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Summary

We study a new spectral approach for scattering by two-dimensional polygonal objects with
arbitrary surface impedance conditions. In this delicate exterior problem, the Wiener–Hopf
method cannot be applied, while asymptotic methods can only be used if corners are widely
spaced compared to wavelength. A new method based on the Sommerfeld–Maliuzhinets
integral representation is presented to reduce the problem to simple spectral equations in
the complex plane. For this, we use an expression of the spectral function, where we can
isolate the contribution of any element of an arbitrary surface. Considering polygons with
impedance boundary conditions, it then becomes possible to derive functional equations on
spectral functions of Maliuzhinets type for finite or infinite objects. We apply this approach to
an important class of three-part impedance polygons composed of a finite segment attached to
two semi-infinite planes, and reduce this problem to non-singular Fredholm integral equations,
suitable for approximation or numerical inversion. In the particular cases of a three-part
impedance plane or symmetric impedance polygon, we show that the system of integral
equations in the spectral domain can be simply uncoupled.

1. Introduction

This paper presents a new spectral approach for the problem of scattering by two-dimensional semi-
infinite or finite polygonal objects with an imperfectly reflective surface, illuminated by a plane
wave. Solutions for such generic objects play a crucial role in the calculation and the interpretation
of the field scattered by complex objects.

Up to now, the study of scattering by objects with several singularities has remained a delicate
task: the high-frequency techniques only yield asymptotic solutions for widely spaced singulari-
ties (1 to 3), while numerical methods with discretization of space are time-consuming because of
singularities and oscillations of the field (even if some methods use some asymptotics (4, 5)). Be-
sides, the problem concerning a general impedance polygon in free space has not yet been studied
by spectral methods (see for example (1, 6 to 10)), even if some recent analyses have proposed
representations valid in a convex polygon (11), outside a general wedge-shaped region (10), or for
angular geometries with perfectly reflective surfaces (12, 13). The presence of imperfectly reflective
surfaces particularly complicates the problem. So we note that, in the particular case of diffraction
by a three-part plane with three distinct impedances at real frequency, the well-known Wiener–
Hopf method leads to coupled singular integral equations. Finally note some very recent promising
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518 J. M. L. BERNARD

progress in numerical methods to address this problem using PML absorbing conditions (14) or a
random walk method (15).

We present here a general method to handle the problem of n-part polygonal objects using the
Sommerfeld–Maliuzhinets representation of the field. This representation has long been devoted to
the sole analysis of isolated wedges (16 to 24). However, some of our recent developments (10)
permit us to consider a new integral expression of the spectral function, in some domain of complex
angles, where it becomes possible to take account of boundary conditions on a complex geometry.

This generalization of Maliuzhinets methods enables us to derive, for the first time, the functional
equations for the spectral functions for scattering by a general impedance polygon with finite or
infinite surface, and to reduce the problem concerning an infinite three-part impedance polygon to a
system of two Fredholm integral equations of the second kind, with non-singular kernels allowing
approximations.

The paper is organized as follows. In section 2, we develop the expression of the spectral function,
related to the Sommerfeld–Maliuzhinets representation of the field, as an integral along a semi-
infinite polygonal line. In section 3, we apply it to the basic problem of scattering by impedance
polygons, and derive functional equations in spectral domain. In section 4, using the meromorphy
of the functions involved in this problem, we then show how to decompose the field in simple
elements. Next, we illustrate and develop the method for a three-part infinite polygonal scatterer.
We then define two unknown spectral functions and write coupled functional equations for them
in section 5. We reduce, in section 6, the system of functional equations to a set of non-singular
Fredholm integral equations of the second kind. It is shown in section 7 that the scattering diagram
can be derived in a simple manner from the solutions of these equations. In section 8, we give some
important features of the integral equations. We show how to decouple the set of integral equations
in some particular cases, then we study particular properties of kernels permitting approximations
when the wave number k is large or small, and give some numerical results in this case.

2. Spectral function in the Sommerfeld–Maliuzhinets representation of the field:
properties, expressions and particular relations with radiation of one face

Let us consider the case of diffraction in free space of a plane wave

ui (ρ, ϕ) = eikρ cos(ϕ−ϕ◦) (2.1)

by a scatterer enclosed in a wedge-shaped region, defined in cylindrical coordinates (ρ, ϕ) as the
domain outside the free space angular sector with origin O , −�r � ϕ � �l (Fig. 1). The plane
wave comes from the free space and −�r � ϕ◦ � �l . The characteristics of the scatterer are
supposed to be independent of the z-coordinate. An implicit harmonic dependence on time eiωt is
understood and henceforth suppressed. In (2.1) k denotes the wave number of the exterior medium
with |arg(ik)| < 1

2π . Physically, |arg(ik)| < 1
2π means that there are some losses in free space, and

|arg(ik)| = 1
2π is considered as a limit case. We assume that the total field in the free space region,

u = us + ui , satisfies the Helmholtz equation

(� + k2)u(ρ, ϕ) = 0, (2.2)

and that u(ρ, ϕ) is analytic with respect to ρ, ϕ and ϕ◦, except possibly at the origin, and that there
exists a constant s◦ such that

∫∞
0 |u(ρ, ϕ)e−s◦ρ |dρ < ∞.
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SCATTERING BY IMPEDANCE POLYGONS 519

Fig. 1 Geometry: wedge-shaped and polygonal regions

The total field u for −�r � ϕ � �l can be then represented as a Sommerfeld–Maliuzhinets
integral (10, 16)

u(ρ, ϕ) = 1

2π i

∫
γ

f (α + ϕ)eikρ cos αdα, (2.3)

which satisfies the Helmholtz equation. In this representation, f is an analytic function and the path
γ (Fig. 2) consists of two branches: one, named γ+, going from (i∞+arg(ik) + (a1 + 1

2π)) to
(i∞+arg(ik) − (a2 + 1

2π)) with 0 < a1,2 < π , as Im(α) � d, above all the singularities of the
integrand, and the other, named γ−, obtained by inversion of γ+with respect to α = 0.

This representation is commonly applied for a wedge (17). We investigate its use for a scatterer
with several discontinuities. This study requires us to express a shift of the origin; for this, we
develop and use particular relations of f with radiation by one face only.

2.1 Some properties of the field and f in the complex plane

From (1, 2, 10, 16, 18, 24, 25), it follows that some elementary properties can be assumed to hold
for the field:

(a′) the only incoming plane wave, from the free space sector with origin O , −�r � ϕ � �l , is
the incident field;

(b′) the limit of the field u as ρ → 0 is finite and does not depend on ϕ, while the derivatives ∂ρu
and ∂ϕu/ρ are locally summable with respect to ρ in the vicinity of the origin. This property
applies for an origin taken at any point out of or upon the scatterer;
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520 J. M. L. BERNARD

Fig. 2 Description of paths in the complex plane

(c′) the field, except possibly its geometrical-optics part when Im(k) �= 0, does not grow at infin-
ity. In addition, some bounds on the far field are assumed. We consider here that the field is
O(eikρ cos(ϕ−ϕ◦)) for large ρ, | arg(ik)| < 1

2π , which is a standard assumption (1, 2) when the
scattering object has impedance boundary conditions.

These properties lead us to assume some elementary conditions on f in this case (16, 18,
24, 25):

(a) ( f (α) − ui (O)/(α − ϕ◦)) is regular at points with Re(α) belonging to the free space angular
sector with origin O , −�r �Re(α) � �l , which ensures (a′);

(b) there exist some constants g±, some analytic function h, and some Maliuzhinets contour γ such
that | f (α + ϕ) ∓ f (−α + ϕ) − g±|< |h(α)| on and inside the loop formed by the upper branch
γ+ of γ , when −�r � ϕ � �l , the function h being summable on γ+, regular on and within
it. In this respect, we notice that ( f (i | ln ρ|) − f (−i | ln ρ|)) = −iu(0, ϕ) + O(ρ∂u/∂ρ), as
ρ → 0, with ρ∂u/∂ρ = o((ln ρ)−1) and u(0, ϕ) = ig+. Since γ is odd, we can add a constant
to f without changing u, which implies that we can define f with f (i∞) = − f (−i∞). This
ensures (b′);

(c) f (α+ϕ) has no singularity, except possibly those associated to incident, reflected or transmitted
plane waves not vanishing at infinity, in the zone defined by Re(ikcosα) > 0 as |Re(α)| < π ,
−�r � ϕ � �l , |arg(ik)| < 1

2π . Considering that the far field is O(eikρ cos(ϕ−ϕ◦)), f (α + ϕ)

has no singularity in this region when Re(ik cos(ϕ − ϕ◦)) < 0, that is, 1
2π < |ϕ − ϕ◦| < 3

2π .
This ensures (c′).
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SCATTERING BY IMPEDANCE POLYGONS 521

2.2 Spectral function corresponding to radiation of a single face

We now apply Green’s theorem (1, 2). To simplify the notation without losing generality, we take
�r = �l = �. From the properties (b′), (c′) on u, the scattered field in free space us = u − ui for
|ϕ| < � can be written as the sum u+ + u− of the radiations of equivalent surface currents carried
by the faces ϕ = +� and −�,

u±(ρ, ϕ) = −i

4
lim

ρ0→0+

∫ ∞

ρ0

(
u(ρ ′, ϕ′)

∂ H (2)
0 (k R)

∂n
− ∂u(ρ′, ϕ′)

∂n
H (2)

0 (k R)

)
|ϕ′=±�dρ′, (2.4)

with R =√ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′), ∂(·)/∂n = n̂∇(·) = ∓∂(·)/ρ ′∂ϕ′, n̂ the outward normal
to the face ϕ′ = ±�, |ϕ| < �, |arg(ik)| < 1

2π . We show that it is possible to express the spectral
function corresponding to u± with f . For this, we use a Sommerfeld–Maliuzhinets representation
of H (2)

0 (k R).
As shown in (10, 25), the spectral function associated with H (2)

0 (k R), where R =√
ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′), |ϕ′| > 1

2π , |ϕ| < |ϕ′|, is given by

f
H (2)

0
(α) = −1

2π

∫
S

eikρ′ cos(α′−ϕ′)
(

tan
(

1
2 (α − α′)

)
− g◦(α′)

)
dα′ (2.5)

for α ∈ ]S − π,S + π [ (that is, the domain limited by S − π and S + π ), where S is the path from
−i∞−arg(ik) to i∞+arg(ik) with Im(k sin α) = 0 (see Fig. 2). The term g◦, normally unnecessary
because γ is odd, can be chosen as g◦(α) = − tan( 1

2α) in order to ameliorate the convergence of
the integral.

By analyticity, the path S can be deformed continuously, as long as the integrand remains
bounded, without changing f

H (2)
0

. Besides, this expression can be continued for |ϕ′| � 1
2π by

shifting S. Therefore, we can write the spectral function corresponding to H (2)
0 (k Rε), with Rε =√

ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ε�), ε ≡ + or −, in a more general form

f ε

H (2)
0

(α) = −1

2π

∫
Sε

eikρ′ cos(α′−ε�)
(

tan
(

1
2 (α − α′)

)
− g◦(α′)

)
dα′, (2.6)

where the path S has been shifted to Sε = S + aε , with aε being a constant satisfying � − 3
2π <

εaε < � − 1
2π .

The expression (2.6) allows us to express H (2)
0 (k Rε) and ∂n H (2)

0 (k Rε) in (2.4) as Sommerfeld–
Maliuzhinets integrals, and we then obtain a Sommerfeld–Maliuzhinets representation of u± with
f (10, 25):

u±(ρ, ϕ) = 1

2π i

∫
γ

f±(α + ϕ)eikρ cos αdα, (2.7)

where

fε(α) = 1

4π i

∫
Sε

ε f (επ + α′)
(

tan
(

1
2 (α − α′)

)
− g◦(α′)

)
dα′ (2.8)

for α between Sε − π and Sε + π , provided 1
2π < � − εaε < 3

2π , 1
2π < � − εϕ◦ < 3

2π and
g− = f (i∞)+ f (−i∞) = 0 (permitted from (b)), ε ≡ + or −. Note that fε(α +ϕ)− fε(−α +ϕ)
is bounded for large α on γ , even if fε(α + ϕ) is not when f (±i∞) �= 0.
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522 J. M. L. BERNARD

Since f is an analytic function, (2.8) can be analytically continued so fε(α) is a function of f in
the whole complex plane. We note, in particular, that taking into account the poles of tan( 1

2 (α−α′))
which can be captured by Sε as α varies, f± satisfies

f±(π + α) − f±(−π + α) = ± f (±π + α). (2.9)

Concerning the dependence on ϕ◦ (or �), the expression (2.8) has been determined for 1
2π <

� − εϕ◦ < 3
2π , but we can consider fε(α) for � − εϕ◦ � 1

2π and � − εϕ◦ � 3
2π by analytical

continuation on ϕ◦ (or �). For (2.8), this corresponds to taking account of the contribution of any
singularity that would go through Sε as ϕ◦ (or �) goes into these regions. For (2.9), the situation is
simpler because it is a functional equation that is not changed by analytic continuation. Also (2.9)
agrees with the work of Michaeli (26) who considered the case of a wedge with Dirichlet boundary
conditions.

2.3 Far-field radiation of one face and expression of the spectral function f

Stationary phase methods (1, 2) can be applied to (2.7) to find the far-field radiation of the face
ϕ = ε�, also written ϕ = ±�. From the regularity of fε (10), we can deform γ to stationary phase
points α = +π and −π , when 1

2π < � − εϕ◦ < 3
2π and 1

2π < � − εϕ < 3
2π , and thus, out of the

reflected and shadowed regions 2� − ε(ϕ + ϕ◦) < π and |ϕ − ϕ◦| > π . Equation (2.7) then gives

u±(ρ, ϕ) = −e−iπ/4
√

2πkρ
e−ikρ( f±(π + ϕ) − f±(−π + ϕ) + O(1/(kρ))) (2.10)

which, from (2.9), is

u±(ρ, ϕ) = −e−iπ/4
√

2πkρ
e−ikρ(± f (±π + ϕ) + O(1/(kρ))). (2.11)

In other respects, in (2.4) we can use formulae (28, 29)

H (2)
0 (k R) = √

2/(πk R)e−ik R+iπ/4(1 + O(1/(k R))),

∂n H (2)
0 (k R) = −i

√
2/(πk R)e−ik R+iπ/4∂n(k R)(1 + O(1/(k R)))

(2.12)

for large R, with ∂n(k R) = ∓∂(k R)/ρ ′∂ϕ′|ϕ′=±� = (±kρ sin(ϕ − ϕ′)/R)|ϕ′=±�, R =√
ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) and cos(ϕ ∓ �) < 0. Taking into account that

R = ρ − ρ′ cos(ϕ ∓ �) + (ρ′ sin(ϕ ∓ �))2

R + ρ − ρ′ cos(ϕ ∓ �)
, (2.13)

when R + ρ − ρ′ cos(ϕ ∓ �) �= 0, and considering the properties (b′), (c′) on u, we then obtain
another expression for the far field that, compared with (2.11), gives us

f (±π + ϕ) = 1

2

∫ ∞

0

(
iku(ρ′, ±�) sin(ϕ ∓ �) ± ∂u

∂n
(ρ ′, ±�)

)
eikρ′ cos(ϕ∓�)dρ′ (2.14)

as 1
2π < � ∓ ϕ◦ < 3

2π and 1
2π < � ∓ ϕ < 3

2π , |arg(ik)| < 1
2π .

Using Green’s theorem, we note that the contour of integration along ϕ = ±� in (2.4) can be
deformed into any path L±

0,∞ without changing the field u±(M) (except at points M captured by
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SCATTERING BY IMPEDANCE POLYGONS 523

the path during its deformation), provided that the integral remains bounded and no source passes
through the path during the deformation. Thus, we can write (2.14) in the more general form with
the new path L±

0,∞, following

f (±π + ϕ) = 1

2

∫
L±

0,∞

(
iku(ρ′, ϕ′) sin(ϕ − ϕ′

t ) ± ∂u

∂n
(ρ′, ϕ′)

)
eikρ′ cos(ϕ−ϕ′)dl ′(ρ′, ϕ′), (2.15)

where dl ′(ρ′, ϕ′) is the element of length and ϕ′
t is the tangent angle along L±

0,∞.

PROPOSITION 2.1 If we divide the semi-infinite paths L±
0,∞ (deriving from a deformation of the

faces ϕ = ±� enclosing the scatterer, described above) into L±
0,�± (that is, 0 < l ′ < �±) and

L±
�,∞ (that is, l ′ > �±), we have

f (±π + ϕ) = 1

2

∫
L±

0,�±

(
iku(ρ′, ϕ′) sin(ϕ − ϕ′

t ) ± ∂u

∂n
(ρ′, ϕ′)

)

× eikρ′ cos(ϕ−ϕ′)dl ′(ρ′, ϕ′) + fL±
�±,∞

(±π + ϕ), (2.16)

where fL±
�±,∞

(α) = e−ikρ�± cos(α−ϕ�± ) f ±
e (α), f ±

e (α) is the spectral function related to the

Sommerfeld–Maliuzhinets representation of the field in coordinates with origin at l ′ = �±. We
can write, by analytic continuation,

f (α) = 1

2

∫
L±

0,�±

(
−iku(ρ′, ϕ′) sin(α − ϕ′

t ) ± ∂u

∂n
(ρ′, ϕ′)

)

× e−ikρ′ cos(α−ϕ′)dl ′(ρ′, ϕ′) + fL±
�±,∞

(α); (2.17)

this is called henceforth the single-face expressions of f .

Proof. Dividing the path of integration in (2.15), we obtain (2.16). Since L±
0,�± is a finite path, the

integral term in (2.16) is an entire function. Considering the analytical continuation of fL±
�±,∞

, we

then obtain (2.17) in the whole complex plane.
In this expression, the function fL±

�±,∞
(α) is simply connected to a change of origin. Indeed,

considering the coordinates (ρ�± , ϕ�±) of the points of abscissa l ′ = �± on the curve L±
�±,∞ ,

and (2.15), we have fL±
�±,∞

(α) = e−ikρ�± cos(α−ϕ�± ) f ±
e (α), f ±

e (α) being the spectral function

corresponding to the representation of the field in coordinates with origin at l ′ = �±.

We note that, considering the function f (α) − e−ikρ�± cos(α−ϕ�± ) f ±
e (α) from (2.17), it becomes

possible to express, in the Sommerfeld–Maliuzhinets spectral domain, the consequences of partic-
ular conditions on the field along any finite part L±

0,�± of the face L±
0,∞.

REMARK 1 When L±
�±,∞ is along the line ϕ = ±�±

e we have, letting ±π + ϕ = α ± �±
e ,

fL±
�±,∞

(α ± �±
e ) = 1

2

∫ ∞

�

(
−iku(ρ′, ±�±

e ) sin α ± ∂u

∂n
(ρ ′, ±�±

e )

)
e−ikρ′ cos αdρ′ (2.18)

for 1
2π < �±

e ∓ ϕ◦ < 3
2π and 1

2π < ∓α + π < 3
2π . By analytic continuation, this expression

is also valid as Re(ik(cos α − cos(�±
e ∓ ϕ◦))) > 0, |Re (α)| < π . Then f ±

e , defined with
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524 J. M. L. BERNARD

fL±
�±,∞

(α ± �±
e ) = e−ik� cos α f ±

e (α ± �±), satisfies f ±
e (i x ± �±

e ) → − 1
2 iu(0, ±�±

e ) and

( f ±
e (i x ± �±

e ) − f ±
e (−i x ± �±

e )) = −iu(0, ±�±
e ) + O(∂u/∂ ln ρe|| ln ρe|=x ) as x → ∞, which is

in accordance with the property (b) on spectral functions listed in section 2.1.

2.4 Single-face expression of f concerning a surface with two polygonal faces

PROPOSITION 2.2 Consider a polygonal surface located inside the domain |ϕ| > � enclosing
a scatterer (Fig. 1). This surface is composed of two joined semi-infinite polygonal faces, denoted
+ and − respectively, with m± segments of lengths d±

j with tangent angles ±�±
j , j = 1, 2, . . . , m±

and a semi-infinite plane with tangent angles ±�±
e . Then, the single-face expression (2.17) of the

spectral function f becomes

f (α) = 1

2

∑
1� j�m±

e−ik
∑

1�i< j d±
i cos(α∓�±

i )

×
∫ d±

j

0

(
− iku(ρ′

j , ±�±
j ) sin(α ∓ �±

j ) ± ∂u

∂n
(ρ′

j , ±�±
j )

)
e−ikρ′

j cos(α∓�±
j )

)dρ′
j

+e−ik
∑

1�i�m± d±
i cos(α∓�±

i ) f ±
e,m±(α), (2.19)

where f ±
e,m±(α) is the analytic continuation of the integral expression

f ±
e,m±(α′ ± �±

e ) = 1

2

∫ ∞

0

(
−iku(ρ′

e, ±�±
e ) sin α′ ± ∂u

∂n
(ρ′

e, ±�±
e )

)
e−ikρ′

e cos α′
dρ′

e, (2.20)

valid as Re(ik(cos α′ − cos(�±
e ∓ ϕ◦))) > 0, |Re (α)′| < π , |arg(ik)| < 1

2π .
The function f ±

e,m± is the spectral function corresponding to the Sommerfeld–Maliuzhinets rep-
resentation of the field in cylindrical coordinates (ρ±

e , ϕ±
e ) with origin Q±

e,m± at the edge of the
semi-plane ϕ±

e = ±�±
e , in the free-space sector �±

e − δ±
e � ±ϕ±

e � �±
e , where δ±

e is a strictly
positive constant determined by the geometry.

Proof. Considering (2.17) for f with L±
0,∞ being polygonal faces ±, and (2.18), we deduce the

expressions (2.19) and (2.20).

PROPOSITION 2.3 The spectral functions f and f ±
e,m± have the following properties:

(d) f ±
e,m±(α) − ui (Q±

e,m±)/(α − ϕ◦) has no singularity in the band �±
e − δ± � ± Re (α) � �±

e ,
where ui (Q±

e,m±) = exp(ik
∑

1�i�m± d±
i cos(ϕ◦ ∓ �±

i )), while f (α) − 1/(α − ϕ◦) has no
singularity in the band −� � Re (α) � �, even at infinity.

(e) f (α) is regular in the band −�−
e � Re (α) � �+

e , except at α = ϕ◦ and possibly as |Im(α)| →
∞, and thus f ±

e,m±(α) too. As |Im(α)| → ∞, the function f (α) is O(1) when −� � Re
(α) � �, and O(eik(c± cos α+d± sin α)) when �±

e � ± Re (α) � �, c± and d± being constants.

Proof. Considering ui in (ρ±
e , ϕ±

e ) coordinates and using the property (a) of section 2.1, we have (d).
The regularity of f and f ±

e,m± can be deduced from (2.19) and (d), and so we obtain (e). From

(2.19), we notice that f ±
e,m±(α) = eA±(α) f (α)+B±(α), where A± and B± are entire functions, with
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SCATTERING BY IMPEDANCE POLYGONS 525

A± = O(cos α) and B± = O(eik(a± cos α+b± sin α)), a± and b± being constants depending on the
geometry. Thus, f (α) and f ±

e,m±(α) have the same domain of regularity, except possibly at infinity.
Now, we can enlarge in (2.19) the surface enclosing the scatterer within the domain |Re(ϕ)| � �
without changing f , and modify δ± so that �±

e − δ± � � while �+
e and �−

e remain the same.
Using (d), we then deduce (e).

3. Application of the single-face expression in the case of infinite or finite impedance
polygons: functional equations and meromorphy

DEFINITION 3.1 The surface enclosing the impedance scatterer is considered to be composed of
two joined semi-infinite polygonal faces, defined as in section 2.4. These faces, denoted by + and
−, are respectively with m± segments of lengths d±

j with tangent angles ±�±
j , j = 1, 2, . . ., m±

and a semi-infinite plane with tangent angles ±�±
e .

In what follows, f ±
e,m± is the spectral function corresponding to a Sommerfeld–Maliuzhinets

representation of the field, in cylindrical coordinates (ρ±
e , ϕ±

e ) with origin at the edge Q±
e,m± of the

semi-plane ϕ±
e = ±�±

e , while the functions f ±
a,p and f ±

b,p are the spectral functions associated with
a representation of the field in coordinates (ρ±

a,p, ϕ
±
a,p) and (ρ±

b,p, ϕ
±
b,p) with origins at opposite

ends Q±
a,p and Q±

b,p of an arbitrary finite segment p of the polygonal face ±. From this, we have
Q+

a,1 ≡ Q−
a,1 and f +

a,1 ≡ f −
a,1 (≡ f ) at the junction of the two faces, while Q±

b,p ≡ Q±
a,p+1 and

f ±
b,p ≡ f ±

a,p+1 for p � m± − 1, Q±
b,m± ≡ Q±

e,m± and f ±
b,m± ≡ f ±

e,m± .
The functions f ±

e,m± , f ±
a,p and f ±

b,p satisfy the properties (a), (b) and (c) listed in section 2.1,
considering the respective origins and cylindrical coordinates attached to them.

The functions f ±
1,p and f ±

2,p, are the combinations of functions f ±
a,p and f ±

b,p,

f ±
1,p(α) = f ±

a,p(α) − e−ikd±
p cos(α∓�±

p ) f ±
b,p(α),

f ±
2,p(α) = f ±

b,p(α) − eikd±
p cos(α∓�±

p ) f ±
a,p(α) = −eikd±

p cos(α∓�±
p ) f ±

1,p(α),

(3.1)

and are related to the radiation from segment p.

We now derive functional equations on the spectral functions in Propositions 3.1, 3.2 and 3.3, con-
sidering boundary conditions on both semi-planes and finite segments which compose the polygonal
surface enclosing the finite or infinite impedance scatterer.

3.1 Functional equations on f ±
e,m± due to boundary conditions on

semi-infinite planes and meromorphy

PROPOSITION 3.1 In the case of an infinite polygonal scatterer with impedance boundary condi-
tions along both semi-infinite planes ϕ±

e = ±�±
e

∂u

∂n± (ρ±
e , ±�±

e ) − ik sin θ±
p u(ρ±

e , ±�±
e ) = 0, (3.2)

where ∂(·)/∂n± = n̂±∇(·) = ∓∂(·)/ρ±
e ∂ϕ±

e , n̂± is the outward normal to the face ϕ±
e = ±�±

e ,
the functions f ±

e,m± satisfy the functional equations

(sin α ± sin θ±
e ) f ±

e,m±(α ± �±
e ) − (− sin α ± sin θ±

e ) f ±
e,m±(−α ± �±

e ) = 0. (3.3)
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PROPOSITION 3.2 If the scatterer is finite, the segments of both faces form a closed surface so that
we can take Q+

e,m+ = Q−
e,m− with �+

e + �−
e = 2π . In this case, the fields on both semi-infinite

planes ϕ±
e = ±�±

e are now equal and their normal derivatives are opposite,

u(ρ+
e ,�+

e ) = u(ρ−
e , −�−

e ),
∂u

∂n+ (ρ+
e ,�+

e ) = − ∂u

∂n− (ρ−
e , −�−

e ), (3.4)

and we can derive that

f +
e,m+(α + π) = f −

e,m−(α − π). (3.5)

Proof. We obtain the functional equations on f ±
e,m± , by the use of (3.2) or (3.4) in the expression

(2.20) concerning f ±
e,m±(α ± �±

e ), as Re(ik(cos α − cos(�±
e ∓ ϕ◦))) > 0, |Re(α)| < π . So, if we

consider (3.2) and the parity of cos α, we derive (3.3), while, if we consider (3.4) with �+
e + �−

e =
2π , we deduce that f +

e,m+(α + �+
e ) = f −

e,m−(α − �−
e ) and thus (3.5) holds. Taking account of

the analyticity of the spectral functions on α and ϕ◦, (3.3) and (3.5) can be considered, by analytic
continuation, for arbitrary α and ϕ◦.

Note that the meromorphy of f and f ±
e,m± can be proved from (3.3) or (3.5). From (2.19),

f ±
e,m± = eA±

f + B±, where A± and B± are entire functions, A±(α) = O(1 + |cos α|) and
B±(α) = O(eik(a± cos α+b± sin α)), a± and b± being constants depending on the geometry. If we use
this expression of f ±

e,m± in (3.3) or (3.5), we see that eA±
f satisfies functional equations similar

to (3.3) or (3.5), except that the second members are then non-nul entire functions. Moreover, the
function f (α) is regular in the band −�−

e �Re(α) � �+
e , except for the pole at α = ϕ◦ and

possibly at infinity (as an entire function), and f (α) is meromorphic in this strip. Then, we can use
equations derived from (3.3) or (3.5) for f and extend the property of meromorphy to the whole
complex plane, so that f , and thus f ±

e,m± , are meromorphic functions with simple poles.

3.2 Functional equations due to boundary conditions on finite segments

Considering Definitions 3.1 and the expression (2.19), the spectral functions f ±
a,p and f ±

b,p, attached
to shifts of the origin at opposite ends of the segment p on the face ±, satisfy

f ±
a,p(α) = 1

2

∑
p� j�m±

e−ik
∑

p�i< j d±
i cos(α∓�±

i )

×
∫ d±

j

0

(
−iku(ρ ′

a, j , ±�±
j ) sin(α ∓ �±

j ) ± ∂u

∂n
(ρ′

a, j , ±�±
j )

)
e−ikρ′

a, j cos(α∓�±
j )dρ′

a, j

+ e−ik
∑

p�i�m± d±
i cos(α∓�±

i ) f ±
e,m±(α), (3.6)

and f ±
b,p(α) = f ±

a,p+1(α) for 1 � p < m±, f ±
b,m±(α) = f ±

e,m±(α). From this (or (2.17)), we have

f ±
a,p(α) = 1

2

∫ d±
p

0

(
−iku(ρ′

a,p, ±�±
p ) sin(α ∓ �±

p ) ± ∂u

∂n
(ρ ′

a,p, ±�±
p )

)
× e−ikρ′

a,p cos(α∓�±
p )dρ′

a,p + e−ikd±
p cos(α∓�±

p ) f ±
b,p(α), (3.7)
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which can be rewritten as

f ±
b,p(α) = 1

2

∫ d±
p

0

(
−iku(ρ′

b,p, ±(�±
p − π)) sin(α ∓ (�±

p − π)) ∓ ∂u

∂n
(ρ′

b,p, ±(�±
p − π))

)
× e−ikρ′

b,p cos(α∓(�±
p −π))dρ′

b,p + e−ikd±
p cos(α∓(�±

p −π)) f ±
a,p(α). (3.8)

PROPOSITION 3.3 Considering impedance boundary conditions on the segments in the form[
∂u

∂n
(ρa,p, ±�±

p ) − ik sin θ±
p u(ρa,p, ±�±

p )

]
0�ρa,p�d±

p

= 0,

[
∂u

∂n
(ρb,p, ±(�±

p − π)) − ik sin θ±
p u(ρb,p, ±(�±

p − π))

]
0�ρb,p�d±

p

= 0,

(3.9)

and letting

f ±
1,p(α) = f ±

a,p(α) − e−ikd±
p cos(α∓�±

p ) f ±
b,p(α),

f ±
2,p(α) = f ±

b,p(α) − eikd±
p cos(α∓�±

p ) f ±
a,p(α) = −eikd±

p cos(α∓�±
p ) f ±

1,p(α),

(3.10)

we have

(sin α ± sin θ±
p ) f ±

1,p(α ± �±
p ) − (− sin α ± sin θ±

p ) f ±
1,p(−α ± �±

p ) = 0,

(sin α ∓ sin θ±
p ) f ±

2,p(α ± (�±
p − π)) − (− sin α ∓ sin θ±

p ) f ±
2,p(−α ± (�±

p − π)) = 0.

(3.11)

Proof. Equations (3.9) can be used for the expression of f ±
1,p(α ± �±

p ) and f ±
2,p(α ± (�±

p − π))
from (3.7) and (3.8). We then obtain (3.11), using the parity of cos α.

We have derived simple functional equations in Propositions 3.1, 3.2 and 3.3 for an impedance
polygon. Using the properties of the spectral fonctions and the theory of difference equations, they
can be reduced to spectral integral equations. We will illustrate this approach by developing the
three-part polygon problem with semi-infinite impedance planes.

4. On the decomposition of the field for an impedance polygon

From properties discussed in sections 2.1, 2.4 and 3, the function f (α) is a meromorphic function
with simple poles, regular in the band −�−

e � Re(α) � �+
e , except for the pole at α = ϕ◦ and pos-

sibly at infinity when ��± Re(α) � �±
e . In this latter case, the behaviour is O(eik(c± cos α+d± sin α))

as |Im(α)| → ∞, c± and d± being constants.
In these circumstances, we can modify the integral expression (2.3) of the field, exhibiting the

terms of geometrical optics fields, the terms of guided waves, and the term principally radiated
cylindrically at large distance from the origin.

For this, we deform the integration path γ in (2.3) to steepest descent path (SDP), summing
the contributions of poles encountered during this deformation. The contour SDP consists of two
branches SDP±, respectively centred on ±π , satisfying the equation Im(ik(cos α + 1)) = 0 with
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528 J. M. L. BERNARD

ik(cos α + 1) � 0, that is, in the limit case where k is real positive, Re(α ∓ π)/2 = arctan(tanh
(Im(α ∓ π)/2)). Thus, we have

u(ρ, ϕ) = ui +
∑
±

u±
r +
∑
±

u±
s + e−ikρ

2π i

∫
SDP

f (α + ϕ)eikρ(cos α+1)dα, (4.1)

where

• the term ui is related to the contribution of the pole α = ϕ◦, which is the incident field in the
illuminated region, and zero in the shadow zone;

• the terms u±
r correspond to the fields reflected by the semi-infinite plates at ϕ = ±�±

e ;
• the terms u±

s correspond to the non-uniform leaky waves with complex phase functions guided
by the semi-infinite plates. These waves are typically attenuated waves travelling along the faces
to infinity;

• the last term ud has a dependence principally cylindrical from the origin as ρ → ∞ and, using
the SDP method,

ud ∼ −e−iπ/4
√

2πkρ
e−ikρ( f (π + ϕ) − f (−π + ϕ)) as kρ → ∞, (4.2)

except when real poles cross the SDP. The integral term with steepest descent path could also
be evaluated asymptotically for ρ large so that the total field expression remains continuous as a
pole crosses the SDP (2).

Note that we can use (2.19) and (3.6) and express (4.2) with f ±
e,m± , f ±

a,p or f ±
b,p.

5. Formulation of the three-part polygonal problem: spectral functions in
Sommerfeld–Maliuzhinets representation and functional equations in the complex plane

5.1 Position of the problem for a semi-infinite three-part impedance polygon

DEFINITION 5.1 We consider the diffraction of an incident plane wave by a semi-infinite impedance
polygon divided into three parts (Fig. 3), each one characterized by relative surface impedances
sin θ−, sin θ1, and sin θ+, with positive real parts (strict passivity).

Using the notation taken of sections 2 and 3, this means that m+ = 1, m− = 0, �+
1 = 1

2π ,
�+

e = 1
2π + �b, �−

e = − 1
2π − �a , fa = f +

a,1 = f −
e , fb = f +

b,1 = f +
e .

The functions fa and fb are the spectral functions associated with the Sommerfeld–Maliuzhinets
representation of the field, in cylindrical coordinate systems (ρa, ϕa) and (ρb, ϕb), with origins at
opposite ends of the finite segment (Fig. 3).

We have, in (ρa, ϕa) coordinates,(
ρa ∈ ]0, ∞[, ϕa = − 1

2π − �a

)
with ∂u/∂n − ik sin θ−u = 0,(

ρa ∈ [0,�], ϕa = 1
2π
)

with ∂u/∂n − ik sin θ1u = 0,

(5.1)

with the incident field ui = eikρa cos(ϕa−ϕ◦) and, in coordinates (ρb, ϕb),(
ρb ∈ [0,�], ϕb = − 1

2π
)

with ∂u/∂n − ik sin θ1u = 0,(
ρb ∈ ]0, ∞[, ϕb = 1

2π + �b

)
with ∂u/∂n − ik sin θ+u = 0,

(5.2)

with the incident field ui = eik(ρb cos(ϕb−ϕ◦)+� sin ϕ◦).
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SCATTERING BY IMPEDANCE POLYGONS 529

Fig. 3 Geometry: the semi-infinite three-part polygon

Defining two distinct origins has several elementary consequences on fa and fb.
The expressions of ui in these coordinates and the properties (a), (b) of spectral functions in

section 2.1) give that

( fa(α) − 1/(α − ϕ◦)) and ( fb(α) − eik� sin ϕ◦/(α − ϕ◦)) (5.3)

are regular in the strips − 1
2π − �a � Re(α) � 1

2π and − 1
2π � Re(α) � 1

2π + �b respectively,
and that fa(b)(α) = ∓ 1

2 i u(ρa(b) = 0) + o(α−1) as Im(α) → ±∞.
Considering (3.7), (3.8) (or (2.14) to (2.17) as � → 1

2π ), we obtain

fa(α) = e−ik� sin α fb(α)

−1

2

∫ �

0

(
−iku

(
ρa, 1

2π
)

cos α − ∂u

∂n

(
ρa, 1

2π
))

e−ikρa sin αdρa,

fb(α) = eik� sin α fa(α)

−1

2

∫ �

0

(
iku
(
ρb, − 1

2π
)

cos α + ∂u

∂n

(
ρb, − 1

2π
))

e+ikρb sin αdρb

(5.4)

for any complex angle α.
Besides, we can use (2.15) for f = fa , with L−

0,∞ and L+
0,∞ defined by ϕ = − 1

2π − �a and
ϕ = 1

2π + �b for f = fb respectively, or directly (2.20) considering that f −
e,1 = fa , f +

e,1 = fb. We
then derive, after analytical continuation, that

fa(α − ϕ−) = 1

2

∫ ∞

0

(
−iku(ρa, −ϕ−) sin α − ∂u

∂n
(ρa, −ϕ−)

)
e−ikρa cos αdρa (5.5)

as Re(ik(cos(ϕ◦ + ϕ−) − cos α)) < 0, |Re(α)| < π , with ϕ− = 1
2π + �a , and

fb(α + ϕ+) = 1

2

∫ ∞

0

(
−iku(ρb, ϕ+) sin α + ∂u

∂n
(ρb, ϕ+)

)
e−ikρb cos αdρb (5.6)
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as Re(ik(cos(ϕ◦ − ϕ+) − cos α)) < 0, |Re(α)| < π , with ϕ+ = 1
2π + �b. Note these domains of

regularity contain the strip |Re(α)| < min( 1
2π − |arg(ik)|, 1

2π + �a,b − |ϕ◦|).
In the next step, we use the boundary conditions defined in (5.1), (5.2) to derive functional equa-

tions on fa and fb.

5.2 Elementary functional equations in the complex plane for fa and fb

We now derive functional equations on the spectral functions from the boundary conditions (5.1),
(5.2) on the central strip (of finite size) and on the semi-infinite planes of the three-part impedance
polygon.

PROPOSITION 5.1 Using the boundary conditions on the central strip from (5.1), (5.2), and letting

f1

(
α + 1

2π
)

= fa

(
α + 1

2π
)

− e−ik� cos α fb

(
α + 1

2π
)

,

f2

(
α − 1

2π
)

= fb

(
α − 1

2π
)

− e−ik� cos α fa

(
α − 1

2π
)

= −e−ik� cos α f1

(
α − 1

2π
) (5.7)

we have

(sin α + sin θ1) f1

(
α + 1

2π
)

− (− sin α + sin θ1) f1

(
−α + 1

2π
)

= 0,

(sin α − sin θ1) f2

(
α − 1

2π
)

− (− sin α − sin θ1) f2

(
−α − 1

2π
)

= 0

(5.8)

while, using the boundary conditions on both semi-infinite planes from (5.1), (5.2), we have

(sin α + sin θ+) fb

(
α + 1

2π + �b

)
− (− sin α + sin θ+) fb

(
−α + 1

2π + �b

)
= 0,

(sin α − sin θ−) fa

(
α − 1

2π − �a

)
− (− sin α − sin θ−) fa

(
−α − 1

2π − �a

)
= 0.

(5.9)

Proof. We first consider (5.4) and the boundary conditions on the central strip in (5.1), (5.2). Using
evenness of cos α, we then derive (5.8), which is a particular case of (3.11) with f +

a,p = fa , f +
b,p =

fb. Besides, we can consider (5.5) and (5.6) for fa and fb, use the boundary conditions on both
semi-infinite planes from (5.1), (5.2), then evenness of cos α, and obtain (5.9), a particular case of
(3.3) with f −

e,1 = fa , f +
e,1 = fb.

By analytical continuation, these functional equations apply in the whole complex plane. Notice
that for � = 0 we can write fb(α) = fa(α) = f0(α + (�a − �b)/2), and (5.9) then gives the
equations for an impedance wedge (17).

5.3 Functional equations for fbr (α) = fb(α + 1
2�b), far (α) = fa(α − 1

2�a)

We now use equations (5.8), (5.9) and (5.7) to derive two sets of functional equations on fb and fa ,
each set corresponding to a discontinuity influenced by the other.

PROPOSITION 5.2 If fbr (α − 1
2�b) = fb(α) and �+ = 1

2π + 1
2�b, then we have

(sin α + sin θ+) fbr (α + �+) − (− sin α + sin θ+) fbr (−α + �+) = 0, (5.10)
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and

(sin α − sin θ1) fbr (α − �+) − (− sin α − sin θ1) fbr (−α − �+)

= e−ik� cos α
(
(sin α − sin θ1) fa

(
α − 1

2π
)

− (− sin α − sin θ1) fa

(
−α − 1

2π
))

= 2e−ik� cos α S−
b (α). (5.11)

If far (α + 1
2�a) = fa(α) and �− = 1

2π + 1
2�a, then we have

(sin α + sin θ1) far (α + �−) − (− sin α + sin θ1) far (−α + �−)

= e−ik� cos α
(
(sin α + sin θ1) fb

(
α + 1

2π
)

− (− sin α + sin θ1) fb

(
−α + 1

2π
))

= 2e−ik� cos α S+
a (α), (5.12)

and

(sin α − sin θ−) far (α − �−) − (− sin α − sin θ−) far (−α − �−) = 0. (5.13)

Proof. We obtain (5.10) from the condition on fb in (5.9), and we get (5.11) by developing the
functional equation on f2 in (5.8) from (5.7). Similarly, to obtain (5.12), it suffices to develop the
functional equation on f1 in (5.8) from (5.7), and (5.13) is obtained by considering the equation on
fa in (5.9).

The left-hand parts of (5.10), (5.11) (resp. (5.12), (5.13)) concern a two-part discontinuity centred
at ρb = 0 (resp. ρa = 0) whereas the right-hand term in (5.11) (resp. (5.12)) corresponds to the
influence of the second discontinuity at ρa = 0 (resp. ρb = 0).

From the properties of fa and fb given in section 5.1, the functions

( far (α) − 1/(α − ϕ◦,a)) and ( fbr (α) − eik� sin ϕ◦/(α − ϕ◦,b)) (5.14)

are respectively regular in the bands |Re α| � �− and |Re α| � �+, with ϕ◦,a = ϕ◦ + 1
2�a and

ϕ◦,b = ϕ◦ − 1
2�b, − 1

2π − �a < ϕ◦ < 1
2π + �b, and, in these regions

far (α) = ∓ 1
2 iu(ρa = 0) + o(α−1) and fbr (α) = ∓ 1

2 iu(ρb = 0) + o(α−1) (5.15)

as Im(α) → ±∞. Besides, we remark that, for � = 0, the three-part polygon is reduced to a wedge
with exterior angle 2�d = (2(�+ + �−) − π) and face impedances sin θ±. In this case, we have
fbr (α − �− + 1

2π) = far (α + �+ − 1
2π) = f0(α), where f0 (see (17) or Appendix A) is given by

f0(α, ϕ◦) = π

2�d

+−(α) cos(πϕ◦,d/2�d)

+−(ϕ◦,d)(sin(πα/2�d) − sin(πϕ◦,d/2�d))
, (5.16)

where ϕ◦,d = ϕ◦ + (�a − �b)/2, −�d < ϕ◦,d < �d .

6. The integral expressions and equations for the three-part impedance polygon

6.1 The integral expressions deriving from the functional equations

Considering the theory of functional equations, the analytic function χ(α) satisfying

χ(α ± �) − χ(−α ± �) = ϑ±(α), (6.1)
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and regular as |Re(α)| � �, is given in the strip |Re(α)| < � (24, 27), as

χ(α) = χ(i∞) + χ(−i∞)

2
+ −i

8�

∫ +i∞

−i∞
dα′ (ϑ+(α′) tan

( π

4�
(α + � − α′)

)

− ϑ−(α′) tan
( π

4�
(α − � − α′)

))
(6.2)

when the functions ϑ±(α) are regular and summable on the imaginary axis.

PROPOSITION 6.1 We can use the solutions +1(α,�+) (resp. 1−(α,�−)), without pole or zero
and O(cos(πα/2�+)) (resp. O(cos(πα/2�−))) in the band |Re(α)| � �+ (resp. |Re(α)| � �−)
(17, 34) of the equations (5.10), (5.11) (resp. (5.12), (5.13)) without second members (Appendix A)
and reduce the problem to equations of the type (6.1).

Then we can write, for −�+ < Re(α) < 3�+,

fbr (α)

+1(α)
= i

4�+

∫ +i∞

−i∞

S−
b (α′)e−ik� cos α′

tan

(
π

4�+
(α − �+ − α′)

)
(sin α′ − sin θ1)+1(α′ − �+)

dα′ + χ i
b(α)

= −i

4�+

∫ +i∞

−i∞
S−

b (α′)/(sin α′ − sin θ1)

+1(α′ − �+)

e−ik� cos α′
sin(πα′/2�+)

cos

(
π

2�+
(α − �+)

)
+ cos

(
πα′

2�+

)dα′ + χ i
b(α)

= −i

4�+

∫ +i∞

−i∞

far

(
α′ − 1

2π + 1
2�a

)
+1(α′ − �+)

e−ik� cos α′
sin(πα′/2�+)

cos

(
π

2�+
(α − �+)

)
+ cos

(
πα′

2�+

)dα′ + χ i
b(α),

(6.3)

where the closed form expression of the source term χ i
b is given by

χ i
b(α) = eik� sin ϕ◦χ i+1(α) = π

2�+

(
eik� sin ϕ◦ cos(πϕ◦,b/2�+)

+1(ϕ◦,b)(sin(πα/2�+) − sin(πϕ◦,b/2�+))

)
, (6.4)

with ϕ◦,b = ϕ◦ − 1
2�b, as − 1

2π < ϕ◦ < 1
2π + �b and, for −3�− < Re(α) < �−,

far (α)

1−(α)
= −i

4�−

∫ +i∞

−i∞

S+
a (α′)e−ik� cos α′

tan

(
π

4�−
(α + �− − α′)

)
(sin α′ + sin θ1)1−(α′ + �−)

dα′ + χ i
a(α)
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= i

4�−

∫ +i∞

−i∞
S+

a (α′)/(sin α′ + sin θ1)

1−(α′ + �−)

e−ik� cos α′
sin(πα′/2�−)

cos

(
π

2�−
(α + �−)

)
+ cos

(
πα′

2�−

)dα′ + χ i
a(α)

= i

4�−

∫ +i∞

−i∞

fbr

(
α′ + 1

2π − 1
2�b

)
1−(α′ + �−)

e−ik� cos α′
sin(πα′/2�−)

cos

(
π

2�−
(α + �−)

)
+ cos

(
πα′

2�−

)dα′ + χ i
a(α),

(6.5)

where the source term χ i
a is given in closed form by

χ i
a(α) = π

2�−

(
cos(πϕ◦,a/2�−)

1−(ϕ◦,a)(sin(πα/2�−) − sin(πϕ◦,a/2�−))

)
, (6.6)

with ϕ◦,a = ϕ◦ + 1
2�a, as − 1

2π − �a < ϕ◦ < 1
2π .

Proof. Considering +1(α)χ i
b(α) (resp. 1−(α)χ i

a(α)) the solution of the equations without second
members with the incident field singularity in the band |Re(α)| � �+ (resp. |Re(α)| � �−) (17),
we derive, from (5.10) to (5.14), functional equations for the term χbr (α) = fbr (α)/+1(α) − χ i

b
(resp. χar (α) = far (α)/1−(α) − χ i

a) of the type (6.1).
As 1/1−,+1(α), the functions χar,br (α) vanish when |Im(α)| → ∞, |Re(α)| � �−,+. We then

use (6.2) and obtain (6.3) to (6.6).

In (6.3) to (6.5), we have used that fa(α) = far (α + 1
2�a) and fb(α) = fbr (α − 1

2�b). When
�b > 0 (resp. �a > 0), the equations (6.3) to (6.6) can be continued analytically for ϕ◦ � 1

2π

(resp. ϕ◦ � − 1
2π ), considering the poles of far (α) (resp. fbr (α)) at α = ϕ◦,a (resp. α = ϕ◦,b)

captured by the integration path.
Integral equations can be derived for fbr (α + 1

2π − 1
2�b) and far (α − 1

2π + 1
2�a) on imaginary

axis, since (6.3) to (6.5) with the functional equations (5.8) to (5.13) (or the analytical continuation
of the integral terms in (6.3) to (6.5)) permit us to express far (α) and fbr (α) in the whole com-
plex plane. In what follows, we restrict ourselves to the case where �a,b > − 1

2π to simplify the
analysis.

6.2 Integral equations when �a,b > − 1
2π : definitions and properties

PROPOSITION 6.2 We can write

fbr (α + 1
2π − 1

2�b)

+1(α + 1
2π − 1

2�b)
= −i

4�+

∫ +i∞

−i∞
S−

b (α′)
(sin α′ − sin θ1)

1

+1(α′ − �+)

× e−ik� cos α′
sin(πα′/2�+)

cos

(
π

2�+
(α − �b)

)
+ cos

(
πα′

2�+

)dα′

+χ i
b

(
α + 1

2π − 1
2�b

)
, (6.7)
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as −�+ < Re(α + 1
2π − 1

2�b) < 3�+, and

far (α − 1
2π + 1

2�a)

1−(α − 1
2π + 1

2�a)
= i

4�−

∫ +i∞

−i∞
S+

a (α′)
(sin α′ + sin θ1)

1

1−(α′ + �−)

× e−ik� cos α′
sin(πα′/2�−)

cos

(
π

2�−
(α + �a)

)
+ cos

(
πα′

2�−

)dα′

+ χ i
a

(
α − 1

2π + 1
2�a

)
, (6.8)

as −3�− < Re(α − 1
2π + 1

2�a) < �−, with − min( 1
2π, 1

2π + �a) < ϕ◦ < min( 1
2π, 1

2π + �b).
When �a,b > − 1

2π , we can take α purely imaginary in (6.7), (6.8).

Proof. Using the integral expressions given by (6.3) to (6.6), we obtain (6.7), (6.8).

PROPOSITION 6.3 The functions

S−
b (α)

(sin α − sin θ1)
= 1

2

(
far

(
α − 1

2π + 1
2�a

)
− (− sin α − sin θ1) far (−α − 1

2π + 1
2�a)

(sin α − sin θ1)

)
,

S+
a (α)

(sin α + sin θ1)
= 1

2

(
fbr

(
α + 1

2π − 1
2�b

)
− (− sin α + sin θ1) fbr (−α + 1

2π − 1
2�b)

(sin α + sin θ1)

)
(6.9)

vanish at infinity, contrary to far (α − 1
2π + 1

2�a) and fbr (α + 1
2π − 1

2�b) in general. Choosing
these functions as unknowns in L2(i R), we derive the integral equations for imaginary α

S+
a (α)

(sin α + sin θ1)
= −i

8�+

∫ +i∞

−i∞
S−

b (α′)
(sin α′ − sin θ1)

e−ik� cos α′
sin(πα′/2�+)

+1(α′ − �+)

×

⎡⎢⎢⎣ +1(α + 1
2π − 1

2�b)

cos

(
π

2�+
(α − �b)

)
+ cos

(
πα′

2�+

)

+ (sin α − sin θ1)

(sin α + sin θ1)

+1(−α + 1
2π − 1

2�b)

cos

(
π

2�+
(α + �b)

)
+ cos

(
πα′

2�+

)
⎤⎥⎥⎦ dα′

+
[
+1

(
α + 1

2π − 1
2�b

)
χ i

b

(
α + 1

2π − 1
2�b

)

+ (sin α − sin θ1)+1(−α + 1
2π − 1

2�b)

(sin α + sin θ1)
χ i

b

(
−α + 1

2π − 1
2�b

)]
× 1

2
(6.10)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/4/517/1942179 by guest on 20 August 2022



SCATTERING BY IMPEDANCE POLYGONS 535

and

S−
b (α)

(sin α − sin θ1)
= i

8�−

∫ +i∞

−i∞
S+

a (α′)
(sin α′ + sin θ1)

e−ik� cos α′
sin(πα′/2�−)

1−(α′ + �−)

×

⎡⎢⎢⎣ 1−(α − 1
2π + 1

2�a)

cos

(
π

2�−
(α + �a)

)
+ cos

(
πα′

2�−

)

+ (sin α + sin θ1)

(sin α − sin θ1)

1−(−α − 1
2π + 1

2�a)

cos

(
π

2�−
(α − �a)

)
+ cos

(
πα′

2�−

)
⎤⎥⎥⎦ dα′

+
[
1−
(
α − 1

2π + 1
2�a

)
χ i

a

(
α − 1

2π + 1
2�a

)

+ (sin α + sin θ1)1−(−α − 1
2π + 2�a)

(sin α − sin θ1)
χ i

a

(
−α − 1

2π + 1
2�a

)]
× 1

2
. (6.11)

Proof. The new unknowns described in (6.9) vanish at infinity and belong to L2(i R) from (5.15).
Then, by simple combinations, we can derive (6.10), (6.11) from (6.7), (6.8).

Once given a solution of the new system (6.10), (6.11) in L2(i R), we can define fbr (resp. far )
satisfying (6.7) (resp. (6.8)). By simple combinations and comparison with (6.10), (6.11), we notice
that these functions necessarily satisfy (6.9) on the imaginary axis.

Since +1,1−(α) = A0 cos(πα/2�+,−)(1 + O(ανe−|µIm(α)|)) for |Im(α)| large, we have

+1

(
−α + 1

2π − 1
2�b

)
= −+1

(
α + 1

2π − 1
2�b

)
e∓iπ�b/�+(1 + O(ανe−|µIm(α)|)),

1−
(
−α − 1

2π + 1
2�a

)
= −1−

(
α − 1

2π + 1
2�a

)
e±iπ�a/�−(1 + O(ανe−|µIm(α)|))

(6.12)

when Im(α) → ±∞, so that the kernels are O(e−ik� cos α′
/ cos(aα′)) as |Im(α′)| → ∞, and

O(1/ cos(aα)) as |Im(α)| → ∞, a > 0, like the source terms. Then we notice that (6.10), (6.11) is
a system of Fredholm equations of the second kind in L2(i R) as Im(k�) < 0.

Spectral integral equations are currently encountered in diffraction theory (see for example (1, 9,
10, 31, 32)), and they can be solved numerically (29, 30) or analytically by approximations. In our
case, the approximations principally depend on k�.

We now discuss existence and properties of solutions, and some features concerning calculus.
Uncoupling and approximations for small or large k� are detailed in section 8.

6.3 Existence and properties of the solution in L2(i R)

We have shown that the spectral functions satisfying the functional equations defined in (5.10)
to (5.13), and the properties of regularity (5.14), verify the equations (6.7), (6.8) and the integral
equations derived from them on the imaginary axis.
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536 J. M. L. BERNARD

Reciprocally, it is important to study the solutions of these integral equations, and their properties.
For this, we can consider (6.10), (6.11) in L2, or (6.7), (6.8) along the imaginary axis when∫ +∞

−∞

∣∣∣∣ S−
b (i x)

(sin(i x) − sin θ1)

∣∣∣∣2 dx < ∞,

∫ +∞

−∞

∣∣∣∣ S+
a (i x)

(sin(i x) + sin θ1)

∣∣∣∣2 dx < ∞, (6.13)

and (6.9) is satisfied.
We notice that (6.13) is permitted by the conditions (5.14), (5.15) on the spectral functions.

Reciprocally, the analyticity and the behaviour of solutions of (6.7) to (6.11) with (6.13) can be
studied from Schwarz inequality (29, 30), and (5.10) to (5.13) are satisfied. The integral equations
imply that (5.14) is satisfied, and

fbr

(
α + 1

2π − 1
2�b

)
and far

(
α − 1

2π + 1
2�a

)
are O(1) and regular (6.14)

for imaginary α, when Im(k�) � 0, and that we have

fbr (α) → fbr (±i∞) and far (α) → far (±i∞) (6.15)

when Im(α) → ±∞, respectively as −�+ < Re(α) < 3�+ and −3�− < Re(α) < �−, with
fbr,ar (−i∞) = − fbr,ar (+i∞) when Im(k�) < 0.

Besides, we can also consider existence and uniqueness of the solution. We notice that, as
Im(k�) � 0, the kernels are regular functions of k� in (6.10), (6.11) while, as k� = 0, the
solution is uniquely defined from the use of Tuzhilin’s works (34). Considering the theory of inte-
gral equations depending on a parameter in L2 (29, 30), the resolvent for our system of Fredholm
integral equations of the second kind is then an analytical function of the parameter k�, which
defines a unique solution in L2(i R) as Im(k�) < 0 and k� = 0, except possibly for some discrete
values of k� where the resolvent is singular. The existence of solutions satisfying (6.14), (6.15) can
be then derived in the limit case Im(k�) = 0, except possibly for some discrete values of k�.

7. The scattering diagram from the solutions of the integral equations

Previously, we have reduced the problem to a system of non-singular integral equations. When the
solutions of the integral equations are known, the different elements of the decomposition of the
field given in (4.1) can be evaluated from the expressions (6.3) to (6.5), where the integral terms can
be considered as smooth coupling terms between both edges. In this case, the functional equations
(5.8), (5.9) have to be used to reduce the calculus in the band of validity of (6.3) to (6.5).

Here, we study the reduction of the term with radial dependence exp(−ikρa,b)/
√

2πkρa,b in
(4.2) for large ρa,b. Its angular dependence Fa,b in the direction ϕa = ϕb = ϕ is commonly called
the scattering diagram (or directivity), given, from (4.2), by

Fa,b(ϕ) = −e−iπ/4( fa,b(π + ϕ) − fa,b(−π + ϕ)) (7.1)

where, from (5.4), Fa(ϕ) = eik� sin ϕFb(ϕ).
We illustrate the development by the one of Fb(ϕb) in the case where �b > − 1

2π , �a > 0, and
− min( 1

2π, 1
2π +�a) < ϕ◦ < min( 1

2π, 1
2π +�b), when − 1

2π < ϕb < 1
2π +�b (similar to Fa(ϕa)

when − 1
2π < −ϕa < 1

2π + �a , �a > − 1
2π , �b > 0).

We consider at first the reduction of fb(π + ϕb) in (7.1). If �b > 0, then − 1
2π < π + ϕb <

3
2π + 2�b, and we are in the domain of validity of (6.3). If �b < 0, then we have a concave part
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and there are two cases. If − 1
2π < π + ϕb < 3

2π + 2�b, (6.3) applies directly. In contrast, if
3
2π + 2�b < π + ϕb < 3

2π + �b, we use (5.9) and write

fb(π + ϕb) = (− sin( 1
2π − �b + ϕb) + sin θ+)

(sin( 1
2π − �b + ϕb) + sin θ+)

fb(−ϕb + 2�b). (7.2)

Then we use (5.8)

fb(−ϕb + 2�b) = (sin( 1
2π − ϕb + 2�b) + sin θ1)

(− sin( 1
2π − ϕb + 2�b) + sin θ1)

( fb(−π + ϕb − 2�b)

− eik� sin(2�b−ϕb) fa(−π + ϕb − 2�b))

+ eik� sin(2�b−ϕb) fa(−ϕb + 2�b), (7.3)

where the terms in the right-hand side of (7.3) can be expressed with (6.3) and (6.5).
Then, we reduce fb(−π +ϕb) in (7.1). If − 1

2π < −π +ϕb < 3
2π +2�b, which implies ϕb > 1

2π

and thus �b > 0, we are in the domain of validity of (6.3). In contrast, when − 1
2π < ϕb < 1

2π ,
which is forced when �b < 0, we first have to use (5.8)

fb(−π + ϕb) = (sin( 1
2π − ϕb) − sin θ1)

(− sin( 1
2π − ϕb) − sin θ1)

× ( fb(−ϕb) − e−ik� sin ϕb fa(−ϕb)) + e−ik� sin ϕb fa(−π + ϕb). (7.4)

In this case, since − 3
2π − 2�a < −ϕb < 1

2π and − 3
2π − 2�a < −π + ϕb < 1

2π when �a > 0,
and − 1

2π < −ϕb < 3
2π + 2�b when �b > − 1

2π , fa(−π + ϕb) and fa(−ϕb) can be expressed
with (6.5), and fb(−ϕb) with (6.3), which ends the reduction.

8. Some features of the system of integral equations and their consequences

The system of integral equations given by (6.10), (6.11), or (6.7), (6.8) with (6.9) constitutes an
original important step in the reduction by a spectral method of the problem of the diffraction in
free space by a three-part polygonal impedance scatterer. These integral equations and the integral
expressions (6.3) to (6.8) of the spectral functions have special features concerning

• the decoupling of integral equations in important cases,
• the approximations for k� small or k� large,

that we now illustrate.

8.1 Decoupling in the case of the three-part impedance plane

In the case of the three-part impedance plane, we have �a = �b = 0 and �+ = �− = 1
2π .

Considering parity and (10, equation (4.8)), we can use

1−(α − 1
2π)

2+1(α − 1
2π)

− 1−(−α − 1
2π)

2+1(−α − 1
2π)

= 1−(α − 1
2π)

+1(α − 1
2π)

sin α(sin θ− − sin θ1)

(sin α + sin θ−)(sin α − sin θ1)
= C(α) sin α(sin θ− − sin θ1)

sin α − sin θ1
,
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+1(α + 1
2π)

21−(α + 1
2π)

− +1(
1
2π − α)

21−( 1
2π − α)

= −+1(
1
2π − α)

1−( 1
2π − α)

sin α(sin θ+ − sin θ1)

(sin α + sin θ+)(sin α − sin θ1)
= −C(α) sin α(sin θ+ − sin θ1)

sin α − sin θ1
(8.1)

in (6.7), (6.8). Letting N (α′) = iC(α′) sin α′/2π

sin α′ − sin θ1
, we then derive

(sin θ1 − sin θ+)1/2 fbr (α + 1
2π)

+1(α + 1
2π)

= ηm

∫ +i∞

−i∞
N (α′)

(sin θ1 − sin θ−)1/2 far (α
′ − 1

2π)

1−(α′ − 1
2π)

×e−ik� cos α′
sin α′

cos α + cos α′ dα′ + (sin θ1 − sin θ+)1/2χ i
b

(
α + 1

2π
)

,

(8.2)

(sin θ1 − sin θ−)1/2 far (α − 1
2π)

1−(α − 1
2π)

= ηm

∫ +i∞

−i∞
N (α′)

(sin θ1 − sin θ+)1/2 fbr (α
′ + 1

2π)

+1(α′ + 1
2π)

×e−ik� cos α′
sin α′

cos α + cos α′ dα′ + (sin θ1 − sin θ−)1/2χ i
a

(
α − 1

2π
)

,

(8.3)

where ηm = (sin θ1 −sin θ+)1/2(sin θ1 −sin θ−)1/2. In this case, we obtain two uncoupled equations
by simple addition and subtraction:

(S, D) = ηm

∫ +i∞

−i∞
N (α′)((S, −D)e−ik� cos α′ sin α′

cos α + cos α′ dα′ + (Si , −Di ), (8.4)

similar to the equations obtained in (10).

8.2 Decoupling for symmetric polygons (�b = �a and sin θ+ = sin θ−)

In this case, the system (6.7), (6.8) can also be decoupled. For this, we first express the system of
integral equations (6.7), (6.8) in a new form. We observe that −1(α,�−) (also denoted by −1(α))
satisfies −1(α,�−) = 1−(−α,�−) (see Appendix A). Then we can write

fbr (−α + 1
2π − 1

2�b)

+1(−α + 1
2π − 1

2�b)
= −i

4�+

∫ +i∞

−i∞
far (α

′ − 1
2π + 1

2�a)

+1(α′ − �+)

× e−ik� cos α′
sin(πα′/2�+)

cos

(
π

2�+
(α + �b)

)
+ cos

(
πα′

2�+

)dα′ + χ i
b

(
−α + 1

2π − 1
2�b

)
, (8.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/4/517/1942179 by guest on 20 August 2022



SCATTERING BY IMPEDANCE POLYGONS 539

far (α − 1
2π + 1

2�a)

−1(−α + 1
2π − 1

2�a)
= −i

4�−

∫ +i∞

−i∞
fbr (−α′ + 1

2π − 1
2�b)

−1(α′ − �−)

× e−ik� cos α′
sin(πα′/2�−)

cos

(
π

2�−
(α + �a)

)
+ cos

(
πα′

2�−

)dα′ + χ i
a

(
α − 1

2π + 1
2�a

)
. (8.6)

This form is particularly suitable for the case of a symmetric polygon. In this case �+ = �−
(that is, �b = �a) and sin θ+ = sin θ− so that +1 = −1 and the equations (8.5), (8.6) have the
same kernels. Thus, by addition and subtraction, we derive a system of decoupled equations

(S, D)(α)

+1(−α + 1
2π − 1

2�b)
= −i

4�+

∫ +i∞

−i∞
(S, −D)(α′)

+1(α′ − �+)

× e−ik� cos α′
sin(πα′/2�+)

cos

(
π

2�+
(α + �b)

)
+ cos

(
πα′

2�+

)dα′ + (Si , Di )(α), (8.7)

where

S(α) = fbr

(
−α + 1

2π − 1
2�b

)
+ far

(
α − 1

2π + 1
2�b

)
,

D(α) = fbr

(
−α + 1

2π − 1
2�b

)
− far

(
α − 1

2π + 1
2�b

)
,

Si (α) = χ i
br

(
−α + 1

2π − 1
2�b

)
+ χ i

ar

(
α − 1

2π + 1
2�b

)
,

Di (α) = χ i
br

(
−α + 1

2π − 1
2�b

)
− χ i

ar

(
α − 1

2π + 1
2�b

)
,

(8.8)

for |ϕ◦| < min( 1
2π , 1

2π + �b).
Thus we have reduced the problem of diffraction by a three-part symmetric polygonal with

impedance conditions to a system of uncoupled Fredholm integral equations of the second kind.
As for (6.3) to (6.8), when �a,b > 0 these equations can be continued analytically in the domain
|ϕ◦| � 1

2π if we consider the poles of fa(α) and fb(α) at α = ϕ◦ captured by the integration path.

REMARK 2 The decoupling considered here leads to two scalar equations of the type

G1 − (M1)G1 = R1 and G2 − (M2)G2 = R2, (8.9)

where (M1,2) are simple integral operators and R1,2 are known, while a usual reduction of the
coupled integral equations (6.7), (6.8) leads to two scalar equations of the type

G1 − (M1)((M2)G1 + R2) = R1 and G2 − (M2)((M1)G2 + R1) = R2, (8.10)

where the products (M1,2)(M2,1) are double integral operators and R1,2 are known.

8.3 Partial inversion and approximation for small k�

Considering the known solution for k� = 0 (17), we can apply the identity

e−ik� cos α′ = (e−ik� cos α′ − 1) + 1 (8.11)
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and invert the part corresponding to the unit term (see Appendix B), which results in equations with
kernels vanishing as k� → 0, suitable for approximation. By this process, we derived in (10) an
approximation of the scattering diagram for the three-part impedance plane, that is, the three-part
polygon with �a = �b = 0, which is given by

F(ϕ) � −eiπ/4
k�

2 cos ϕ

cos ϕ + sin θ+
2 cos ϕ◦

cos ϕ◦ + sin θ+

k�

(
1 − i

2

π
ln

γ ′k�

2e

)
+ 2/(sin θ1 − sin θ+)

(8.12)

when sin θ+ = sin θ− that we have validated. For this, we compare the results given by (8.12)
with the results derived by a classical numerical moment method on a large object (approximating
a plane). We consider in Fig. 4 the values of U = |F(ϕ)/

√
2π | in db, for an impedance strip on

a plane, with k� = 2π/10, in the cases sin θ+ = 0·625 and sin θ1 = 0·625i , sin θ+ = 1·6 and
sin θ1 = 1·6 + 1·6i , sin θ+ = 0·324 − 0·226i and sin θ1 = 0·595 − 0·053i , when ϕ = ϕ◦, letting ϕ
vary. We notice the excellent agreement of the results.

8.4 Asymptotics for k� large

In section 7, the scattering diagram has been reduced to a combination of values of the spectral
functions fa and fb in the band of validity of (6.3) to (6.6), with exponential factors depending
on angles. So reduced, the oscillatory nature of the diagram comes principally from exponential
factors. We give here approximations of the spectral terms in the band of validity of (6.7), (6.8),
which have smooth dependence on the angle when k is large.

Fig. 4 Comparisons on U = |F(ϕ)/
√

2π |: sin θ+ = 0·625, sin θ1 = 0·625i ( • moment method, — an-
alytical expression); sin θ+ = 1·6, sin θ1 = 1·6 + 1·6i (× moment method. – - – analytical expression);
sin θ+ = 0·324 − 0·226i, sin θ1 = 0·595 − 0·053i ( � moment method, – - – analytical expression)
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SCATTERING BY IMPEDANCE POLYGONS 541

We can write, from (6.7), (6.8),

Rb(α) = −i

4�+
m1(α)

∫ +i∞

−i∞
Ra(α′) e−ik� cos α′

sin(πα′/2�+)

cos

(
π

2�+
(α − �b)

)
+ cos

(
πα′

2�+

)dα′

+ m1(α)χ i
b

(
α + 1

2π − 1
2�b

)
(8.13)

as −�+ <Re(α + 1
2π − 1

2�b) < 3�+, and

Ra(α) = i

4�−
m2(α)

∫ +i∞

−i∞
Rb(α

′) e−ik� cos α′
sin(πα′/2�−)

cos

(
π

2�−
(α + �a)

)
+ cos

(
πα′

2�−

)dα′

+ m2(α)χ i
a

(
α − 1

2π + 1
2�a

)
(8.14)

as −3�− < Re(α − 1
2π + 1

2�a) < �−, for − min( 1
2π, 1

2π + �a) < ϕ◦ < min( 1
2π, 1

2π + �b),
where

Rb(α) = fbr (α + 1
2π − 1

2�b)

1−(α + �−)
, Ra(α) = far (α − 1

2π + 1
2�a)

+1(α − �+)
,

m1(α) = +1(α + 1
2π − 1

2�b)

1−(α + �−)
, m2(α) = 1−(α − 1

2π + 1
2�a)

+1(α − �+)
,

(8.15)

and χ i
b and χ i

a are smooth functions defined in (6.4) and (6.6).
In the equations (8.13), (8.14), we can choose to consider or to neglect the influence of complex

poles of Ra,b(α
′) (corresponding to guided waves vanishing when � is large) in the vicinity of the

integration path. To simplify the presentation, we develop here only the second case. So, we assume
that the principal contribution of Ra,b(α

′) comes from the vicinity of the stationary phase point
α′ = 0. Letting cos α′ = 1 − x2/2 with x = 2 sin(α′/2), and taking into account the parity of the
integration path, we have

Rb(α) ∼ m1(α)(∂αRa(α)|α=0)e−ik�

2π i

∫ +i∞

−i∞
2eik�x2/2x2

2

(
π

2�+

)−2(
1 + cos

(
π

2�+
(α − �b)

))
− x2

dx

+ m1(α)χ i
b

(
α + 1

2π − 1
2�b

)
(8.16)

as −�+ < Re(α + 1
2π − 1

2�b) < 3�+, and

Ra(α) ∼ −m2(α)(∂αRb(α)|α=0)e−ik�

2π i

∫ +i∞

−i∞
2eik�x2/2x2

2

(
π

2�−

)−2(
1 + cos

(
π

2�−
(α + �a)

))
− x2

dx

+ m2(α)χ i
a

(
α − 1

2π + 1
2�a

)
(8.17)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/4/517/1942179 by guest on 20 August 2022



542 J. M. L. BERNARD

as −3�− < Re(α − 1
2π + 1

2�a) < �−. After derivation of previous equations, we obtain

∂αRb(α)|α=0 ∼ ∂α

(
m1(α)χ i

b

(
α + 1

2π − 1
2�b

))∣∣∣
α=0

,

∂αRa(α)|α=0 ∼ ∂α

(
m2(α)χ i

a

(
α − 1

2π + 1
2�a

))∣∣∣
α=0

,

(8.18)

so that (8.16) and (8.17) get the form

Rb(α) ∼ m1(α)∂α(m2(α)χ i
a(α − 1

2π + 1
2�a))|α=0)e−ik�

2π i

×
∫ +i∞

−i∞
2eik�x2/2x2

2

(
π

2�+

)−2(
1 + cos

(
π

2�+
(α − �b)

))
− x2

dx

+ m1(α)χ i
b

(
α + 1

2π − 1
2�b

)
(8.19)

as −�+ < Re(α + 1
2π − 1

2�b) < 3�+, and

Ra(α) ∼ −m2(α)∂α(m1(α)χ i
b(α + 1

2π − 1
2�b))|α=0)e−ik�

2π i

×
∫ +i∞

−i∞
2eik�x2/2x2

2

(
π

2�−

)−2(
1 + cos

(
π

2�−
(α + �a)

))
− x2

dx

+ m2(α)χ i
a

(
α − 1

2π + 1
2�a

)
(8.20)

as −3�− < Re(α − 1
2π + 1

2�a) < �−, for − min( 1
2π, 1

2π + �a) < ϕ◦ < min( 1
2π, 1

2π + �b).
Concerning the scattering diagram we need, from section 7, the evaluation of Ra,b(α) for real

α = ϕ. Deforming the path of integration to the steepest descent path in (8.19), (8.20) (without
capturing any poles), we derive

Rb(ϕ) ∼ m1(ϕ)∂α(m2(α)χ i
a(α − 1

2π + 1
2�a))|α=0√

2ik�
2e−ik�

(
vev2

erfc(v) − 1√
π

)
+ m1(ϕ)χ i

b

(
ϕ + 1

2π − 1
2�b

)
(8.21)

as −�+ < (ϕ + 1
2π − 1

2�b) < 3�+, v2 = ik�(π/2�+)−2(1 + cos((π/2�+)(ϕ − �b))), and

Ra(ϕ) ∼ −m2(ϕ)∂α(m1(α)χ i
b(α + 1

2π − 1
2�b))|α=0√

2ik�
2e−ik�

(
wew2

erfc(w) − 1√
π

)
+ m2(ϕ)χ i

a

(
ϕ − 1

2π + 1
2�a

)
(8.22)
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SCATTERING BY IMPEDANCE POLYGONS 543

as −3�− < (ϕ − 1
2π + 1

2�a) < �−, w2 = ik�(π/2�−)−2(1 + cos((π/2�−)(ϕ + �a))), for
− min( 1

2π, 1
2π + �a) < ϕ◦ < min( 1

2π, 1
2π + �b), where

aea2
erfc(a) − 1√

π
= 1

π

∫ ∞

−∞
−t2e−t2

a2 + t2 dt = −1

2
√

πa2 + O

(
1

a4

)
(8.23)

when a is real. In the right-hand sides of (8.21), (8.22), note that the first term corresponds to double
diffraction, and the second term to single diffraction.

REMARK 3 The smooth behaviour of fbr (α+ 1
2π − 1

2�b) and far (α− 1
2π + 1

2�a) on the imaginary
axis for large k simplifies the calculus of the integral terms with e−ik� cos α′

factor in the general
case. So, taking x ′ = cos α′ as a new variable of integration in (6.7), (6.8) with (6.9) or in (6.10),
(6.11), the integral terms can be reduced to sums of elementary terms of the type∫ ai+1

ai

G(x ′)e−ik�x ′
dx ′, (8.24)

where G slowly varies on fixed intervals [ai , ai+1], which can be calculated by standard methods
(35, 36) using polynomial approximation.

9. Conclusion

We have shown that a method using the Sommerfeld–Maliuzhinets representation of fields is not
limited to the study of diffraction by isolated wedges; it can be also constructed for complex angular
domains. For this purpose, a new representation of spectral functions, that we initially developed
in (10) for the three-part impedance plane, has been used to reduce the problem of diffraction by a
polygonal object. Notably, the spectral functional equations for a general (finite or infinite) n-part
impedance polygon in free space has been derived here for the first time.

These equations can be transformed by the theory of difference equations to a system of integral
equations. The approach is illustrated in detail in the important case of the three-part semi-infinite
polygon, for which the problem is reduced to a system of non-singular Fredholm integral equations
of the second kind. We then note the smooth behaviour of the spectral functions on the path of
integration, the simplicity of the exponential factor taking account of the length � of the central
plate, the regularity of the kernels in the spectral integral equations. This permits to apply approx-
imations for k� large (by asymptotic evaluation of integrals) or small (by semi-inversion (10)), or
to consider classical inversion methods of non-singular Fredholm equations of the second kind (29,
30). Thus, the evaluation of the far field, which depends on the calculus of the spectral functions at
some discrete points of the complex plane, is possible in a well-posed manner. Moreover, we show
that the system of spectral integral equations can be decoupled in various cases, in particular for
the three-part impedance plane where the results given in (10) are recovered, and for the symmetric
semi-infinite impedance polygon where no exact results were known. Some numerical results when
k� is small and some approximations when k� is large are given.
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APPENDIX A

The function lr (α,�)

The function lr (α), also denoted by lr (α,�), has been defined by Maliuzhinets, for the diffraction by an
impedance wedge (17), when he considered the solution of the equations

(sin α + sin θl ) flr (α + �) − (− sin α + sin θl ) flr (−α + �) = 0,

(sin α − sin θr ) flr (α − �) − (− sin α − sin θr ) flr (−α − �) = 0,
(A.1)

regular in the strip |Re(α)| � �, except for the pole with unit residue at α = ϕ′, and O(1) at infinity in this
band, where sin θl (resp. sin θr ) corresponds to the relative impedance attached to the face ϕ = +� (resp.

ϕ = −�). The solution is expressed in the form
lr (α)

lr (ϕ′)σ (α), where lr (α) is the solution of (A.1) without

poles or zeros as |Re(α)| � � when Re(sin θl,r ) > 0, O(cos(πα/2�)) in this band, and

σ(α) = π

2�
cos

(
πϕ′
2�

)/(
sin
(πα

2�

)
− sin

(
πϕ′
2�

))
(17, 34). The function lr (α) has numerous properties. We have

lr (α) = A
(
�

(
α + � +

(
1
2π − θl

))
�

(
α − � −

(
1
2π − θr

))
× �

(
α + � −

(
1
2π − θl

))
�

(
α − � +

(
1
2π − θr

)))
, (A.2)
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where � is the Maliuzhinets function (17), 0 < Re(θl,r ) � 1
2π , A is an arbitrary constant. This func-

tion satisfies �(α) = A′
0e∓iπα/8�(1 + O(αν |e±iµα |)) when Im(α) → ±∞, where A′

0 and ν are con-
stants, µ = min(π/2�, 1) (see (33) for more details), and we can write lr (α) = A0 cos(πα/2�)(1 +
O(ανe−µ|Im(α)|)) for |Im(α)| large, A0 a constant. Since �(α) = �(−α) and �(α + 1

2π)�(α− 1
2π) =

2
�( 1

2π) cos(πα/4�), we have lr (−α) = rl (α) and

4lr

(
α + 1

2π
)

lr

(
α − 1

2π
)

= A28
�

(
1
2π
)(

cos
(
π
(

1
2π − θl

)/
2�
)

− sin (πα/2�)
)

×
(

cos
(
π
(

1
2π − θr

)/
2�
)

+ sin (πα/2�)
)

, (A.3)

with A4
�( 1

2π) = 2A0. Besides, from (24), we can write, for |Re(α)| � � + (N + 1)π ,

lr (α) = BN

∏
(±,(l,r))

⎛
⎝ N∏

m=0

[
�

(
1

2
+ 1

4�
(α ± � + θl,r + mπ)

)

× �

(
1

2
− 1

4�
(α ± � − (θl,r + mπ))

)
�

(
1

2
+ 1

4�
(α ± � + π − θl,r + mπ)

)

× �

(
1

2
− 1

4�
(α ± � − (π − θl,r + mπ))

)](−1)m+1
⎞
⎠

× exp

(∫ ∞
0

(−e−νπ )N+1 e−νθl,r + e−ν(π−θl,r )

(1 + e−νπ )

(1 − cosh(ν(α ± �)))

ν sinh(2ν�)
dν

)
, (A.4)

where the upper (resp. lower) sign is attached to θl (resp. θr ), N is an arbitrary positive integer and BN is a
constant. For the applications, we choose N fixed and define lr with BN = 1. This expression is suitable for
numerical calculus (with N = 1 or 2) or to derive the analytical properties of lr (α) (with N → ∞) from
those of �.

The zeros which are the closest to the imaginary axis are α = � + θl and α = −� − θr , and the closest
poles are α = � + θl + π and α = −� − θr − π .

REMARK 4 From (17), the zeros of � which are the closest to α = 0 and the corresponding poles are the
points α = ±( 1

2π + 2�) and α = ±( 3
2π + 2�). In other respects, � satisfies

�(α + 2�)/�(α − 2�) = cot
((

α + 1
2π
)/

2
)

, �(α + �)�(α − �) = 2
�(�)�/2(α). (A.5)

APPENDIX B

Principle of semi-inversion for our system of integral equations

We can modify equations and derive integral equations with kernels vanishing as k� → 0 for the three-part
semi-infinite impedance polygon, for approximations when k� is small. For this, we begin with changing the
unknowns in the equations (6.7), (6.8). We consider

far0(α) =
[

far (α) − f0
(
α −
(
�+ − 1

2π
))]

,

fbr0(α) =
[

fbr (α) − eik� sin ϕ◦ f0
(
α +
(
�− − 1

2π
))] (B.1)
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SCATTERING BY IMPEDANCE POLYGONS 547

as new unknowns, where f0(α, ϕ◦), corresponding to the solution for � = 0, is given by (5.16). These
functions vanish as � = 0, and satisfy, from (6.7), (6.8) with (6.9),

fbr0(α + 1
2π − 1

2�b)

+1(α + 1
2π − 1

2�b)
= −i

4�+

⎛
⎜⎜⎝
∫ +i∞

−i∞
far0(α′ − 1

2π + 1
2�a)

+1(α′ − �+)

× sin(πα′/2�+)

cos

(
π

2�+
(α − �b)

)
+ cos

(
πα′
2�+

)dα′

+
∫ +i∞

−i∞
Ba0(α′) sin(πα′/2�+)

cos

(
π

2�+
(α − �b)

)
+ cos

(
πα′
2�+

)dα′

⎞
⎟⎟⎠ , (B.2)

where

Ba0(α′) = far0(α′ − 1
2π + 1

2�a)

+1(α′ − �+)
(e−ik� cos α′ − 1)

+ f0(α′ − 1
2π + (�a − �b)/2, ϕ◦)
+1(α′ − �+)

(e−ik�(cos α′+sin ϕ◦) − 1)eik� sin ϕ◦ (B.3)

as −�+ < Re(α + 1
2π − 1

2�b) < 3�+, and

far0(α − 1
2π + 1

2�a)

1−(α − 1
2π + 1

2�a)
= i

4�−

⎛
⎜⎜⎝
∫ +i∞

−i∞
fbr0(α′ + 1

2π − 1
2�b)

1−(α′ + �−)

× sin(πα′/2�−)

cos

(
π

2�−
(α + �a)

)
+ cos

(
πα′
2�−

)dα′

+
∫ +i∞

−i∞
Bb0(α′) sin(πα′/2�−)

cos

(
π

2�−
(α + �a)

)
+ cos

(
πα′
2�−

)dα′

⎞
⎟⎟⎠ , (B.4)

where

Bb0(α′) =
(

fbr0(α′ + 1
2π − 1

2�b)

1−(α′ + �−)

)
(e−ik� cos α′ − 1)

+
(

f0(α′ + 1
2π − (�b − �a)/2, ϕ◦)
1−(α′ + �−)

)
(e−ik�(cos α′−sin ϕ◦) − 1) (B.5)

as −3�− < Re(α − 1
2π + 1

2�a) < �−, for − min( 1
2π, 1

2π + �a) < ϕ◦ < min( 1
2π, 1

2π + �b).
We then notice some similarity with the equations satisfied by f0 when � = 0. Thus, we let

f ′
br0

(
α + π

2
− �b

2

)
=
∫ i∞

−i∞
G(ϕ′) f0

(
α + π

2
+ (�a − �b)/2, ϕ′) dϕ′,

f ′
ar0

(
α − π

2
+ �a

2

)
=
∫ i∞

−i∞
G(ϕ′) f0

(
α − π

2
+ (�a − �b)/2, ϕ′) dϕ′ (B.6)
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as |Re(α)| < 1
2π , and search to define G(ϕ′) so that f ′

br0 and f ′
ar0 verify (B.2) to (B.5). The functions

f0(α ± 1
2π + (�a − �b)/2, ϕ′) are regular and O(1/ cos(πϕ′/2�d )) on the imaginary axis, and a pole at

ϕ′ = α ± 1
2π ensures that, even if �a = �b = 0, in general f ′

br0 �= f ′
ar0.

Using the equations (6.7), (6.8) when � = 0 satisfied by f0, we remark that we can write

f ′
br0(α + 1

2π − 1
2�b)

+1(α + 1
2π − 1

2�b)

= −i

4�+

∫ +i∞
−i∞

f ′
ar0(α′ − 1

2π + 1
2�a) sin(πα′/2�+)

+1(α′ − �+)

(
cos

(
π

2�+
(α − �b)

)
+ cos

(
πα′
2�+

))dα′

+ π

2�+

∫ i∞
−i∞

G(ϕ′)
+1(ϕ′ − 1

2�b)

sin(π(ϕ′ + 1
2π)/2�+)

(cos(π(α − �b)/2�+) + cos(π(ϕ′ + 1
2π)/2�+))

dϕ′, (B.7)

f ′
ar0(α − 1

2π + 1
2�a)

1−(α − 1
2π + 1

2�a)

= i

4�−

∫ +i∞
−i∞

f ′
br0(α′ + 1

2π − 1
2�b) sin(πα′/2�−)

1−(α′ + �−)

(
cos

(
π

2�−
(α + �a)

)
+ cos

(
πα′
2�−

))dα′

+ π

2�−

∫ i∞
−i∞

G(ϕ′)
1−(ϕ′ + 1

2�a)

sin(π(ϕ′ − 1
2π)/2�−)

(cos(π(α + �a)/2�−) + cos(π(ϕ′ − 1
2π)/2�−))

dϕ′. (B.8)

In the case where G(ϕ′) is regular in the band |Re(ϕ′)| � 1
2π , we can shift the integral paths in the integrals

containing G(ϕ′). Comparing (B.2) to (B.5) with (B.7), (B.8), we notice that ( f ′
br0, f ′

ar0) is a solution of the
system of equations (B.2) to (B.4) if G satisfies the conditions

G(α′ + 1
2π)

1−(α′ + �−)
− G(−α′ + 1

2π)

1−(−α′ + �−)
= i

2π
(Bb0(α′) − Bb0(−α′)),

G(α′ − 1
2π)

+1(α′ − �+)
− G(−α′ − 1

2π)

+1(−α′ − �+)
= −i

2π
(Ba0(α′) − Ba0(−α′)),

(B.9)

where �+ = 1
2π + 1

2�b and �− = 1
2π + 1

2�a . Taking account of the properties of +1 and 1− (see
appendix A), and letting G(α′) = (cos α′ + sin θ1)g(α′), (B.9) can be written as

g
(
α′ + π

2

)
− g
(
−α′ + π

2

)
= i1−(α′ + �−)(Bb0(α′) − Bb0(−α′))

2π(− sin α′ + sin θ1)
,

g
(
α′ − π

2

)
− g
(
−α′ − π

2

)
= i+1(α′ − �+)(Ba0(α′) − Ba0(−α′))

2π(− sin α′ − sin θ1)
.

(B.10)
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Since G(α′) is regular in the band |Re(α′)| � 1
2π and Re(sin θ1) > 0, g(α′) is regular in this band. We can

then use (6.1), (6.2) and write, as |Re(α)| < 1
2π ,

g(α) = i

4π

∫ +i∞
−i∞

dα′
(

i1−(α′ + �−)(Bb0(α′) − Bb0(−α′))
2π(sin α′ − sin θ1)

tan

(
1

2

(
α + π

2
− α′))

− i+1(α′ − �+)(Ba0(α′) − Ba0(−α′))
2π(sin α′ + sin θ1)

tan

(
1

2

(
α − π

2
− α′))) . (B.11)

Using (B.6) and (B.11), we obtain the equations with kernels vanishing as k� → 0:

fbr0

(
α + π

2
− �b

2

)
= 1

8π2

∫ +i∞
−i∞

dα′
(

1−(α′ + �−)(Bb0(α′) − Bb0(−α′))
sin α′ − sin θ1

M+(α, α′)

− +1(α′ − �+)(Ba0(α′) − Ba0(−α′))
sin α′ + sin θ1

M−(α, α′)
)

, (B.12)

far0

(
α − π

2
+ �a

2

)
= 1

8π2

∫ +i∞
−i∞

dα′
(

1−(α′ + �−)(Bb0(α′) − Bb0(−α′))
sin α′ − sin θ1

N+(α, α′)

− +1(α′ − �+)(Ba0(α′) − Ba0(−α′))
sin α′ + sin θ1

N−(α, α′)
)

, (B.13)

where M±(α, α′) = L±(α + 1
2π + 1

2 (�a − �b), α′), N±(α, α′) = L±(α − 1
2π + 1

2 (�a − �b), α′),

L±(α, α′) = π sin α′+−(α)

2�d

∫ i∞
−i∞

cos

(
π(ϕ′ + (�a − �b)/2)

2�d

)
+−(ϕ′ + (�a − �b)/2)

× cos ϕ′ + sin θ1

cos
(
ϕ′ ± π

2

)
+ cos α′

1(
sin

(
πα

2�d

)
− sin

(
π(ϕ′ + (�a − �b)/2)

2�d

))dϕ′. (B.14)

In the particular case �a = �b = 0, �d = 1
2π , the functions L± can be simplified so that we recover the

expressions found in (10) for the three-part impedance plane (see Remark 5 below).

REMARK 5 There exist analytical expressions of L± when �a = �b = 0. For this, we consider

(sin α + sin θl )lr (α + 1
2π) − (− sin α + sin θl )lr (−α + 1

2π) = 0,

(sin α − sin θl )lr (α − 1
2π) − (− sin α − sin θl )lr (−α − 1

2π) (B.15)

= (sin θr − sin θl )(lr (α − 1
2π) − lr (−α − 1

2π)),

and use (6.1), (6.2) for χ = lr /ll with ll (α) = A0(cos α + sin θl ), χ(±i∞) = 1. We then obtain

lr (−α)

A0(cos α + sin θl )
− 1 = −i(sin θr − sin θl )

4π

∫ +i∞
−i∞

A0 Hlr (α
′) tan

(
1

2

(
α + π

2
− α′)) dα′ (B.16)

for − 3
2π < Re(α) < 1

2π , where Hlr (α
′) = 2 sin α′/(lr (α

′ + 1
2π)(sin α′ + sin θl )) and

Hlr (α′) = 1

lr (α + 1
2π)

− 1

lr (−α + 1
2π)

= sin α/ sin θl

lr (α + 1
2π)

+ sin α/ sin θl

lr (−α + 1
2π)

. (B.17)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/4/517/1942179 by guest on 20 August 2022



550 J. M. L. BERNARD

Using that lr (−α)lr (α) = A2
0(cos α + sin θl )(cos α + sin θr ) when �a = �b = 0, and an analytic

continuation by shifting the path of integration, we derive that

∫ +i∞
−i∞

1

lr (ϕ′)
cos ϕ′

cos α + sin ϕ′ dϕ′ = −2π i

sin α + sin θr

lr (α − 1
2π)

− 1
A0

(sin θl − sin θr )
,

∫ +i∞
−i∞

cos ϕ′
lr (ϕ′)

cos ϕ′
cos α + sin ϕ′ dϕ′ = 2π i sin θl

sin α + sin θr

lr (α − 1
2π)

− 1
A0

(sin θl − sin θr )

(B.18)

as |Re(α)| < 1
2π . Similar expressions with − sin ϕ′ in place of sin ϕ′ can be obtained from lr (−α) = rl (α)

(or by continuation of (B.18) with capture of a pole). This permits, by elementary combinations, analytical
expressions of L± terms when �a = �b = 0.
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