domains,multi-homed
stubdomains,alliances,andcorenodes.

Our extensive numericalanalysisof thesizesof 
 , ± ,¹ and Ù andtheir connectivity characteristicsin real AS
graphsover time and in correspondingInet graphspro-
videsquantitative datathatis usefulfor severalpurposes:÷ It allows to observe trendsandthusmake betterpredic-
tionsaboutthefutureappearanceof theInternettopology
on theAS-level.÷ It helpsusto identify characteristicsof graphsgenerated
by topologygeneratorsthatdo not matchthecharacteris-
tics of realAS graphssufficiently well.÷ It provides insight into structuralcharacteristicsof the
currentInternetwith quantifiableproperties,asopposedto
abstract,qualitative views of thehierarchyin theInternet.÷ It allowsusto improveexistingnetwork generators(like
Inet)aswell asto designnew network generatorsbasedon
thestructuralpropertieswe observe in realAS graphs.
Besides,while analyzingthesubgraphsinducedby 
 , ± ,¹ and Ù andtheir interconnectionsweobtainednew, previ-
ouslyunobserved power-law relationshipswith respectto
thesizesof connectedcomponentsin ¹ andto thedegree
rankof ± nodeswith thesamenumberof 
 neighbors.

In particular, we foundout thatInetgraphs,whichseem
to be the “best match” with real AS graphsamongall
topologygeneratorsavailable,consistentlydisplaya sig-

nificant differencein the c��5� with respectto the multi-
plicity of eigenvalue , . This indicatesthat Inet graphs
lack somestructuralpropertiesof AS graphs,relatedto
the way how stub nodesare connectedto core nodes.
Therefore,our resultssuggestthatInternettopologymod-
els andtopologygeneratorsmusttake into accountstruc-
tural properties(as in the transit-stubmodel) as well as
power-law relationships(asin theInet generator)in order
to modelrealAS graphswell. We have alreadybegun to
experimentwith Inet-2.1 modificationsthat improve the
similarity of generatedgraphswith real AS graphs,and
first resultsareencouraging.

Note that our structuralexplanationof 
 , ± , ¹ and Ù
nodesis roughly relatedto the hierarchicalclassification
of nodesin thetransit-stubmodel[3], to thedegree-based
classificationin [12], and to the classificationinto core,
subcore,regional,andstubnodesin [8]. In [12], AS nodes
areclassifiedinto nationalor internationalbackbones(de-
gree Éë72ó ), large regionalproviders(10-27),large MAN
providers(4-9), andmulti-campuscorporateor academic
networks (1-3). This classificationis becomingoutdated
by thecommercializationof theInternetover thepastfew
years. We find, for example in recentsnapshotsof the
Internet, that the best-connectedAS nodesare often the
large regional providers (TABLE I). We also note that,
while [8] emphasizesmethodologyfor topology discov-
ery, weareinterestedin theevolutionof theInternettopol-
ogy in a structuralsense,which leadsto a morerealistic
modelfor randomtopologygeneration.In additionto the
structuralexplanations,we obtainextensive datathatpro-
vides a much more preciseview of the structureof AS
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graphsandquantitative relationshipsbetweenthe various
substructures.While thetransit-stubmodellackstheabil-
ity to generatethepower-law relationshipsobservedin real
AS-graphs,our resultsallows usto combinestructureand
power-laws into asinglemodel.

Our work on the analysisof AS-level topologygraphs
complementsresearchcarriedout at variousresearchlabs
worldwide,e.g.[5], [4], [6], [13]. In particular, we think
that our proposalto considerthe normalizedLaplacian
spectrumasa “topology fingerprint” will beusefulin de-
tectingthesimilarity and/ordifferencesof graphsobtained
from varioussources,evenbeyondthedomainof commu-
nication networks. Note that someprevious researchers
who consideredthe eigenvaluesof topologygraphshave
lookedonly at the20 largesteigenvaluesof theadjacency
matrix [5]. Contraryto thatapproach,we studythewhole
spectruminsteadof only the20 largestvalues,andwe use
the normalizedLaplacianof a graphinsteadof the stan-
dardadjacency matrix (motivatedby resultsfrom spectral
graphtheory [9]). We think that the normalizedLapla-
cianspectrumshouldbecomeoneof thestandardmetrics
usedin thecomparisonof network topologygraphs,in ad-
dition to standardgraphparameterslike diameter, average
degree,andaveragepathlength,power-law relationships
asthoseobserved in [5], androuting-relatedmetricslike
expansion,resilienceanddistortion[13].

B. Future Work

Ourresultsprovideseveralimmediatestartingpointsfor
futurework. First of all, we intendto usethe insightswe
obtainedfrom ouranalysisfor improving thequalityof the
Inet-2.1generator(with respectto thesimilarity to realAS
graphs)andto explore the potentialof a newly designed
randomtopologygeneratorbasedonourstructuralview in
termsof 
 , ± , ¹ and Ù nodes.

Besidesthat,many aspectsof theAS graphsareyet to
beinvestigatedthoroughly, for examplethestructureof the
connectionswithin ± andthosebetween± and ¹ . On the
first look, ± is in somesenseasmallerversionof theorig-
inal graph. It canbe further classifiedinto 
 , ± , ¹ andÙ , andtheprocesscanbecontinuedrecursively. This can
be interpretedas a form of self-similarity in AS graphs.
However, the quantitative measuresare different in dif-
ferentscalesso that theself-similarity appliesonly to the
structuralview of thegraph,not to theexactparameters.

Furthermore,it will beinterestingto identify additional
characteristicsof the c��V� (in addition to the multiplicity
of eigenvalue1) that canbe interpretedin termsof graph
theoryor networking concepts.

Anotheropenquestionis to explain how the local be-
havior of network administrators(who mustdetermineto

whichotherASstheirnetwork shouldbeconnected)leads
to theglobalpropertiesobservedin theAS graphs,in par-
ticular to the variouspower-laws. First stepsalong this
direction have beenmadein [6], whereit was observed
that incrementalgrowth andpreferentialconnectivity can
explain thepower-laws to someextent. If theeffectsof lo-
cal behavior on globalpropertiesof theresultingnetwork
areunderstood,thesemight on theonehandleadto more
naturalnetwork generators(thatsimulatethelocal behav-
ior of thenodeswhile generatingthenetwork) andon the
otherhandhelpto determinechangesin localbehavior that
might resultin improvedglobalstructureof thenetwork.

Finally, it is importantto investigatethedifferenceswith
respectto the behaviorof a communicationnetwork (in
termsof performancemetricssuchas throughput,delay,
fault-tolerance)thatarisefrom differencesobservedin the
correspondingtopologygraphs.Onemeansfor this line of
researcharenetwork simulations.Thoroughcasestudies
could help to identify which of thegraphpropertieshave
substantialeffectson network performanceandwhich are
only of theoreticalinterestanddonotaffectperformance.
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