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A SpectralAnalysisof the InternetTopology

DanicaVukadinwi¢, Polly Huang,ThomasErlebach

Abstract— In this paper we investigate properties of the
Inter net topology on the AS (autonomous system) level.
Among techniquesin spectralgraph theory, wefind the nor-
malized Laplacian spectrum (nls) of AS graphs 1) unique in
spite of the explosive growth of the Inter netand 2) distinctive
in setting AS graphs apart fr om synthetic ones.Theseprop-
erties suggestthat nis is an excellentcandidate asa concise
fingerprint of Inter net-like graphs.

Further analysisinto the theory of nls leadsusto a new
structural classificationof AS graphs with plausible inter-
pretationsin networking terms. Extensive analysisby AS-
level data supports this claim. Mor e importantly, along the
way, new power-law relationshipsare unveiled, giving rise
to ahybrid modelencompassingoth structural and power-
law properties. Wethink that thesenewinsights may have a
profound impact on futur e protocol evaluation and design.

Keywords— Inter net topology, network modeling, Lapla-
cian eigervalues,power-laws, AS domain connectiity.

I. INTRODUCTION

IGNIFICANT researctefforts have recentlybeenin-
vestedin the analysisof the Internettopology The
currentinternetis the result of rapid, distributed growth
without controlledplanningby a centralauthority There-
fore, its topologyis not the productof a deliberateengi-
neeringattemptaimedat obtainingthe bestglobalsolution
possible but ratherreflectsin greatpartsthe choicesand
decisionamadeby individual organizationsvhosesubnet-
worksform thelnternet.As a consequencdhe character
istics of the Internettopologycanonly beinvestigatedoy
analyzingthe available dataaboutthe currentconnecti-
ity of routersor autonomousystemsor snapshotef that
connectvity takenatanearliertime.
Gaining additional knowledge aboutthe propertiesof

the Internet topology is important for several reasons.

First, it canleadto animproved understandingf the In-
ternet,e.g., behaior in the presenceof overloador link
failures. Then, it allows new algorithms,protocols,and
applicationsto be designedandtunedso asto make the
bestpossibleuseof the availabletopology In particular
optimizationproblemsrelatedto resourceallocation,call
admissioncontrol and routing, that are provably difficult
to solve for generaltopologies,might allow efficient so-
lutions for a classof networks containingthe real Inter
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net. Furthermoretopologycharacteristichave evolvedin
astablemannerover thelastfew yearswhich allows more
accuratepredictionsaboutwhat the Internet might look
like afew yearsin the future. Besides|f certainaspects
of thetopologyarefoundto be detrimentako the efficient
operationof the Internet, this knowledge might encour
age network providersto implementthe requiredtopol-
ogy changesFinally, agoodunderstandingf the Internet
topology canleadto improvementsin network topology
generatorén orderto generatélnternet-like” networks of
varioussizesfor simulations. Network simulationswith
realistictopologiescanagainhelpto designtuneandeval-
uatenew algorithmsandmechanismslt is well recognized
[1] thatthe lack of anappropriatanodelhasmadeit diffi-
cult to analyzeandsimulatenew proposalsn thisfield.

A. Existingmodelsandgenertors

Progressin topology generationhas beenmadefrom
simpleregularmodelssuchas“tree” or“mesh”to moreso-
phisticatedonesusingrandomnessndhierarchy Param-
eterizedgeneratorof more realistic topologiesare now
available,but they tendto emphasizesitherthe hierarchi-
cal or the statisticalaspectthusmissingout on the other

The first wide-spreadandomgeneratiormodelis due
to Waxman[2]. It wascreatedo fit topologicalproperties
of the Internetat the end of the eightiesfor the purpose
of comparingminimum Steinertreealgorithms(for multi-
point connections).In this model, a fixed setof nodesis
placedin a squarein the planeuniformly atrandom.The
probability of addinga link betweertwo nodesu andv is
givenby P(u,v) = aexp(—ﬂ%), where0 < o, 8 < 1 are
parametersd is the Euclideandistancefrom « to v, and
L is the maximumdistancebetweenary two nodes.The
modelhasundegoneanumberof changesndextensions.

In 1997, Calvert et al. [3] proposedchew eclecticmod-
els, Transit-stuband Tiers, combiningthe good charac-
teristicsof regular and randommodelsand accentuating
the existing hierarchyof the Internet. In the Transit-stub
model,domainsareclassifiednto stubdomainsdomains
throughwhichtraffic is routedonly if its sourceor destina-
tion is within thatdomain)andtransitdomains(domains
thatroutealsotraffic whosesourceanddestinatiorarenot
inside that domain). Subgraphsare repeatedlygenerated
randomlyaccordingto thedesirededgecount,andtheun-
connectedxamplesarediscardedIn theend,extra-edges
are addedfrom randomly selectedstub domainsto tran-



sit nodesandfrom stubto stubdomainsrespectinggiven
parameters.This modelis part of the Geogia Tech In-
ternetvork TopologyModels(GT-ITM) generatar In the
Tiers model there are three levels of hierarchy: WAN,
MAN and LAN. Connectedsubgraphsare producedby
creatinga minimum spanningtree in a singlelevel. Re-
dundantedgesn andbetweenevelsareaddedrespecting
Euclideandistanceg(closerfirst). Zeguraet al. [4] madea
comparatre studyof the mostpopularmodelsat thattime
and pointedout that someapplicationsare very sensitve
to theassumedopology

A majornew insightinto propertiesof thereal Internet
topologywas gainedby Faloutsoset al. [5]. They found
four power-laws® thatappearo hold for variousrelations
betweerpopulargraphmetricsin the Internet: (P1) node
degreevs. noderank; (P2) degreefrequeny vs. degree;
(P3) thenumberof nodeswithin acertainnumberof hops
vs. numberof hops; (P4) 20 largesteigevaluesof the
adjaceng matrix vs. theirranks.Theconjecturghatthese
powerlaws areinvariantsof the Internettopologyhashad
a big impact on the researchdealingwith generatorsof
realisticinternettopologies.

Medinaetal. [6] have runexperimentdo checktheexis-
tenceof powverlaws in differenttopologiesandto explore
their possiblecausestheir resultsshaved that (P3) and
(P4) arefoundalsoin grid graphsand Waxmantopolo-
gies,with differentparametersThey have giventwo rea-
sonsfor thefirst two powerlaws, incrementalgrowth and
prefeential connectivity andusedtheseprinciplesfor the
constructionof a new topology generatorcalled BRITE.
In BRITE, nodesaredistributedin a coarsegrid eitheruni-
formly or usingaboundedParetodistribution to decidethe
numberof nodesin eachbig square.Thenthe respectie
numberof nodesare placedrandomlyin smallersquares
avoiding collision. A small, randomlyconnectectoreis
first generatedandthen othernodesare addedincremen-
tally togetherwith their links. Links canbe addedusing
Waxmans probability function or using preferentialcon-
nectiity. Whenpreferentialconnectiity is selectedthe
destinatiorof alink from thenew nodeto anodein theset
C of existingnodesds choserto benodei with probability
sz" - whered; is the degreeof node:. In addition,a

d;’
C
gt - . w;d;
hybrid probability canbe used,i.e., Srcewid’

is thelink probabilityin Waxmans model.

Jinetal. [7] proposeda modelcalledinet. For a given
numberof nodesand percentagef nodeswith degreel,
(P1) and(P2) areusedto determinethe degreedistribu-

LA powerlaw holdsbetweentwo propertiesy andz if y is roughly
proportionalto z¢ for someconstantexponente. If (z,y) datapairs
areplottedwith bothaxesin logarithmicscale theresultingpointslie
closeto a straightline with slopec.
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tion of the resultinggraph. A spanningtree using only
nodeswith degreeat leasttwo is created. The degreel
nodesarethenattachedo thetreewith proportionalprob-
ability. The remaining“free degrees”are connectedan-
domly startingfrom the nodewith thelargestdegree.As a
consequencef this generatiorprocedure|net graphsre-
semblethe Internettopologymorethanthoseproducedy
othermodels atleastconsideringpowverlaw properties.

B. Topolayy data

Thelnternettopologyis usuallyrepresentedsagraph.
On the router level, individual hostsand routersare the
nodesof the graph, and physical connectionshetween
hostsarethe edges.lt is difficult to obtainaccurateopol-
ogy dataof the Interneton therouterlevel.

On a more abstractlevel, one caninvestigatethe AS-
leveltopologyof thelnternet.Here,eachnodeof thegraph
representsan autonomoussystem(AS, see RFC 1930),
i.e., a subnetwrk underseparateadministratie control.
An edgebetweentwo nodesmeansthat the two AS do-
mainsappeaiconsecutiely on someBGP path,indicating
thatthereis a direct connectionbetweenthe two AS do-
mains.Reasonablyccuratalataaboutthe AS-level topol-
ogy of thelnternetcanbeinferredfrom BGProutingtables
andis availableontheNLANR website. Thereforewe fo-
cusour researcton the analysisof the AS-level topology
For our analysis,we usedsnapshot®f the AS topology
from November8, 1997to March 16, 2001takenroughly
every 3 months.We treatthe graphsassimple,undirected
graphsj.e.,weremove parallellinks.

We notethatanalternatve approacho determiningthe
AS-level topology using routerlevel pathtraceswasre-
cently proposedin [8]. They report that their method
resultedin an AS-graphcovering 62% of existing ASs
(foundin BGP routing tables)andabout61% of the AS-
level connectiity of thoseASs. On the otherhand,their
approactdetectgarallellinks, discorersASsthatarehid-
denin BGP routing tablesdue to AS aggreation, and
identifiesAS borderrouters.Sincewe areinterestedn us-
ing realAS graphswith maximumcoverageanddo notan-
alyzetheadditionaldetailsrevealedby theapproachn [8],
we found it moreappropriateto usethe AS-level topolo-
giesobtainedrom BGProuting dataasexplainedabore.

In orderto comparepropertiesof the AS graphswith
graphsproducedby a state-of-the-arihetwork topology
generatgrwe selectednet-2.1.For eachof the AS graphs
we generatanInet graphwith the samenumberof nodes.
Inet-2.1allows to specifythe fraction of verticeswith de-
greel. We specifiedthis fractionidenticalto the onemea-
suredfor the correspondingAS graph. Neverthelessthe
Inet-2.1 generatomproducesgraphswith a small amount
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of paralleledges.We removed thoseparalleledgessince
we dealspecificallywith simple,undirectedyraphs.As an
effect, thefractionof nodeswith degreel in thesenormal-
izedInetgraphswasslightly higherthanspecified.

We choosdo compareAS only with Inetgraphgor two
reasons.First of all, Inet explicitly modelsa numberof
power-law propertiesandis very successfuln that. Be-
fore pursuingwork further in this direction, we needto
verify if it implicitly capturesspectralpropertiesaswell.
Secondlyit is difficult to generatecomparablegraphsus-
ing BRITE or GT-ITM. Currentimplementatiorof BRITE
generategraphswith integer averagedegree, and those
graphswith averagedegreegreaterthan2 do not have ary
leaves. GT-ITM requiresseverallevels of structuralinfor-
mationthatarenot easilyaccessiblefor exampledistribu-
tion of transit-stulor stub-stulinks.

C. Our contribution

We analyzelnternetAS graphsfrom 1997to 2001 us-
ing normalized_aplacianspectratechniquessatool and
identify new structuralpropertiesof the AS graphshatare
not capturedby the previously knowvn powerlaws. These
propertiesarestablein the AS graphdrom 1997to 2001in
spiteof the explosive growth of the numberof nodesand
edges.We give intuitive explanationsof theseproperties
andpresenideashow new andimproved network genera-
torscould possiblybebuilt basedontheseproperties.

The outline of the paperis asfollows: In Sectionll we
give the definitionsandbasicpropertiesof the normalized
Laplacianspectrumof a graph. We derive a lower bound
onthemultiplicity of eigewvaluel thatturnsoutto beclose
to therealvalueon the AS graphs.The quantitiesusedin
the computationof this boundform the basisof the new
structuraimodelof AS graphghatwe explainandinterpret
in Sectionlll. In SectionlV, statisticsand comparisons
basedon the structuralmodelare presentedanda hybrid
graphgeneratiormodelis proposedFinally, in SectionV,
we summarizeour resultsanddiscusduture work.

[I. NORMALIZED LAPLACIAN EIGENVALUES

Previous studiesin the context of network modelshave
consideredhelargesteigewvaluesof theadjaceng matrix
of a graph,but it wasnotedin [6] thattheseeigervalues
seemnto satisfyapower-law relationshigfor mary different
topologiesso thatthey arenot very usefulin distinguish-
ing graphs.Therefore we proposeto look not only atthe
largesteigewvalues,but at the (multi-)setof all eigewval-
ues,calledthe spectrum In addition, we do not usethe
standardadjaceng matrix, but the normalizedLaplacian
of thegraph[9]. Amongotherreasonsthis hastheadwan-
tagethatall eigevaluesarecontainedn theintenal [0, 2]

sothatit become®asyto comparehe spectraof different
graphsevenif thegraphshave very differentsizes.

Let G = (V, E) beanundirected simplegraph,where
V is the setof verticesand F is the setof edges. Let
IVl = n,||E| = m, andd, bethedegreeof nodev.

Definition1: ThenormalizedLaplacianof thegraphG
is thematrix £(G) definedasfollows:

1 if w = v andd, # 0,
L(G)(u,v) ={ —z if uandv areadjacent
0 otherwise

Note thatif A is the adjaceng matrix of the graphG
(wherea;; = 1 if thereis an edgebetweeny; andv;,
anda;; = 0 otherwise)and D is a diagonalmatrix having
dii = dy,, thenL(G) = D‘%(D - A)D%. The normal-
ized Laplacianspectrum(nls) is the setof eigewaluesof
L(G), i.e., all valuesX suchthat £(G)u = Au for some
u € R" u #0.

The spectrumof a graphdoesnot determinethe graph
uniquely i.e., thereare non-isomorphicgraphswith the
samespectrumHowever, it determineshe numberof ver
tices, edgesand, aswe will see,someothertopological
properties. A first naturalquestionis: Whatis the nor
malizedLaplacianspectruntor simpletopologiessuchas
stars,chains,gridsandrandomtreesof n nodes?Thenls
of astar§, is 0, 1(n-2times) 2, andthenls of achainP,
is 1 — cos(2£),k = 0,---,n — 1. For gridsandtrees,
plots of the numerically computedspectrumare shovn
in Fig. 1. To generateour nls plots, we computeall n
eigemwvalueswith MATLAB, sortthemin non-decreasing
order andplotthemsothatthei-th smalleseigemwalue );,
1 <i<m,isdravnat(z,y) withz = (:—1)/(n—1) and
y = A;. In thisway, the plotis alwayswithin [0, 1] x [0, 2]
andit becomesorvenientto comparethe nis of graphs
with differentnumbersof nodes.

A. Propertiesof normalized_aplacianspectrum

Onecanseein [9] thatthespectrunof £(G), for ary G,
is containedn the closedintenal [0, 2] andthatthe small-
esteigevalueis always0. The multiplicity of eigevalue
0 (i.e.,how mary of then eigevaluesare0) is equatlto the
numberof connecteadomponentsf G. Thelargesteigen-
valueis lessthanor equalto 2, whereequalityholdsfor a
bipartite connecteccomponent.The spectrumof a graph
is theunionof the spectraof the connectedomponents.

Looking at AS connectiity mapsof the Internetduring
the periodfrom 1997 to 2001, we obseredthatin spiteof
anincreasinghumberof nodesandedgesthe normalized
Laplacianspectrunof thegraphsstaysthesame A closer
look at the nls of thesegraphshasshavn a large multi-
plicity of theeigemwaluel. This hasmotivatedourinterest
in thedistribution of the spectrumof £(G), particularlyin



Fig. 1. ThenormalizedLaplacianspectrumof grids andran-
domtrees. The treeswere generatedy startingwith one
nodeandthenrepeatedlyaddinga nev nodeandmakingit
adjacento anexisting nodechoseruniformly atrandom.

the developmentof a lower boundfor the multiplicity of
eigemwvaluel in termsof structuralpropertiesof graphs.

B. Multiplicity of theeigervaluel

We will useatechniquesimilar to [10] to find a lower
bound for the multiplicity of eigewvalue 1. Denoteby
P(G) = {v € V | d, = 1} thesetof leavesin G, called
“pendants”, andby Q(G) = {v € V | Jw, (v,w) €
E,w € P} thesetof the neighborsof the leaves, called
“quasi-pendants”. Let R(G) = V\(Q(G)UP(QG)) bethe
setof nodeghatarenotleavesandthatarenotneighborof
leaves,called“inners” . Letp, ¢, r respectrely bethecar
dinalitiesof thesetsP(G), Q(G), andR(G). We call the
subgraphof G inducedby R(G) Inner(G). By inn we
denotethe numberof isolatedverticesin Inner(G). Let
mg(1) denotethe multiplicity of the eigevaluel. Then
we obtainthefollowing lower bound.

Theoeml1: Themultiplicity of eigewvaluel of thenor
malized Laplacianis boundedfrom belov by the sum
of the numberof pendantsthe numberof isolatedinner
nodesandthe nggative of the numberof quasi-pendants.

ma(l) >p—q+inn (D)

Proof: We can assumethe following labeling

of the nodes, becausethe eigewvalues are independent
of the labeling: v1,...,v, wherewvy,---,v, € R(QG),
Vrt1, 5 Urtq € Q(G), and vy gq1,---,v, € P(G).
Also, we canassumehat (vy4;, vryq+i) € E,i = 1..q.
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Then,thestructureof thenormalizedLaplacianis

R r@Q 0
LG)= | Q" Q qP
0 ¢PT 1,

HereR is anr-by-r matrix,rQ is r-by-q, Q is g-by-q, qP
is g-by-p and I, is the p-by-p identity matrix. From the
basicequations\u = L(G)u, we obtainthatmg(1)
nullity (£(G) — I,,), wherel, is then-by-n identity matrix.

Using the labeling assumptionswe obsere that ¢ P
containsa principalsubmatrixD, whichis diagonal hav-

ing _\/di,T’i = 1..g onthediagonal.Now let LI(G) =

L(G) — I,,. Using D, andelementaryransformationshat
do not changethe rank (addinga multiple of onerow to
anotherrow, or the samefor columns),we obtaina newv
matrix LI'(G) from LI(G):

R-I, 0 0 0

o _ 0 0 Dy 0
Lr(G) = 0 Dy 0 0
0 0 0 0

Now it is enoughto prove that nullity(LI'(G)) = n —
rank LI'(G)) > p — g+ inn. We have thatrank D,) = ¢,
thusn —rank LI'(G)) > n—2q—ranKR—1I,) = p—q+
r —rank R — I,). Now, if inn is the numberof isolated
verticesin Inner(G), eachrow that containsan isolated
vertex will have 0 at thefirst » columnsof LI'(G), thus

rank R — I,) < r — inn andthestatemenfollows. W
Remarkl: Theboundcanbeimprovedasfollows:
mag(l) >p—q+inn+s 2

wheres = 22:1 k; — 1, wherek; is the numberof the
mutually non-adjacenhodeswith the sameneighborhood
in Inner(G) andtherearel suchclassef nodes.In the
matrix (R — I,) thosenodeswill have exactly the same
entries,whichwill additionallydecreas¢herank.

[11. A NEW STRUCTURAL MODEL

In this section,we presentour newv structuralview of
the Internettopology that is motivated by our obsera-
tions concerningthe normalizedLaplacianspectraof AS
andlInet graphs.Subsequent|ywe interpretthe structural
modelin networking termsandprovide evidencesupport-
ing theinterpretations.

A. Theoetical derivation

Recall that we considerthe Internet topology at the
AS-level, so that we have an undirectedsimple graph



VUKADINOVIC, HUANG AND ERLEBACH: A SPECTRALANALYSIS OF THE INTERNET TOPOLOGY

G = (V, E) wherevertices(nodes)are AS domainsand
anedge{u,v} € E meanghatthetwo AS domainsu and
v areconnectedWe foundremarkablysimilar plotsof the
nls for all real InternetAS-level snapshotérom Novem-
ber 1997 to March 2001. The sameconsisteng wasde-
tectedfor Inet graphswith differentnumbersf nodesbut
the nls of Inet graphswas clearly differentfrom the nis
of real AS graphg(seeFig. 2). Togethewith thefactsand
plotsaboutthenlis of gridsandrandomtreespresentedn
the previoussection this shavs thatthenls canbeusedas
akind of “fingerprint” for network topologieqevenfor ar
bitrary large graphsthat aredifficult to comparedirectly).

AS2001 inet3o0n

AS2000

0s \
0

inet9000

As1009

As1907
inet6000

0z o o 07

01 3 04 5 06
Normalized index of the eigenvalues

Fig. 2. ThenormalizedLaplacianspectrunof selectedyraphs.

In particular we found a significantdifferencebetween
themultiplicity of theeigemwaluel in thenls of thereal AS
graphsandthelnetgraphswith the correspondingpumber
of nodes.Theoreml givesalower boundonthe multiplic-
ity of eigevaluel in termsof pendantsguasi-pendants,
andisolatedinnernodes.We foundthatthis lower bound
is closeto thereal multiplicity obseredin the AS graphs
and Inet graphs. Therefore,we classify the nodesof the
graphsinto setsP, @), R andI asfollows, andinvestigate
their cardinalities. A nodeis
. in Pif itsdegreeis 1 (i.e.,if it is aleaf),

. in Q if it hasatleastone P neighborin G,

. in I if it is anisolatednodein Inner(G), the subgraph
inducedby nodesnotbeingin P or (2, and

. in R if it is containedin a connectedcomponentof
Inner(G) with atleast2 nodes.

B. Physicalinterpretation

Theclassed’, @), R andI aredefinedin graph-theoretic
termsmotivatedby theanalysisof theLaplacianspectrum.
To relatethesenotionsto ASsin thereal Internet,we now
proposeplausibleinterpretation®f thefour nodesetsand
give someevidencesobtainedrom AS nametables.

B.1 @ nodespest-connectedodesof the Internet.

Theclass( containsonly asmallnumberof nodescom-
paredto the size of the whole graphandto the sizesof

theotherclassesbut thebest-connectedodes(largestde-
gree)belongto (. Thesubgraptinducedby Q hodeshas
asimilar structurefor all obseredgraphsiit containsabig
connecteddomponentvith acharacteristiails (seeFig. 3)
andabout5% of isolatednodes.

16 1

14 )
rs 2001

1 \ / i

Q graphs of three AS graphs in 99,00,01

02 03 o

04 5 06 07
Normalized index of the eigenvalues

08 09 1

Fig. 3. Thedistinctivenls of () subgraphs.

We interpretthe nodesin the big connecteccomponent
ascorenodeg(seeTABLE |). Notethat() nodeshave leaf
neighbordy definition. Theisolatednodeswhichhave no
@ neighborscanbeexplainedasexchangepointsserving
to connectP, R, andI nodes(seeTABLE II).

TABLE |
EXAMPLE () NODES AS PART OF THE CORE

[ AS number ] AS name |

ASN-ASN-QWESTQwest
ASN-ALTERNETUUNET Technologiesinc.
ASN-ICM-INRIA Sprint
ASN-ICIX-MD-AS Businesdnternet,Inc.
ASN-VERIO Verio, Inc.
NacamaiGlobal ASN
ASN-LEVEL3 Level 3 Communications, LC
ASN-GBLX GlobalCrossing
ASN-CWUSA Cable& WirelessUSA
ASN-TELEGLOBE-ASTeleglobelnc.
ASN-ATT-INTERNET4AT&T

TABLE Il
EXAMPLE () NODES AS EXCHANGE POINTS

[ AS number ] AS name |

[ 8961 ] EmiratesinternetExchangeMiCI Peemouter |
[ 7656 || TWNAP-ADMIN-AS-AP TaiwanInternetExchangeCenter |

B.2 R nodesgcoreandalliances.

The subgraphinducedby R consistsof a larger num-
ber of connecteccomponents.Their size and frequeng
exhibit powver-law relationships(see SectionlV). The
biggestconnectedcomponentdominatesby its size and
nodesdegrees.We interpretthe connectedcomponent®f
R nodes,with the exceptionof the biggestone,asASal-
liances Alliancescanbebuilt on national,regional,com-
mercial,or othergrounds. TABLE Ill shavs anexample
of an Austrian AS alliance,a connecteccomponenof R



with 7 nodesin the AS graphof March 16, 2001. The
connectionsvithin thatcomponenaredepictedn Fig. 4.

TABLE I
AN EXAMPLE NATIONAL R ALLIANCE

[ AS number [
5385

AS name |
TELEPOR' Consultingund Systemmanageme@®mbH
TelekomAustriaAutonomousSystem
Datakominformationsservic&mbH

UTIC AS=20
OesterreichischeotterienGmbH
VTG
DATAKOM-MEHRWERTDIENSTE

Fig. 4. Interconnectiorof AustrianAS alliance.

Whenexaminingthe structureof the biggestkR compo-
nent,we concludedhata consisteninterpretationof that
components notpossible pecaussaignificantfluctuations
in the membersof that componentare presentduring the
obseredthree-yeaperiod(seeFig. 5).

999 2000 | 2001 |

11002 | (0114 | (0402 | |0702| [1002 | D102 | 0403 | [0702 | 1002 | (0102

Fig. 5. The percentagef the nodesin the biggestR compo-
nentthat arestill in the biggestkR componenin the direct
successoAS graph.

In orderto gainfurtherinsights,we investigatedhe k-
coresof theAS graphs.Thek-coreof agraphis definedto
bethesubgraptobtainedoy recursvely deletingall nodes
with degreelessthank. Intuitively, the deepercoresof
an AS-graph(i.e., the k-coresfor larger valuesof k, say
k > 5) shouldcorrespondoughlyto morewell-connected
“backbones’of the Internetat that time. We found that
mostof the nodesin the deepercoresarein (Q andsome
aremembersf the biggestR component.This fact mo-
tivatesaninterpretatiornof the biggestcomponenbf R as
beingmadeup partly of AS domainsbelongingto thecore
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and partly of multi-homedstubsor alliances. Note that
corenodesin R do not have ary leaf neighbors. Exam-
plesof thesetwo nodetypesin R aregivenin TABLE IV
andV. Nodesthatwerein the biggestcomponentf R in
all obseredgraphsareshovn in TABLE VI.

TABLE IV
EXAMPLE STUB R NODES IN THE BIGGEST COMPONENT

[ AS number ] AS name |

[ 159 [[ ASN-SONNETThe Ohio StateUniversity |
[ 15896 || Yahoo!DE |

TABLE V
EXAMPLE CORE R NODES IN THE BIGGEST COMPONENT

[ AS number ]
2551
3220
3333
3914

AS name |

ASN-ICG ICG NetAhead|nc
kpnQwesiSweden
RIPENCC
ASN-DX-NET DataXchang&etwork,Inc
ASN-INS-NET2 lowa NetworkServices
XO Communicationg&European
LINX-AS
ASN-LIGHTNING Lightning InternetServices
The TEN-155IP Service
ASNBLK-INTERNAP-2BLK InterNAP Network Services

TABLE VI
EXAMPLE PERSISTENT R NODES IN THE BIGGEST
COMPONENT

AS name
ASN-SWITCH-ASSWITCH TeleinformaticsServices
RIPENCC
Wirehub! Internetglobalbackbone

[ AS number ]
559
3333
5496

B.3 P andl nodesstubdomains.

P nodesareleaves(nodeswith degreel) by definition.
Thereforethey mustbe stubnodes(nodesthatdo not for-
wardtraffic thatneitheroriginatesin thatnodenor is des-
tined for that node). I nodes,whosedegyreeis smallin
mostcaseqi.e., they have just two or threeneighborsin
@), aremostly multi-homedstub domains. The percent-
ageof I nodesis increasingin the AS graphsover time,
andthe percentagef P nodesis decreasing.Currently
the I classis the biggestpart of the Internet. It became
biggerthanthe P classatthebeginningof 2001. Thispos-
itive trendin the numberof I nodesandnegative trendin
the numberof P nodesagreeswith thefactthatmoreand
moreleaf domainswvantto becomanulti-homedfor better
fault-tolerancd11].

Thenumberof I nodeswith high degreeis rathersmall:
for example,in the AS graphof March 16, 2001, there
areonly 28 nodeswith degreegreateror equalto 6, and
the maximumdegreeof an I nodeis 11. Thesenodesare
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mainly big companiesor universitieswith multiple con-
nectionsto the backbone,but not providing forwarding
services Examplesof I nodesareshavn in TABLE VII.

TABLE VII
EXAMPLE I NODES

[ AS number ] AS name

ASN-DEC Digital EquipmeniCorporation
ASN-NWU Northwesterrniversity
ASN-CISCOCiscoSystems|nc.
ASN-IND-NTC Hewlett-PackardCompary
HP-EUROPE-ASHewlett-PackardCompary
ASN-NBNIC-NCA National ComputerizatiorAgeng/
ASN-INTEL-SCIntel Corporation
ASN-Y-BR-SER/ Yahoo!BroadcasServices)nc.
AS-UICUniversityof lllinois at Chicago
ATEXT Architext
ASN-INTERNIC InterNIC RegistrationServices
NetKonectCommunicationdJSA
ASN-NORTELRCH2Nortel (NorthernTelecom)
ASN-CRITICALPATH Critical Path, Inc.
ASN-INFLOW-NET Inflow Inc.

In summarythe classes” andI representhe outskirts
of the Internet,andin a sensehey correspondo the stub
domainsin the Transit-Stubmodel. Althoughthe smaller
alliancesin R arearguablyalsothe outskirtsof the Inter-
net,for the sale of simplicity andsincesomenodesin the
biggestk componentrefoundin theinnerpartof the AS
graphswe referto, for the detailedanalysisbelow, ¢ and
R asthecore,and P and[ astheedgeof thelnternet.

IV. ANALYSIS

Having unveiled a sound theory as a succinct way
to identify Internettopologiesand proposeda structural
modelwith plausibleexplanation,we look into how the
Internetevolvesin this structuralsenseand how it com-
paresto graphsgeneratedy existing tools. Throughour
analysiswe find bothstructuralandpowerlaw properties
importantandin two countsobsere apower-law in thein-
ternalstructureof R andtheinterconnectity betweenP
and (. Thesegive riseto a hybrid generatothatencom-
passedothstatisticalandstructuralproperties.

A. Methodolgy

Thesetof graphsundegoneanalysishasbeendescribed
earlierin Sectionl-B. To obsere how AS graphsevolve
structurallyandhow they compareo Inetgraphswe look
atthefollowing threesetsof metrics.

1. Ratioof nodesn P, I, ), R

2. Ratioof links connectingP@, 1Q, QQ, RQ, RR

3. Degreeof connectiity in core(Q, R) andedge(P, I)
It is notto our surprisethatthe numbersof nodesin each
componentandthe numbersof links interconnectingthe
componentsre increasing. Thus we focus our analysis
on how the componentg&xpandor shrinkrelatively to the
whole graphandomit discussion®n absolutenumbers.

Resultsare depictedin Fig. 6, 7, and 8 respeciiely.
Eachplot shavs changesof the AS graphsin the corre-
spondingmetric (Y axis)in time (X axis). In the next two
subsectionsye highlightimportanttrendsin theevolution
of AS graphsandsignificantdifferencego Inetgraphs.

B. Evolutionof ASgraphs

Obsewation 1. We seefrom the top plots of Fig. 6
that ratio of nodesin P is decreasingvhile that of I is
increasing. That means,applyingour interpretationof P
and I, the areaof single-homedeaf nodesis shrinking
while thatof multi-homedstubnodess rapidlyincreasing.
Thisagreesvith abig ISP’'sobsenation[11] onincreasing
demandor multi-homeaccesgrom its clients.

Observation 2. Theratio of nodesn P andI combined
hasincreasedrom approximately67% to 74%. @ and
R componentscontainingthe core of the Internet,each
remainsstableandthecombinedatiodecreaseBom 33%
to 26% (bottomplotsof Fig. 6). In termsof ratio of nodes,
the edgeof the Internetis growing fasterthanthe core.

Observation 3. Given that the ratio of nodesin P is
decreasingit is not surprisingto seethattheratio of links
interconnecting) P is decreasingndsimilarly for QI be-
ing increasingas! increasesgtop plotsof Fig. 7). @ P and
QI combinedincreasedrom 54 to 60%. QQ, QR, and
RR, eachremainsrelatively stableandthe combinedra-
tio decreasefrom 46 to 40%. This onceagainshaws that
in termsof the ratio of links, the edgeof the Internetis
growing fasterthanthecore.

Obseration 4. More interestingly theratio of links in
@ and R decreasedy 6%, which is slightly lower than
the 7% decreasén ratio of nodes.Theratio of links out-
growing the ratio of nodesin the coreindicatesthat con-
nectvity of the core(Q) andR) is increasing.This canbe
confirmedby the middle plot of Fig. 8.

All four obserationseitheragreewith practicalexpe-
rienceor canbe linked to oneanother Theseleadus to
believe thatwe have a plausibleinterpretatiorof P, Q, R,
andI. That makesabstractgraphtheorytermseasierto
understanéndmoreaccessibléor network engineers.

C. Comparisorto Inetgraphs

Similarity. AS and Inet graphsare similar in size of
P andsize of P(Q (top-left plot of Fig. 6 and 7). This
is becausdnet specificallymodelsthe ratio of degreel
nodeswhich arein essenceé” nodes.

Differencel. While we seetheratiosof I andQI ex-
pandin AS graphsthey remainstablein Inet graphs(top-
right plot of Fig. 6 and7). This correspondso theleft plot
of Fig. 8, wherewe obsene connectiity of theedgecom-
ponentg P andI) in AS graphsancreasingvhereaghatof
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Inetgraphsremainsstable.

Difference 2. The ratio of R remains stable in
AS graphswhile it expandssignificantly in Inet graphs
(bottom-right plot of Fig. 6). Similar contrastscan be
foundin link statisticsin Fig. 7: QR (bottom-middle)and
RR (bottom-right).

Difference3. Inet graphs,similar to AS graphs,have
stable@? andQQ ratios. However, theratio level is higher
thanthatin AS graphg(bottom-leftplot of Fig. 6 and7).

Difference2 and 3, contradictingto how AS graphs
evolve, indicatethat the core of Inet graphsis not only
largerbut alsoexpandingwhile the edgelosingits ground.

Differenced. It appearghatin the coreof Inet graphs
the ratio of links is growing just as fast as the ratio of
nodes;thusresultingin a ratherconstantdegree of con-
nectiity (middleplot of Fig. 8).

Thesdlifferenceshav thatalthoughsuccessfuin mod-
eling the power-law properties)netfails to capturestruc-
tural changesn AS graphs.In particular the coreof the
Internetis becomingelatvely smallerandtheedgelarger,
but the evolution of Inet graphsshaws the exact opposite.
More interestingly the Internetis structuredso that the
core and edgeeachhasincreasingconnectiity. On the
contrary connectiity of the coreandedgeof Inet graphs
eachremainsconstant.

D. Towardsa hybrid model

Thesestructuradifferencesrepotentiallycritical when
studyingpropertiesof routing protocols for examplequal-
ity of path, route corvergence,and fault tolerance. To
be more concrete one can expectglobal effectivenessof
analternatve routecomputatiomalgorithmto be different
whenevaluatedusinggraphswith a higherratio of multi-
homedstub nodes(I) and betterconnectedcore (@ and
R). Below we outlineastructuralmodelthatwill allow us
to verify this conjecturen thefuture.

Our premiseis to model AS graphsencompassingoth
statisticalandstructuralproperties By that,we meanto 1)
generatea degreesequencehat obeys powver-law proper
tiesobseredearlier 2) form P, I, ), and R cloudsbased
on the size dynamics,and finally 3) inter/intra-connet
thesecloudswith analysison their connectyity.

Firstresultsshav thata powver-law existsnotonly in the
overall dggreesequencéut alsowithin the structure.For
instance,while investigatingwaysto form the R cloud,
we find that the sizesof the connectedcomponentsn R
have a powver-law distribution. Fig. 9 shavs the sizesof
theconnectedcomponent#n R rankedfrom thelargestto
the smallest(rank-sizeplot), andoccurrencesf different
sizes(size-occurrencelot). Thelinearrelationshipof the
two plotsin log-log scalerevealsa pover-law propertyin

theinternalstructureof R.

A powerlaw is alsopresenin theway P and(@ clouds
are interconnected. The left plot in Fig. 10 shaws, for
eachnodein @, its rankon nodedegree(Y axis)andrank
on numberof degreel or P neighborgX axis). ThoseQ
nodeswith onedegree-oneneighborarerankedthe 411th
(lowest)in X axis;thosewith 2, 3, 4, and5 degreel neigh-
borsareranked 275th,191st,147th,and109th,gradually
improving. Eachcolumnin the plot shaws thatavariety of
Q@ nodeswith differentnodedegrees may have the same
amountof P neighbors. The middle plot of Fig. 10 il-
lustratesthe distribution of such@ nodes. Thelinearre-
lationshipin the log-log scaleplot hints on a power-law
distribution for () nodeshaving one P neighbor

This powerlaw property persistsacrossdifferent de-
greel neighbomranks,until datapointsaretoo few to shav
a clearlinear relationshipin log-log plots. Theright plot
of Fig. 10 is anotherexampleof sucha powerlaw exist-
ing for Q nodeshaving five P neighbors Furtheranalysis
verifiesthatthe samepowerlaw propertybetweenP and
Q cloudsexistsin othersnapshotsf the Internet.

These powverlaw propertieswithin or betweensub-
structuresof the AS graphscould be the missing links
betweenthe state-of-the-argeneratorsi.e., Inetand GT-
ITM. Eachof themidentifiesoneimportantaspectbof the
Internettopology— Inetfor the statisticalaspecandGT-
ITM for the structuralaspect— but unfortunatelymisses
outontheother Wethink thata realisticmodelcannotdo
without either Our analysis althoughprimitive, givesrise
to a hybrid modelthatwill leadto a promisingAS graph
generatar This might in turn have a profoundimpacton
how routing mechanismare evaluatedand how Internet
routingor otherprotocolsevolve in thefuture.

V. CONCLUSIONS AND FUTURE WORK

In this sectionwe first summarizeour work andexplain
the significanceof our contritution. Thenwe give anout-
look oninterestingopenquestiondor futureresearch.

A. Contribution

We have appliednormalizedLaplacianspectrumanaly-
sisto Internettopologygraphs.It turnedout thatthe nls
canbe usedasa concisefingerprintof a graph. Real AS
graphsfrom 1997to 2001 producednearly identical nls
plots in spite of the significantdifferencein the number
of nodes(from 3015in 1997to 10515in March 2001).
Similarly, graphggenerateavith thelnet-2.1generatohad
a characteristim/s independentf the numberof nodes,
which was different from the nls of real AS graphs,in
particularwith respecto the multiplicity of eigervaluel.

We adapteda lower boundon the multiplicity of eigen-
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valuel in termsof the cardinalitiesof differentnodesets
P, Q, R, andI to the normalizedLaplacianof a graph.

For thereal AS graphswe foundplausibleinterpretations
for thenodesin P, @, R, and!. In particular the classifi-

cationof nodesinto thesefour typesprovidesa structured
view of the graph, featuringleaf domains,multi-homed
stubdomainsalliances andcorenodes.

Our extensie numericalanalysisof the sizesof P, @,
R and I andtheir connectiity characteristicén real AS
graphsover time and in correspondingnet graphspro-
videsquantitatve datathatis usefulfor seseral purposes:
« It allows to obsenre trendsandthusmale betterpredic-
tions aboutthe future appearancef the Internettopology
ontheAS-level.

« It helpsusto identify characteristicef graphsgenerated
by topologygeneratorshat do not matchthe characteris-
tics of real AS graphssuficiently well.

« It providesinsightinto structuralcharacteristicof the
currentinternetwith quantifiablepropertiesasopposedo
abstractgualitative views of the hierarchyin the Internet.
« It allows usto improve existing network generatorglike
Inet) aswell asto designnew network generatordasedbn
thestructuralpropertiesve obsere in real AS graphs.
Besideswhile analyzingthe subgraphsnducedby P, @,
R andI andtheirinterconnections/e obtainechew, previ-
ously unobsered powverlaw relationshipswith respecto
the sizesof connectedcomponentsn R andto thedegree
rankof ) nodeswith the samenumberof P neighbors.

In particular we foundoutthatInetgraphswhich seem
to be the “best match” with real AS graphsamongall
topology generatorsvailable, consistentlydisplay a sig-

nificant differencein the nis with respectto the multi-

plicity of eigemvalue 1. This indicatesthat Inet graphs
lack somestructuralpropertiesof AS graphs,relatedto

the way how stub nodesare connectedto core nodes.
Therefore pur resultssuggesthatInternettopologymod-
elsandtopologygeneratorsnusttake into accountstruc-
tural properties(asin the transit-stubmodel) as well as
powerlaw relationshipgasin the Inet generatorjn order
to modelreal AS graphswell. We have alreadybegunto

experimentwith Inet-2.1 modificationsthat improve the
similarity of generatedyraphswith real AS graphs,and
first resultsareencouraging.

Note that our structuralexplanationof P, (), R andl
nodesis roughly relatedto the hierarchicalclassification
of nodesin thetransit-stubmodel[3], to the degree-based
classificationin [12], andto the classificationinto core,
subcoreregional,andstubnodesn [8]. In [12], AS nodes
areclassifiednto nationalor internationabackbonegde-
gree> 28), large regional providers (10-27),large MAN
providers (4-9), and multi-campuscorporateor academic
networks (1-3). This classificationis becomingoutdated
by the commercializatiorof the Internetover the pastfew
years. We find, for examplein recentsnapshotof the
Internet, that the best-connectedS nodesare often the
large regional providers (TABLE 1). We also note that,
while [8] emphasizesnethodologyfor topology discov-
ery, we areinterestedn theevolution of the Internettopol-
ogy in a structuralsense which leadsto a morerealistic
modelfor randomtopologygenerationIn additionto the
structuralexplanationswe obtainextensve datathat pro-
vides a much more preciseview of the structureof AS
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graphsandquantitatve relationshipsetweenthe various
substructureswWhile the transit-stubmodellacksthe abil-
ity to generatehepower-law relationshipobseredin real
AS-graphspur resultsallows usto combinestructureand
power-laws into asinglemodel.

Our work on the analysisof AS-level topologygraphs
complementsesearctcarriedout at variousresearchabs
worldwide, e.g.[5], [4], [6], [13]. In particular we think
that our proposalto considerthe normalizedLaplacian
spectrumasa “topology fingerprint” will be usefulin de-
tectingthe similarity and/ordifferencef graphsbtained
from varioussourcesgvenbeyondthe domainof commu-

nication networks. Note that someprevious researchers

who consideredhe eigewaluesof topology graphshave

looked only at the 20 largesteigervaluesof the adjaceng

matrix [5]. Contraryto thatapproachye studythewhole

spectrumnsteadof only the 20 largestvalues,andwe use
the normalizedLaplacianof a graphinsteadof the stan-
dardadjaceng matrix (motivatedby resultsfrom spectral
graphtheory[9]). We think that the normalizedLapla-

cian spectrunmshouldbecomeoneof the standardnetrics
usedin the comparisorof network topologygraphsjn ad-

dition to standardyraphparameterfik e diameteraverage
degree,and averagepathlength, powverlaw relationships
asthoseobsenred in [5], androuting-relatedmetricslike

expansionyesilienceanddistortion[13].

B. Future Work

Ourresultsprovide severalimmediatestartingpointsfor
futurework. First of all, we intendto usethe insightswe
obtainedrom ouranalysidor improving the quality of the
Inet-2.1generatofwith respecto thesimilarity to realAS
graphs)andto explore the potentialof a newly designed
randomtopologygeneratobasedn our structuralview in
termsof P, Q, R andI nodes.

Besidesthat, mary aspectf the AS graphsareyetto
beinvestigatedhoroughly for examplethestructureof the
connectionsvithin @ andthosebetween) andR. Onthe
firstlook, @ isin somesensea smallerversionof theorig-
inal graph. It canbe further classifiedinto P, @), R and
I, andthe processcanbe continuedrecursvely. This can
be interpretedas a form of self-similarity in AS graphs.
However, the guantitatve measuresare differentin dif-
ferentscalessothatthe self-similarity appliesonly to the
structuralview of thegraph,notto theexactparameters.

Furthermoreit will beinterestingto identify additional
characteristicof the nls (in additionto the multiplicity
of eigewalue 1) that canbeinterpretedn termsof graph
theoryor networking concepts.

Anotheropenquestionis to explain how the local be-
havior of network administratorgwho mustdetermineto
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which otherASstheir network shouldbe connected)eads
to the globalpropertiesobseredin the AS graphsjn par
ticular to the various powerlaws. First stepsalong this
direction have beenmadein [6], whereit was obsened
thatincrementalgrowth andpreferentialconnectity can
explainthe powerlaws to someextent. If the effectsof lo-
cal behaior on global propertiesof the resultingnetwork
areunderstoodthesemight on the onehandleadto more
naturalnetwork generatorgthatsimulatethe local beha-
ior of the nodeswhile generatinghe network) andon the
otherhandhelpto determinechangesn localbehaior that
might resultin improved global structureof the network.
Finally, it isimportantto investigatehedifferencesith
respectto the behaviorof a communicationnetwork (in
termsof performancemetricssuchasthroughput,delay
fault-tolerancejhatarisefrom differencebseredin the
correspondingopologygraphs.Onemeandor thisline of
researchare network simulations. Thoroughcasestudies
could helpto identify which of the graphpropertieshave
substantiakffectson network performanceandwhich are
only of theoreticainterestanddo not affect performance.
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