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A SPECTRAL COMMUTANT LIFTING THEOREM

HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

Abstract. The commutant lifting theorem of [24] may be regarded as a very
general interpolation theorem from which a number of classical interpolation
results may be deduced. In this paper we prove a spectral version of the commu-
tant lifting theorem in which one bounds the spectral radius of the interpolant
and not the norm. We relate this to a spectral analogue of classical matricial
Nevanlinna-Pick interpolation.

1. Introduction

Interpolation by bounded analytic functions in the disc is a topic with a rich
mathematical history and wide-ranging applications. Indeed, here the areas of
complex analysis, operator theory, and hyperbolic geometry intersect creating a
rich synthesis and a research subject with its own flavor and techniques. This
paper is concerned with a new twist to the subject in which we consider inter-
polation theory not with analytic matrices of bounded norm, but with bounded
spectral radius.

In order to put our results in proper perspective, let us briefly review classical
Nevanlinna-Pick theory [16, 19, 20]. Accordingly, we are given 2n points
zx, ... , zn, wx, ... , zn £ D (the open unit disc), and we would like to find
necessary and sufficient conditions for the existence of an analytic function
/: 7) —► 7) such that f(zA = w, for 1 < j < n. Already when n = 2, the
Schwarz-Pick lemma [3] gives a nontrivial obstruction. This basically amounts
to the fact that analytic functions on the disc must be contractive relative to
the Poincaré (hyperbolic) metric. Using these ideas a necessary and sufficient
condition can be written for the existence of f in terms of the positivity of a
certain Hermitian matrix (called appropriately the "Nevanlinna-Pick" matrix).
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742 MARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

More precisely, when the z, are distinct, / exists if and only if

L J   k J X<j,k<n

The classical approach to such interpolation problems (including the general
Carathéodory-Fejér problem [1] in which one is allowed to interpolate with fi-
nite multiplicities) is complex analytic. A remarkable fact discovered by Donald
Sarason [22] is that many results on interpolation by bounded analytic functions
may be deduced in an operator theoretic manner, and using operator theory one
can even extend interpolation theory to cover interpolation with points with infi-
nite multiplicity. (Sarason called his result "generalized interpolation in 77°° ".)
Sarason's theorem was significantly broadened by the Sz.-Nagy-Foias commu-
tant lifting theorem [24, 25] which allows one to even interpolate on the disc by
bounded analytic operator-valued functions. Since these seminal papers, there
has been much work done on interpolation theory from an operator-theoretic
point of view, in particular in a series of classic papers by Adamjan-Arov-Krein
[1, 2], and the theory of Ball-Helton [4]. See also the monograph [5] for an
exposition of results in this area.

Besides the intrinsic mathematical beauty of the aforementioned work on
interpolation by bounded analytic functions, these results have had a major im-
pact in a number of areas of applied science, e.g., control and systems theory,
signal processing, geophysics, circuit theory, and biomédical engineering. For
details see [13, 14, 15, 17, 26], and the references therein. The specific problem
we will be considering in this paper had precisely such an applied origin, namely
that in robust system design, i.e., the design of feedback control systems in the
presence of parameter uncertainty [7]. However, we believe that the mathe-
matical problem which arises from this has a purely intrinsic operator-theoretic
interest, and motivates a completely new type of interpolation theory with a
number of novel twists.

In order to describe our result, let us consider the Nevanlinna-Pick theory
in the matrix case. As above, let Zj £ D be distinct, 1 < j < n, and let
Fx, ... , F be A x A matrices. Then we are interested in finding necessary
and sufficient conditions for the existence of an analytic (in the disc) A x A
matrix-valued function F(z) with F(z}) = Fj (1 < j < n), and such that
||F|| < 1 . The existence of F can again be reduced to the determination of
the positivity of a certain Nevanlinna-Pick matrix. (This fact can be deduced,
e.g., from the commutant lifting theorem [24, 25]. See also the discussion in
§6 below). However, in our case we will not be interested in bounding the
norm, but instead the spectral radius of the interpolating functions. We shall
give necessary and sufficient conditions for the existence of an interpolating F
whose spectral radius is bounded by 1. This will be deduced as a consequence
of a general spectral commutant lifting result (see Theorem 3 below).
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A SPECTRAL COMMUTANT LIFTING THEOREM 743

We now summarize the contents of this paper. In §2, we give the relevant
background on commutant lifting and dilation theory, and illustrate the rele-
vance of this theory to interpolation. In §3, we define a notion of "generalized
spectral radius" which will be used in the formulation of the spectral commu-
tant lifting theorem which is proven in §4. In §5, we describe some properties
of the generalized spectral radius relative to the similarity action of a certain
algebraic group. In §6, we prove a spectral version of the classical matricial
Nevanlinna-Pick theorem. We conclude the paper in §7, where we discuss a
number of examples illuminating the theory.

We would like to thank the referee for his numerous helpful comments, and
especially for the nice argument he provided us in connection to Proposition 6
below (see Remark 7).

2. Background on the commutant lifting theorem

Throughout this paper %f will denote a complex separable Hubert space. By
"operator" we shall always mean "bounded linear operator", unless explicitly
stated otherwise. We let B\J%f) denote the set of operators on %f.

In this section, we shall give some background on the commutant lifting
theorem [22, 24, 25] and its connection to interpolation theory. Full details
about the results described in this section can be found in the aforementioned
references as well as [5].

We first begin with a key result due to Sz.-Nagy [23]. Let T: %? -, %? be a
contraction, i.e., an operator such that ||T|| < 1 . Then in [23] it is proven that
there exists an isometry U on a Hubert space A% such that

oo

jr = y u"ßr
n=0

and Pßfflf = TPçp,, where P%,: 3fA —> %f denotes orthogonal projection. U
is called the minimal isometric dilation of T. Then the commutant lifting
theorem (proved in a special case in [22], and in complete generality in [24])
may be stated as follows:

Theorem 1 (Commutant lifting theorem). Let ß? and %?' denote (complex
separable) Hubert spaces with T: %f -, %?, and T1 : %f' -, £?' contractions.
Let A: %? -y %?' be an intertwining contraction for T and T', i.e., AT = T'A.
Let U: Jf -, 3f and If' : A%' -, JF' denote the minimal isometric dilations
of T and T' respectively. Then there exists a contraction A : A% -, A%' such
that U'Â= ÂU and P^A = AP^, where TV : 3í' -, &' and 7>: ^ -> %*

tri Si Si ¡fi

denote orthogonal projections.

Remarks 1. (i) A is called an intertwining dilation of A .
(ii) For the commutant lifting theorem we do not need the minimal isometric

dilation, but any isometric dilation of T satisfying T* = U*\ßP. Moreover,
in the proof we may take without loss of generality ßf = %?' and T = T'. In
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744 HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

this case, A is called a commuting dilation of A. (See [5, 24, 25], for all the
details.)

The power of the commutant lifting theorem is that it allows one to derive
most of the classical interpolation results involving bounded analytic functions
in a unified, elegant manner even when the functions are operator-valued. In
order to give the reader an idea how this is done we consider here the classical
scalar Nevanlinna-Pick problem following [22].

Recall from the Introduction that the problem of Nevanlinna-Pick concerns
finding necessary and sufficient conditions for the existence of an analytic /: D
-, D, such that f(Zj) = Wj, j = 1, ... , n. We assume as before that the
z are distinct. We now put the Nevanlinna-Pick problem into the commutant
lifting framework.

Accordingly, set

i=X '

Let H(m):= 77 e mH . (All of the Hardy spaces in this paper will be defined
in the unit disc D in the standard way.) One can then prove that H(m) is an
n-dimensional vector space with basis fx, ... , fn, where

\kfij       k J        J
1 1Now let S: 77 -» 77 denote the canonical unilateral right shift defined

by multiplication by z. For PH{m) '■ H2 -, H(m) orthogonal projection, set
S(m) := PH,m)S\H(m) (the compressed shift). Again, it is easy to show [22]
that

S(m)fj = Zjfj
for 1 < j < n .

We can now define a linear operator A : H(m) -* H(m) such that Afi = Wjf
for j = 1, ... , n . Clearly A commutes with T. We are now ready to sketch
the proof of the Nevanlinna-Pick theorem:

Theorem 2 (Nevanlinna-Pick). Assume the notation given above. Then there
exists an analytic f:D-y~D such that f(z) = w, for j = 1,..., n if and
only if the Navanlinna-Pick matrix

Proof. First of all let us note that the nonnegative definiteness of Nevanlinna-
Pick's matrix is equivalent to the inequality 7 - A*A > 0 or, equivalently, to
\\A\\ < 1 . By the commutant lifting theorem, this condition is equivalent to the
existence of an operator A , commuting with S, such that \\A || < 1 and

A = PH(m)Â\H(m).
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A SPECTRAL COMMUTANT LIFTING THEOREM 745

It is well known that every operator A commuting with S is given by

Au = fu,        u £ H ,

for some / £ 77°°, and ||^|| = H/H^. Thus we see that the nonnegative
definiteness of the Nevanlinna-Pick matrix is equivalent to the existence of a
function / £ H^WfW^ < 1, such that

Au = PH(m)fu ~ f{S(m))u,        u £ H(m).

This last equality simply means that Wj = f(zj), j =1,2,..., n. The theo-
rem follows from these observations.   D

We will discuss the matrix spectral version of this result in §6.

3. Generalized spectral radius

We will define the main object of study of this paper in this section, and
derive some of its basic properties. We use the notation and terminology of §2
here.

Given T £ B(ß?), we let

{T}' := {A £ B(ß?): AT = TA}.

We now come to the following key definition:

Definition 1. Let T, A £ B(ß?). Then we set

pT(A) := inf{||A7^Af_1|| : M is invertible and M £ {T}'}.

We call pT(A) the T-spectral radius of A .

Remarks 2. (i) Notice from a theorem of Rota [21], that we have

where 7 denotes the identity operator of %f, and |M||sp is the spectral radius
of the operator A . In particular, we see for any T,

MII.P < pt(A) < M||.
(ii) One can show that the infimum defining pT(A) is not necessarily a min-

imum. (See Example 4 in §7.)
We can now state the following proposition.

Proposition 1. (i) If T is an isometry, then pT(A) = IMHsp for every A £ {T}'.
(ii) If T is normal, then pT(A) = \\A\\    for every A £ {T}'.
(iii) If pT(A) = \\A\\SV¡ for every A £ {T}', then o(T) is a spectral set for T.

In particular, if ß? is finite dimensional, then T is normal.
Proof, (i) Without loss of generality, we may assume that \\A\\ < 1. Since we
already know that

Mllsp < pM)
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746 HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

it suffices to prove the opposite inequality. Equivalently, we must show that
IM||sp < 1 implies that pT(A) < 1. In order to do this, we first choose n > 0
so large that \\A"\\ < 1 . Denote by ß?x the space ß? endowed with the new
scalar product (with associated norm || ||, ) defined by

(h,k)x := (h,k) + (Ah,Ak) + --- + (An~Xh, A"~xk)
for h, k £ ß? (where ( , ) denotes the inner product on ß? with associ-
ated norm || ||). Denote by A{ and Tx the operators A and T regarded as
operators on ß?x, and denote by X : ß7 -, ß?x the identity. Clearly, we have

ll«l|2<l|An||î<(l + M||2 + .-- + M',-1||2)||n||2   vne^,
so that X is invertible. Furthermore,

Mi ahí = E ii^n2 + ii^ii2 ^ E ii^ii2 + ii^ii2 = ii^iiî .
7=1 7=1

and

\\Txh\\\ = £ \\AJTh\\2 = "¿ \\TAJh\\2 = £ \\Ajh\\2 = ||n||2,
7=1 j=X j=X

so that \\AX\\ < 1 and Tx is an isometry. Since Tx = XTX~X, it follows that
there exists a unitary operator If: ß?x —y ß? such that T = UTXU~X . Now
define M := UX and note that M is invertible, M commutes with T, and

||AL4M-1|| = \\UXAX~lU~l\\ = ||A^A_1|| = p,|| < 1,

which completes the proof of part (i).
(ii) As in the preceding proof, it suffices to show that pT(A) < 1 if M||sp < 1 •

Choose n suchthat ||^"|| < 1 , and note that the inequality \\Ah\\x < \\h\\x, h £
ßT, is equivalent to \\BAB~*\\ < 1, where B := (£j¿ A*JAj)x/2. By the
Fuglede theorem, B commutes with T, thus showing that

pT(A)<\\BAB~l\\<l,
as required.

(iii) Assume that pT(A) = \\A\\ for every A £ {T}', and let / be analytic
in a neighborhood of o(T). Clearly

||/(T)||sp = sup{|/(A)|: a £ o(T)}

and

PT(f(T)) = inf{\\Mf(T)M~X\\: M £ {T}',  M invertible }
= inf{\\f(MTM-x)\\:M£{T}',  M invertible } = \\f(T)\\,

completing the proof of the proposition.    D

Let g* be a separable Hubert space, and let H2(W) := H2®% be the Hubert
space of square-summable f -valued power series (see [25]). Given a bounded
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A SPECTRAL COMMUTANT LIFTING THEOREM 747

analytic function A: D —> 77(1?), we can consider the multiplication operator
MA : H2(%) -, H2(%) defined by

(Mj)(z):=A(z)f(z),        f£H2(%),  z £ D.
The operator MA commutes with the unilateral shift S defined by

(Sf)(z):=zf(z),        f£H2(%),  z£D,
and it satisfies the norm equality

\\MA\\ = \\A\\oo = snp{\\A(z)\\:z£D}.
We now have

Proposition 2. Let A: D -, B(ê') be a continuous function, analytic in D. Then
ps(A) = \\MA\\    = sup \\A(z)\\    = max \\A(z)\\

z€D v        z<ED

Proof. Since the function A y-, \\A\\     is upper semicontinuous, the function
z y-y \\A\\    attains its maximum in D. Thus we can set

r := max{\\A\\sp: z £D}.
Now the continuous functions

/n(z):=max{|M(z)2Y/2\r},        «>0,
decrease to r, and therefore by Dini's theorem, they converge uniformly. Since

H/Joo = sup{/;(z):z€75}

= sup{\\A(zf\\X/2":z£D} = \\A2"\\Xf = \\MA"\\X/2\
we have

r= lim||/„||oo= lim||Afj"||1/2" = ||MJ|
n—»oo      "   ""       n—*oo        " n   3r

as required.   D
We next have the following result:

Proposition 3. If g?  is finite dimensional, and A: D -, B(>W)   is a bounded
analytic function, then

ps(MA) = \\MA\lp = sxip{\\A(z)lp:z£D}.
Proof. First note that M y-, \\M\\    is a continuous map for M £ B(8?). More-
over, we have that

ll^2V/2" i IWsp    VMe77(gT).
By Dini's theorem, we have  \\M2 \\x/2   -, \\M\l    uniformly for M in any
bounded subset of B'%). So if A(z) £ H°°(B(CN)), we have (using the uni-
form convergence property just established)

\\MA\\= lim ||Af2"||1/2" = lim supp(z)2"||1/2"
°°Z£D

"z)= sup lim |M(z)2"||1/2" = sup||,á(
zeD«—oo ze£)

which completes the proof of the proposition.   G
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748 HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

Remark 3. It does not seem possible to significantly weaken the hypotheses
of Propositions 2 and 3. Indeed, one can show that if the analytic function
A : D -, B(tW) fails to be continuous on D, and if <g is infinite dimensional,
then we may have

supM(z)||sp<||MJ|sp.

(See Example 7 in §7.)
We will use these results in our proof of the spectral commutant lifting the-

orem in the next section.

4. Spectral commutant lifting theorem

In this section, we will prove our main result, namely a spectral analogue of
the commutant lifting theorem [24]. This will be applied to the spectral version
of classical matricial Nevanlinna-Pick interpolation below.

First we need to recall some general facts about Banach algebras. More pre-
cisely, let sé be a complex Banach algebra and let x £ sé be an invertible
element whose spectrum does not separate 0 from oo. Then, as is well known,
x = exp(v) for some y £ sé . In particular, if sé is finite dimensional, then
a(x) is finite for every x £ sé , and thus every invertible element x is an
exponential.

We thus have the following elementary well-known result which we will use
repeatedly throughout this paper:

Lemma 1. Let %? be a finite-dimensional Hubert space, and let T £ B(ßif).
Then every invertible operator X £ {T}' can be written as X = exp(T) for
some Y £ {T}'.
Proof. Apply the preceding remarks to the finite-dimensional algebra {T}'.   D

We are now ready to state the main result of this section:

Theorem 3 (Spectral commutant lifting theorem). Let T £ B(ß?) be a contrac-
tion with minimal isometric dilation U £ B(A%A). Let A £ {T}' be fixed, and
set

Dil(A) :={B £ {[/}': P%,B = AP%,),

where P%, : Aft —► ßif denotes orthogonal projection.
(i) If 3f QßF is hyperinvariant for U, then

pT(A) < inf{pv(B): B £ E>il(A)).

(ii) If ßif is finite dimensional, then

pT(A) > inf{pv(B): B £ E>il(A)).

(iii) If ßf is finite dimensional, and A% Qß? is hyperinvariant for U, then

pT(A) = inf{\\B\\sp:B£Dil(A)}.
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A SPECTRAL COMMUTANT LIFTING THEOREM 749

Proof. First recall that a subspace ßif' c 3£ is hyperinvariant for U if it
is invariant for every operator in the commutant {£/}' of U. Part (iii) is
clearly a consequence of (i), (ii), and Proposition 1. Assume next that A% e
ßif is hyperinvariant for U. Then in this case the map M y-, P^M\%f is a
homomorphism of {£/}' onto {T}'. Hence, for every B £ Dil(A), we have

pv(B) = inf{\\MBM~x\\:M £ {U}' invertible }

> inf{\\PjyMBM~x\ß?\\: M £ {U}' invertible }

= inf{\\(P^M\ßf)A(P^M\ßr)~x\\: M £ {U}' invertible }
> inf{||A^A-11| : A £ {T}' invertible } = pT(A),

from which we get (i).
Assume now that ßf is finite dimensional. In this case, we claim that every

invertible operator A £ {T}' has the form P^M\ßf, where T^Af = NP^,,
M £ {If}', and M is invertible. Indeed, by Lemma 1 we have that A = exp(T)
for some Y £ {T}'. If Z is any commuting dilation of Y, then M := exp(Z)
is an invertible commuting dilation of A. Now let e > 0, and choose A £ {T}'
such that

||A^A"'|| < pT(A) + e.
Let M be an invertible commuting dilation of A, and let C be a commuting
dilation of NAN~X such that

\\C\\ = \\NAN~X\\.

Then 7i := M~XCM is a commuting dilation of A , and

Pu(B) < HAfTivl/"1!! = ||C|| < pT(A) + e.
Since e is arbitrary, we thus have that (ii) and the theorem are proven.   D

Remark 4. The most useful part of Theorem 3 is (iii), and so we would like to
discuss its range of applicability. First notice that for T completely nonunitary
(i.e., T has no nonzero reducing subspaces on which it is unitary; see [25]), If
must be a shift of finite multiplicity. In this case, up to unitary equivalence, we
may assume that If = S is the canonical shift on 772(f) = 772 ® %, where i?
is a finite-dimensional (complex) Hubert space. The hyperinvariant subspaces
of 772(<r) have the form mH2(%) with m £ 77°° inner (see [5, 25]), and
the space 77 (i?) e mH (If) is finite dimensional if and only if m is a finite
Blaschke product. Thus the operators T to which (iii) applies have the form
S(m) ® 7r , with % a finite-dimensional Hubert space.

Finally, for T as in part (iii) of Theorem 3 with minimal isometric dilation
If a shift, we will say that a commuting dilation B of A £ {T}' is rational if
it is defined by multiplication by a rational (matrix-valued) function.

Lemma 2. Assume that the hypotheses of part (iii) of Theorem 3 hold, and that
the minimal isometric dilation  U of T is a shift.   Then for every invertible
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750 HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

M £ {T}', there exists an invertible commuting dilation M of M such that M
is rational.
Proof. As in the proof of Theorem 3, we take M = eL,  L £ {T}', and we
dilate L to L £ Dil(L). Then M := e    satisfies

p

n=0
:= -lip) —* 0    for p -, oo.

Notice that we can always choose L to be rational, e.g., the maximum en-
tropy solution [11]. On the other hand for every p > 0,

^        "   i Ä

p     ¿—t n\
n=0

is rational, and hence so is M~ . Moreover, for p sufficiently large (namely,
such that n(p) < ||Af_1||_1), we have

\\M - Mp\\ < rj(p)

and
w:l\\<w~hp   " - " "i     HÍ7-1l-\\M-¡\\r,(p)

So if n(p) < 1/2\\M x\\ we have

X := Pj,.(I - Mp XM)\ßT
satisfies ||A|| < 1 . Now choose an exact (norm-preserving) maximum entropy
dilation A of A (so that X is rational), and define

A := Mp(I - X).

Then A is invertible, and

PrÑ\& = P^MpP^Mp XM\ß? = PrM\ß? = M,
giving the desired result.   D

We now have the following key corollary to Theorem 3.

Corollary 1. For T completely nonunitary, and under the hypotheses of part (iii)
of Theorem 3, we have

pT(A) = inf{||AfB||   : MB is a commuting dilation of A,
•   B(z) is rational}.

Proof. Denote by p0 the infimum of the right-hand side of equality (1) above.
By Theorem 3, we have that pT(A) < p0.  Suppose now to the contrary that
pT(A) < p0 . Then there exists M £ {T}', M invertible, such that

\\MAM~X\\ <p0.
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A SPECTRAL COMMUTANT LIFTING THEOREM 751

Now by Lemma 2, we can find an invertible rational commuting dilation M of
M. Let 7i be the exact maximum entropy commuting dilation of MAM~ .
Then B is rational. If we now set

B:=M~XBM,

we have that B is rational, from which we can draw the required contradiction
to complete the proof of the corollary.   D

Remarks 5. (i) Corollary 1 means that as in the classical commutant lifting
theorem, for T = S(m) ® 1% on a finite-dimensional space, we can always
find rational commuting dilations arbitrarily close to optimal for the spectral
commutant lifting theorem.

(ii) It is possible to extend the spectral commutant lifting theorem to more
general contractions T which would allow us to derive the spectral analogues of
certain tangential interpolation results as in [12]. Namely, for T a contraction
on ßif, let If: A% -, 3? denote an isometric dilation of T. We let Sf be
the set of all operators X: ßf -, ßifx c X such that X is invertible, U is
an isometric dilation of T, := XTX~ , and X has an invertible intertwining
dilation. For A £ {T}', we set

pTU(A) := inf{||A^A_1 \\: X £ 8?}.

Now for U the minimal isometric dilation of T, and for 31A e ßf hy-
perinvariant for U, we can show pT(A) = pT V(A). Moreover, one could
prove using the above methods a spectral commutant lifting theorem relative to

pTtU(A).
The only problem at this point, however, is that we do not know how to

explicitly characterize the set Sf, except using an indirect method like that
given in [6]. Because of the obvious relevance of such a description to a more
general spectral commutant lifting theorem, we plan to return to this topic in a
future paper.

5. Similarity orbits

In this section we would like to make some general remarks on the properties
of pT(A) under the action of a certain algebraic group. Namely, following the
notation of Theorem 3(iii) for T = S(m)®Ig with m a finite Blaschke product
and if finite-dimensional (see Remark 4), let

&T := {M £ {T}': M invertible}.

Set
&T'A) := {MAM~X :M £&T},

the similarity orbit of A with respect to the commutant of 7". It is obvious
that

(2) pT(B) = pT(A)   VB£S*T(A).
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752 HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

We now have

Proposition 4. If B £ AA7T(A), then pT(B) > pT(A).
Proof. Let B £ S?T(A). For e > 0, there exists Me £ &T such that \\MeAM~x
- B11 < e. Let ô > 0 be fixed. Then there exists M £ &T satisfying
IIAfßAf"1!! < pT(B) + S . Consequently,

\\MMeA(MMe)~X\\ < \\MBM~l\\ + \\M(MeAM~l -Ti)^"1!!

< pT(B) + ô + \\M\\ \\M~X\\e.

To finish the proof, we first let e | 0, and then ô J. 0.   D

Remark 6. In fact we may have pT(B) > pT(A) ; see Example 1 in §7.

Proposition 5. If there exists M0 £ &T such that

pT(A) = \\M0AM~X\\,

then there exists B0, a commuting dilation of A, which is rational, and such
that

(3) ||770||sp = pT(A).
Proof. Similar proof as in Corollary 1.   D

We would now like to study the orbit structure for diagonalizable A .

Proposition 6. Assume the notation given above. If A £ {T}' is diagonalizable,
then S?T(A) = S?T(A).
Proof. Throughout this proof, we will identify our linear operators (defined on
finite-dimensional vector spaces) with their matrix representations. Without
loss of generality, we may assume that T has only one eigenvalue (i.e., that m
has only one zero up to multiplicity). Thus T is isomorphic to a direct sum of
Jordan blocks all with the same eigenvalues. Let CVX, ... ,'Vp denote eigenspaces
of the diagonalizable operator A £ {T}'. Note that T(Tj) cT¡, j = 1, ... ,p ,
and so we can write

k
for appropriate (uniquely defined up to permutation) Jordan blocks, and hence

J      k

Consequently, we see that there exists M £ {T}' invertible, such that MA =
DAM for DA a diagonal matrix (which obviously has the same eigenstructure
as A). Notice that the diagonal entries of DA corresponding to any Jordan
block of T are identical.

Next it is well known [26] that if

S?(A) := {XAX~X: X invertible},
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then A?(A) is closed. Let Ä £ S"T(A), and let

M}AMJX^Á,        Mj£{T}'.

Then Â £ AA?(A) = S^(A), and moreover it is easy to see that A' £ {T}'.
Consequently, by the argument given in the first paragraph of this proof, there
exists M £ {T}', M invertible, such that

MA' = DA,M,

where DA< is diagonal (with the same eigenstructures as A' ). Since all the
Jordan blocks of T have the same size, we see therefore that there exists a
permutation matrix P such that PMÁ = APM, which implies the desired
result.   D

Remark 7. The referee of this paper kindly pointed out to us an alternative
proof to Proposition 6 which we would like to state here. The following neat
argument of the referee actually works for T an arbitrary operator on a finite-
dimensional space and not just T = S(m)® 1% .

The proof begins by noting as above that for A' £ 5^T(A), Á is similar
to A and A £ {T}'. Now let Px, ... , Pr be the spectral projections onto
the eigenspaces of A' given by the Riesz-Dunford functional calculus. Clearly
Pj £ {T}' for 1 < j < r. Next for A" £ S?T(A), let Qx, ... , Qr be the
corresponding spectral projections. Since we can choose A" so that ||j4' - ^"||
is arbitrarily small, we can choose A" so that

||(J'-z7)-!-(/'-z7)-1||

is as small as desired uniformly on any compact subset of the plane not con-
taining the eigenvalues of A. Thus, we can find A" £ A7T(A) such that
ll-P, - Ö.-II < 1 Vj. Hence the operator P.Q. gives a one-to-one map of the
y'th eigenspace of A" onto the /th eigenspace of A'. We therefore can con-
clude that the operator

M:=±PjQj
7=1

is invertible. Since clearly M £ {T}', and interwines A" with A', we are done.

Corollary 2. If A is diagonalizable, then there exists BQ, a commuting dilation
of A, which is rational and satisfies equation (3).
Proof. This follows immediately from Propositions 5 and 6.   D

6. Spectral Nevanlinna-Pick theory

In this section, we apply the above theory to a spectral version of the
Nevanlinna-Pick interpolation problem. In order to do this, we first put the
Nevanlinna-Pick theory into the commutant lifting framework [22, 24, 25].
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First let us recall the general problem of Nevanlinna-Pick in the matrix case.
See also the closely related discussion in §2 in the scalar case.

Let F be a finite-dimensional vector space, let zx, ... , zn £ D he mutu-
ally distinct, and let Fx, ... , Fn £ B(g?). Then we want necessary and suffi-
cient conditions for the existence of an analytic function F: D —> 73(1?) with
WWtx, < 1 such that F(Zj) = Fj for j = 1, ... , n . Define

z,
m{

- :Z
7=1

TT-    Z - Z;

and

/;=- n^ zk
- 1 - z,z j 1 — z ¡z'

left k    j J

We set T := S(m) ® Ig,, and note that

sir = fx ® r + f2 ® r +... + fn ® r.
This sum is direct but not orthogonal.

For the given interpolation data above, we define A: ßif —► ßif by linearity
and by

A(fJ®Q = f]®F£
for all C G F, j = 1, 2, ... , n . Note that T(f} ® f) = zy/; ® C for all
Ce^, ; = l,2,...,n. Thus A£{T}'.

As in the proof of Theorem 2, T7 satisfies the interpolation conditions

(4) F(zj) = Fj   V; = l,...,n

if and only if
PpMp = AP^.

Thus, the commutant lifting theorem implies that there exists an F satisfying
(4) and \\F\\x < 1, if and only if \\A\\ < 1 . We will now show that the spectral
Nevanlinna-Pick problem can be given a similar solution, based on the spectral
commutant lifting theorem.

Theorem 4. The following properties are equivalent:
(i) There exists a bounded analytic function F: D -, B(g?) satisfying

(5) F(zj) = Fj       (l<j<n)

and such that ||Aff||sp < 1 ■
(ii)  There exists a bounded rational function F: D -, B(%), satisfying the

interpolation conditions (5) and such that \F(z)\%v < 1 for all z £ D.
(iii) pT(A) < 1.

Proof. We have that (iii) <$ (i) by our above discussion and Theorem 3. Finally
(ii) ^ (i) from Corollary 1.   D
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Corollary 3. If all the matrices Fx, ... , Fn are diagonalizable, then there exists
a bounded rational function F: D -, I? satisfying (5) above, and such that

pT(A) = max\\F(z)\\sp.
z€D

Proof. The proof follows at once from Corollary 2 and the above discussion.   D

Remark 8. Note that the condition that Fx, ... , Fn  are diagonalizable is a
generic condition on the space B(W).

In order to state our next result we will need to set up some more notation.
First note (using the notation above) that if M £ {T}', then necessarily

M(fJ®Q = fj<8>MjC
for all C € «? and where M. e 73(1?) for j = 1, ... , n . M is invertible if and
only if each M}, (1 < j < n) is invertible.

We denote the operator A  associated with the matrices Fx, ... , Fn  by
A(Fx,...,Fn). Then

(6) MAM~X = A(MxFxM;X , ... , MnFnM~X).
Clearly

(7) pT(A(Fx,...,Fn))

= inf{\\A(MxFxMx-X,... , MnFnM;X)\\: Mj£B(£),
1 < j < n, M. invertible}

and

(8) pT(A(Fx,...,Fn)) = pT(A(Jx,...,Jn)),
where J  is the Jordan form of the matrix F  for I < j < n .j j — j —
Corollary 4. If Dx, ... , Dn denote the diagonalizable parts of Fx, ... , Fn re-
spectively, then

pT(A(Dx,...,Dn))>pT(A(Fx,...,Fn)).
Proof. The proof follows at once from Proposition 4, and the above discus-
sion.   D

Remark 9. Corollary 4 implies that if we can solve the spectral Nevanlinna-Pick
problem for the diagonal parts of the Jordan canonical forms of the interpo-
lation data Fx, ..., Fn, then we can solve the problem for the original data.
Thus this gives a sufficient condition for the solution. (See §7 for examples
which show that the condition is certainly not necessary.)

We can now state:

Corollary 5. Suppose that Fx, ... , Fn are diagonalizable.   Then the following
properties are equivalent:

(i) There exists a bounded rational function F: D -, 73(1?) satisfying the
interpolation conditions (5) and such that maxz6^||7;'(z)||    < 1 .
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(ii) There exists 73, a commuting dilation of A = A(FX, ... , F ), such that
ll5IL < i •ii     lisp —

(iii) pT(A) < 1 .

Proof. Immediate from Theorem 3, Corollary 3, and our above discussion.   D

Remarks 10. (i) We should note that in Corollary 5 (i) and (ii) are equivalent,
and (i) implies (iii) without the hypothesis of genericity that the interpolation
data Fx, ... , Fn are diagonalizable. (This follows from Theorem 3.) However,
at this point we do not know if (iii) implies (i) in this generality .

(ii) In Examples 5 and 6 in §7, we show that an optimal solution may not
be diagonalizable even when we start with diagonalizable interpolation data.
Moreover, in Example 3 we show that there may not be a common bound on
the norms of the optimal solutions.

(iii) We should note that there exist computer algorithms for checking the
condition that pT(A) < 1, and for constructing optimal M. Indeed such
techniques based on gradient search procedures are described in [10, 17]. Hence
we can actually employ the above methods to algorithmically solve the spectral
Nevannlinna-Pick problem in much the same way that the classical problem is
solved. This is important since much of the original motivation for considering
such questions came from control theoretic and engineering questions. (See [7,
10, 26] and the references therein.)

7. Examples and counterexamples

In this section, we discuss a number of illuminating examples to clarify some
of the results on spectral dilation theory. We should explain first some of the
motivation behind these examples.

As we noted in the Introduction, one may deduce many of the classical in-
terpolation results using the hyperbolic structure of the unit disc. This even
extends to the matrix case, since the ball of complex square matrices of radius
1 is again hyperbolic [18]. This type of hyperbolic geometric approach and
its relevance to modern interpolation theory has greatly influenced the work of
Ball-Helton [4].

Now one may attempt to play the same game in the spectral case. Namely,
we are considering analytic matrix-valued interpolating functions from the unit
disc to the space of square complex matrices (of fixed size A x A ) of spectral
radius bounded by 1. This space is not hyperbolic since the Kobayashi metric
[18] degenerates (that is, is only a pseudo-metric). (To see this, just consider
the line of matrices with spectral radius < 1 given by

1/2      /
0      1/2

for l £ C.)

In fact, it is easy to prove that in the Kobayashi pseudo-metric the distance
between a matrix and the diagonal part of its Jordan canonical form is 0.
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Based on the classical hyperbolic approach to interpolation, this would lead
one to conjecture that one could solve the Nevanlinna-Pick spectral interpola-
tion problem for given data Fx, ... , Fn if and only if it could be solved for
the diagonal parts of the Jordan canonical forms of the data. We have seen in
Remark 4 that one direction (<=) holds. One of the points of the discussion
below will be to show that the (=>) direction breaks down completely. This
will be illustrated by elucidating the structure of S"T(A).

Hence in the spectral case, there seem to be a number of truly new interpo-
lation phenomena occurring, for which the classical intuition no longer applies.

Example 1. Our first example shows that pT need not be constant on A7T(AA),
even though as we have seen above, it is constant on A7T(A).

Let z, = 0, z2 = z0 £ D\{0} , and consider

Fx-= F2:= 0
Obviously, the diagonalizable parts are

"0   0
Dx:= 0   0 D2 := F2.

Moreover, T^z) := 0 z
1 0 satisfies F(zj) = F¡ (7 = 1, 2) and

ll^)llip<l    VzgT».
Consequently,

pt(a(f1,f2))<i.
Suppose that pT(A(Fx, F2)) = pT(A(Dx, D2)). Then there would exist

'f(z)    g(zfG(z) := z h(z)    k(z)
rational satisfying

/(z0) = 0 = a-(z0),        g(z0) = l,        h(z0)=l/z0.

Now
d(z) := detG(z) = z2(f(z)k(z) - g(z)h(z)) := z2dx(z)

where  \dx(z)\ < 1  on dD, and thus also on D.   But  |d,(z0)| = \l/z0\, a
contradiction.

Notice moreover that for this example we have that

Zol = IMIIsP</M^)=1-

Example 2. The same interpolating function as in Example 1 can be used to
show that the data Fj can be diagonalizable, and yet none of the exact inter-
polating functions F(z), i.e., those satisfying

sup||F(z)
z€D sp = pT(A(Fx,...,Fn)),
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are diagonalizable. Indeed let zx, z2 e D be distinct points which are nonzero,
and set

*!•=
0 z,
1 0 F2:=

0 z2
1 0

Since F(z) = [\ z0] is an interpolating function with supz€7) ̂ (z)!!    = 1, we
have that

pT(A(Fx,F2))<l.
Let now F be any other bounded solution satisfying

sup||7?(z)|l<l.
zGD

|detF(z)|<l   VzeT)

(9)

Then

and
detF(zx) = -zx,        detF(z2) = -z2,

and therefore, by virtue of the uniqueness in the Schur problem,

detF(z) = -z   VzeT».

Set 6(z) := A trace F(z). Then we have

\6(z)±\Je(z)2 + z\ < 1    Mz£D,
and so by the parallelogram law

2|0(z)|2 + 2|0(z)2 + z| <2   VzeD,

whence
|0(C)|2 + |f?(C)2 + il<i

for almost every Ç £ dD .
Now the triangle inequality shows that

l = ICI = | - ö(C)2 + 6(C)2 + CI < |0(C)|2 + 10(C)2 + CI,
whence we deduce that

tf(C)2 = y(C)C
with y(C) £ [-1, 0] for almost every C G dD. Therefore Zd(Q2 < 0 almost
everywhere on dD. It follows that the bounded harmonic function

a(z):=fl(0)2z+^2-^

satisfies a(z) < 0 on D, and so in particular is real-valued. Therefore,

d_
dz
d   (d(z)2-6(0)2 0 0

' 8-za^ = ÖIQ(Z) = ö(0)'

so that
6(z)   =6(0)  +z6(0)     VzeD.
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Consequently, if 6(z) = 6(0) + zip(z), we have

0(0)  + 2z6(0)y/(z) + z W(z)  = z6(0)     ~iz£D

which means that i//(z) = 0 for all z £ D.
Thus, we see that 6(z) = 0 for all z e D. In particular

trace7X0) = 0 = det.F(0).
Now if .F(z) were diagonalizable, this would imply that F(z) = zFx(z) with
Fx a bounded analytic 2x2 matrix-valued function. Therefore, we would have

-z = z2detF1(z)   VzgZ)

which is clearly absurd. Thus if F(z) is any interpolating function (F(z-) =
Fj, 7=1, 2) satisfying (9), then F(0) is properly nilpotent (i.e., F(0) is
nilpotent but not the zero matrix).

Example 3. The interpolation data of Example 1 may be slightly modified to
prove the existence of exact interpolating functions F(z) (see Example 2), of
arbitrarily large norm. Indeed, set zx = 0, z2 = z0 ^ 0  (z0 £ D), and let

*i = 0   0
e   0 Fi = 0

for e > 0. Then from the above there exists an interpolating function F£(z)
with

sup I)/7
z€D i sp = pT(A(Fx,F2)) = l.

We claim that
\F H^ -, oo     as e -, 0.

Indeed, suppose not. Then (choosing a subsequence if necessary), we can infer
the existence of an analytic function F (z) = lim    0F£(z) with

Fu(0) = 0   0
0   0 F(za) 0

and such that HA/poH^ = 1 . A similar argument to that given in Example 2
immediately leads to the required contradiction.

We should also remark here that whenever we have A1 £ A?'T(A)\S^T(A) and
pT(A ) > pT(A), we have an identical phenomenon of arbitrarily increasing
norm to that described above.

Example 4. It is easy to write down an example to show that the infimum
defining pT(A) is not necessarily a minimum, that, is, we may have

pT(A)<\\A'\\   VA'£<9>T(A).
More precisely, let

T:= 0   0'
0   0

0    I"
0   0
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Then pT(A) = \\A\\ip = 0, but \\MAM~X\\ > 0 whenever M £ {T}'.
Example 5. Again consider the interpolation problem (5) with data z, , ... , zn
€ D and Fx, ... , Fn N x A matrices. This example will show that even if the
data Fx, ... , Fn are diagonalizable, A(FX, ... , Fn) has distinct eigenvalues,
and there is a solution to the interpolation problem F(z) such that

supllf (z)||    = supllf (z)|| = pT(A(Fx,... , ig)
z€D V       z€D

and F(z) is diagonalizable for all z e D, this F cannot be obtained by in-
terpolating the eigenvalues of the data. In other words, even in this case we
cannot reduce spectral Nevanlinna-Pick to a series of scalar Nevanlinna-Pick
problems.

Indeed, let z,, z2, z3, z4 £ D be distinct nonzero points such that zi ^
z2> VI < I, j < 4, and set

(10)

Then

(ii) W:=

FJ--=
o

0    z
_2      n

vi</,7<4.

zeT),

is an interpolating solution such that

sup||F0(z)|| sp = sup||70(z)|| = l.
z€ß zGO

Thus
/?r(^(F1,7-2,7^3,7-4))<l.

Let now F be any interpolating solution satisfying

Then |det7"(z)| < 1 in D and
lsp<!    VZ6Ö.

detF(zj) = -z],        7=1,2,3,4.
Set

7 = 1
z.z

and consider 5(w)3 on 77(w). (Recall from §2 that 77(m) = 772 e m772 and
S(m) is the compressed shift.)   Let SS(m) := (I - S(m)*S(m))x/2H(m).  If
0 / h0 A 3>S(m) v s^m)*3!s{m) v s^m)*2^s(m) (which is of codimension > 1 ),
then

\\S(m)3h0\\ = \\h0\\ ¿ 0.
Hence by the uniqueness in the commutant lifting theorem ( h0 is a maximal
vector for S(m)3 ; see [22])

detF(z) = -z     VzeT).
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This implies supz6fl ^(z)!!   = 1, and thus

(12) pT(A(Fx,F2,F3,F4)) = l.

On the other hand, if we interpolate the eigenvalues ±wz3 (1 < j < 4),

any solution y/ produces an operator A0 = ip(S(m)) such that A2Q = S(m)3.
Since H-S^nz)3!! = 1, we have that \\A0\\ > 1. We claim that \\A0\\ > 1. Indeed,
suppose to the contrary that \\A0\\ = 1. Then the norm of A0 would be attained,
and therefore A0 = ip(S(m)), where ip is a finite Blaschke product. But in this
case we would have

Poll = llAll > U'V,) All = \\4hoW = IIS(m)\ll = Poll
and

P0|| = \\S(m)3h0\\ = \\PH(m)z\\\ < ||z3«0|| = ||n0||

(since S(m)   attains its norm on h0). Hence

¥2K = Alho = s(mfho = ̂ K
Since h0 ^ 0, it follows that >p(z)2 = z3\/z £ D, which is obviously impossible.
Hence ||^40|| > 1 as claimed.

Now since \\AQ\\ > 1 and there are only 24 such operators A0, we have
Halloo > 1 for any interpolation tp of the eigenvalues. Hence from (16) for
any such interpolating function,

>pT(A(Fx,F2,F3,F4)),
which completes the example.

Example 6. Let FQ(z) be as in Example 5. Notice that FQ is an optimal solution
to a spectral Nevanlinna-Pick problem which is diagonalizable for all z £ D.
However F0(0) = 0 (the zero matrix). It is easy to write down another optimal
solution F to the spectral Nevanlinna-Pick problem with data given by (10)
such that F(0) is nilpotent, but not the zero matrix.

Explicitly, set
#<Z):=M    0

Then clearly F(z) is not diagonalizable at z = 0, and F is similar to

0   z3

0    z
z2    0

for every z ^ 0.

Example 7. Referring to Propositions 2 and 3 in the last example, we will show
that if A is not continuous on D and f is infinite dimensional, then we may
have

supM(z)||sp<||tV7J|sp.
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Indeed, to see this let us denote by /2 the Hilbert space of all square-summable
one-sided complex sequences, {an}™=x. Let en ,  n > 1, denote the standard
orthonormal basis of I2. Then v
which is given in the basis e   as

2 ?orthonormal basis of /+. Then we define an analytic function A: D -, B(l+)

(A(z)ej,ei):-
2.-iz      ,    j = i + l,

0, otherwise

for each z £ D. Now it is easy to check that ||^(z)"|| = |z|"   so that
n    ./     ,i!||l/« |     ,n       ,, -,\\A(z)  ||      = |z|      Vz € D

which implies |W(z)|L = 0. On the other hand

so that \\MA\\=l.

supp(z) || = 1    Vn > 1, Vz£D
z€D
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