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ABSTRACT

We address the issue of clustering numerical vectors with a
network. The problem setting is basically equivalent to con-
strained clustering by Wagstaff and Cardie [20] and semi-
supervised clustering by Basu et al. [2], but our focus is
more on the optimal combination of two heterogeneous data
sources. An application of this setting is web pages which
can be numerically vectorized by their contents, e.g. term
frequencies, and which are hyperlinked to each other, show-
ing a network. Another typical application is genes whose
behavior can be numerically measured and a gene network
can be given from another data source. We first define a
new graph clustering measure which we call normalized net-

work modularity, by balancing the cluster size of the origi-
nal modularity. We then propose a new clustering method
which integrates the cost of clustering numerical vectors
with the cost of maximizing the normalized network modu-
larity into a spectral relaxation problem. Our learning algo-
rithm is based on spectral clustering which makes our issue
an eigenvalue problem and uses k-means for final cluster as-
signments. A significant advantage of our method is that
we can optimize the weight parameter for balancing the two
costs from the given data by choosing the minimum total
cost. We evaluated the performance of our proposed method
using a variety of datasets including synthetic data as well
as real-world data from molecular biology. Experimental re-
sults showed that our method is effective enough to have
good results for clustering by numerical vectors and a net-
work.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.3 [Pattern Recognition]: Clustering—
Algorithms
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1. INTRODUCTION
Clustering, a major research subject in data mining, has

been successfully applied to a wide variety of areas in the
real world. In this paper, we address the issue of cluster-
ing numerical vectors with a network. This is a general
setting which can be found in a lot of applications and ba-
sically equivalent to constrained clustering by Wagstaff and
Cardie [20] and semi-supervised clustering by Basu et al. [2],
but our focus is more on the optimal combination of two het-
erogeneous data sources, numerical vectors and a network.

A typical application is web pages. This case, web pages
will be clustered by their contents, say term frequencies,
based on the assumption that if the contents of a page are
very similar to those of another, these pages can be in the
same cluster. In contrast, web pages are linked together,
forming a network in which nodes and edges correspond to
web pages and hyperlinks between them, respectively, and
can be clustered based on the hyperlink connectivity. Clus-
tering web pages based on hyperlinks is exactly graph par-
titioning. Standard criteria for graph partitioning are ratio
cut [8] and normalized cut [15]. Simply speaking, these cri-
teria are to minimize the number of inter-cluster edges rel-
evant to the size of a cluster. The number of inter-cluster
edges which is called graph min-cut is to check the parti-
tioning performance while the size of a cluster is to avoid a
small cluster which might be generated by outliers. In other
words, these criteria are obtained by normalizing the graph
min-cut by the cluster size. Given a network, minimizing
normalized cut (or ratio cut) is a trace optimization problem
which is NP-hard. Thus usually this problem is converted
by spectral relaxation into an optimization problem with
a constraint which can be solved by Lagrange multipliers,
and the solution is given by an eigenvalue problem. This is
called spectral graph clustering which is difficult to assign a
cluster label to each node definitely. Thus usually k-means
is finally applied to cluster assignments using the resultant
eigenvectors.

In the problem setting of graph partitioning, a numerical



weight can be attached to each edge of a given graph, and
you may think that the similarity between two web pages
can be a weight for the hyperlink between them. However,
we assume that a given graph and a given set of numeri-
cal vectors are independently observed. This assumption is
natural. For example, the contents of web pages and their
links are independently generated. More concretely, there
is a case that two web pages are very similar to each other,
even if there are no links between them. Thus we note that
our problem cannot be solved directly by using an existing
graph partitioning method only.

Another application is genes. Genes are expressed and
function in a cell. Currently the quantitative expression
of thousands of genes can be measured simultaneously by
using the latest technology in genetic engineering, called
cDNA microarray. We can have a numerical vector (gen-
erally called a profile) for each gene by repeating the experi-
ment of cDNA microarray. However cDNA microarray data
is very noisy and unreliable. Thus naturally we often need
another data source in clustering genes, since precise gene
clustering is important in predicting gene function [16]. We
can have more reliable information on genes as a gene net-
work, although they are confined to relatively well-studied
genes. For example, literature information provides us with
the co-occurrence frequencies of genes in medical documents
which can be turned into a network of genes by setting a
cut-off value against the frequencies. Similarly, metabolic
or gene regulatory networks which are generated from liter-
ature are much more reliable than microarray data.

A potential approach for our problem setting would be
to integrate the two data sources, numerical vectors and
a network. A typical example of this direction is semi-
supervised clustering based on a hidden Markov random
field (HMRF) [2]. Semi-supervised clustering by HMRF
is clustering numerical vectors by minimizing the objective
function containing squared Euclidean distance as well as
weighted network constraints. This method was extended
to a more general framework in which the objective func-
tion can be expressed as a trace optimization problem for
which an efficient weighted kernel k-means algorithm was
proposed [11]. This work is based on the idea that minimiz-
ing the cost (or the objective function) of semi-supervised
clustering by HMRF can be a trace optimization problem,
which is true of minimizing the objective function of the
weighted kernel k-means and more generally, minimizing a
graph cut criterion such as normalized cut or ratio cut [3].
This work inspired us to combine numerical vectors with
a network, but we note that our criterion for graph parti-
tioning is clearly different from that in [11] and our focus is
more on optimally combining the two data sources in terms
of clustering.

Recent analysis on networks in the real-world data have
revealed that they have some common global characteristics
such as small-world phenomena [21], scale-free property [1],
self-similarity [17] and hierarchical modularity [14]. We can
expect that the performance of clustering in our problem set-
ting might be improved by using some global network prop-
erty than the vicinity information like the Markov property.

In light of the above, we propose a new method for cluster-
ing numerical vectors with a network. We focus on network

modularity, a global feature found in a lot of real-world net-
works such as gene networks [14] and must be a powerful
criterion for clustering by the graph connectivity. The orig-

inal network modularity [13, 7, 6] is, intuitively, the number
of intra-cluster edges minus the square of the number of
inter-cluster edges. That is, this measure is given by using
only the edges of a graph and is not balanced by the clus-
ter size. Thus we first define normalized network modularity

which is obtained by dividing the original network modu-
larity by the cluster size. We then integrate the normalized
network modularity with the cost of clustering numerical
vectors into the framework of a trace optimization problem.
Our clustering algorithm is based on spectral clustering by
which our issue is relaxed into an eigenvalue problem and
the final clusters are assigned by k-means clustering algo-
rithm from the resultant eigenvectors. We stress that our
work is an approach for clustering with not only numerical
vectors but the network modularity. A significant merit of
our method is that we can optimize the weight parameter
for balancing the two data sources by choosing that which
minimizes the total cost.

We evaluated the performance of our method using three
types of datasets including both synthetic and real-world
data. Our first dataset was synthetic both in numerical
vectors and a network. Numerical vectors were generated
randomly according to a mixture of von Mises-Fisher distri-
butions, and a network was generated by selecting node pairs
randomly. We confirmed the effectiveness of our method by
checking normalized mutual information (NMI), a measure
to check the performance of clustering methods, and the to-
tal cost of clustering, with varying the value of the weight
parameter for balancing the two data sources. In particular,
we found that NMI was mostly maximized at the weight
parameter value which minimized the total cost, meaning
that our strategy of choosing the weight parameter value
of the minimum total cost worked successfully. The second
dataset was synthetic numerical vectors and a real metabolic
network having the scale-free property and unbalanced clus-
ter sizes. From the experimental results on this dataset, we
showed that our method of optimally combining numerical
vectors with a given network worked favorably against even
a real scale-free network with unbalanced cluster sizes. The
third dataset was real microarray expression profiles corre-
sponding to numerical vectors and the real gene network
used in the second dataset. We note that gene expression
measured by microarray is heavily noisy and unreliable while
the network we used is from a database which is manually
curated and trustworthy. Interestingly the resultant weight
parameter value was extremely biased to the network infor-
mation, being consistent with the above reliability fact of
the two input data sources.

2. METHOD

2.1 Preliminaries and Notations
We describe the notations that will be used throughout

this paper.
Let N be the number of given numerical vectors (data

points). Let E be the N × N matrix whose entries are all
one. Let X := (x1, · · · , xN ) be given numerical vectors.
Each xn has p entries, and let xn(i) be the i-th entry of xn.

Let X̄ := (x̄1, x̄2, . . . , x̄N) where x̄n := xn/
p
Pp

i=1 xn(i)2.

Y = X̄
T

X̄. Let G be a given network with N nodes
and edges. Let W ∈ ℜN×N be a non-negative, symmet-
ric matrix whose (i, j) entry, wij is a non-negative weight



between nodes i and j. If there is no edge between nodes
i and j, wij is zero. We note that in our problem setting,
W is an input having all information on a given graph G
and is often called a weight matrix or an affinity matrix.
Let W̄ be a matrix whose (i, j) entry w̄ij satisfies that

w̄ij = wij/
PN

j=1 wij . Let Dd be a N × N diagonal ma-

trix whose (i, i) entry di satisfies that di =
PN

j=1 wij . Let

D := dT d where d := (d1, · · · , dN ). Let M be a matrix
which satisfies M := D−1

d W .
Let K be the number of clusters which is an input. Let IK

be the identity matrix of size K. Let Z := (z1, · · · , zK) be
an unsigned cluster assignment in which zT

k = (zk,1, · · · , zk,N )
where zk,n (∈ {0, 1}) is 1 if xn is in cluster k, otherwise zero.

Z̃ := Z√
ZT Z

. Let — := (—1, · · · , —K) where —k be the rep-

resentative (or the cluster center) of cluster k. Let Zk be
a set of nodes in a given graph (or numerical vectors) in
cluster k, and let |Zk| be the number of all nodes in clus-
ter k. Z := ∪K

k=1Zk. Let V be a diagonal matrix whose
(k, k) entry is |Zk|. L(Zk,Zk′) :=

P

i∈Zk

P

j∈Z
k′

wij , and

L := L(Z,Z).
Let J be a cost of clustering numerical vectors X (or/and

nodes in network G). Let ω be a numerical parameter which
takes a value between zero and one, and balances the two
data sources, i.e. numerical vectors X and network G.

2.2 k-means
We first briefly review the k-means clustering algorithm

which is widely used in a lot of applications. The cost (or
the objective function) of the k-means algorithm is given as
follows:

Jnum(X,Z; —) =
1

N

K
X

k=1

X

i∈Zk

Dist(xi, —k), (1)

where Dist(xi, —k) is a distance between numerical vector
xi and cluster representative —k of cluster k. We can use

any distance such as Euclidean distance, cosine similarity
and 1−Pearson correlation coefficient. In our experiments,
we used cosine similarity which is used for clustering high-
dimensional data such as text documents [25]:

Dist(xi, —k) =
1

2

 

1 − xT
n —k

p

xT
n xn

!

.

The k-means algorithm minimizes the cost of Eq. (1) by
repeating the following two steps alternately until conver-
gence: 1) updating the cluster representative and 2) updat-
ing cluster labels. Figure 1 shows the pseudocode of the
k-means clustering algorithm.

2.3 Maximizing Normalized Network Modu-
larity

2.3.1 Spectral Graph Partitioning

We briefly review k-way graph partitioning which divides
nodes of a given graph (network) into k clusters. The stan-
dard criteria to be minimized in k-way graph partitioning
are ratio cut and normalized cut which are given as follows:

Ratio cut:
X

k

L(Zk,Z \ Zk)

|Zk|
.

Normalized cut:
X

k

L(Zk,Z \ Zk)

L(Zk,Z)
.

——————————————————————–
Input : X , K, Z(0), —(0)

Output : Z, —, J

k-means (X, K,Z(0), —(0))

1: Z ← Z(0), — ← —(0)

2: X̄ ← X/
√

XT X
3: while J(X̄ ,Z; —) is not converged do

4: —
(t+1)
k ← 1

|Z(t)
k

|

P

j∈Z(t)
k

x̄j (k = 1, · · · , K)

5: Z(t+1) ← arg minZ J(X̄ ,Z; —(t+1))

6: Z ← Z(t+1), — ← —(t+1), J ← J(X̄ ,Z; —)
7: end while

——————————————————————–

Figure 1: Pseudocode of k-means.

The numerator which is common to the above two cuts is the
so-called graph min-cut. If we use the graph min-cut only,
the clustering result is very sensitive to outliers. That is,
a small cluster might be formed, if this cluster is relatively
isolated from other nodes. So we need to normalize the
graph min-cut by the number of nodes (ratio cut) or the
total weight (normalized cut) in each cluster.

We can see that the above criteria can be rewritten as
follows:

Ratio Cut:
X

k

zT
k (Dd − W )zk

zT
k zk

.

Normalized Cut:
X

k

zT
k (Dd − W )zk

zT
k Dczk

.

Finding a set of clusters which minimizes this criterion
is an NP-hard problem, and we then solve this problem by
relaxing the discrete cluster indicator matrix to a real valued
one. We can then have the following optimization problem:

minimize tr(Z̃
T
(Dd − W )Z̃)

subject to Z̃
T

Z̃ = IK . (Ratio Cut)

(Z̃
T

DdZ̃ = IK . (Normalized Cut))

By using Lagrange multipliers, we can easily find that the
solution of this optimization can be an eigenvalue problem.
In a standard manner of spectral clustering, after solving
the eigenvalue problem, we first select the resultant K − 1
eigenvectors with the minimum eigenvalues. Then, since we
cannot directly assign a cluster label to each numerical vec-
tor (or each node in a given graph) by the resultant eigen-
vectors, we apply the k-means clustering algorithm to the
selected K − 1 eigenvectors after their normalization.

2.3.2 Maximizing Normalized Network Modularity
with Spectral Graph Partitioning

Network modularity is originally defined as follows [6]:

Q(G) =
K
X

k=1

(

2ek(G)

L
−
„

gk(G)

L

«2
)

, (2)

where ek(G) is the number of edges in cluster k and gk(G)
is the total sum of degrees over all nodes in cluster k. As
shown in the above, the weight attached to each edge was not
considered in the original definition of network modularity.



Hereafter, we incorporate the edge weight into the network
modularity, meaning that the binary definition on each edge
is turned into a numerical one. We note that the property
of the network modularity is totally kept in this extension.
Eq. (2) can then be rewritten by using only L as follows:

Q(W ) =
K
X

k=1

(

L(Zk,Zk)

L
−
„

L(Zk,Z)

L

«2
)

.

This measure is defined by the (weighted) number of edges
only, meaning that the original modularity considers the
number of edges only. More importantly, the original net-
work modularity is not balanced by the cluster size, meaning
that a cluster might become small when affected by outliers.
Thus we define the new measure which we call normalized

network modularity whose cost (or the objective function) is
given as follows:

Jnet(W ,Z) =
K
X

k=1

N

|Zk|

(

„

L(Zk,Z)

L

«2

− L(Zk,Zk)

L

)

.

This equation indicates that the larger negative value of this
cost a clustered network has, the higher normalized network
modularity this network has. The problem of finding the
set of clusters which minimizes this cost is NP-hard. We
then apply the spectral clustering approach to minimize the
cost of normalized network modularity, J(W ,Z). In the fol-
lowing derivation, we partly borrow the idea of the spectral
graph clustering by White and Smith which was developed
for the original network modularity [22].

We can first modify the problem of minimizing J(W ,Z)
into the problem of minimizing the following trace:

Jnet(W ,Z) = tr

 

ZT N
`

1
L2 D − 1

L
W
´

Z

ZT Z

!

. (3)

As shown in the spectral graph clustering using ratio (or nor-
malized) cut, matrix Z must satisfy the following constraint
since each node falls into one cluster only:

Z
T

Z = V .

We can then replace Z with Z̃ and rewrite the trace op-
timization problem in the following by relaxing the discrete
cluster indicators into real-valued indicators:

minimize tr

„

Z̃
T
„

1

L2
D − 1

L
W

«

Z̃

«

subject to Z̃
T

Z̃ = IK .

The solution can be found via Lagrange multipliers in the
following typical eigenvalue problem:

„

1

L2
D − 1

L
W

«

Z̃ = Z̃Λ,

where Λ is a diagonal matrix of Lagrange multipliers. This
can be further modified using W̄ , the normalized W , into:

„

1

L
W̄ − 1

L2
E

«

Z̃ = Z̃Λ. (4)

When n → ∞, the second term of Eq. (4) approaches zero
faster than the first term. In addition, we can approximate
W̄ by D−1

d W . We then approximate Eq. (4) by the follow-
ing simple eigenvalue problem:

MZ̃ = Z̃Λ. (5)

——————————————————————–
Input : W , K, Z(0), —(0)

Output : Z

1: Compute Dd from W .
2: M ← D−1

d W
3: Compute H of M .
4: Normalize H into H̄.
5: [Z, —, J ] ← k-means(H̄, K,Z(0), —(0))

——————————————————————–

Figure 2: Pseudocode of spectral clustering for nor-
malized network modularity.

This modification allows M to be a very sparse matrix,
meaning that we can reduce the computational cost of solv-
ing the eigenvalue problem in Eq. (5).

After solving Eq. (5), we have the resultant K − 1 eigen-
vectors with the minimum eigenvalues. That is, we can have
N × (K − 1) matrix, H = (h1, · · · , hK−1) where hi be the
i-th eigenvector of the selected K −1 eigenvectors. We then
normalize this matrix into N × (K − 1) matrix, H̄ in which

(n, k) entry h̄nk satisfies h̄nk = hnk/
q

PK−1
k=1 h2

nk where hnk

is (n, k) entry of H . This eigenmatrix H̄ can be an input
of k-means. Figure 2 shows the pseudocode of this process.

2.4 Proposed Algorithm for Optimally Com-
bining Numerical Vectors with Normalized
Network Modularity

2.4.1 Spectral Clustering with Numerical Values and
a Network

We describe our proposed algorithm for combining two
data sources: numerical vectors and a given weighted net-
work.

We first set the cost (the objective function) of clustering
numerical vectors as follows:

Jnum(X̄,Z; —) =
1

N

K
X

k=1

X

i∈Zk

1

2
(1 − x̄

T
i —k),

where the cluster representative —k of cluster k is given as
follows:

—k =
1

|Zk|
X

j∈Zk

x̄j

The cost of k-means can be rewritten as follows:

Jnum(X̄ ,Z) =
1

2N

K
X

k=1

X

i∈Zk

“

1 − x̄
T
i —k

”

=
1

2N

K
X

k=1

X

i∈Zk

0

@1 − x̄
T
i

1

|Zk|
X

j∈Zk

x̄j

1

A

=
1

2
− 1

2N

K
X

k=1

1

|Zk|
X

i∈Zk

X

j∈Zk

x̄
T
i x̄j

and it can then be a trace optimization problem:

Jnum(X̄,Z) =
1

2
− tr

„

ZT (2N)−1Y Z

ZT Z

«

(6)



We then combine the cost of clustering numerical vectors
which is shown in Eq. (6) with the cost of the normalized
network modularity which is given in Eq. (3), using ω for
balancing the two costs:

Jtotal(X̄, W ,Z)

= ωJnet(W ,Z) + (1 − ω)Jnum(X̄,Z)

= tr

(

ZT
`

ωN
L2 D − ωN

L
W − 1−ω

2N
Y
´

Z

ZT Z

)

= tr

j

Z̃
T
„

ωN

L2
D − ωN

L
W − 1 − ω

2N
Y

«

Z̃

ff

Finding a set of clusters minimizing the integrated cost is
also an NP-hard problem, and so we solve this problem by
relaxing discrete cluster indicators into real-valued ones. By
doing so, we can have the following optimization problem:

minimize tr

j

Z̃
T
„

ωN

L2
D − ωN

L
W − 1 − ω

2N
Y

«

Z̃

ff

subject to Z̃
T

Z̃ = IK (7)

This optimization problem can be also turned by Lagrange
multipliers into the following eigenvalue problem for the to-
tal cost:

MωZ̃ = Z̃Λ, (8)

where

Mω =
ωN

L2
D − ωN

L
W − 1 − ω

2N
Y .

Once we have the above eigenvalue problem, we can use
the same manner of clustering as done in spectral graph clus-
tering. That is, given N × N matrix M , we can obtain the
resultant K −1 eigenvectors with the minimum eigenvalues,
to generate N × (K − 1) matrix S = (s1, · · · , sK−1) where
si is the i-th eigenvector of the selected K − 1 eigenvectors.
We then use the k-means clustering algorithm, after normal-
izing S into S̄ which is the N × (K − 1) matrix in which

(n, k) entry s̄nk satisfies s̄nk = snk/
q

PK−1
k=1 s2

nk where snk

is (n, k) entry of S.
As we saw in spectral graph clustering, the constraint

given in Eq. (7) can be modified into another form. For

example, we can use Z̃
T

DdZ̃ = IK which was used for nor-
malized cut in graph partitioning. This case, Mω is given
as follows:

Mω = D
− 1

2
d (

ωN

L2
D − ωN

L
W − 1 − ω

2N
Y )D

− 1
2

d .

We used this constraint in our experiments, since normal-
ized cut is more often used in graph partitioning than ratio
cut. In addition, White and Smith [22] also used this mod-
ification when they practically applied their spectral graph
clustering with the original network modularity to the real
world datasets.

2.4.2 Estimating ω

The parameter ω depends on the spectral space which is
generated by combining the two data sources, meaning that
the choice of ω will heavily affect the clustering result. So
we propose a method to estimate the optimal ω value from
given two data sources. In this method, varying ω from
zero to one, we choose the ω which gives the minimum total
cost, Jtotal. Figure 3 shows the pseudocode of the whole
procedure of our proposed algorithm.

——————————————————————–
Input : X , W , K, Z(0), —(0)

Output : Z

1: X̄ ← X/
√

XT X

2: Y ← X̄
T

X̄
3: Compute Dd and D from W
4: for ω = 0 to 1 do

5: Mω ← D
− 1

2
d (ωN

L2 D − ωN
L

W − 1−ω
2N

Y )D
− 1

2
d .

6: Compute S of Mω.
7: Normalize S into S̄.
8: [Zω , —ω, Jω] ← k-means(S̄, K,Z(0), —(0))
9: end for

10: ωmin ← arg minω Jω

11: Z ← Zωmin

——————————————————————–

Figure 3: Pseudocode of the proposed algorithm.

3. EXPERIMENTS

3.1 Dataset 1: Synthetic Numerical Vectors and
Synthetic Random Network

3.1.1 Data

1. Synthetic Numerical Vectors: We first assume
that numerical vectors are randomly generated according to
a mixture of von Mises-Fisher distributions [12] in which
each component corresponds to a cluster:

p(x) =

K
X

k=1

αkcp(κ)eκ—T

k
x,

where αk (k = 1, · · · , K) are mixture proportions satisfying

that
PK

k=1 αk = 1 and 0 ≤ αk ≤ 1, and cp(κ) is given as
follows:

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
,

where Ip/2−1(κ) is the type 1 Bessel function of order p
which is given as follows:

Ip(κ) =
1

π

Z π

0

eκ cos t cos(pt)dt.

Interested readers should refer [4] on the method for ran-
domly generating numerical values according to this distri-
bution. We used the following settings: K = 4, p = 3,
αk = 0.25 (k = 1, . . . , 4), —1 = (0, 0, 1)T , —2 = (0, 0,−0.5)T ,

—3 = (−0.5,
√

3
2

,−0.5)T , —4 = (−0.5,−
√

3
2

,−0.5)T . An-
other parameter, κ which is called concentration parameter,
behaves like the inverse of the variance of numerical vectors
in a cluster. Thus numerical vectors which are generated
with a larger κ will be more concentrated on cluster repre-
sentatives and be more easily clustered. Thus we changed
κ in our experiments to check the effect of κ on clustering
results.

2. Synthetic Random Network: To generate a net-
work, we first assigned a cluster label to each node. We
generated a network in which the number of nodes and the
number of edges in each cluster are kept the same for all
clusters. Thus the generated network was defined by three
parameters: Nv (the number of nodes in a cluster), Ne (the
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Figure 4: Dataset 1: The distribution of eigenvectors sn (n = 1, . . . , 400) which are shown by four different
symbols (◦, ∗, +,△) corresponding to four different clusters at Nin = 250, κ = 5, (a) ω = 0 and J = 0.0932, (b)
ω = 0.3 and J = 0.0538 and (c) ω = 1 and J = 0.0809.

total number of edges) and Nin (the number of edges in a
cluster) which is equal to 1

2
L(Zk,Zk) (k = 1, · · · , K). We

then chose a value of Nv to generate a set of nodes and
randomly chose node pairs which are connected by edges to
satisfy the values of Ne and Nin. In Dataset 1, we used
Nv = 100 (meaning that the total number of nodes is 400)
and Ne = 1, 600, while Nin was changed to check how the
clustering performance is affected by Nin.

3.1.2 Performance Results

To evaluate our clustering results using true cluster labels,
we used normalized mutual information (NMI) [18] which
has been used in a lot of applications to measure the perfor-
mance of clustering methods [24]. A larger NMI value in-
dicates a better clustering result. Interested readers should
see [18] for the detail of NMI.

We first checked the distribution of sn (n = 1, · · · , 400),
i.e. the resultant eigenvectors of the eigenvalue problem in
Eq. (8), when we fixed κ = 5 and Nin = 250. Figure 4 shows
the three distributions of eigenvectors which are shown in
four different symbols (◦, ∗, +,△) corresponding to four dif-
ferent clusters, when ω was at 0, 0.3 and 1. This figure shows
that the distribution of eigenvectors changes with varying ω.
In particular, we can see that when ω = 0.3, the eigenvec-
tors were separated most clearly among the three cases. In
fact, when ω=0, 0.3 and 1, J was 0.0932, 0.0538 and 0.0809,
respectively, indicating that eigenvectors at ω = 0.3 were
the most concentrated on the cluster representatives among
the three cases of ω.

We then checked the effectiveness of our method of opti-
mally combining two different data sources by using the cost
J and NMI, when ω is changed. We used each data set of all
combinations of κ = 1, 5 and 50 and Nin = 250, 280 and 300.
Figure 5 shows J of all these cases, and Figure 6 shows NMI
of all these cases. From these figures, first of all, we can see
that with increasing Nin ((a) → (b) → (c)), the modularity
became higher, resulting with decreasing the cost (J) and
increasing NMI. This might be clearer if we focus on the ω
of one. On the other hand, we can see that with increasing
κ (1 → 5 → 50), numerical vectors were more concentrated
on their cluster representatives, resulting with decreasing

the cost (J) and increasing NMI. This might be also clearer
if we focus on the ω of zero.

In all 18 curves in Figures 5 and 6, the best value is ob-
tained when 0 < ω < 1, indicating that combining two data
sources improved the cost J and NMI of ω = 0 and ω = 1. In
particular, we emphasize that the ω value of the minimum
J was mostly consistent with that of the maximum NMI.
For example, when Nin = 250 and κ = 1, J was minimized
at ω = 0.5 and the maximum NMI was at ω = 0.4. Simi-
larly, at κ = 5, the minimum J was at ω = 0.4 where the
maximum NMI was obtained. This was true of Nin = 280
and κ = 1 where ω = 0.5 provided the best in both NMI
and J . These results imply that our method of selecting
ω worked effectively for optimally combining numerical vec-
tors with a given network. An interesting finding is that in
a balanced case in which the cost (and NMI) of ω = 0 is
almost the same as that of ω = 1, the curve became concave
(and convex for NMI), indicating that the minimum cost
(and the maximum NMI) can be easily found. On the other
hand, in an unbalanced case such as κ = 1 and Nin = 310
in (c), the curve was not necessarily concave (and convex
for NMI), meaning that only one data source (i.e. network
information), is much more informative for clustering than
the other (i.e. numerical vectors). This is natural, because
numerical vectors at κ = 1 were widely distributed, not
concentrating on the cluster representatives, and it would
be difficult to do clustering by them, comparing to the case
of Nin = 310 where clustering could be relatively easy by
using network information only. Thus in such a case, our
method might choose ω = 1 (or ω = 0), but this would be
the right selection, since the NMI at ω = 1 (or ω = 0) must
be the maximum or very close to the maximum in this case.

Using the same parameter setting as that in Figure 6,
we finally checked NMI by repeating randomly generating
datasets 400 times and averaging the performance over them.
Figure 7 shows the averaged NMI obtained by this experi-
ment. The curves in this figure were almost similar to those
in Figure 6, implying that our results were very stable. To-
tally we can say that our method optimally combined the
two synthetic data sources.
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Figure 5: Dataset 1: J at Nin = (a) 250, (b) 280 and (c) 310.
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Figure 6: Dataset 1: NMI at Nin = (a) 250, (b) 280 and (c) 310.

3.2 Dataset 2: Synthetic Numerical Vectors and
Real Scale-free Network

3.2.1 Data

1. Synthetic Numerical Vectors: Numerical values of
a gene, such as gene expression, are usually measured exper-
imentally, meaning that these values are noisy, comparing to
the network which we can derive from a curated database in
molecular biology1. Thus in this experiment, we generated
synthetic numerical vectors to check the performance of our
method of combining two data sources.

As we used a real metabolic network of 636 Saccharomyces

cerevisiae genes (See below the way to generate this net-
work.), we first assigned a cluster label to each node of the
network in the following way: 1) We fixed the number of
clusters and repeated running spectral graph clustering by
White and Smith [22] 1,000 times on the real metabolic net-
work, measuring the original network modularity on the re-
sultant clusters at each time. 2) Out of the 1,000 runs, we
then chose the clusters with the highest network modular-
ity2, and these clusters were used to assign a cluster label

1We show this fact more clearly in the experiment using
Dataset 3.
2We note that the clusters with the highest modularity can-

to each node. That is, these clusters were used as standard
data for evaluation.

We then generated numerical vectors (corresponding to
nodes in the metabolic network) in each cluster, assuming
that they can be generated according to a component of the
von Mises-Fisher distribution mixture as in Section 3.1.1.
We used the following settings: K = 10, p = 5, αk =
0.1 (k = 1, · · · , 10), —1 = (1, 0, 0, 0, 0)T , —2 = (−1, 0, 0, 0, 0)T ,
—3 = (0, 1, 0, 0, 0)T , —4 = (0,−1, 0, 0, 0)T , —5 = (0, 0, 1, 0, 0)T ,
—6 = (0, 0,−1, 0, 0)T , —7 = (0, 0, 0, 1, 0)T , —8 = (0, 0, 0,−1, 0)T ,
—9 = (0, 0, 0, 0, 1)T , —10 = (0, 0, 0, 0,−1)T . We changed κ
to check how clustering results are affected by κ.

2. Real Metabolic Network: Metabolism is repre-
sented by a directed graph, called a metabolic pathway which
shows biochemical processes of synthesizing small molecules
in a cell. Each node is labeled by a chemical compound. A
directed edge from a node, say node A, to another, say node
B, is a chemical reaction, meaning that the compound corre-
sponding to node B is synthesized from that for node A, and
each edge is labeled by a (enzyme) gene which catalyzes the
corresponding chemical reaction. From a metabolic path-

not be obtained so easily by our method of ω = 1, since in
spectral graph clustering, the final solution is obtained by
k-means and is always an approximation.
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Figure 7: Dataset 1: Average NMI over 400 replicates at Nin = (a) 250, (b) 280 and (c) 310.
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Figure 8: Dataset 2: Cost (J) and NMI.

way which is stored in the KEGG (Kyoto Encyclopedia of
Genes and Genomes) database [10], we generated a network
by connecting two genes by an undirected edge, if they cat-
alyze two neighboring chemical reactions in the metabolic
pathway. The generated network which we call metabolic

network had 636 nodes and 3,104 edges. Most importantly,
this network has two important network features: the scale-
free property [1] as well as hierarchical network modular-
ity [14].

3.2.2 Performance Results

We used NMI again to validate the clustering results ob-
tained by our method, with the standard data for evalu-
ation. Figure 8 (a) shows the total cost J with changing
ω, and Figure 8 (b) shows NMI with changing ω. The re-
sults we can derive from these figures were mostly consis-
tent with those obtained by Dataset 1. For example, at
κ = 102 and 103 where the distribution of numerical vectors
was relatively concentrated on their cluster representatives,
the curves could be concave for J (and convex for NMI),
and the ω value of the minimum cost and the ω value of the
maximum NMI were easily found. Furthermore they were
mostly consistent with each other. In addition, at κ = 1
where numerical vectors were distributed broadly, the curve
was not necessarily a strong concave for the cost J (and con-

vex for NMI), implying that this case, the network informa-
tion would be more useful for clustering than the numerical
vectors. In fact, NMI at ω = 1 reached around 0.9, a very
high value, whereas that at ω = 0 stays at less than 0.6.

Figure 9 shows the clustering results obtained by our method
at three different ω values when κ = 10. Ten different colors
correspond to ten different clusters. Figure 10 shows the
true cluster labels we used for both evaluation and gener-
ating numerical vectors. From these figures, we can easily
see that the clustering result at ω = 0.5 was the most sim-
ilar to the true cluster labels among the three networks in
Figure 9. For example, the center part of the true clusters
were colored orange and dark blue, and this was consistent
with the network at ω = 0.5 in Figure 9 (b). On the other
hand, this center part has a lot of different colors at ω = 0
in Figure 9 (a) and is colored dark blue only at ω = 1 in
Figure 9 (c).

From these results, we can say that our method worked
effectively for Dataset 2 which contains a real metabolic net-
work with the scale-free property as well as unbalanced clus-
ter sizes.

3.3 Dataset 3: Real Numerical Vectors and Real
Scale-free Network

3.3.1 Data

1. Real Numerical Vectors: Microarray Gene Ex-
pression We used a microarray gene expression dataset [9]
which has 300 expression profiles (numerical vectors) while
around 200 missing values only. This dataset has been often
used in the literature of microarray expression analysis [26,
23]. All missing values were interpolated by using the 10-
nearest least square method by [19].

2. Real Metabolic Network: We used the real metabolic
network in Dataset 2.

3.3.2 Performance Results

In order to evaluate the clustering result by our method,
we used ten categories in metabolism which were stored in
the KEGG database. At least one of the ten categories could
be assigned to each metabolic gene. We note that these
ten categories are not defined directly from the metabolic
pathways in the KEGG database, and so these ten clusters
cannot be identified by using the metabolic network in our
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Figure 9: Dataset 2: Clustered metabolic networks at κ = 10 and ω= (a) 0, (b) 0.5 and (c) 1.

Figure 10: Dataset 2: True cluster labels.

experiment only. We then used NMI again to validate the
performance of our clustering result.

Figure 11 (a) shows the cost J of our method with chang-
ing ω. Figure 11 (b) shows NMI of our method with chang-
ing ω. The curves in these figures were not strong concave
for J (and convex for NMI), meaning that the two data
sources are heavily unbalanced as pointed out in the ex-
perimental results of Dataset 1 and Dataset 2. In fact, by
looking carefully, we can see that the minimum cost was at
around ω = 0.8 to 0.9 where the best NMI was obtained, and
the difference between the best NMI and NMI at ω = 1 was
insignificant. Also Figure 11 (b) shows the averaged result
over 200 runs of each of the two spectral graph partitioning
methods using normalized cut and ratio cut. We note that
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Figure 11: Dataset 3: Cost (J) and NMI.

these methods used graph information only, and the results
of them are shown as dotted straight lines in the figure. Our
method significantly outperformed these two methods even
at ω = 1, implying that normalized network modularity is
more effective for clustering than normalized cut and ratio
cut.

We repeated the same experiment replacing the above mi-
croarray dataset with datasets derived from a large microar-
ray database [5], and found that the results were almost
similar to the above case. From this result, we can say that
the metabolic network derived from a curated database is
more reliable in clustering metabolic genes than microarray
expression. This result is consistent with existing under-
standing on data reliability in molecular biology.

For Dataset-3, the ω for the minimum cost took a value
which was very close to one, around where NMI was max-
imum or very close to the maximum. Thus we think that
our method succeeded for this dataset. As well in Dataset-2,
our method worked favorably for optimally combining the
real metabolic network with more reliable numerical vectors.
Thus if we have more reliable numerical vectors on genes,



the clustering result would be improved much more. Over
all we can say that our method itself is very promising.

4. CONCLUDING REMARKS
We have presented a new spectral approach to clustering

numerical vectors with a network. The focus of our method
was on network modularity, a key network property in clus-
tering, and we defined a new criterion, normalized network
modularity, for combining the two different data sources in
the framework of spectral clustering. A significant advan-
tage of our method is that we can optimize the weight pa-
rameter for balancing the two data sources, i.e. numerical
vectors and a network. Also our algorithm is time-efficient,
and practical computation time was less than one minute
for any dataset in our experiment. Experimental results
obtained by using three different types of datasets showed
that our method worked favorably for optimally combining
numerical vectors and a network.

In this paper, we have focused on two data sources, i.e.
numerical vectors and a network, both in methodology and
experiments. Our method can be easily extended to a more
general framework for combining multiple heterogeneous data
sources for clustering, and by doing so, the resultant clus-
tering performance might be improved by adding another
different data source. Thus interesting future work is to ap-
ply the proposed method to a variety of real-world datasets
to characterize more systematically under which the pro-
posed method works well. And this would be performed by
not only two different data sources but also more than two
heterogeneous data sources, say numerical vectors, a net-
work and another different type of dataset. It would also be
interesting to develop, in the context of clustering, a general
criterion which can cover a lot of distances for numerical val-
ues as well as graph partitioning criteria such as normalized
cut, ratio cut and network modularity.
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