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1 Introduction

The subject of fractional calculus has recently gained significant popularity and importance,
due mainly to its memory features and demonstrated applications in numerous seemingly
diverse and widespread fields of science and engineering. For further details, readers are
relegated to the books ([3], [6] ,[13],[17], [23], [29]) and review papers ([16], [25], [28]).

There is no generally applicable method to find an analytic solution to an arbitrary given
fractional-integro differential equation (FIDE). That is why effective numerical methods can
help overcome the problems caused by the shortage of analytical methods for the compu-
tation of solutions to FIDEs. Various kinds of approximate methods have independently
appeared for the numerical solution of FIDEs along with smooth kernel function, such as
Quadratic method [14], spline collocation method [22,24], differential transform method

1 Contributing author (Amin Faghih)
Department of Applied Mathematics, Faculty of Basic Sciences, Sahand University of Technology, Tabriz,
Iran E-mail: amin.fagheh71@gmail.com
2∗ Corresponding Author (Magda Rebelo)
Center for Mathematics and Applications (NovaMath) and Department of Mathematics, FCT NOVA, Quinta
da Torre, 2829-516, Caparica, Portugal E-mail: msjr@fct.unl.pt

ar
X

iv
:2

20
7.

06
11

3v
1 

 [
m

at
h.

N
A

] 
 1

3 
Ju

l 2
02

2



2

[1], Legendre wavelet method [2], second Chebyshev wavelet method [34], Laguerre collo-
cation method [5], Jacobi collocation method [7], Taylor expansion method [12], Legendre
collocation method [18] and hybrid collocation method [15].

Weakly singular FIDEs seem to be investigated less frequently than FIDEs associated
with smooth kernel function. For instance, alternative Legendre polynomials method [26],
Jacobi Tau method [19], second kind Chebyshev spectral method [21], second kind Cheby-
shev wavelet method [30], and piecewise polynomial collocation method [33] have intro-
duced for the numerical solution of linear weakly singular FIDEs. Moreover, the most fre-
quently used methods for obtaining the approximate solutions of non-linear weakly singular
FIDEs are Legendre wavelet method [31], shifted Jacobi collocation method [4], and hat
functions method [20]. The vast majority of the aforementioned schemes lack The follow-
ing critical properties playing an active role in constituting an effective numerical approach:

• Absence of comprehensive analysis, including existence, uniqueness of the solution, and
a vigorous smoothness survey which is crucial in establishing exponentially accurate
spectral methods.

• Obtaining approximations through solving complicated non-linear algebraic systems
along with high computational costs. Such snag drives numerical schemes toward gen-
erating low accurate approximate solutions to the equations arising from real-world phe-
nomena, which are mainly regarded on the long domain.

• Lack of consistency between non-smooth behavior of the exact solution and basis func-
tions that addresses researchers to deal with infinitely smooth basis functions such as
polynomials. Indeed, generating a consistency between the degree of smoothness of the
exact solution and the asymptotic behavior of the basis functions makes it possible to
create high-order methods.

In this paper, the goal is to present a comprehensive investigation taking the policy of
tackling the above difficulties to the following non-linear weakly singular FIDE{

Dα
C y(t) = f (t,y(t))+λ

∫ t
0(t− s)β−1g(t,s,y(s))ds, t ∈Λ = [0,T ],

y(k)(0) = y(k)0 , k = 0,1, . . . ,dαe−1, α > 0, 0 < β ≤ 1,
(1)

where λ ∈ R, α = a1
b1

, β = a2
b2

along with ai ≥ 1, bi ≥ 2, i = 1,2, and (ai,bi) are the pairs
of co-prime integers.
Here d.e is the ceiling function, and T is a finite positive real value. f (t,y(t)) : Λ ×R→
R and g(t,s,y(s)) : D×R→ R, with D = {(t,s) ∈Λ ×Λ : 0≤ s≤ t ≤ T} are continuous
functions, and y(t) : Λ → R is the unknown. Dα

C is Caputo fractional derivative of order α

defined by

Dα
C (.) = Idαe−α

∂
dαe
t (.),

in which Idαe−α denotes the Riemann-Liouville fractional integral operator of order dαe−α

[6,13,23].
In this respect, a comprehensive investigation regarding the existence, uniqueness, and

smoothness properties of (1) are provided on the one side, and then an efficient spectral
scheme is implemented to (1) thanks to the fractional generalized Jacobi functions (FGJFs)
introduced in [8]. Needless to direct that spectral methods offer highly accurate approxima-
tions for smooth problems. However, some cons are still existed, including the requirement
of solving ambiguous and ill-conditioned algebraic systems and the striking decline in the
accuracy of the approximations facing the problems with non-smooth solutions. Contrary to
all cons, the numerical strategy in this essay is taken whereby it contributes to both spectral
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accuracy in attacking non-smooth solution and evaluating approximate solution by means
of recurrence relations despite solving non-linear complex algebraic systems.

This paper is arranged in the following way. We begin by presenting theorems of ex-
istence, uniqueness, and smoothness. This analysis confirms that some derivatives of the
solution have probably a discontinuity at the initial point. Subsequently, in Section 3, we
first provide the essential concepts and definitions of generalized Jacobi polynomials (GJPs)
and FGJFs, and then a state-of-the-art Petrov-Galerkin method is implemented to deal with
(1). Numerical solvability and practical implementation of the relevant non-linear algebraic
system are examined as well. In particular, the error estimate is mightily surveyed in Section
4. Section 5 includes some prototype examples to assess the efficiency and applicability of
the introduced method. Section 6 ultimately presents concluding remarks.

2 Existence, uniqueness and smoothness

We allocate this section to the existence, uniqueness, and smoothness properties of the so-
lution of (1). We first provide the following theorem regarding the existence and uniqueness
of the solution.

Let ψ(t) =
dαe−1

∑
k=0

tk

k!
y(k)0 . Define the set

Ωζ = {y ∈C([0,T ]) : ‖y−ψ‖Λ ≤ ζ} ,

where ‖.‖Λ = max
t∈Λ=[0,T ]

|z(t)| for all z ∈C(Λ) and

ζ =
‖ f‖Λ T α

Γ (α +1)
+
‖g‖Λ λΓ (β )T α+β

Γ (1+α +β )
. (2)

Through applying the Riemann-Liouville fractional integral operator of order α , (1) is
changed into the weakly singular Volterra integral equation

y(t) = ψ(t)+ Iα f (t,y(t))+λ Iα

(∫ t

0
(t− s)β−1g(t,s,y(s))ds

)
. (3)

At this stage, we define an operator Tψ , on Ωζ , by

Tψ (ϕ)(t) = ψ(t)+ Iα f (t,ϕ(t))+λ Iα

(∫ t

0
(t− s)β−1g(t,s,ϕ(s))ds

)
= ψ(t)+

1
Γ (α)

∫ t

0
(t− s)α−1 f (s,ϕ(s))ds

+
λ

Γ (α)

∫ t

0
(t− τ)α−1

(∫
τ

0
(τ− s)β−1g(τ,s,ϕ(s))ds

)
.

Using this operator, the equation (1) can be rewritten as y =Tψ (y). Thereby, if the operator
Tψ has a unique fixed point on Ωζ , (1) will possess a unique continuous solution.
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Theorem 1 (Existence and uniqueness) Let D1 = Λ × [mψ − ζ ,Mψ + ζ ] and D2 = D×
[mψ −ζ ,Mψ +ζ ], where mψ = min

t∈Λ
|ψ(t)|, Mψ = max

t∈Λ

|ψ(t)| and ζ is defined by (2).

Assume that the functions f (s,y(s)) : D1→ R and g(t,s,y(s)) : D2→ R are continuous
for all s ∈Λ and further assume that the functions f and g fulfills Lipschitz conditions with
respect to the second and third variables, respectively. Therefore, there exists L1 > 0 and
L2 > 0 such that

| f (t,z1)− f (t,z2)| ≤ L1|z1− z2|, ∀z1,z2 ∈Ωζ ,

|g(t,s,z1)−g(t,s,z2)| ≤ L2|z1− z2|, ∀z1,z2 ∈Ωζ .

Then, (1) owns a unique continuous solution on Λ .

Proof Suppose that y ∈Ωζ . It is straightforward prove that Tψ (y) ∈Ωζ .
Let δ > 0 be a constant such that

max
(

L1

δ α
+

L2λΓ (β )

δ α+β

)
< 1. (4)

We introduce a new norm ‖ · ‖δ over the space C(Λ ;Ωζ ) as

‖ϕ‖δ =

∥∥∥∥ ϕ

exp(δ t)

∥∥∥∥
Λ

.

Using standard arguments, it can be readily inferred that Ωζ is a closed subset of the
Banach space of continuous functions on Λ , associated with the norm ‖ · ‖δ .

Let ϕ, ϕ̂ ∈Ωζ . Regarding the Lipschitz assumption on f and g, it follows∣∣Tψ ϕ(t)−Tψ ϕ̂(t)
∣∣

exp(δ t)
≤ L1

Γ (α)exp(δ t)

∫ t

0
(t− s)α−1 exp(δ s)

|ϕ(s)− ϕ̂(s)|
exp(δ s)

ds

+
L2λ

Γ (α)exp(δ t)

∫ t

0
(t− s)α−1

(∫ s

0
(s− τ)β−1 exp(δτ)

|ϕ(τ)− ϕ̂(τ)|
exp(δτ)

dτ

)
ds

≤ L1

Γ (α)exp(δ t)
‖ϕ− ϕ̂‖δ

∫ t

0
(t− s)α−1 exp(δ s)ds

+
L2λ

Γ (α)exp(δ t)
‖ϕ− ϕ̂‖δ

∫ t

0
(t− s)α−1

(∫ s

0
(s− τ)β−1 exp(δτ)dτ

)
ds

≤ L1

Γ (α)δ α
‖ϕ− ϕ̂‖δ

∫
δ t

0
uα−1 exp(−u)du

+
L2λ

Γ (α)exp(δ t)δ β
‖ϕ− ϕ̂‖δ

∫ t

0
(t− s)α−1 exp(δ s)

(∫
δ s

0
vβ−1 exp(−v)dv

)
ds.

Due to the definition of Gamma function, we have∣∣Tψ ϕ(t)−Tψ ϕ̂(t)
∣∣

exp(δ t)
≤ L1

δ α
‖ϕ− ϕ̂‖δ +

L2λΓ (β )

exp(δ t)δ β Γ (α)

∫ t

0
(t− s)α−1 exp(δ s)ds

≤ L1

δ α
‖ϕ− ϕ̂‖δ +

L2λΓ (β )

δ α+β
‖ϕ− ϕ̂‖δ

=

(
L1

δ α
+

L2λΓ (β )

δ α+β

)
‖ϕ− ϕ̂‖δ .
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Then from the above inequality and (4), it follows∥∥Tψ (ϕ)−Tψ (ϕ̂)
∥∥

δ
≤
(

L1

δ α
+

L2λΓ (β )

δ α+β

)
‖ϕ− ϕ̂‖δ < ‖ϕ− ϕ̂‖δ .

Therefore the operator Tψ is a contraction on Ωζ . Finally, by the Banach fixed point
principle, the proof of the theorem is complete.

We present the following theorem to dig into the asymptotic behavior of the solution of (1)
through its series representation near the origin.

Theorem 2 (Smoothness) Let the given continues functions f (t,y(t)) and g(t,s,y(s)) can
be written as

f (t,y(t)) = f̄ (t1/b,y(t)),

g(t,s,y(s)) = ḡ(t1/b,s1/b,y(s)),

where f̄ and ḡ are analytic functions in the neighborhood of (0,y(0)0 ) and (0,0,y(0)0 ), re-
spectively. Then the solution of (1) has the following series form in the neighborhood of the
initial point

y(t) = ψ(t)+
∞

∑
µ=αb

ȳµ t
µ

b , (5)

where ȳµ are known coefficients, and b signifies the least common multiple of bi, i = 1,2.

Proof Regard the series expansion of y(t) as

y(t) =
∞

∑
µ=0

ȳµ t
µ

b . (6)

The unknown coefficients ȳµ are obtained in order that the series (6) converges and solves
(1). We use the series expansions of f̄ and ḡ around (0,y(0)0 ) and (0,0,y(0)0 ), respectively,
viz.

f (t,y(t)) = f̄ (t1/b,y(t)) =
∞

∑
µ=0
θ=0

fµ,θ t
µ

b

(
y(t)− y(0)0

)θ

,

g(t,s,y(s)) = ḡ(t1/b,s1/b,y(s)) =
∞

∑
µ,ν=0
θ=0

gµ,ν ,θ t
µ

b s
ν

b

(
y(s)− y(0)0

)θ

. (7)

By rearranging, it can be concluded that(
y(t)− y(0)0

)θ

=

(
∞

∑
µ=1

ȳµ t
µ

b

)θ

=
∞

∑
σ=0

Cθ
σ t

σ

b , (8)

where

Cθ
σ =


1, θ = 0, σ = 0,
0, θ = 0, σ ≥ 1,

∑
µ1+...+µθ=σ

ȳµ1 . . . ȳµθ
, θ 6= 0, σ ≥ 1.
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Therefore, in view of the equivalent equation (3) and substituting the relation (8) into
(7), we find

∞

∑
µ=0

ȳµ t
µ

b = ψ(t)+ Iα

(
∞

∑
µ=0
θ=0

fµ,θ t
µ

b

( ∞

∑
σ=0

Cθ
σ t

σ

b

))

+λ Iα

(∫ t

0
(t− s)β−1

∞

∑
µ,ν=0
θ=0

gµ,ν ,θ t
µ

b s
ν

b

( ∞

∑
σ=0

Cθ
σ s

σ

b

)
ds

)
.

Meanwhile, by considering uniform convergence, the coefficients ȳµ satisfy the follow-
ing equality

∞

∑
µ=0

ȳµ t
µ

b = ψ(t)+ρ1

(
∞

∑
µ=0

θ ,σ=0

fµ,θ Cθ
σ tα+ µ+σ

b

)
+λρ2

(
∞

∑
µ,ν=0
θ ,σ=0

gµ,ν ,θ Cθ
σ tα+β+ µ+ν+σ

b

)
,

(9)
in which

ρ1 =
Γ ( µ+σ

b +1)

Γ ( µ+σ

b +α +1)
, ρ2 =

Γ (β )Γ ( ν+σ

b +1)Γ ( µ+ν+σ

b +β +1)

Γ ( ν+σ

b +β +1)Γ ( µ+ν+σ

b +α +β +1)
.

Setting µ = µ −σ −αb and µ = µ −ν −σ −αb−βb into the first and second series on
the right-hand side of (9) respectively deduces

∞

∑
µ=0

ȳµ t
µ

b = ψ(t)+ ρ̄1

(
∞

∑
µ=σ+αb

θ ,σ=0

fµ−σ−αb,θ Cθ
σ t

µ

b

)

+λρ̄2

(
∞

∑
µ=ν+σ+αb+βb

ν ,θ ,σ=0

gµ−ν−σ−αb−βb,ν ,θ Cθ
σ t

µ

b

)
, (10)

where

ρ̄1 =
Γ ( µ

b −α +1)
Γ ( µ

b +1)
, ρ̄2 =

Γ (β )Γ ( ν+σ

b +1)Γ ( µ

b −α +1)
Γ ( ν+σ

b +β +1)Γ ( µ

b +1)
.

We now arrive at ȳµ through making a comparison between the coefficients of t
µ

b on both
sides of (10). Evidently, for µ < αb, we can write

ȳµ =

 y
(

µ

b )

0
( µ

b )!
, µ = 0,b, ...,(dαe−1)b,

0, else,

and for µ ≥ αb, the following recursive relation is derived

ȳµ =
∞

∑
ν ,θ ,σ=0

Cθ
σ

(
ρ̄1 fµ−σ−αb,θ +λρ̄2 gµ−ν−σ−αb−βb,ν ,θ

)
,
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such that the coefficients fµ−σ−αb,θ and gµ−ν−σ−αb−βb,ν ,θ , equipped with negative indices,
are deemed to be zero, and in the case of µ−σ −αb≥ 0 and µ−ν−σ −αb−βb≥ 0, we
observe that

µ ≥ σ +αb > σ = µ1 + . . .+µθ ≥ µi,

µ ≥ ν +σ +αb+βb > σ = µ1 + . . .+µθ ≥ µi, i = 1,2, . . . ,θ .

In other words, ȳµ are obtained recursively, and thereby the series expansion (5) is a unique
formal solution of (1).

We are now required to verify that such power series is uniformly and absolutely con-
vergent in the neighborhood of zero. In this regard, we apply Lindelof’s majorant approach
[6]. Deem the weakly singular Volterra integral equation

Y (t) = ψ̄(t)+ Iα F(t,y(t))+λ Iα

(∫ t

0
(t− s)β−1G(t,s,Y (s))ds

)
,

where ψ̄(t) =
dαe−1

∑
k=0

tk

k! |y
(k)
0 |

F(t,y(t)) = F̄(t1/b,Y (t)) =
∞

∑
µ=0
θ=0

| fµ,θ | t
µ

b

(
Y (t)−|y(0)0 |

)θ

,

G(t,s,Y (s)) = Ḡ(t1/b,s1/b,Y (s)) =
∞

∑
µ,ν=0
θ=0

|gµ,ν ,θ | t
µ

b s
ν

b

(
Y (t)−|y(0)0 |

)θ

.

It is clear that all coefficients of Y are positive, and it is a majorant for y. The series
expansion Y may be calculated in precisely the same manner as above. Currently, for some
ω > 0 given in the sequel, we prove that the series Y (t) converges absolutely over [0,ω]. For
this purpose, the key is to justify that the finite partial sum of the formal solution Y (t) i.e.

SL+1(t) = ψ̄(t)+
L+1

∑
µ=αb

Ȳµ t
µ

b ,

can be uniformly bounded on [0,ω]. Clearly, we have the inequality below

SL+1(t)≤ ψ̄(t)+ Iα F(t,SL(t))+λ Iα

(∫ t

0
(t− s)β−1G(t,s,SL(s))ds

)
, (11)

in accordance with the recursive evaluation of the coefficients. Albeit, all the coefficients
Ȳµ with µ

b ≤
(L+1)

b are removed from both sides by expanding the right-hand side of (11),
there still exists some extra terms of higher-order in the right-hand side. Considering

D1 =
dαe−1

∑
k=0

T k

k!
|y(k)0 |,

D2 = max
(t,z)∈Λ×[0,3D1]

∣∣F(t,z)
∣∣

Γ (α +1)
,

D3 = max
(t,s,z)∈Λ×Λ×[0,3D1]

Γ (β )
∣∣G(t,s,z)

∣∣
Γ (α +β +1)

,
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we define

ω = min
{

T,
[

D1

D2

] 1
α

,

[
D1

D3

] 1
α+β
}
.

At this step, the aim is to show that |SL(t)| ≤ 3D1, t ∈ [0,ω] by means of mathematical
induction on L. The result is valid for L = 0 because

S0(t) = |y(0)0 | ≤ D1.

We regard that it is valid for L, and proceed to L+1 as follows

|SL+1(t)| = SL+1(t)

≤ ψ̄(t)+ Iα F(t,SL(t))+λ Iα

(∫ t

0
(t− s)β−1G(t,s,SL(s))ds

)
≤
dαe−1

∑
k=0

ωk

k!
|y(k)0 |+ max

s∈[0,t]
|F(s,SL(s))|

tα

Γ (α +1)

+ max
s∈[0,t]

|G(t,s,SL(s))|
Γ (β ) tα+β

Γ (α +β +1)

≤ D1 + max
(s,z)∈[0,ω]×[0,3D1]

|F(s,z)| ωα

Γ (α +1)

+ max
(t,s,z)∈[0,ω]×[0,ω]×[0,3D1]

|G(t,s,z)| Γ (β ) ωα+β

Γ (α +β +1)

≤ D1 +ω
α D2 +ω

α+β D3 ≤ 3D1.

This establishes that SL+1(t) is uniformly bounded on [0,ω]. Since all the coefficients
SL+1(t) are positive, it is monotone as well. As a result, in according to the power series
structure of Y (t), the majorant Y (t) converges absolutely over [0,ω], and it is uniformly con-
vergent on the compact subsets of [0,ω). Ultimately, Lindelof’s majorant theorem concludes
that the series expansion y(t) inherits the same features. That is why the above exchange of
integration and series was legal.

Theorem 2 tells us that ∂
dαe
t y(t) may not be continuous at the initial point. In consequence,

the accuracy of the classical spectral methods might be threatened by this difficulty. That
is why constructing an exponentially accurate or high-order spectral method is a kind of
challenging task. Next section includes such approach to approximate the solution of (1)
which satisfies the assumptions of theorems 1 and 2.

3 Numerical approach

In this section, the goal is firstly to direct some critical properties of Jacobi polynomials,
GJPs, and FGJFs, and present an effective strategy based on an advanced operational Petrov-
Galerkin method to approximate the solution of (1).
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3.1 Jacobi polynomials

The orthogonal relation of classical Jacobi polynomials J(ρ,η)
n (s), ρ,η > −1 is as follows

[27] ∫
I
J(ρ,η)

m (s)J(ρ,η)
n (s)w(ρ,η)(s)ds = λ

(ρ,η)
n δmn, m,n≥ 0,

in which w(ρ,η)(s) = (1− s)ρ(1+ s)η ,

λ
(ρ,η)
n = ‖J(ρ,η)

n ‖2
w(ρ,η) =

2ρ+η+1Γ (n+ρ +1)Γ (n+η +1)
(2n+ρ +η +1)n!Γ (n+ρ +η +1)

,

and δmn directs the Kronecker delta function. Jacobi polynomials satisfy the Rodrigues’
formula below

w(ρ,η)(s)J(ρ,η)
n (s) =

(−1)n

2nn!
dn

dsn

{
(1− s)n+ρ(1+ s)n+η

}
.

3.2 Generalized Jacobi polynomials

Let us first define ρ̂, η̂ and ρ̃, η̃ from ρ,η as follows

ρ̂ =

{
−ρ, ρ ≤−1,
0, ρ >−1,

ρ̃ =

{
−ρ, ρ ≤−1,
ρ, ρ >−1,

likewise for η̂ and η̃ .
For each ρ,η ∈ Z, the GJPs eliminating the restriction ρ,η >−1 are defined by [11]

J̄(ρ,η)
n (s) = (1− s)ρ̂(1+ s)η̂ J(ρ̃,η̃)

ñ (s), ñ = n−κρ,η ≥ 0, κρ,η = ρ̂ + η̂ .

The GJPs satisfy the Sturm-Liouville equation

∂s

(
(1− s)ρ+1(1+ s)η+1

∂sJ̄
(ρ,η)
n (s)

)
+ξ

(ρ,η)
n (1− s)ρ(1+ s)η J̄(ρ,η)

n (s) = 0,

where

ξ
(ρ,η)
n =


ñ(ñ+ρ +η +1), (ρ,η)>−1,
ñ(ñ−ρ +η +1)−ρ(η +1), ρ ≤−1, η >−1,
ñ(ñ+ρ−η +1)−η(ρ +1), ρ >−1, η ≤−1,
(ñ+1)(ñ−ρ−η), (ρ,η)≤−1,

and are mutually L2
w(ρ,η)(I)-orthogonal, i.e.,∫

I
J̄(ρ,η)

m (s)J̄(ρ,η)
n (s)w(ρ,η)(s)ds = λ

(ρ̃,η̃)
ñ δmn, m,n≥ κρ,η .

The following relations indicate outstanding properties of the GJPs

∂
i
s J̄(ρ,η)

n (1) = 0, i = 0,1, . . . , ρ̂−1, ρ ≤−1, η >−1,

∂
j

s J̄(ρ,η)
n (−1) = 0, j = 0,1, . . . , η̂−1, ρ >−1, η ≤−1,
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and for (ρ,η)≤−1, we have

∂
i
s J̄(ρ,η)

n (1) = 0, i = 0,1, . . . , ρ̂−1,

∂
j

s J̄(ρ,η)
n (−1) = 0, j = 0,1, . . . , η̂−1.

This feature invokes the GJPs toward appropriate basis functions for the Galerkin and
Petrov-Galerkin approximations of smooth solutions of functional differential equations as-
sociated with the following boundary conditions

∂
i
sP(1) = 0, i = 0,1, . . . , ρ̂−1,

∂
j

s P(−1) = 0, j = 0,1, . . . , η̂−1.

3.3 The fractional generalized Jacobi functions

Let us begin this section with a vital question. Is it feasible to promote the GJPs, whereby
a novel set of fractional orthogonal functions and related Galerkin and Petrov-Galerkin ap-
proximations are achieved? Thankfully, Faghih and Mokhtary [8] introduced the fractional
generalized Jacobi functions which have outstanding approximate properties to the functions
owning singularity at boundaries.

Suppose that γ ∈ (0,1] and t ∈ Λ , the essence of the FGJFs J̄(ρ,η ,γ)
n (t) comes from the

GJPs by means of the coordinate transformation s = 2( t
T )

γ −1 as [8]

J̄(ρ,η ,γ)
n (t) = J̄(ρ,η)

n

(
2(

t
T
)γ −1

)
=

2ρ̂+η̂

T γ(ρ̂+η̂)

(
T γ − tγ

)ρ̂

tγη̂ J(ρ̃,η̃ ,γ)
ñ (t), (12)

in which ρ,η ∈ Z, n≥ κρ,η and

J(ρ̃,η̃ ,γ)
ñ (t) = J(ρ̃,η̃)

ñ

(
2(

t
T
)γ −1

)
,

indicates the fractional Jacobi function (FJF) satisfying the explicit formula [32]

J(ρ̃,η̃ ,γ)
ñ (t) =

ñ

∑
j=0

1
T γ j ϒ

(ρ̃,η̃ ,ñ)
j tγ j = Span{1, tγ , . . . , t ñγ},

where

ϒ
(ρ̃,η̃ ,ñ)
j =

(−1)ñ− jΓ (ñ+ η̃ +1)Γ (ñ+ ρ̃ + η̃ + j+1)
Γ (η̃ + j+1) j!Γ (ñ+ ρ̃ + η̃ +1)(ñ− j)!

.

It can be inferred that the FJFs are L2
w(ρ̃,η̃ ,γ)(Λ)-orthogonal along with the weight function

w(ρ̃,η̃ ,γ)(t) = γ

T γ(ρ̃+η̃+1)−1

(
T γ − tγ

)ρ̃

tγ(η̃+1)−1, i.e., we have

∫
Λ

J(ρ̃,η̃ ,γ)
m̃ (t)J(ρ̃,η̃ ,γ)

ñ (t)w(ρ̃,η̃ ,γ)(t)dt = λ
(ρ̃,η̃ ,γ)
ñ δm̃ñ,

in which
λ
(ρ̃,η̃ ,γ)
ñ = ‖J(ρ̃,η̃ ,γ)

ñ ‖2
w(ρ̃,η̃ ,γ) =

T
2ρ̃+η̃+1 λ

(ρ̃,η̃)
ñ .
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The FGJFs {J̄(ρ,η ,γ)
n }n≥κρ,η satisfies the Sturm-Liouville problem

∂t

(
T (T γ − tγ)t2−γ w(ρ,η ,γ)(t)∂t J̄

(ρ,η ,γ)
n (t)

)
+

γ2

T
ξ
(ρ,η)
n w(ρ,η),γ(t)J̄(ρ,η ,γ)

n (t) = 0.

The FGJFs are mutually orthogonal along with the following orthogonal relation∫
Λ

J̄(α,β ,γ)
m (t)J̄(α,β ,γ)

n (t)w(α,β ,γ)(t)dt =
T

2α+β+1 λ
(α̃,β̃ )
ñ δmn.

The following relations hold

∂
i
t J̄(ρ,η ,γ)

n (T ) = 0, i = 0,1, . . . , ρ̂−1, ρ ≤−1, η >−1,

∂
j

t J̄(ρ,η ,γ)
n (0) = 0, j = 0,1, . . . ,dγη̂e−1, ρ >−1, η ≤−1,

and for ρ,η ≤−1, we have

∂
i
t J̄(ρ,η ,γ)

n (T ) = 0, i = 0,1, . . . , ρ̂−1,

∂
j

t J̄(ρ,η ,γ)
n (0) = 0, j = 0,1, . . . ,dγη̂e−1,

which is one of the remarkable features of the FGJFs.

3.4 Operational Petrov-Galerkin method

This section offers a highly accurate operational Petrov-Galerkin method based on the FGJFs
to approximate the solution of (1). Solvability analysis of the relevant non-linear algebraic
system is also provided through a sequence of matrix operations. Inserting ρ = 0, η =−αb
and γ = 1

b in (12), the FGJFs {J̄0,−αb,γ
k }k≥αb

J̄(0,−αb,γ)
k (t) =

2αb

T α
tα J(0,αb,γ)

k−αb (t) = J̄(0,−αb,γ)
k = Span{tα , tα+γ , . . . , tkγ}, (13)

satisfy the initial conditions of the equation (1). Thereby they are capable of serving as basis
functions to obtain the Petrov-Galerkin approximation of (1).

Based on (13), we arrive at J(0,−αb,γ) = JT t , where

J(0,−αb,γ) = [J̄(0,−αb,γ)
αb (t), J̄(0,−αb,γ)

αb+1 (t), . . . , J̄(0,−αb,γ)
N (t), . . .]′,

indicating the vector of FGJFs with degree (J̄(0,−αb,γ)
k (t))≤ kγ , T t = [tα , tα+γ , . . . , tNγ , . . .]′

and J is a lower-triangular matrix of order infinity. At this stage, the Petrov-Galerkin ap-
proximation yN(t) of the exact solution y(t) is stated as

yN(t) =
∞

∑
k=0

ckJ̄(0,−αb,γ)
k+αb (t) = c J(0,−αb,γ) = cJT t = cJΨ T̂ t , (14)
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where c = [c0,c1, . . . ,cN̂ ,0, . . .], T̂ t = [1, tγ , . . . , tN̂γ , . . .]′, N̂ = N−αb, and

Ψ =



αb︷ ︸︸ ︷
0 . . .0 1 0 · · ·

... 0 1 0 · · ·

...
... 0 1 0 · · ·

· · · · · ·
. . .

. . .
. . .


. (15)

Meanwhile, the relation (7) can be restated as

f (t,y(t)) =
∞

∑
µ=0
θ=0

fµ,θ tµγ yθ (t),

g(t,s,y(s)) =
∞

∑
µ,ν=0
θ=0

gµ,ν ,θ tµγ sνγ yθ (s). (16)

Inserting the relation (14) into (1) and using (16), we have

cJDα
C T t =

∞

∑
µ=0
θ=0

fµ,θ tµγ yθ
N(t)+λ

∞

∑
µ,ν=0
θ=0

gµ,ν ,θ tµγ

∫ t

0
(t− s)β−1sνγ yθ

N(s)ds. (17)

Hence, we first compute Dα
C T t . In this respect, using the relation [6,13,23]

Dα
C tτ =

Γ (τ +1)
Γ (τ−α +1)

tτ−α , τ > 0,

we can write

Dα
C T t =

[
Dα

C tα+γi

]
i≥0

=

[
Γ (α + γi+1)

Γ (γi+1)
tγi

]
i≥0

= χT̂ t , (18)

in which

χ =


Γ (α +1) 0 0 . . .

0 Γ (α+γ+1)
Γ (γ+1) 0 · · ·

0 0 Γ (α+2γ+1)
Γ (2γ+1) · · ·

...
... 0

. . .

 .
The key of this strategy is to attain a matrix form for the right-hand side of (17) vigorously.
In this sense, we first substitute an appropriate matrix representation for yθ

N(t) through the
following lemma.

Lemma 1 Assuming c = cJ = [c0,c1, . . . ,cN̂ ,0, . . .], the following relation holds

yθ
N(t) = c ΨQθ−1T̂ t , θ > 0,
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where Q indicates the following upper-triangular matrix of order infinity

Q =


cΨ0 cΨ1 cΨ2 . . .

0 cΨ0 cΨ1 . . .

0 0 cΨ0 . . .
...

...
...

. . .

 ,
with Ψr = {Ψm,r}∞

m=0, r = 0,1, . . . .

Proof The mathematical induction on θ is utilized to prove this lemma. For θ = 1, the result
is obviously valid. We consider that it is valid for θ , and proceed to θ +1 as follows

yθ+1
N (t) = yθ

N(t)× yN(t) =
(
c ΨQθ−1T̂ t

)
× (c Ψ T̂ t)

= c ΨQθ−1(T̂ t × (c Ψ T̂ t)). (19)

Next, it suffices to demonstrate that

T̂ t × (c Ψ T̂ t) = QT̂ t . (20)

For this purpose, we can derive

T̂ t × (c Ψ T̂ t) = T̂ t)×
( ∞

∑
h=0

∞

∑
k=0

ck Ψk,h thγ

)
=

[
∞

∑
h=0

∞

∑
k=0

ck Ψk,h t(h+m)γ

]∞

m=0

=

[
∞

∑
r=m

( ∞

∑
k=0

ck Ψk,r−m trγ

)]∞

m=0

,

whereby it yields (20). Trivially, by inserting (20) into (19) the desired result can be achieved.

Now, it is time to employ Lemma 1 to convert the first term of the right-hand side of (17)
into the following vector-matrix form

∞

∑
µ=0
θ=0

fµ,θ tµγ yθ
N(t) =

∞

∑
µ=0

fµ,0 tµγ +
∞

∑
µ=0
θ=1

fµ,θ tµγ yθ
N(t)

= f
0
T̂ t +

∞

∑
µ=0
θ=1

fµ,θ tµγ c ΨQθ−1T̂ t

= f
0
T̂ t +

∞

∑
θ=1

c ΨQθ−1

(
∞

∑
µ=0

fµ,θ

[
t(µ+m)γ

]∞

m=0

)

=

(
f

0
+

∞

∑
θ=1

c ΨQθ−1Fθ

)
T̂ t , (21)

in which f
0
= [ f0,0, f1,0, . . . , fN̂,0, . . .] and Fθ directs an upper-triangular matrix of order

infinity with the following components

[
Fθ

]∞
i, j=0 =

{
0, i > j,
f j−i,θ , i≤ j.
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Applying the same strategy to the second term of (17) concludes

∞

∑
µ,ν=0
θ=0

gµ,ν ,θ tµγ

∫ t

0
(t− s)β−1sνγ yθ

N(s)ds

=
∞

∑
µ,ν=0

gµ,ν ,0 tµγ

∫ t

0
(t− s)β−1sνγ ds+

∞

∑
µ,ν=0
θ=1

gµ,ν ,θ tµγ

∫ t

0
(t− s)β−1sνγ c ΨQθ−1T̂ sds

=
∞

∑
µ,ν=0

gµ,ν ,0 tµγ

∫ t

0
(t− s)β−1sνγ ds

+
∞

∑
θ=1

c ΨQθ−1

(
∞

∑
µ,ν=0

gµ,ν ,θ tµγ

[∫ t

0
(t− s)β−1s(ν+m)γ ds

]∞

m=0

)
. (22)

Evidently, we have [6][∫ t

0
(t− s)β−1s(ν+m)γ ds

]∞

m=0
=
[
A m

ν t(ν+m)γ+β

]∞

m=0
,∫ t

0
(t− s)β−1sνγ ds = A 0

ν tνγ+β ,

in which A m
ν = Γ (β )Γ ((ν+m)γ+1)

Γ ((ν+m)γ+β+1) . Therefore, the equality (22) can be rewritten as

∞

∑
µ,ν=0
θ=0

gµ,ν ,θ tµγ

∫ t

0
(t− s)β−1sνγ yθ

N(s)ds

=
∞

∑
µ,ν=0

gµ,ν ,0 A 0
ν t(µ+ν)γ+β +

∞

∑
θ=1

c ΨQθ−1

(
∞

∑
µ,ν=0

gµ,ν ,θ

[
A m

ν t(µ+ν+m)γ+β

]∞

m=0

)

=

(
K +

∞

∑
θ=1

c ΨQθ−1Hθ

)
T̂ t , (23)

along with the infinite-order row vector K as

[
K
]∞

j=0 =


0, j < βb,
j−βb
∑

ν=0
gν , j−βb−ν ,0 A 0

j−βb−ν
, j ≥ βb,

= [

βb︷ ︸︸ ︷
0 . . .0,

[
K
]

βb,
[
K
]

βb+1, . . . ,
[
K
]

N̂ , . . .],

and the infinite-order upper-triangular matrix Hθ with the components

[
Hθ

]∞
i, j=0 =


0, i≥ j−βb+1,
j−i−βb

∑
ν=0

gν , j−i−βb−ν ,θ A i
j−i−βb−ν

, i < j−βb+1.

At this stage, we employ the relations (18), (21) and (23) in (17), and thereby we derive

c χT̂ t =

(
f

0
+

∞

∑
θ=1

c ΨQθ−1Fθ

)
T̂ t +λ

(
K +

∞

∑
θ=1

c ΨQθ−1Hθ

)
T̂ t . (24)
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Due to the orthogonality of {J(0,αb,γ)
k }k≥0, we project (24) onto {J(0,αb,γ)

k }N̂
k=0. Ultimately,

after some simple manipulations, the algebraic form of the Petrov-Galerkin discretization is
obtained as

cN̂
χ

N̂ = f N̂
0
+λKN̂ +

∞

∑
θ=1

cN̂
Ψ

N̂(Qθ−1)N̂
(

F N̂
θ +λHN̂

θ

)
. (25)

Here, the sign N̂ above the matrices and vectors signifies respectively the principle sub-
matrices and sub-vectors of order N̂ + 1. Needless to mention, we are able to get the un-
known vector through solving the system of N̂ +1 non-linear algebraic equations (25). The
next section presents an outstanding strategy to overcome this system regardless of its com-
plexity.

3.5 Solvability analysis

It is noteworthy that the system of non-linear algebraic equations (25) involves high com-
putational costs to be solved, specifically for large degrees of approximation, and it can
undoubtedly result in inaccurate solution due to its complexity. In order to cope with this
barrier, we aim to provide a productive and well-conditioned implementation that gives the
unknown of (25) by means of some recurrence relations instead of solving a complex non-
linear algebraic system. For this purpose, applying Lemma 1 enables us to write

Q =


cΨ0 cΨ1 cΨ2 . . .

0 cΨ0 cΨ1 . . .

0 0 cΨ0 . . .
...

...
...

. . .

=



αb︷ ︸︸ ︷
0 . . .0 c0 c1 c2 . . .

... 0 c0 c1 . . .

...
... 0 c0 . . .

· · · · · ·
. . .

. . .
. . .


.
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Through simple calculations, we observe that (Qθ−1)N̂ has the following upper-triangular
structure

(Qθ−1)N̂ =



(θ−1)αb︷ ︸︸ ︷
0 . . .0 (c0)

θ−1 (θ −1)(c0)
θ−2 c1 . . . . . .

... 0 (c0)
θ−1 (θ −1)(c0)

θ−2 c1 . . .
...

...
...

. . .
. . .

0 0
. . . 0 (c0)

θ−1

...
...

...
. . .

...
0 0 0 0 0



=



(θ−1)αb︷ ︸︸ ︷
0 . . .0 Qθ−1

0,0 Qθ−1
0,1 Qθ−1

0,2 . . .
... 0 Qθ−1

0,0 Qθ−1
0,1 . . .

...
...

...
. . .

. . .

0 0
. . . 0 Qθ−1

0,0
...

...
...

. . .
...

0 0 0 0 0


,

where Qθ−1
0,r , r = 0,1, . . . ,N−θαb are non-linear functions of the elements c0, c1, . . . , cr.

In addition, from (15) and (26), the following upper-triangular matrix of order N̂+1 can
be derived

Ψ
N̂(Qθ−1)N̂ =



θαb︷ ︸︸ ︷
0 . . .0 Qθ−1

0,0 Qθ−1
0,1 Qθ−1

0,2 . . .
... 0 Qθ−1

0,0 Qθ−1
0,1 . . .

...
...

...
. . .

. . .

0 0
. . . 0 Qθ−1

0,0
...

...
...

. . .
...

0 0 0 0 0


.

Consequently, one can be checked that the matrix Π defined by

Π =Ψ
N̂(Qθ−1)N̂B, B = F N̂

θ +λHN̂
θ ,

has an upper-triangular structure with the components below

[
Π
]N̂

i, j=0 =

0, i≥ j−θαb+1,
j−i−θαb

∑
r=0

Qθ−1
0,r

[
B
]

i+r+θαb, j, i < j−θαb+1.
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Afterward, considering the structure of Π , we have

cN̂
Π = cN̂



θαb︷ ︸︸ ︷
0 . . .0

[
Π
]

0,θαb

[
Π
]

0,θαb+1 . . .
[
Π
]

0,N̂
... 0

[
Π
]

1,θαb+1 · · ·
[
Π
]

1,N̂
...

...
...

. . .
. . .

0 0
. . . 0

[
Π
]

N̂−θαb,N̂
...

...
...

. . .
...

0 0 0 0 0


.

Now, due to the above relation, one can deduce

[
cN̂

Π

]N̂

j=0
=

0, j < θαb,
j−θαb

∑
i=0

ci
[
Π
]

i, j, j ≥ θαb,

= [

θαb︷ ︸︸ ︷
0 . . .0,Zθ

0 ,Z
θ
1 , . . . ,Z

θ

N̂−θαb],

where Zθ
r , r = 0,1, . . . , N̂−θαb are non-linear functions of the elements c0, c1, . . . , cr.

Eventually we attain

∞

∑
θ=1

[

θαb︷ ︸︸ ︷
0 . . .0,Zθ

0 ,Z
θ
1 , . . . ,Z

θ

N̂−θαb] = [

αb︷ ︸︸ ︷
0 . . .0, Z̃0, Z̃1, . . . , Z̃N̂−αb], (26)

in which Z̃r, r = 0,1, . . . , N̂ − αb are non-linear functions in terms of the components
c0, c1, . . . , cr. We substitute (26) into (25) and compute the unknown elements of the un-
known vector c through the recurrence relations bellow

c0 =
1

Γ (α +1)
( f0,0 +λ [K]0),

...

cαb−1 =
Γ (γ(αb−1)+1)

Γ (α + γ(αb−1)+1)
( fαb−1,0 +λ [K]αb−1),

cαb =
Γ (γ(αb)+1)

Γ (α + γ(αb)+1)

(
fαb,0 +λ [K]αb + Z̃0

)
,

...

cN̂ =
Γ (γN̂ +1)

Γ (α + γN̂ +1)

(
fN̂,0 +λ [K]N̂ + Z̃N̂−αb

)
.

Ultimately, solving the lower-triangular system cN̂ = cN̂JN̂ fuels the main unknown cN̂

whereby we can obtain the Petrov-Galerkin approximation (14).
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4 Error estimate

This section is dedicated to giving the convergence result of the introduced method through
employing an appropriate error bound in L2-norm.

Let us introduce Π
(0,αb,γ)
N as the L2

w(0,αb,γ)(Λ)-orthogonal projection relevant to the frac-
tional Jacobi space

F
(0,αb,γ)
N = Span{J(0,αb,γ)

k : k = 0,1, . . . ,N}.

Meanwhile, for p ∈ L2
w(0,αb,γ)(Λ), we can write(

p−Π
(0,αb,γ)
N p,φ

)
w(0,αb,γ)

= 0, ∀φ ∈F
(0,αb,γ)
N .

To obtain an upper bound of truncation error Π
(0,αb,γ)
N p− p, we first define the space

Hm
w(ρ,η)(I) = {P : ‖P‖m,w(ρ,η) < ∞, m ∈ N},

along with

‖P‖2
m,w(ρ,η) =

m

∑
l=0
‖∂ l

s P‖2
wρ+l,η+l , |P|m,w(ρ,η) = ‖∂ m

s P‖wρ+m,η+m ,

considered as the norm and semi-norm.
In this step, if we assume that the coordinate transformation s = 2( t

T )
γ −1 associate the

function p(t) with P(s), their derivatives will be connected as follows

Dt p := ∂sP(s) = ∂st ∂t p,

D2
t p := ∂

2
s P(s) = ∂st ∂t(Dt p) ,

...

Dn
t p := ∂

n
s P(s) = ∂st ∂t(∂st ∂t(· · ·(∂st ∂t p) · · ·)),

in which ∂st = T
2γ

( t
T

)1−γ . Moreover, it can be deduced that

‖P(s)‖2
w(ρ,η) =

∫
I
|P(s)|2w(ρ,η)(s)ds = d(ρ,η)

∫
Λ

|p(t)|2w(ρ,η ,γ)(t)dt

= d(ρ,η)‖p(t)‖2
w(ρ,η ,γ) ,

‖∂ m
s P(s)‖2

w(ρ,η) =
∫

I
|∂ m

s P(s)|2w(ρ,η)(s)ds = d(ρ,η)
∫

Λ

|Dm
t p(t)|2w(ρ,η ,γ)(t)dt

= d(ρ,η)‖Dm
t p(t)‖2

w(ρ,η ,γ) ,

where d(ρ,η) = 2ρ+η+1

T .
Finally, we define the transformed space

Hm
w(ρ,η ,γ)(Λ) = {p : ‖p‖m,w(ρ,η ,γ) < ∞},
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associated with the norm and semi-norm

‖p‖2
m,w(ρ,η ,γ) =

m

∑
l=0

d(ρ+l,η+l)‖Dl
t p‖2

w(ρ+l,η+l,γ) ,

|p|m,w(ρ,η ,γ) =
√

d(ρ+m,η+m)‖Dm
t p‖w(ρ+m,η+m,γ) ,

and from Theorem 3.2 of [9], the following estimation holds

‖Π (0,αb,γ)
N p− p‖w(0,αb,γ) ≤CN−m|p|m,w(0,αb,γ) , m≥ 0. (27)

It is time to exhibit the convergence theorem directing the proper error bound for y(t)−
yN(t) in L2-norm.

Theorem 3 (Convergence) Let yN(t) given by (14) be the approximate solution of (1). If
we have

1.
∫ t

0(t− s)β−1g(t,s,y(s))ds ∈ Hε

w(0,αb,γ)(Λ) such that

Dε+1
t

(∫ t

0
(t− s)β−1g(t,s,y(s))ds

)
∈C(Λ), ε ≥ 0.

2. f ∈ Hς

w(0,αb,γ)(Λ) such that Dς+1
t f ∈C(Λ), ς ≥ 0.

Then the following upper bound holds for sufficiently large values of N

‖eN(t)‖ ≤C
(

N̂−ε |
∫ t

0
(t− s)β−1g(t,s,y(s))ds|

ε,w(0,αb,γ) + N̂−ς | f |
ς ,w(0,αb,γ)

)
,

where eN(t) = y(t)−yN(t) dictates the error function, and C > 0 denotes a generic constant
independent of N.

Proof Based on the devised numerical approach in Section 3, we get the following operator
equation

Π
(0,αb,γ)
N̂

(
Dα

C yN(t)− f (t,yN(t))−λ

∫ t

0
(t− s)β−1g(t,s,yN(s))ds

)
= 0,

and equivalently we have

Dα
C yN(t) = Π

(0,αb,γ)
N̂

(
f (t,yN(t))

)
+λΠ

(0,αb,γ)
N̂

(∫ t

0
(t− s)β−1g(t,s,yN(s))ds

)
, (28)

since we have Dα
C yN(t) ∈ Span{J(0,αb,γ)

0 ,J(0,αb,γ)
1 , ...,J(0,αb,γ)

N }. Subtracting (28) from (1)
yields

Dα
C eN(t) = f (t,y(t))−Π

(0,αb,γ)
N̂

(
f (t,yN(t))

)
+λ

(∫ t

0
(t− s)β−1g(t,s,y(s))ds−Π

(0,αb,γ)
N̂

(∫ t

0
(t− s)β−1g(t,s,yN(s))ds

))
,
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which can be restated as

Dα
C eN(t) = ( f − f̄ )+λ

∫ t

0
(t− s)β−1(g(t,s,y(s))−g(t,s,yN(s))

)
ds

+ e
Π

(0,αb,γ)
N̂

(
f̄ +λ

∫ t

0
(t− s)β−1g(t,s,yN(s))ds

)
, (29)

where e
Π

(0,αb,γ)
N̂

(z) = z−Π
(0,αb,γ)
N̂

(z) and f̄ = f (t,yN(t)). We enforce the Riemann-Liouville

fractional integral operator of order α on (29) and utilize the relation Iα Dα
C eN(t) = eN(t)

whereby we deduce

eN(t) = Iα( f − f̄ )

+λ

∫ t

0
(t− s)α−1

(∫ s

0
(s− τ)β−1(g(s,τ,y(τ))−g(s,τ,yN(τ))

)
dτ

)
ds+R,

along with

R = Iα e
Π

(0,αb,γ)
N̂

(
f̄ +λ

∫ t

0
(t− s)β−1g(t,s,yN(s))ds

)
.

Due to the Lipschitz assumption on f and g, we arrive at

|eN(t)| ≤ L1Iα |eN(t)|+
λL2

Γ (α)

∫ t

0
(t− s)α−1

(∫ s

0
(s− τ)β−1|eN(τ)|dτ

)
ds+ |R|

= L1Iα |eN(t)|+λL2Γ (β )Iα+β |eN(t)|+ |R|. (30)

In addition to this, we can write

L1Iα |eN |+λL2Γ (β )Iα+β |eN | ≤max(L1,λL2Γ (β ))
(

Iα |eN |+ Iα+β |eN |
)

= max(L1,λL2Γ (β ))

(∫ t

0
(t− s)α−1

(
1

Γ (α)
+

1
Γ (α +β )

(t− s)β

)
|eN(s)|ds

)

≤ℵ

∫ t

0
(t− s)α−1|eN(s)|ds, (31)

in which

ℵ = max(L1,λL2Γ (β ))

(
1

Γ (α)
+

T β

Γ (α +β )

)
.

Substituting (31) into (30) and employing Gronwall’s inequality, i.e., Lemma 6 of [10], it
can be concluded that

‖eN(t)‖ ≤C‖R‖ .

We rewrite the above inequality in the following sense

‖eN(t)‖ ≤C‖e
Π

(0,αb,γ)
N̂

(
f̄ +λ

∫ t

0
(t− s)β−1g(t,s,yN(s))ds

)
‖w(0,αb,γ) , (32)

due to the Cauchy-Schwarz inequality and some manipulations.
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Currently, the suitable upper bounds are sought for each term of the right-hand side of
(32). In this regard, utilizing the estimation (27) and the first-order Taylor formula give

‖e
Π

(0,αb,γ)
N̂

(
λ

∫ t

0
(t− s)β−1g(t,s,yN(s))ds

)
‖w(0,αb,γ)

≤CN̂−ε |
∫ t

0
(t− s)β−1g(t,s,yN(s))ds|

ε,w(0,αb,γ)

≤CN̂−ε

(
|
∫ t

0
(t− s)β−1g(t,s,y(s))ds|

ε,w(0,αb,γ) +C1‖g(t,s,y(s))−g(t,s,yN(s))‖

)

≤CN̂−ε

(
|
∫ t

0
(t− s)β−1g(t,s,y(s))ds|

ε,w(0,αb,γ) +C1L2‖eN‖

)
, (33)

due to the Lipschitz assumption on g. Here, C1 > 0 is a generic constant independent of N.
Proceeding the same way as (33), we derive

‖e
Π

(0,αb,γ)
N̂

( f̄ )‖w(0,αb,γ) ≤CN̂−ς | f̄ |
ς ,w(0,αb,γ) ≤CN̂−ς

(
| f |

ς ,w(0,αb,γ) +C2L2‖eN‖
)
, (34)

where C2 > 0 denotes a generic constant independent of N.
Inserting (33) and (34) into (32) concludes

‖eN(t)‖−C(N̂−εC1L2 + N̂−ςC2L2)‖eN(t)‖

≤C
(

N̂−ε |
∫ t

0
(t− s)β−1g(t,s,y(s))ds|

ε,w(0,αb,γ) + N̂−ς | f |
ς ,w(0,αb,γ)

)
.

Evidently, the desired result can be attained for sufficiently large values of N.

5 Numerical illustration

This section is devoted to confirming the effectiveness and productivity of the proposed im-
plementation through demonstrating the numerical experiments derived from solving some
non-linear weakly singular FIEDs. In this respect, this section is organized in the following
sense

• To assess the computational capability of the introduced strategy, we illustrate some
essential properties including numerical errors e(N) = ‖eN(t)‖ and CPU-time elapsed.

• The stability of the method is also examined via approximating the highly oscillatory
solution of a test problem associated with the long domain Λ and large values of N.

• The predominance of the suggested approach is assessed by comparing our results to
those obtained by a modification of hat functions (MHFs) introduced in [20].

The computation is conducted by means of Mathematica v11.2, running in a computer sys-
tem with an Intel (R) Core (TM) i5-4210U CPU @ 2.40 GHz.

Example 1 Let us consider the non-linear weakly singular FIDEs{
D

3
2
C y(t) = f (t)+

∫ t
0(t− s)−

3
4 g(t,s,y(s))ds, t ∈ [0,1],

y(0) = 0.
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The source function f (t) is chosen in a way that the exact solution is

y(t) = E 3
2
(t

3
2 )−1,

and

g(t,s,y(s)) =
1
2

sJ0(t
7
4 )sin(y(s))+ s

5
2 y4(s)+ t

1
2 s

1
4 .

Trivially, we have y(t) = O(t
3
2 ) which coincide with the result of Theorem 2. Ec(t)

denotes Mittag-Leffler function, and for integer number d, Jd(t) is known as Bessel function.
We assess this problem by means of the proposed implementation and report the results

in Table 1 and Fig. 1. From Table 1, it is reasoned that the approximate solutions are highly
accurate, it is because the numerical errors are declined regularly in the short CPU-time used
particularly for the large degrees of approximation N. In addition, the semi-log depiction of
the numerical errors demonstrated in Fig. 1 confirms the well-known exponential accuracy
predicting in Theorem 3 caused by the linear variations of the semi-log depiction of errors
versus N (notice that we have ε, ς = ∞ in Theorem 3).

Table 1 The numerical consequences of Example 1 for different degrees of approximation N.

N e(N) CPU-time (sec)
8 6.93E-2 1.51
16 6.44E-3 18.92
32 6.51E-7 113.13
64 2.04E-15 555.19
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-14
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0
(e
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Fig. 1 Semi-log depiction of the numerical errors versus N for Example 1.
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Fig. 2 Semi-log depiction of the numerical
errors versus N for Example 2.
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Fig. 3 Graphs of the exact solution (solid
line) and the approximate solution (red
squares) of Example 2 for N = 710.

Example 2 Let us give the following highly oscillatory non-linear weakly singular FIDEs{
D

1
2
C y(t) = f (t)+

∫ t
0(t− s)−

1
2 g(t,s,y(s))ds, t ∈ [0,2Π ],

y(0) = 0.

The forcing function f (t) is selected in a way that

g(t,s,y(s)) = t2s
3
2 y2(s)+52F2({

1
4
,

3
4
};{1

5
,

2
5
}; − t

1
2

2
),

and y(t) = t sin100t
1
2 .

ξ Fξ ({a1, . . . ,aξ};{b1, . . . ,bξ}; t) denotes the generalized hypergeometric function. We
apply the introduced scheme to this problem and the derived consequences are illustrated in
Fig. 2 and Fig. 3. Needless to mention, the highly oscillatory behavior of the solution may
cause instability in approximation, particularly for large degrees of approximation N. Re-
gardless of this fact, the numerical results demonstrate that our scheme, however, produces
highly accurate approximate solutions. Indeed, From Fig. 2, it can be concluded that the
method is on the path of convergence for N > 680, and the effective computational perfor-
mance of our strategy let the numerical errors decline regularly specifically for large degrees
of approximation N. Furthermore, the well-known exponential accuracy is confirmed caused
by the linear variations of semi-log depiction of errors versus N.

Example 3 [20] Consider the following non-linear weakly singular FIDEs{
D

2
3
C y(t) = f (t,y(t))+

∫ t
0(t− s)−

1
2 y2(s)ds, t ∈ [0,1],

y(0) = 0,
(35)

where

f (t,y(t)) =
3Γ ( 1

2 )

4Γ ( 11
6 )

t
5
6 − t

5
2 − 32

35
t

7
2 + ty(t).

The exact solution of this problem is y(t) = t
3
2 . Considering γ = 1

6 , this problem is
solved via the implemented scheme, and the exact solution is obtained with the degree of
approximation 9, in machine precision. Also, in [20], the approximate solution of (35) is
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computed by means of a modification of hat functions (MHFs), and the absolute errors at
some selected grid points derived in [20] for various values of n are listed in Table 2. In
this method, n directs the number of uniform sub-intervals. We refer the reader to [20] for
more details about this method. Comparison results justify the dominance of our suggested
method over the presented scheme in [20].

Table 2 The absolute errors at some selected grid points of Example 3 with different values of n utilizing the
suggested method in [20].

n Error
2 7.09E-2
4 1.40E-2
8 3.31E-3
16 8.85E-4
32 2.46E-4
64 6.92E-5

128 2.42E-5
256 8.57E-6
512 3.03E-6
1024 1.07E-6

6 Conclusions

A comprehensive survey of the existence, uniqueness, and smoothness properties of the
solution of (1) was presented, and in particular, was demonstrated that the solution has a
singularity at the origin. Taking into account the smoothness of the solution we proposed
a creative strategy based on the spectral Petrov-Galerkin method to solve (1) numerically.
This strategy offered some recurrence relations for deriving the approximate solution rather
than solving a non-linear complex algebraic system. Finally, our implementation drove us
to verify the spectral accuracy of the proposed method through the convergence theorem
and approximating some illustrative examples. This strategy enables us to attack a vast ma-
jority of non-linear fractional functional equations, which would possibly motivate us to do
research on it in the future.
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