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1. Introduction. Let sé be a von Neumann algebra of Type I with center áf
and let Ia be the ideal in sé generated by the abelian projections of sé. The ideal 7„
is the natural analogue in a von Neumann algebra of the ideal of completely
continuous operators on a Hubert space. Here, however, the center 2£ functions
in the same way that the complex numbers function in the case of completely
continuous operators. In fact, we prove that every positive operator A in Ia may
be written in the form A = Ji{AjEj \j=l,2,...} where {E,\j= 1, 2,...} is a
sequence of mutually orthogonal abelian projections such that Ex >E2 >- • • • and
{A¡ |/=1, 2,...} is a sequence of positive central elements such that AX^.A2^- ■ ■
and limy Aj=0. This decomposition for A will be unique in the same sense that the
spectral decomposition for completely continuous operators is unique.

The ideal Ia is the maximum GCR ideal in the von Neumann algebra A. In fact,
Ia is a CCR ideal and it has a Hausdorff structure space. In §3 we show that the
structure space of Ia can be identified with the spectrum of the center 2Z. Then we
describe the positive elements A in Ia and in sé with continuous trace i.e. those
positive elements A such that <j> -> Trace (</>(A)) is a continuous function from the
space of equivalence classes of irreducible representations of Ia and sé respectively
to the complex field.

In §4 we define in sé analogues & and 9~ to the Schmidt class and trace class in
the algebra of all bounded linear operators on a Hubert space. The sets £f and 3~
are ideals of sé contained in Ia and y2=^ Furthermore, a trace Tr (with values
in 2?) is defined on F. This trace can be extended to a normal trace on sé+. The
ideal y under an inner product defined by Tr becomes a áf-module [9] and the set
of all uniformly continuous functions on Ia into S that are linear over 2£ is
identified with 9~. Also, a norm equal to the operator bound on T gives a Banach
*-algebra structure on 9~. With this norm the set of all continuous functions of 9~
into 2Z that are linear over 3£ is identified with sé and the operator bound is the
norm defined on sé. The positive elements in & are identified with the normal
function of sé into 2£ which are linear over J°. These are analogues of results
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concerning scalar valued traces on von Neumann algebras and results on completely
continuous operators on Hubert space.

Finally, we justify the use of the name Schmidt class and trace class by showing
that these ideals contain all other ideals which produce ^-modules. We also show
the way in which this theory differs from the usual noncommutative integration
theory.

2. Diagonalization of self-adjoint operators in Ia. Let j</ be a Type I von
Neumann algebra with center 3£ and let Z be the spectrum of 2£. For each £ g Z
define [£] to be the closed two-sided ideal given by

[£] = closure {2 {A¡Bj | 1 újíkn} \ A¡ e A, B¡ e £, n a positive integer}.

There is for each £ g Z an irreducible representation </ic of si whose kernel is [£] on
the Hubert space //(£). We denote the image of A in si under <fiK by A(Q. Then
the function £-»- M(011 of Z into the positive real numbers is a continuous
function [4, §4]. The image of Ia under </rc is the ideal of all completely continuous
operators of H(t). If si is homogeneous of finite degree n, the Hubert space //(0
is «-dimensional.

We shall use the following terminology. Let 3? be a commutative von Neumann
algebra with spectrum Z. The projection in 2£ whose image under the Gelfand
isomorphism A -> A~ of J" onto the set of continuous complex-valued functions
on Z is the characteristic function of an open and closed set in WinZ will be called
the projection corresponding to W.

In order to obtain the decomposition for self-adjoint elements in Ia we need the
following lemma.

Lemma. Let si be a finite Type I von Neumann algebra which has only finitely
many homogeneous components of distinct degrees. Let 3? be the center of si and let
Z be the spectrum of 2£. Let A be a self-adjoint element of si and let Axbean element
in 2£ such that for each £ in Z the number AÇ(Q is a proper value of the matrix A(C)
on the finite-dimensional Hubert space //(0. Then there is an abelian projection E
in si of central support 1 such that AE=AXE [I].

The following theorem allows us to apply the results of this lemma.

Theorem 2.1. Let si be a Type I von Neumann algebra on the Hilbert space H;
a projection E in the ideal Ia generated by the abelian projections of si is the sum of
a finite number of mutually orthogonal abelian projections.

Proof. The algebra EsiE is a Type I von Neumann algebra on £(//). If <p is an
irreducible representation of EsiE on a Hilbert space K, then AT is finite dimensional.
Indeed, there is an irreducible representation <f>' of si on a Hilbert space A" which
contains A" as a subspace such that <f>'(E) is the projection corresponding to K and
tf>'(A)x=tp(A)x for every x e K and Ae EsiE. We have that <f>'(Ia) is the set of
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completely continuous operators on A". This means that <f>'(E) is a finite-dimen-
sional projection and, therefore, that K is finite dimensional.

Let {£„} be a net of mutually orthogonal projections in the center of EsiE such
that the least upper bound of the F„ is £ and Es/EPn is homogeneous. Each
EsiEPn must have finite degree and so we may assume {Fn} is either a finite set or
an infinite sequence such that if/(n) is the degree of EsiEPn then f(n) <f(n +1)
(« = 1, 2,...). It is sufficient to prove that the set {£„} is a finite set. We argue by
contradiction. If there are an infinite number of {Pn} there is a point £ in the spec-
trum of the center of EsiE such that FBN(0=O for all n. Let {£B/1 1 èjèf(n)}
be mutually orthogonal equivalent abelian projections of sum Pn. Let F¡ =
2 {En¡ I k+1 ^n} whenever f(k)+ 1 ájá/íjfc+l) for Jk-0,1,2,... where /(0)=0.
Each Fj is an abelian projection; iff(k)+ 1 ̂ jgf(k+1) the central support of F¡ is
2 {Pn I k+ 1 <»}. We have that (2 {F„ | núk}r(Q=Oand so (2{Pn I k+1 ̂ «}H0
= 1. Thus F/0 t¿ 0 for 1 ̂ y < oo. There is an irreducible representation with kernel [0
of EsiE on a Hilbert space //(0. This means that 2 {F/0 I 1 á/á/(*)} ^ £(0 for all
k. Because {F/0} is a sequence of nonzero mutually orthogonal projections, //(0
must be infinite dimensional. This is impossible. So there are only finitely many F„.

We now apply Lemma and Theorem 2.1 to the spectral decomposition of a self-
adjoint operator in Ia to obtain a diagonalization. By a rearrangement of this
diagonalization we prove a spectral theorem analogous to the spectral theorem for
self-adjoint completely continuous operators.

Theorem 2.2. Let si be a Type I von Neumann algebra with center 2£ and let Ia
be the ideal generated by the abelian projections of si. Let A be a positive element in
/„. There is an at most denumerable set {£„} of mutually orthogonal abelian pro-
jections such that Ex >-E2 >- ■ • • and at most denumerable set {An} of positive elements
in 2? such that AX^A2^--- and such that limB An = 0 if there are infinitely many An
with the property A = 2n AnEn(2).

Proof. Let Z be the spectrum of the center Si'. Because the function £ -> ||/4(0||
of Z into the real numbers is continuous, there is an element Ax in 3T+ such that
Ax(l)= M(0| for every £ e Z. There is no loss of generality in the assumption that
M|| = l. Let Ar; = closure {£gZ| Ax(Ç)>(n + \)~x} for n=l,2,.... The sets X'n
are open and closed subsets of Z. By induction we may define the sets Xx = X'x and
Xj=X'j — \J {Xk\ i<k<j} for y = 2, 3,.... The sets Xn are mutually disjoint
and are open and closed. Let Pn be the central projection which corresponds to Xn
for each n = 1, 2,....

Let « be a fixed natural number and let B=APn. Let 38 be a maximal commutative
*-subalgebra of siPn that contains B and let Z(38) denote the spectrum of 38. Let £
be the projection in 36 which corresponds to the open and closed set closure
{£' g Z(38) | £"(£') > (2(n +i))-x}. The spectral projection £ of £ has the property

(2) I wish to thank the referee for suggesting that a proof along the following lines might be
possible. I had originally deduced the theorem from the lemma in a more computative manner.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



284 HERBERT HALPERN [September

77^(2^+1))"^ and B(\ -E)i(2(n+\))-1(l-E). The central support of F in sé
is 7>n. Indeed, if F(0=0 for some I e Xn, then \\B(Ç)\\ = ||77(1 -F)(0|| g(2(n + l))"1.
This is impossible. Thus F(Q#0 for every £ e Xn. Now 77^(2(n+l))_1F implies
that there is an element C in 38 such that CB=E. Therefore F is a projection in Ia.
We have that || 77(0 II = max {||77F(OI, ¡77(1 -F)(0l|} for every £ e Xn. Since

||F(1-F)(0l|á(2(n+1))-1,

we find that ||77(0|| = ||7iF(OI| for every £e Xn. Let £' = 77F. By Theorem 2.1 the
Type I algebra séE is finite with finitely many homogeneous components of distinct
degrees. Let Z(séE) be the spectrum of the center of séE. The function t," -s* || 77'(£") ||
is continuous on Z(séE) and there is an element Bx in the center of séE such that
77f (0 = \\B'(V)\\ for every f e Z(séE).

There is an abelian projection F=Fn in séE of central support F such that
BF=BXF. Considering Fas a projection of sé, we see that Fis an abelian projection
of sé of central support Pn. The center of séE is 2£E and the function p(C) = CE
of SPn onto !%E is an isomorphism. Let A'x be the unique element in 2£Pn such
that ^'^=77!; we show that A'x = AxPn. Let iel„ and let £' be the maximal
ideal in &Pn given by {'={CPn | CeQ; then ¿i^9 = *rG<0)=B*W))ll =
inf {|77' + D\\ | De[p(0]} Ê inf {||77' + D\\\De [(,]} = \\B(Q\\ =AX(0 because the ideal
[p(D] in séE is contained in the ideal [£] in ^/. So A'x = AxPn. However, if £ e Xn
and if Ö e [£] it is easy to see that F7>F £ [?(£')]■ This means that A'f(Ç) = || 77'(p(D)fl
^||F77F-F7)F||â||77-7)||, for every D e [{]. Thus, ^~(0á ||77(0|| = ̂ (0 for
every £ £ A"n. So A'x^AxPn. Consequently, we have found an abelian projection Fn
of central support Pn such that AFn = AxFn.

Let P=2 {Pn | n= 1, 2,...} and let Ex = ^{Fn | n= 1, 2,...}; the projection Ex
is abelian and has central support P which corresponds to the closure of the set
{£eZ| ||^((0||^0}. Furthermore, AEX = AXEX. Then the operator A(\—Ex) is a
positive operator in Ia and for every £ in Z the relation \\A(l — Fi)(0|| ^ |-4(0 II
• ||(1 — FiXOI ÛAÇ(Q is true. By induction we can construct a sequence {An} of
positive central elements such that AX^A2~ ■ ■ ■ and a sequence of mutually
orthogonal abelian projections {Fn | n=0, 1, 2,...} such that

(i) Fo = 0;
(ii) AEn = AnEn(n=l,2,...);

(iii) The function £-> \\A(l -2 {E¡ \ Q^j^n-\})(Q\\ on Z is equal to A?
(n = l, 2,...); and

(iv) The central support Qn of Fn corresponds to the closure of the set

{£eZ|/C(£)*0}.

In view of (iii) in order to show A = 2n AnEn (uniformly), it is sufficient to show
that limn An=0 (uniformly). Indeed,

¡A-2 {Aßi I 1 = 7 = «}| = \A{\ -2 Œ I 1 = 7 = »})1 = IMn + i«.
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We prove limn/in = 0 by arguing by contradiction. Suppose lim„/in#0. Taking
into consideration the ordering of the sequence {An}, there is a number S>0
such that ||>4B|| > 8 for every n. So for each n there is a maximal ideal £n in Z such
that iC(W2¡«. For y=l,2,...,S^^+/£n+J)á/l-(£n+,). Let £ in Z be a
limit point of the set {£„ | n = \, 2,...}. For every 7=1,2,... we have that
^r"(0 = lim infnA^(in)-8. Because each Af(Q is not zero, each £/£) is a one-
dimensional projection on the Hilbert space //(£). The sequence {£„(£)} is a sequence
of orthogonal one-dimensional projections on //(£) such that ^(£)£/£) = ^^(£)£/£)
for each y = 1,2,.... This shows that the compact operator A({) has infinitely many
proper values which are greater than or equal to the strictly positive number 8.
This is impossible. Hence, we conclude lim„ An=0.

Finally, if Qn is the central support of En (n = 1, 2,... ), then Qn corresponds to
the set closure {£ eZ | /C(0^O}. So Qx ̂  Q2^ ■ ■ ■. Thus Ex >E2>■■■.

Using the spectral theorem for completely continuous self-adjoint operators on a
Hilbert space, we prove that the representation obtained in Theorem 2.2 is unique.

Theorem 2.3. Let A be a positive element in Ia and let {A¡\ 1 gy'<m} (respectively,
{Bj | 1 gy'<«}) be a set of positive central elements and {£, | 1 ̂ j<m} (respectively,
{F, | 1 áy <«}) be a set oforthogonal abelian projections with the following properties:
(1) AjjtQ(respectively,Bj^Q)forallj;(2) AX^A2^ ■ ■ ■ (respectively, BX^B2^ ■ ■ ■);
(3) ifZ is the spectrum of the center, then

{£ e Z | £/£) / 0} = closure {£ g Z | A?(Q # 0}

(respectively, {£ e Z | F/0 ¿ 0} = closure {£ g Z | B~(Q * 0})for every j; (4) ifm=+oo
(respectively, n=+co), then iimj A¡ = 0 (respectively, lim;£; = 0); (5)2^;£; = ^
(respectively, 2 B¡Fj = A). Then m = n and Aj = Bjfor every j.

Proof. For every £ in Z the element A(Q is a completely continuous operator on
//(£). We have that 2 A^(QEj(Q = A(0 = 2 B?(QFfâ on //(£) since for both sums
A is the uniform limit of the partial sums 2 {A¡Ej | 1 újún} and 2 {BjF¡ | 1 ̂ jf^n}.
However, {/tp(0} and {¿?f (£)} are decreasing sets of positive numbers and the
nonzero £/£) and F/0 are one-dimensional projections on //(£). Because £/£) = 0
(respectively, F/£) = 0) implies £k(£) = 0 (respectively, Fk(Q = 0) whenever j¿¡k,
we have by the spectral theorem on //(£) that Af(Q=£0 if and only if 5/"(£)^0and
that A?(t) = B?(C) for ally such that ^"(£)#0. Thus, we have the result that m = n
and A?(Q = B~(9 for all £ eZ. Thus, A¡ = Bj for ally.    Q.E.D.

We call the representation for a self-adjoint operator A in Theorem 2.2 a spectral
representation for A.

3. Elements with continuous trace. Let si be a C * -algebra and let F (si) be the set
of all primitive ideals of si with the hull-kernel topology. The space P(si) is called
the structure space of si. Let si~ be the set of all equivalence classes of irreducible
representations of si with the reciprocal topology induced by the function tp -*■
kernel <f> of s/~ into P(si). For each A in si* the trace of the image of A under any
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of the representations in a single equivalence class <j> in sé~ is invariant ; the trace is
denoted by Tr (<j>(A)). If A is an element in sé* such that Tr (<)>(A)) is finite for all
<f> e sé~ and such that <f> -*■ Tr (<f>(A)) is continuous on sé~, then A is said to have a
continuous trace. The set of all positive elements with continuous trace is the set
of all positive elements of a two-sided ideal in m(sé) of sé [3, §4]. In this section we
study the elements with continuous trace in a von Neumann algebra.

We first prove a theorem concerning the structure space of 70.

Theorem 3.1. Let sé be a Type I von Neumann algebra and let 2? be the center of
sé; let Z be the spectrum of 2t'. The structure space Pa = P(Ia) is homeomorphic
to Z under the map /(£) = [£] n 7a.

Proof. The set Pa is equal to {[£] n 70 | £ s Z}. Therefore / is a surjection. We
prove that / is an injection and that / is bicontinuous.

Suppose £i and £2 are distinct elements in Z. There is a projection P in 2f such
that P^(£i) = 1 and 7>~(£2)=0. Let F be an abelian projection of central support P;
then F(£!)#0 and F(£2) = 0. Now for any A in Ia and any £eZ we have that
II ¿(Oil = M(KJ n 4)11 ; thus, Eif(lx) and F e/(£2) sof(ix) */(&). This shows that

fis an injection.
We now show that / is continuous. Let X be an open set in Pa. Then there is

a closed two-sided ideal 7 in 70 such that X={J e Pa | 74>7}. We show that the
set {CeZ |/(£)e X} is open in Z. Indeed, we have that /(£):p7 if and only if
[£]:p7. But if [£o]4>7 there is a projection F in 7 such that ||F(£0)| = 1. The set
{£ £ Z | ||F(£)|| = 1} is open in Z and contains [£0] and so {£ e Z | /(£):b7} is open
in Pa. Thus fis continuous.

Let F be a closed set in Z. The set Y is compact and, therefore, /( Y) is compact
in the Hausdorff space Pa. So/( Y) is closed in Pa. This proves fis closed and that
/_1 is continuous.    Q.E.D.

Because Ia is a CCR algebra, the space 1^ is homeomorphic to Pa under the
mapping <f> -*■ kernel <f>. If <fi is an irreducible representation whose equivalence
class is (>/,) the function £ -> (i/iç) is a homeomorphism of Z onto 7¡p.

We are now ready to characterize m(Ia)+. Let 2 be the set of all positive elements
A in 70 such that if 2 A¡Ej is a spectral resolution of A then 2 A} converges uni-
formly in 2!. In particular 2 contains every projection of Ia. By Theorem 2.3 the
sum 2 Aj depends only on A. Define the trace Tr (A) of A to be 2 At.

Theorem 3.2. Let sé be a Type I von Neumann algebra and let ¿£ be the center
of sé. Let Ia be the ideal in sé generated by the abelian projections of sé. The set
m(Ia)+ of positive elements ofIa with continuous trace is equal to the set 2. Further-
more, if A e 2., Tr 04)~(£)=Tr (MA)) for each £ in the spectrum Z of 2?.

Proof. Let A be an element in 2 and let 2 Afij be a spectral representation of A.
For each ¿=(0{) in 7^ where £eZ we see that Tr (¿04)) = 2 A~(Q=Tr Ur(£).
Since Z is homeomorphic to 7^ under the mapping £ -* (¿c), <j> ->■ Tr (<f>(A)) is
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continuous on la- Indeed, this function is the uniform limit of continuous functions.
Soicm(//.

Conversely, suppose that A e m(Ia)+ and let 2 A,Ej be a spectral representation
of A. Then the function £ -> 2 A~({)=g(Q is continuous on Z because Tr (^(A))
= 2 AÇ~(Ç). For each y let us assume A¡^0. Then if gk = 2{A? | 1 újúk}, the se-
quence {gk} of monotonically increasing continuous functions converges pointwise
to the continuous function g. By Dini's theorem g is the uniform limit of the gk i.e.
2 Aj converges uniformly. So A e J. This proves m(/a)+c:^.

Corollary. For each Ax, A2 e â and Cx, C2 e 3?+ C,A, (j= 1, 2) are elements
of 3. andTr (CXAX + C2A2) = CX Tr (Ax) + C2 Tr (A2).

Proof. It is obvious that CjA¡ e 2L. Also for each £ g Z

Tr (CXAX + C2A2T(i) = Tr (Cx(QAx(l) + CÇ(QA2(t))

= CÇ(t) Tr (Ax(Q) + CÎ(0 Tr (A2(0)
= (CxTr(Ax) + C2Tr(A2)r(Q.

Thus, Tr (2 CjAj) = 2 C¡ Tr (Aj). We show that m(Ia) is an ideal in si.

Theorem 3.3. The ideal m(Ia) of elements in Ia with continuous trace is an ideal
in si.

Proof. If A e si and A*A e Ia then A e Ia. Thus, J={A e Ia | A*A e J} =
{A g si | A*A e a}. The set 1 has the following properties: (1) J + JcJ; (2) if
A esi and A*Ael then /L4* g J; and (3) if Be 1, A es/ and Og^F, then
A e 1. So / is a two-sided ideal in j/ and m(Ia)=J2 is an ideal in ^/.   Q.E.D.

In the standard way Tr on J? may be extended to a function of m(Ia) into 3? such
that Tr(C1^1 + C2^2) = C1Tr(^1) = C2Tr(/i2) for every Ax,A2em(Ia) and
Cl5 C2 g 3'. For each £ g Z and ¿ g m(Ia) it is true that Tr (^r(£) = Tr (A(Ç)).

Lemma. Let si be a Type I von Neumann algebra with center 3£. Let Z be the
spectrum of 3? and let £ g Z. Let {xn} be a sequence of orthonormal vectors in //(£).
There is a sequence of abelian projections {£„} in si such that £„ >-£B + i and £n(£)x„
= xnfor all n.

Proof. This lemma is a simple extension of a result of Glimm [15, §5, Lemma 11].
Let £j be a projection in the ideal /„ generated by the abelian projections such that
£i(£)*i = *i- Indeed, /a(£) is the ideal of completely continuous operators on //(£).
Suppose Ex, E2,...,En have been constructed. Let F be a projection in /„ such that
F(£) is the projection of //(£) onto the subspace spanned by xn+x and such that
(£! + £2+ •••+£„)(£)£(£)=0 in an open and closed neighborhood W of £.
Let F' be an abelian projection whose central support Ä is the same as the central
support of F. Then F'(0 ^ 0 and so F'(0 is the projection of //(£) on the subspace
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spanned by xn + x. Let P be the central support of Fn and let Q be the central
projection corresponding to W. Then let En + X = F'PQ. We have that Fn+1 is
abelian and Fn+1(£) = F'(£). Also F;Fn + 1=0 for j=\, 2,..., n and En>En+x
because the central support of Fn majorizes that of Fn + 1.   Q.E.D.

Theorem 3.4. Let m(Ia) be the ideal of elements with continuous trace in the ideal
generated by the abelian projections of a Type I von Neumann algebra sé. For every
£ in the spectrum Z of the center of sé the image m(Ia)(Q ofm(Ia) under the homeo-
morphism </>c of sé with kernel [£] is the trace class of H (I).

Proof. Let A e 2. Then >f>((A) (£ e Z) has a trace on 77(£). So A(Q is of trace class
on 77(£). Thus n?(7a)(£) is contained in the trace class of 77(£).

Now let A be in the trace class of 77(£). We may assume A is positive. There is a
sequence {x¡} of orthonormal vectors in 77(£) and a decreasing sequence of positive
real numbers such that A = 2 ajPj where P} is the one-dimensional projection on the
subspace spanned by x¡. There is a sequence of mutually orthogonal abelian
projections {E,} in sé such that Ej>EjJrX (ally) and FJ(£)=Fi. Then the operator
2 a;Fy=77 is in Ia and if R¡ is the central support of E¡, 2 (ajR,-)Ej is a spectral
resolution for 77. But 2 II«All =2 «,< +00 ar>d so Be 2. Furthermore, B(Q = A.
This proves m(70)(£) contains the trace class of 77(£). Hence, m(Ia)(Q is the trace
class of 77(£).   Q.E.D.

We now determine the set m(sé)+ when sé is a von Neumann algebra.

Theorem 3.5. Let sé be a von Neumann algebra with center 2?. For each n
= 1,2,... let Rn be the largest projection P in 2? such that séP is of Type I„. Let
R = %Rn and let 2R = {A e 2 \ A(l-R) = 0}. Then m(sé)+ is equal to the set of all
A in 2R such that lim„ Tr (A)Rn = 0.

Proof. The uniform closure 7 of m(sé) is a uniformly closed two-sided ideal in
sé; the space I~ is homeomorphic to the open subset {</> e sé~ | kernel <f>3>I} under
the inverse of the map (</<) -»• (<A|7). Therefore <f> -*■ Tr (<j>(A)) is continuous on 7~
for all A e m(sé) + . This shows that 7 is a CCR ideal in sé [3, §4]. Because 7a is the
maximal GCR ideal in sé, we have that Ie Ia- So if F is the central projection of sé
such that séP is discrete and sé(\ —P) is continuous we have that m(sé)(\ —F) = 0.

Now we show that m(sé)(P-R) = (0). Let A e m(sé) +. Assume P-R^O. Let Z
be the spectrum of 2f and let X={£ £ Z | (P- 7*r(£) = 1}. For each £ e X the ideal
h + [£] is proper. Indeed, the representation ^ is an irreducible representation of sé
on 77(£) such that ¿c(70) is the ideal of completely continuous operators on 77(£).
But for any n=l,2,.. .,P-R may be written as the sum of n equivalent projec-
tions; so ¿c(l) does not have finite dimensions in 77(£) and thus </rc(l) i i/>(7a). There
is therefore an element <f> e sé^ such that kernel <£=>7a + [£]. Let U be a neighbor-
hood of <f> in sé~. There is an ideal 7' in sé such that U={<f>' e sé~ \ kernel <f>'$I'};
so kernel <f>3>I' and thus kernel (</ic) = [£]4>7'. This shows that (</ic) e U. So a
net each of whose terms is (¿c) converges to <f> in sé~. But Tr(<¿04)) = 0 since
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m(si) + <=Ia. If 2 AjEj is a spectral representation of A, then 4>r.(A) = 2i A^(t)Ej(Q
and so Tr (>p¿A)) = 2i A?(Q< +oo. This shows that Z A?(Q = Tr (<p(A))=0
and that ,4(0 = 0. We have therefore that A(P— R) = 0 and consequently that
m(si)(P-R) = 0.

Since la is homeomorphic to the open subset {<f> e si" | kernel <p3>Ia} under
inverse of the map (<f>) -*■ (<p\Ia), the function </> -> Tr (<¿(/í)) is continuous on /~
for each A e m(si)+. This means that m(si)+ c ÜF. Let /Í g m(si)+. We show that
limn Tr (A)Rn = 0. Arguing by contradiction we assume that there is an e>0 such
that ||Tr (/4)Fn|| ^e for an infinite number of n. There is no loss in generality in
assuming that ||Tr (/4)/?„|| ïe for every n, since we may replace {Tr (A)Rn} by a
subsequence if necessary. For each n there is a £„ in the set FB = {£ g Z | ZC(£) = 1}
such that (Tr(A)Rn)'"(Cn)te/2. There is a cluster point £0 for the set
{£„|«=1,2,...}. We have that {0er-U»f, where Y={£ eZ | /T(£) = l}.
However, /a + [£0] is a proper ideal in si. Let tpesi" be such that kernel <£^/a
+ [£0]. Every open neighborhood of <p in si" contains (^to). Since Z is homeo-
morphic to Ia=Pa and since 12 is an open subset of si", (</<Co) is a cluster point of
{O/O | «= 1, 2,...} in si". So there is a subset of {Tr (^„(A))} converging to
Tr (<p(A)). This is impossible since Tr (<p(A)) = 0 and Tr (>¡>U(A)) = e/2 for all n.
Therefore, limn Tr (A)Rn = 0.

Now suppose that A e 2.R and limn Tr (A)Rn=0. Since the set {<f> e si" \ kernel <f>
45si(\ -R)} = {<f> e si" I kernel <f>^>siR} is open and closed and since Tr (¿04))=0
for all </> in this set, it is sufficient to prove that tf> -> Tr (<p(A)) is finite and continuous
on {tpesi" I kernel <f>=> si(l - R)} = {tf> e si" \ kernel <f> $ .s/F} = 5. Let <¿0 6 5"; there
is a unique £0 g Y such that kernel ^ = [{0]. Let e>0.

If £0 g Yn for some n, then (</>c0)=<¿o- There is a projection Q in 3f such that
0^ £„ such that (T(£0) = 1 and |Tr (A)"(lQ)-lr (A)"(Q\ <e whenever Q"(i) = 1.
For every <f> in the open set {tf> e si" | kernel <p3>siQ}, there is a £ gZ such that
2^(0 = 1 and (^) = <¿. Indeed, there is a £ g Z such that kernel <f> = [£] ; so siQ is not
contained in [£] and Q"(i)=\. This shows that .s/(£) is the algebra of all linear
operators on an «-dimensional Hilbert space and so <j> = (*p!). So if tpesi" and
kernel 4>3>siQ then <f> = (<l>t) for some £ such that Q"(Q = 1, Tr (<j>(A))=lr (A)"(£),
and |Tr (MA))-Tr (<b(A))\ = |Tr (^r(£0)-Tr (A)"(l)\ <•

If on the other hand £0 g F-Un Fn then Tr (<f>0(A))=0 because /4(£0)=0. There
is an integer N such that ||Tr (^)(l-2 {Fn | l^n^N})\\<e. The open set V
= {tpesi" I kernel tj>3>si(l -2 {F„ | ISnaiV})} can be written as the union of
three disjoint sets Sx, S2, S3 'where Sx = {tf> e si" | kernel $is?si(\ —R)}, S2 =
{tf> g si" I kernel <p = [£] for some £ in T-IJn Fn} and. S3={tf> e si" | kernel <¿
3[£] for some £ in YN+j,j= 1,2,...}. So we have that <j>(A)=0 whenever tie Sx
and <f>(A) = 0 (because /i(£) = 0) whenever tf>eS2. Finally, Tr (/f)~(£) < c whenever
£ g YN+j(j=i,2,...) and so Tr (<¡>(A))=Tr (A)"(Ç) ¿e whenever^ g S3 and kernel^
=> [£]. This shows that Tr (<^(^))<e on an open set V containing tp0- Therefore, the
function 4 -+ Tr (<f>(A)) is continuous on si".   Q.E.D.
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4. The Schmidt class and the trace class of a Type I von Neumann algebra.   Let
sebea Type I von Neumann algebra with center 2£; let 7„ be the ideal generated
by the abelian projections. Let 3P be the set of all positive elements A in 70 such
that if 2 AjEj is a spectral representation for A then the increasing sequence
{204/1 \-=j^ri)}n is strongly convergent in 2£. Thus, Ae0> if and only if
(2 (Aj | 1 èjân)} is bounded above. The set 3P will serve as the starting point for
the construction of the Schmidt class and the trace class.

If A e 7o and if £ -> Tr 04(£)) is defined in a neighborhood of the point £0 in the
spectrum of 2£ and is continuous at £0, then there is a central projection P with
P^iio) = 1 and AP e 3P. Indeed, if 2 A¡Ej is a resolution of A for all £ in some open
and closed neighborhood U of £0 we have that lubn 2 {A?(£) | 1 újún} = Tr (/4(£0))
+ 1. Thus (2 iA,P | 1 ¿j^n)}n is bounded above in 2?. Here P is the projection
which corresponds to U.

The relation of 9 and 2 (§3) is clarified by the following theorem based on a result
of von Neumann [10].

Theorem 4.1. Let A be an element of the set 3P. There is a set S of mutually
orthogonal central projections of least upper bound 1 such that PA e 2 for each
PeS.

Proof. Let 2 Aß, be a spectral resolution for A. It is sufficient to show that there
is a nonzero projection Pin 2f such that {2 iA¡P | 1 ¿j£ri)}n converges uniformly.
Let 38 be the C*-algebra generated by {A, |y=l, 2,...} u {1}. The algebra 38 is
separable. Let 77 be the Hubert space of sé and let x be a unit vector of 77. The
subspace K=closure {77a: | 77 e 3$} is separable and the projection F' corresponding
to K is an element of the commutator 36' of 38 on 77. If F is the central support of
F', then F is an element of the commutative von Neumann algebra 38" generated
by 38 on 77. Also ^"c ¡g because 38" is the weak closure of 38 and 38"Eis isomorphic
to the von Neumann algebra 38"E' on F'(77). Let Bn = 2{Aj | lSjún}E',n=l,
2,_Then {Bn} converges strongly to some 77 in 38"E'. There is a subsequence
{Bnk} of{Bn} and an element C e 38" E' such that (1) Cy=0 implies y=0 for y e E\H)
and (2) F' ^ 2 {((*«* - B)C)*HBnk - B)C) | 1 á k g m} for all m = 1, 2,.... So

E' Z C*C2{iBnk-B)*iBnk-B) | 1 ¿ k £ m)

for all m = l,2,.... There is a nonzero projection Fe38"E' such that FC*C
'=2~1F\C\2. Therefore, there is an <x>0 such that

«7"'= I{iBnk-B)*iBnk-B) \lékúm}F

for all m = 1, 2,_For all £ in the spectrum X of 38"E' we have that

hmfc££(0F~(£) = 2r(£)F-(£).

Because {iBnkF)~}k is a monotonically increasing sequence of continuous functions
on the compact set X, we have limfc Bnk F= BF (Dini's Theorem). So limn BnF= BF
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(uniformly). Because 38"E is isomorphic to 38"E' there is a projection P in S such
that (2 (AjP | 1 újún)} converges uniformly.   Q.E.D.

Let F be an abelian projection in the Type I algebra sé with center 2? and let P
be the central support of F. The algebra FséF is isomorphic to 2°P. We let tfÍA)
denote the unique element in 2fP such that FAF=tfÍA)F.

We make use of the following lemma.

Lemma. Let sé be a Type I von Neumann algebra and let E and F be abelian
projections. Then teÍF) = tfÍE).

Proof. We have FEFEF is equal to both te(F)tf(E)F and (i>(F))2F; similarly,
te(F)tf(E)E=(te(F))2E. If P (respectively Q) is the central support of E (re-
spectively F), the elements teÍF) and tf(E) are majorized by PQ. Let £ be an
element in the spectrum of the center of sé such that (PQT(Ç) = \. Then F(£)^0
and F(£)^0, and r£(F)-(£)2 = te(F)-(£)tf(F)-(£) = rF(F)-(£)2. So r£(F)-(£)
= TF(ET(t); this shows that te(F)~(Q = t£(F)^(£) for all £ in the spectrum of the
center. Thus, te(F) = tf(E).

Proposition 4.2. Let sé be a Type I von Neumann algebra with center 2£ and let
Ia be the ideal generated by the abelian projections. Let Abe a positive element in sé,
and let S be a set of mutually orthogonal abelian projections. Let F(S) be the set of all
finite subsets ofS. Let N(A, S) be the increasing net in 2f+ given by

{2{rF(A)\Fe7r}\neF(S)}.

Then A is an element of 9 if and only if N(A, S) is bounded above for every set S of
mutually orthogonal abelian projections.

Proof. Let A be an element of 3P and let 2 AjEj be a spectral resolution of A.
Let 2 A¡ denote the least upper bound of (2 (A, | 1 ̂ j^n)}n. Let S be a set of
mutually orthogonal abelian projections and let F(S) be the set of all finite subsets
of S. Then if w e F(S),

2 {tf(A) I Fe »} = 2 ItfÇ[ AjEÁ \Fen\

= 2AtTEl(2{F\Fen})è2A'

because limn i>(2 {Aßj | 1 ̂ j^n})=TF(A) uniformly. Indeed, tf is an isometry of
FséF onto 2SP (P central support of F) and limn 2 {Afij \ lèjun} = A uniformly.
This proves that {2 {tf(A) \ Fe tr} \ n e F(S)} is bounded above by 2 A,.

Conversely, suppose that A is a positive element in sé and that for every set S of
mutually orthogonal abelian projections the set (2 {tf(A) \ Fetr} \ ne F(S)} is
bounded above. We show that A is an element of 3P. It is sufficient to show A is an
element of Ia. If e > 0 is given we find an element Be Ia such that fl 77—A fl < e. Let
Z be the spectrum of the center of sé. Suppose £ e Z; we show A(Q e 7a(£). Indeed,
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if A(Ç) $ F/0, there is a sequence x, of orthonormal vectors in //(£) such that the
set (2 {(A(£)x¡, Xj) | 1 ̂ y'^«})„ is not bounded above because /a(£) is the set of all
completely continuous operators on //(£). Now there is a sequence {F,} of orthog-
onal abelian projections in si such that F/£) is the one-dimensional projection on
the subspace generated by xf. We have that (2 {tFi(A) | 1 á;'^n})„ is not bounded
above in the center because (2 {-rFj(A) | 1 âj¿n})"(Q = 2 {(A(C)Xj, xj) | 1 ûjân} is
not bounded above. This is a contradiction. So we conclude that ^4(0 e /„(£) for
every £ in the spectrum of the center. Since £-> ||C(£)|| (C e si) is continuous
on the spectrum Z there are a finite number {U, | 1 ̂ y!¿m} of disjoint open and
closed sets and a corresponding number {B¡ | 1 ¿j^m} of elements in Ia such that
||¿(0-5/01| <e for £ g U, and 1 âjûm. If P, (1 èjém) is the projection of 3?
corresponding to U, (1 ¿j=m), then £=2 BjP¡ e Ia and \\A-B\\ ¿e.   Q.E.D.

Let A be an element of a3 and let A have the spectral resolution 2 AjE,. Define
the trace Tr (A) of A to be the least upper bound of the increasing sequence
(2 {Aj | 1 újún})„ in 3?. The trace of A is a function in 0s since the elements Aj
are uniquely determined by A. In fact we have the following proposition.

Proposition 4.3. Let A be an element of the set 0". Let S be a set of mutually
orthogonal abelian projections in si of least upper bound 1 ; let F(S) be the set of all
finite subsets of S. Then

lub {2 {rF(A) I F g n} I n g F(S)} = Tr (A).

Proof. From the proof of Proposition 4.2 we obtain that 2 {tf(A) | F g it}
= Tr(A) for all v e F(S). So B=lub {2 {rF(A) | F g n} \ n e F(S)} ;g Tr (A).
Conversely, let n be a positive integer. For every -n e F(S) we have that

2 {T" Œ iA^ \1 èjén})\Fen} = B

since 2 {AjE, \ \újún}^A. So 2{AjTE/(2{E\ Fen})\ l^j^n}^B for every
ir g F(S). However, for every abelian projection £, we have that

lub{r£(2{F|FG7r})|^GF(5)}=  1.

Indeed, limB 2 {F| Fgtt}=1 (strongly) and therefore lim„ teC¿ {F \ Fe v})= i
(ultraweakly). Since {tb(2 {F | F g tt}) \ v e F(S)} is bounded above, the strong
limit of this increasing net exists and must be equal to the ultraweak limit 1.
This shows that

lub £ {4^,(2 ÍFI Fg*}) I 1 £ / £ «} - 2iAi I 1 =/' = »}

is less than or equal to B. Because « is arbitrary Tr (A) ̂  B.   Q.E.D.
Now we show that SP is the set of positive elements of a two-sided ideal F in si.

Theorem 4.4. Let si be a Type I von Neumann algebra and let Ia be the ideal
generated by the abelian projections of si. Let ¿P be the set of positive elements
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A in Ia such that ifj, A¡Ej is a spectral representation of A then (2 {Af [ 1 £j^n})n
is bounded above. Let if = {A e sé \ A*A e 3P}; the set if is a two-sided ideal in sé.

Proof. It is sufficient to show that the following three facts about & are true:
(1) ^+^ca*; (2) if A ese and A* A e 0>, then AA* e 0>; and (3) if A e sé, B e 3P
and 0^¿f^77, then Ae0>.

First let A and 77 be elements of &; then A el* and Bel*. Let S be a set of
orthogonal abelian projections and let F(S) be the set of all finite subsets of S.
We have that 2 MA + 77) | F e tt} = 2 {tf(A) \ F e n} + 2 {^(77) | F £ tt} ̂  Tr (A)
+ Tr(7J). So A + Be&>.

Now let A e sé and A*A e 3?. Let 2 AtE} be a spectral resolution of A*A. Let U
be a partial isometric operator of sé such that U*U is the domain support of A,
UU* is the range support of A and U\A\=A (\A\ =(A*A)112). We have that 2E,
is the domain support of A* A and thus 2 Ej=U*U. The projection F; = UE¡U* is
abelian and equivalent to F;, Also AA* = U\A\ \A\U* = i/(2 AjE^U* = 2 Af,.
However, 2 AjFj is a spectral resolution for /Í/Í*; thus, AA* e3P. Notice that
1r(A*A)=Tr(AA*).

Finally, let A e sé, Be 9, and O^A^B. Let S be a set of mutually orthogonal
abelian projections and let F(S) be the set of all finite subsets of S. We have that
2 {tf(A) \Fen}Sl {tf(B) I F £ tt} ̂  Tr (B) for every n e F(S). This proves
Ae0>.   Q.E.D.

We define the Schmidt class of a Type I von Neumann algebra sé to be the ideal
if and the trace class of the algebra sé to be the ideal !T = if2. The set of positive
elements of 9~ is then precisely the set 0".

The next proposition extends the trace Tr to 3~.

Proposition 4.5. Let sé be a Type I von Neumann algebra and let 3~ be the trace
class of~íé. There is one and only one function Tr on 3~ into the center 21 of sé with
the following properties : (1) if A is a positive element in 3~ with spectral resolution
A =2 AfE, then Tr 04) = lubn 2 {A¡ | 1 £j£n}; (2) if Ax, A2 are elements of 3~ and
Cu C2 are elements of 2T then Tr (CXAX + C2A2) = CX Tr (Ax) + C2 Tr (A2); (3) if
Ae$~, then Tr (U*AU) = Tr (A) for every unitary operator U in sé; and (4) if
AetF the function f(B) = Tr (BA) is continuous on sé.

Proof. Let Ax and A2 be elements of & and let S be a set of mutually orthogonal
abelian projections of least upper bound 1 ; let F(S) be the set of all finite subsets of
S. Suppose 2 AkjEkj is a spectral resolution for Ak (k = 1, 2). Let n be given. Then

2{AXi + A2j\l èjân}

= lub 2 [v(2 {AuEki | 1 á j ^ »; k - 1,2» | Fe tt]
Jl

ï lubT [tf(Ax + A2) I Fett] ^ Tr(Ax) + Tr(A2).
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Therefore,  Tr (Ax) + Tr (A2)ZTr (Ax + A2) = Tr (Ax) + Tr (A2).  This  proves that
Tr (Ax+A2) = Tr (Ax) + Tr (A2) if Ax, A2 are in 0".

Now let Ce 3T+ and let A e&. Assume C#0. Let F be the projection in 3£
corresponding to the closure of the open set of all £ in the spectrum of S such that
C"(Ç) t¿ 0. Then CA has the spectral resolution 2 (CAj)(E,P) where 2 AjEj is a
spectral resolution of A. We have that

Tr (CA) = lub 2 {CAj | 1 ̂  j í «} = Club 2 {A, | 1 Ú j Ú «} = CTr {A).

If A is a self-adjoint element in the trace class, then A may be written as the
difference A = AX-A2 of two elements Ax and A2 in 3?. Setting Tr(A) = Tr(Ax)
—Tr (A2) uniquely defines the function Tr on the self-adjoint elements of the trace
class. If A is an arbitrary element of the trace class, then A may be written as a linear
combination A=Ax + iA2 of two self-adjoint elements Ax and A2 of the trace class.
Setting Tr (A) = Tr (Ax) + iTr (A2) uniquely defines Tr on elements of the trace
class. The function Tr will then have properties (1) and (2).

Now let Ae0> and let A = 2 A¡Ej be a resolution of A ; let U be a unitary
element of si. We see that U*AU e 3P and 2 AjU*EjU is a resolution for U*AU.
Thus, Tr (A) = 7r (U*AU). Since every A in 3~ is a linear combination of four
elements in a*, Tr (U*AU)=Tr (A) for every A in 0>.

Finally, let AeST* and let B e si+. We have Tr (AmBAxl*)£ \\B\\ Tr (A) since
0 = AXI2BA1I2¿\\B\\A. SoTr(BA)<>\\B\\ Tr (A). If B is an arbitrary element of si,
we may write B=Bx — B2 + i(B3-Bi) where £, is positive and BxB2 = B3Bi=0.
Thus ||Tr(2M)||^2(ll*J ¡Tr (A)\\)^\\B\\ ||Tr (¿)||. If A is an arbitrary element of
^ we may write A = Ax-A2 + i(A3-Ai) where the /fy are elements of 3~+. So
||Tr(£/i)||^4||5|| 2 ||Tr(y4,)||. This shows that the function B-+Tr(BA) is
continuous on si for fixed A in 9~.   Q.E.D.

Let A and B be two elements of the Schmidt class. Define the function of if x if
into S by (A, B)=Tr (B*A). Then this function satisfies the properties: (1) (A, B)
= (B, A)*;(2) (A, A)>0 and (A, A) = 0 if and only ifA=0; and (3) (CA + C'A', B)
= C(A,B) + C'(A',B) for C,C'e3f, A'eif. Define \A\=(A,A)112 and j|^41]x =
||(^,^)||1/2. We have that M||áM|i for all A in if. Indeed, let 2 AjE¡ be a
spectral resolution for A*A. We have that I^H = M*^||. So \A\2 = M*y4|| = \AX\
Ú ||Tr (A*A)\\ = Ml?. The function A -> \\A\\X on if defines a norm [9]. We show
that if is complete in this norm.

Theorem 4.6. Let si be a Type I von Neumann algebra and let if be the
Schmidt class of si. Under the norm \A\\=\Tr(A*A)\, the Schmidt class Sf
is complete.

Proof. Let {An} be a Cauchy sequence in if. The relation \B\ S \\B\\X for Be if
implies that {An} is a Cauchy sequence in Ia. There is an element A in Ia such that
limB \\An-A\\=0. We prove that A e if and that lim„ \\An-A\\x=0.
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Let S be a set of mutually orthogonal abelian projections and let F(S) be the set
of all finite subsets of S. For each -n e F(S) we have that

[2 {rF((A - An)*(A - An)) | F e n}]1/2

= [2M(A-Am)*(A-Am)) | Fen}]112

+ [2 MiAm-An)*iAm-An)) | Fett}]1'2.

Indeed, let £ be an arbitrary point in the spectrum of the center of sé. For each
Fen, F(£) is a projection on 77(£) of dimension at most one. Let xx, x2,..., xn be
an orthonormal set of vectors in 77(£) which respectively span the subspaces
corresponding to the nonzero F(£) with Fen. Then

[2 {rF(iA-An)*(An-A)) | Fen}]ll2~(0

= [2 MO-MOMf"
¿ [2 ||(^(£)-^m(£)K||2]1,2+[2 K4¿Q-MQ)x,P)m
= [2M(A-Am)*(A-Am)) I Fen}]m"(0

+ [2 {rF(iAm-An)*(Am-An)) I Fen}]m~(0.

Since £ is arbitrary, we have the desired result. Therefore,

[2 {TF((A-An)*(A-An)) | Fen}]112 è [2 rF((^-^lm)*(^-^m)) | Fen}]112

+ (An — Am, An — Am)

Since limm ||Tf(04-/lm)*04-/lm))|| =0 and since {An} is Cauchy, given any e>0
there is an A' such that n^N implies ||[2 {TF((A-An)*(A-An)) \ Fen}]ll2\\<e,
for every n e F(S). This shows that A — AN e if and thus that A e if. It also shows
that \\A-An\\x^e whenever njiN. Thus limn ||/4-/in||1=0. We obtain that if is
complete.    Q.E.D.

Let M be a module over a commutative A H/*-algebra 2f. Suppose there is an
inner product (A, B) of M with values in 2f satisfying (1) (A, B) = (B, A)*; (2)
(CA,B) = C(A,B); (3) (A + A\ B) = (A, B) + (A', 77); and (4) (A, A)^0 and
(A, A)=0 if and only if A = 0, for all A, A', B in M and C in 2£. By setting \\A\\X
= 1104, A)ll2\\ for each A in M we define a norm in M. The 2f-modu\e M is said to
be an AW*-module over ^ if (1) M is complete; (2) if 7? is a set of mutually
orthogonal projections in 2? of least upper bound 1 and if A e M, then 7,4=0 for
every P e R implies A = 0 ; and (3) if 7? = {Pf \ j e J} is a set of mutually orthogonal
projections in 2? of least upper bound 1 and if {At \ j e J} is a bounded set of
elements of M, then there is an A e M such that PjA=PiAj for every jej [9].
We show that the Schmidt class of a Type I von Neumann algebra sé is an
A W*-modu\e over the center.
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Theorem 4.7. Let si be a Type I von Neumann algebra with center 3£. Let if be
the Schmidt class of si. Under the inner product Tr (B*A) = (A, B) on if, the ideal if
is an A W*-module over 3t'.

Proof. The only point which remains to be verified is the following: if {P¡ \jeJ}
is a set of mutually orthogonal central projections of least upper bound 1 and if
{Aj | j e J} is a bounded set of elements in if, there is an A e if such that AP,
=A,Pj for ally. However, let ¡Tr (AfA,)\\ =nfor ally; then \A,f£ (Tr (AfA¡)\ in.
Let A = 2 AjP, in si. Let S be a set of mutually orthogonal abelian projections. For
each finite subset ir of S and for each y ej we have

F,(2 {rF(A*A) \Fen}) = F,(2 MAfA,) | F g tt}) i Tr (AfAt)P, â nPj.
Thus,

2{rF(A*A)\Fe7r} á ni.

However, the set -n is arbitrary and {2 {tf(A*A) | F g -n} \ -n a finite subset of S}
is bounded above. Therefore A e if. So if is an A H/*-module over 3t'.

Let si be a Type I von Neumann algebra with center 3? and let M be an A W*-
module over 3t'. A function j> of Ia (respectively, M) into 2£ is called a ^"-linear
functional if tp(CxAx + C2A2) = Cxtp(Ax) + C2tp(A2) for all Cx,C2e3f and Ax,
A2 e Ia (respectively, Ax, A2 e M). We now show that the set of all uniformly
continuous 3t'-linear functionals on Ia is identifiable with the trace class of si. We
need the following lemma to show this.

Lemma. Let M be an A W*-module over the A W*-module 3t'. If j, is a continuous
3f-linear functional on M, there is a unique A0e M such that tf>(A) = (A, A0) for all
A g M [9, Theorem 5].

Theorem 4.8. Let si be a Type I von Neumann algebra on the Hilbert space H and
let 3f be the center of si. Let Ia be the ideal generated by the abelian projections of si,
let 3~ be the trace class of si and let Tr denote the trace function on &~. If $ is a
uniformly continuous ¿I-linear functional of Ia into 3f, there is a unique A0 in if
such that tp(A) = Tr (AA0)for all A e Ia.

Proof. We first settle the question of the uniqueness of A0. Suppose Tr (AA0)
=Tr (AA'o) for all A ela. In particular if we let A = (A0-A'0)*, then ||^o-^o||i = 0-
So A0=A'0.

The uniformly continuous 3£'-linear functional <f> is a linear combination of two
uniformly continuous J°-linear functionals tf>x(A) = <f>(A)+<f>(A*)* and tf>2(A)
= i(tj>(A)-tp(A*)*). For each A ela, we have that tpj(A)=tpj(A*)* (y= 1, 2). So we
may assume that tp(A)=tp(A*)* for each A e Ia.

Let tb be the restriction of ^ to the Schmidt class if. Because \A\ ^ \\A\\X for each
A e if, tp is a .^-linear functional on if which is continuous in the topology on £f
induced by || • \\x. By the lemma, there is a unique A0 e ¿f such that tp(A) = Tr (A0A)
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for each Aeif. For each abelian projection F in sé, t/j(E) = >l>(E*)* = tfi(E)*;
therefore te(A0) Tr (E) = iji(E) is self-adjoint. Thus, A0 is self-adjoint.

We prove that A0 is an element of the trace class ff". In fact let Ax and A2 be the
positive and negative parts of A0 respectively. Let P be the domain support of Ax
and let S be a set of mutually orthogonal abelian projections majorized by P. Then
for any finite subset n of S we have that

12 {rF(A0) | Fe n}\\ = |Tr (2 {F | Fen}A0)\\ = ||<¿(2 {F | Fen})\\ g ||<¿||.
So {2 {tf(A0) I Fe n}}„ is bounded above. This proves that AX = A0P is an element
of ff". Similarly A2 e ff.

Finally the function A -*■ Tr (AA0) is continuous on sé. The relation Tr (EA0)
— <f>(E) for every abelian projection F in 70 implies that <f>(A)=Tr (AA0) for all
A in Ia.   Q.E.D.

Let 7(7a, J") be the Banach space of all bounded linear transformations of Ia into
2C. Let L=Lz(Ia, 2?) be the set of all ^-linear transformations in L(70, 2f). The
set 7 is a linear manifold and is closed in the norm topology of 7(7a, 2f). In fact if
{<£„} is a sequence in 7(7a, 2?) which converges to <f>, then for each C e 2f and
A e Ia we have ^(C^) = limn <¿n(C4) = Clim ^n04) = C^04). This shows that L is a
Banach space under the norm induced on 7 by 7(7a, 2f).

Theorem 4.9. Let ff" be the trace class of the Type I von Neumann algebra sé
with center 2t'. For each A eff" let \\A \\2= ||Tr (04*/4)1/2)| ; the function fl • ||2 is a
norm on ff" under which ff" is a Banach algebra with involution. IfL=L%(Ia, 2f) is the
Banach space of all continuous 2f-linear functionals on Ia and if A$ is the unique
element in ff" such that </>(A) = Tr (AA<¡) where </>e L, then the function <j, -*■ A$ is an
isometric isomorphism of L onto ff" (as a Banach space).

Proof. Because the function ^ —>- ^^ is an isomorphism, it is sufficient to prove
||^|| = ||Tr ((A*A,¿)1I2)\ in order to show that ff" is a Banach space and that the
function $->- \\Aé\\ is an isometry. Let A' = Ali and \A'\ =(A'*A')112. Let U be a
partial isometric operator in sé such that U\A'\ =A'. For each A e Ia we have

||¿04)|| = l|Tr(^')ll = lTT((AU\A'\lls)*(AU\A'\^W^Tt(\AW13
S ||C/*^C/m|Tr(M'|)|| S |M||||Tr(M'|)||.

Therefore, \\</>\\ ¿ ||Tr (|/4'|)||. Conversely, let ¿~, AjE¡ be a spectral resolution for
\A'\. We have lubn ¡2 {A, | l£/$it}|-|Tr(M'l)l- Because Fn = 2{Ej | l£jZn)
is an element of Ia of norm 1, we obtain \\<f>\\^\\Tr (FnU*A')\\ = \\Tr (Fn\A'\)\\
= \\I{Ai\\èjSn}\\. Hence ||¿|| = ||Tr (M'|)||. This shows ||¿|| = ||Tr (M'|)||.

Because ||^|| = || \A\ \\ ̂  \\Tr (\A\)\\ for every Aeff", we have ||¿¿||a£M|| ||¿?||2
= IMII2 ||77||2 for every A and B in ff". So ff" is a Banach algebra.

Finally, let Aeff" and let U\A\=A be the polar decomposition of A. Then
\A*\ = U\A\U*. Therefore, \\A*\\2 = Tr (U\A\U*) = Tr (\A\)=\\A\\2. Therefore, ff"
is a Banach *-algebra.   Q.E.D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



298 HERBERT HALPERN [September

Theorem 4.10. Let si be a Type I von Neumann algebra with center 3? over the
Hilbert space H and let 3~ be the trace class considered as a Banach space with that
topology induced by the norm || • ||2. Let A0 e si; the function tf>(A)=Tr (AA0) is a
continuous 3f -linear function of 9~ to 3t'. Conversely, iftp is a continuous 3'-linear
function of 3~ into 3?, there is a unique A0e si such that <p(A) = Tr (AA0) for all
Ae$~. The function tf> -> A¿ is an isometric isomorphism of the Banach space of all
continuous 3t-linear functions of 0~ into 3£ onto si.

Proof. Let A0esi and let A e F. Then we have

||Tr(^0)|| = \Tr (U\A\A0)\ = ||Tr (\A\X'2\A\X'2A0U)\\
^ ||Tr(|yi|)1/2|| \Tr (U*At\A\A0U)xl2\\

=g llTríMD^I^Moí/c/*^*!!1'2 g Mol ||Tr(M|)||,
where U\A\ is the polar decomposition of A. Thus tf>(A)=Tr (AA0) is a continuous
^-linear function on 9~ and \j>\ ̂  \\A0\\. On the other hand, given e>0 there are
two abelian projections £ and F both having central support 1 such that ||£40F||
^ Moll —£- There is a partial isometric operator U in 3~ such that U*U=E and
UU* = F. Because Tr (\U\) = Tr (£)=1, we have that

M ï \\Tr(UA0)\\ = ¡Tr(Tf(C//io)F)||
= \\rF(UA0)\\ = ||F^*t/*C/^oir||1'2 = ||£^0F|| ^ Moi-«-

Since e > 0 is arbitrary, we have | tf> || à Mo II • Hence, we have proved that || tf> || = \\A0 \\.
Let tp be a continuous 3f-iinear functional of 3~ into 2?. Let if be the Schmidt

class of si with the norm M||i = ||Tr (A*A)XI2\\. For every fixed £ g if the function
A^-t/>(B*A) on y is a continuous ¿2°-linear functional. In fact, ||^(£*/í)||á
1¿|| ||Tr (|£"M|)||. Now we obtain an estimate for ||Tr (\B*A\)\\ [12, Lemma 5.14].
Let A = U\A\ be the polar decomposition of A and let B*A = V\B*A\ be the polar
decomposition of B*A. Then \B*A\ = V*B*A = V*B*U\A\. Because V*B*U and
\A\ are elements of y we have

||Tr(|£M|)|| g \Tr((V*B*U)*(V*B*U))Xi2\-\Tr(\A\2)x>2\

= \\Tr (U*BV*VB*U)XI2\\ ||Tr (M|2)1/2||

è || \\U\\ IIKHTr^F)1'2!! \\Tr(A*A)x'2\\ Ú \\B\\X\\A\\X.

Therefore \\tp(B*A)\\i\\tp\\ \\B\\X\\A\\X.
There is for every Be if a unique <b(B)eif such that t/>(B*A) = Tr (<b(B)*A)

= (A, 0(£)) for every A e if. Let F be a projection in Ia. Define 6(F) = F<D(F)F.
Let £ be an abelian projection. Then

l|r£(<D(F))|| = ||(£, 0(F))|| = ||¿(F£)|| < \\<f>\\ ¡Tr(|F£|)||
- U\\ \\Tr ((EFFE)X>2)\\ = ||¿|| ||Tr ((^(F))1'^)!
= U\\ MF)1'2! è M-

Therefore, ||<D(F)|| ̂2||^|| and ||0(F)|| g2||¿||.
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Let S be the set of all projections in 7a; the least upper bound (in the lattice of
projections of sé) of two projections of 70 is again a projection in Ia. Therefore,
S is a directed set under the usual ordering for projections.

If F and G are two projections in S such that FúG, then 6(F) = Fd(G)F.
Indeed, for every A e if we have (A, 0(F)) = (FAF, ®(F))=<l>(FAF)=<f>(GFAFG)
= (GFAFG, 4>(G)) = (A, F6(G)F). Hence, if x e 77 and if there is a projection FeS
such that Fx = x, then the net {(8(E)x, x)\ EeS} is eventually constant. So for
every such x e 77, lims (9(E)x, x) exists. Let x be an arbitrary element in 77. We
show that lims (d(E)x, x) exists by showing that the net {(9(E)x, x) \ E e S} is
Cauchy. Let e>0 be given. Let G be an element in S such that ||(1-G)x|| <e
and let y=Gx. For every F and F' in S such that F=G and FgGwe have
i6iF)y,y) = i6iF')y,y). Thus,

\i6iF)x, x)-i6iF')x, x)\ = |(0(F)x, .x)-(Ö(F)j, y)\

+ \i6iF')y,y)-i6iF')x,x)\ ¿ \i6iF)ix - y), x)\

+ \ieiF)y,x-y)\ + \ieiF')iy-x),y)\
+ \i8iF')x,y-x)\ £M*UNI

because ||0(F)|| g2||¿|| for all EeS. This shows that for every jceT7 the net
{(0(F)x, x) | F e S} converges. By the standard arguments there is a bounded linear
operator A0 on 77 such that (1) \\A0\\ â2\\<f>\\ and (2) lims id{E)x, y) = iA0x, y) for
every x,yeH. Therefore, A0 is an element of sé.

Now let F be a projection in the set S. We have iEA0Ex, j>) = lims (0(F)F;c, Ey)
= i0iE)x,y). This means that EAoE=0iE).

Let Be if and Ce if and let F be a projection in 7a. We have that the range
projection of B*ECE is equivalent to a projection majorized by E. So the range
projection of B*ECE is in the set S. Let F be a projection in S majorizing both F
and the range projection of B*ECE. Then

(C, F7¿40F) = iECE, BA0) = iB*ECE, A0E) = iFB*ECEF, A0E)
= iB*ECE, FA0F) = iB*ECE, 0(F)) = iB*ECE, <D(F))

= <KFB*ECE) = <f>iB*ECE) = iECE, 0(A)) = (C, F0>(5)F).

So for every FeS, EQ>iB)E=EBA0E. This proves that <D(Ä) = fi^0.
Finally, let 5 e ff>. Then 51'2 e ff: We have

¿(77) = ¿(771/2771'2) = 091'2, <D(771/2)) = (B»a, 51'2/10) = Tr 04?77).

Therefore, for every Beff, ¿(5)=Tr (/fjfi).
If Tr(A40)=Tr (77,40) for every Beff", then te(/Í0-/4Ó) for every abelian

projection. This shows that A0 = A'0. Therefore, if <f> is a continuous ^-linear func-
tion of function ff" into 2? there is one and only one At in sé such that ¿04)
= Tr iAA¿) for all Aeff". Since the function ¿ -> ^ is linear (in fact it is ^-linear),
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the function is an isometric isomorphism of the Banach space of all continuous
3t'-linear functions of 9~ into 2£ onto si.   Q.E.D.

We now study the properties of the trace Tr relative to the weak topology. If si
and 38 are two von Neumann algebras, a linear function 0 of si into 38 is said to be
normal if (1) ®(si*)<^38* and (2) if {^„} is a monotonically increasing net in si+
such that lubn An = A(A es/*) then lub„ <&(An) = $>(A). A linear function <D of si
into 38 which carries si* into 38* is normal if and only if 0 is continuous in the
ultraweak topologies of si and 38. The ultraweak topology for si on the Hilbert
space H is the weakest topology such that all linear functionals of the form
A -*■ 2 {(Ax,, y,) | 1 ̂ y'< oo} are continuous where {x}} and {y¡} are sequences of H
such that 2 \\x,\\2< +°o and 2 ||.Villa< +°°.

If A is an element of the trace class the function B -> Tr (BA) is an ultraweakly
continuous linear function of si into its center. We prove this in the following
form.

Theorem 4.11. Let si be a Type I von Neumann algebra with center 3f and let 3~
be the trace class of si. Let SP be the set of positive elements of ¡F. Assume that
{An\ ne D} is a monotonically increasing net of elements of 3P which is bounded
above and suppose A = lubB /i„ is an element of 3P. Then lubn Tr (An)=Tr (A).

Proof. If x is an arbitrary vector of the Hilbert space of si, it is sufficient to
show lim„Tr (An)x = Tr (A)x in order to show lubn Tr (A„) = Tr (A) because
{Tr (An) | n e D} is a monotonically increasing net in 3£ bounded above by Tr (A).
Let S be a set of mutually orthogonal abelian projections of least upper bound 1
and let F(S) be the collection of finite subsets of S. For each £ g S we have te(A„)
¿te(A) and limn rE(An) = TE(A) (strongly). Now given e>0 there is an element n
in F(S) such that ||2 {tf(A) \ F e tt'}x\\ < e for every it' e F(S) such that it' n n = 0.
So 112 {TF(An) I F g j/}*Il <£ for every w' e F(S) such that w' n n= 0 and for every
ne D. There is an n0 e D such that ||(2 {-rF(An) \ F e tt} — 2 {rF(A) \ Fe n})x\\ <e
whenever n ä n0. Therefore, if w' is in F(S) and n' => n we have

\\(2{rF(An) I Fen'}-2{rF(A) | FG7t'})*||  < 3e,

whenever nä«0. Thus, ||(Tr (An) — Tr (A))x\\ =3e whenever n^n0. This proves that
lim„ Tr (/*„)* = Tr (A)x and that limn Tr (/iB) = Tr (A) (strongly).   Q.E.D.

Corollary. Let A be an element of the trace class. The linear function tf>(B)
=Tr (BA) of si into 2£ is ultraweakly continuous.

Proof. We may write A as a linear combination of four positive elements in the
trace class. So we may assume that A is an element of 3P. If Be si* then <f>(B)
= Tr (£/l) = Tr (£1,2^£1,2) = 0; therefore tf> is a positive function. If {£„ | n e D} is a
monotonically increasing net in si* with least upper bound B, then
{All2BnA112 | n e D} is a monotonically increasing net in the trace class with
least  upper bound Axl2BAxt2 in the trace class. This means that lub„^(£„) =
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lubnTr(All2BnAll2)=Tr(All2BAll2) = <l>(B). This shows that <f> is ultraweakly
continuous.    Q.E.D.

We now extend the trace Tr to sé*. Let {F; | j e J} be a set of mutually orthog-
onal central projections such that for each j 2ft = 2fP, is a-finite. If 77 is the Hubert
space of sé, let xt be a separating vector in F,77 for J^. Let Zy be the spectrum of S¡.
This is identified with the compact set {£ e Z | F^(£) = 1}. Let vt be the measure on Z¡
such that wiiA) = iAxj, x,)=\z¡ A~(Ç) dv¿£) for every A e 2?¡. Let X=\J {Z¡ \jeJ}
with the topology induced by the union. Let v be the measure on X induced by
each Vj acting on Z¡. Then 2? is isomorphic isometric to the algebra Lq(X, v) of all
essentially bounded complex-valued functions on X.

For each y the function w, Tr (A) on ffPt is normal in the sense of Theorem 4.11.
There is a unique faithful normal semifinite trace <f>j on sé*P¡ such that <f>j(A)
= Wj ■ Tr (A) for every A e ffP,. If F(J) denotes the collection of all finite subsets of
J, the function of sé* defined by

4>(A) = sup {2 (UA) \jen)\ne F(J)}

defines a faithful normal semifinite trace on sé*. Let 2£~ * be the set of all positive
(finite or infinite) v-measurable functions on X. Define the trace w on 2£~ * by
w(f) = sup {outer integral of fgY\gY characteristic function of a compact set Y}.
There is a faithful normal #-map 0 of sé* into 2?~* such that w-Q>(A)=<f>(A)
for all A ese*. If AeffPh then WiCTr (AP,))=<f>(A) = w<t>(A) = wl(®(APj)).
However, if B is any element in 2ff then w/77Tr (A)) = wt(B<&(A)); so Tr (A)
= <D04).

For any Aeff1, Tr (A)Pj=^(A)Pj for ally. Therefore, 4>(A)e2f and Tr(^)
= <D04). [2, III, §1, (Problem 11) and §4; I, §6 (Proposition 9)].

Let </> be an ultraweakly continuous ^-linear function of sé into 2f. The functions
<j>x(A) = 2-1(<j>(A) + <j>(A*)*) and </>2(A) = (2i)-1(<f>(A)-<f>(A*)*) are ^-linear ultra-
weakly continuous functions such that <f>x(A*) = <j>x(A)* and <f>2(A*) = <j>2(A)*. We say
that a 2f-linear function <f> on sé is hermitian if <f>(A*) = </>(A)* for each A in sé.
Thus, every ultraweakly continuous 2f-linear function may be written as a linear
combination of two hermitian ultraweakly continuous 2t'-linear functions.

The next theorem shows that each ultraweakly continuous hermitian JMinear
function may be written as the difference of normal .^-linear functions.

Theorem 4.12. Let sé be a Type I von Neumann algebra with center 2£ on the
Hubert space 77. Let </> be a hermitian ultraweakly continuous 2f-linear function
of sé into 2?. There is a projection E in sé such that </>(AE)=<l>(EA)for every A in sé
and such that the 2L'-linear functions (j>x(A)=<f>(AE) and <f>2(A)= — <f>(A(l —E)) of
sé are normal.

Proof. Let x be a nonzero vector in 77. The linear functional p(A) = (<f>(A)x, x) on
sé is a nonzero ultraweakly continuous hermitian linear functional. There is a pro-
jection F in sé such that p(FA) = p(AF) for every Ain sé and such that A -*■ p(AF)
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and A -*■ - p(A(l — F)) are normal functionals on si. For every B in J° and Ainsi*
we have that

0 á (<l>(AFB*B)x, x) = (<l>(AF)Bx, Bx) = (tp(FA)Bx, Bx),
and

0 g -(¿04(1-F))£*£c,.x) = -(<¿04(1-F))£x,£;c).

Let (?' be nonzero projection in the commutator 3f' of 3? that corresponds to
the subspace closure {Bx\ Be 3f}. Since 0i(tf>(AF)y,y) = (tf>(FA)y,y) and
0^ -(tf>(A(i -F))y, y) for every A in J2/+ and y in closure {Fa: | B e 3?}, we have
that tf>(AF)G' = <f>(FA)G' and -<^(>4(1-F))G' are positive central elements in
G'3f'G' for every A in j/+. Let G be the projection in 3? corresponding to closure
{B'x | £' g .2"}. The function A -* AG' of 3°G onto 3TG' is an isomorphism.
So 4>(AF)G = t/>(FA)G and -tf>(A(i -F))G are positive operators for each Ainsi*.

Now let {Gn} be a maximal net of nonzero orthogonal central projections such
that for each n there is a projection £„ majorized by G„ such that tp(AE„) = tp(EnA)
and -<¿(/l(Gn-£n)) are positive for each A in <s/+. Let G=2Gn and £=2£r
Then tf>(AE) = tf>(EA) and -<¿(,4(G-£)) are positive for each ^ in «s^+ due to the
ultraweak continuity of tj>. From the preceding paragraph we see that the maxi-
mally of {Gn} implies that (7-1.   Q.E.D.

We now identify the elements of trace class with the ultraweakly continuous
áT-linear functions of si into 3f.

Theorem 4.13. Let si be a Type I von Neumann algebra and let S be the center
of si. Let 3P be the set of positive elements of the trace class 3~ of si and let Tr be the
trace function. If A e $~, let tpA be the function on si defined by tf>A(B) = Tr (BA). The

function A-><pA is an isometric isomorphism of 3~ onto the set of all ultraweakly
continuous 3?-linear functions of si into 3?. The function A -> <f>A takes a3 onto the
set of all normal 3?-linear functions.

Proof. Let tf> be an ultraweakly continuous 3f-iinear function of si into 3t'. By
Theorem 4.12 and the remarks preceding it the function t/> may be written as a linear
combination of four normal ^-linear functions tf>¡ (1 ̂ y'^4). There is a constant K
such that

\\tf,j(B)tpj(B)*\\ é K\\UB*B)\\ = K\\tf>j(l)\\ \\B\\2
for every B in si. Therefore, the functions tp, restricted to /„ are uniformly contin-
uous ^-linear functionals. There are unique elements A¡ in 3~ such that tp,(B)
= Tr(BAj) for each B in /„. For every abelian projection £ in si we have that
Oitf>j(E) = TE(Aj). This shows that each A¡ is an element of 3?.

Finally, the functions 0/5)=Tr (BA,) are normal on si. However, the ideal Ia
is ultraweakly dense in si. Since 6¡ is equal to tp¡ on a dense subset of si, we have
that Qj is equal to tp, for each y. Thus the function A -> tf>A of J" maps onto the set
of ultraweakly continuous ^-linear functions of si into 3! and maps ^ onto the
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set of normal ^-linear functions. This function is certainly a monomorphism.
Furthermore, by Theorem 4.9 we have ||Tr (\A\)\\ =lub {||^(77)|| | ||£|| g 1, 77 £ Ia}.
By the Kaplansky density theorem [6] the unit sphere of Ia is strongly dense in the
unit sphere of sé. Let e > 0 be given ; then there is an operator 77 in the unit sphere
of sé and unit vectors x and y in the Hubert space H of sé such that \\</>A\\
= \i<f>A(B)x, y)\ + e. Therefore, there is an element C in the unit sphere of Ia such that
\\<t>Ai\iUC)x,y)\+2e. So HA\\ = \(MC)x,y)\+2eZ\\Tri\A\)\\+2e. Because
e>0 is arbitrary, we have that \\<f>A\\ ^ ||Tr i\A\)\\. Finally, we obtain that \\<f>A\\
= || Tr (|/4|)||. Therefore, the function A -> <f>A is an isometric isomorphism of ff"

onto the space of all ultraweakly continuous 2f-linear functions of sé into 2?.
Q.E.D.

Let sé be a semifinite von Neumann algebra with center 2?. Let A' be a locally
compact topological space and let v be a positive measure on X so that the set of all
essentially bounded measurable functions L^iX, v) on X is isometrically isomor-
phic to 2H. Let O be a normal semifinite faithful #-map of sé* into the set of
all positive (finite or infinite valued) measurable functions on X. Let
Ji={A e sé I ®iA*A) s X) and Jl=Jr*. For A and 77 £ jV, let 04, 77) = <S>iB*A)
and let |J^4|J^ = ||<l>04*y4)1,2||. The function A -> \\A\\X on ¿V is a norm. The following
theorem gives part of our reason for not studying the subject of the preceding
section in a more general context.

Theorem 4.14. Let <t> be a normal semifinite faithful jf-map on the von Neumann
algebra sé with center 2C; then the ideal Jr = {A ese | <t>iA*A) £ 2?} is complete
under the norm \\A\\X= ||d>04*/á)1,2fl if and only if there is an a>0 such that \\A\\
¿a\\A\\x for all Ae^V. In particular sé is of Type I.

Proof. Let ^V be complete under the norm \\A\\X. There is no loss of generality
in assuming either that sé is of Type I or that sé is of Type II. Suppose first that sé
is of Type I and there is no <x>0 such that \\A\\ gafl/ífl! for all AeJf. There is a
sequence {An} of elements of Jf such that \An\ = 1 and ||yin||1<2~(2n + 1). We may
assume that An e sé* for each n. There is for each n a nonzero abelian projection
F„ such that A2, = 2~1En. Thus

\\Enh = ll«Wall ^ 21'2\\<S>iA2)1>2\\ = 2~2\

Let Fn be the central support of Fn and let Xn be the set in the spectrum Z of 2f to
which Fn corresponds. We consider two cases: (1) there is a subsequence {Xnj} of
{Xn} such that H {Xn¡ \j= 1, 2,.. .}^ 0 ; (2) for every subsequence {Xni} of {Xn},
D{*„jy=l,2,...}=0. In case (1) let f\ {*„, |i-l,2,.. .}# 0. Let Q,=
PniPn2 ■ ■ ■ Pn, and let F, = Q)Enj. Then {Fn} is a sequence of nonzero abelian pro-
jections such that ¡Fn||1á2"2n and Fn+1«<Fn. We may assume therefore that
Fn+1 <Fn (n = 1, 2,...) by choosing inductively appropriate projections equivalent
to each of the original Fn and by passing to a subsequence if necessary. Let Gn
= Fn-Fn+1 (n=l, 2,...). Then {Gn} is a sequence of nonzero disjoint abelian
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projections such that \\Gn\\x = 2~2n. Now consider case (2). There is a sequence {it,}
of nonempty finite disjoint subsets of natural numbers with the following proper-
ties: (1) if i<j and k ettu le-n, then k<l; (2) Q¡= x {Pk \ k ettJ/0 for each j;
and (3) if k >j then P, is orthogonal to Q¡ for each / g nk. Let m(j) be the largest
integer in it, and let Gf = Q,EmU). Then {G„} is a sequence of nonzero disjoint abelian
projections such that ||Gn||1^2_2n.

Now for either case let £n = 2 {2"Gk | igkin} for n = i,2,.... Since

<t>((Bm-Bn)*(Bm-Bn))112 = (2 {22><!>(G,) | m+\ $j 5 n})m

for am < n, we have

ll*«-*»lli ̂  Œi28!*^)!! Iw+1 *•/ = w>)1/2 = 2_m-
Thus, the sequence {£„} is Cauchy in Jf. By assumption there is a Bin Jf such that
limn \\Bn — F||!=0. However, the sequence {£n 2 (Gk | 1 ú k i m)}„ which is
eventually constant converges to 2 (Gk | 1 Sk = m)B in Jf. So 2 (Gfc | 1 ■¿kim)B
= 2 (2kGk | \?ik = m) and hence ||£|| ^2m. Because m is arbitrary this is impossible.
We have proved that if ,t/ is of Type I, and Jf is complete there is an a>0 such that
MU á«Mlli for every ,4 in ./T.

Let si be a Type II algebra and let £ be a nonzero projection in Jf. Let F01 = £
and let {Fn; | /i = 0, 1,... ; 1 jjy'^ 16} be projections in si such that {Fni | 1 ay*-! 16}
is a set of orthogonal equivalent projections of sum Fn_n, for each n= 1, 2,....
Then $(Fn_u) = 2, 4>(Fny)=16<J>(Fnl). Let Bn = 2{2'Fi2 | 1^«}. We have that
{Bn} is a Cauchy sequence in ./f. Indeed

ll^-Fnllx = ¡[2 {22^(FJ2) \m+lij* n}]m\\
= ¡2 {22*2 ""*(£) | m+ 1 $ / £ /i}||1/2
¿ 2-m||<D(£)||1/2

whenever m < n. Now there is a B e Jf such that lim„ Bn = B in Jf. However, the
sequence {£„ 2 {F,2 | 1 ijim}}„ which is eventually constant converges to
I{Fn\lSjSm}B. So 2{2iFj2\líjim} = Z{Fj2\\ejúm}B. Thus ||£||=2m.
This is impossible. Hence si cannot be of Type II.

Conversely, suppose there is an <x>0 such that MH^aMUx for every AeJf.
Let {A„} be a Cauchy sequence in Jf. We show that {An} converges to an element A
in s/ using the method of Theorem 4.6. Because {An} is Cauchy, the sequence {An}
converges uniformly to A e s/. Let 5 be a set of orthogonal abelian projections in
Jf with least upper bound 1. Let tt be a finite subset of 5. Then the relation

[2 {TF((A-An)*(A-An)mF) I Fen}]112

(1) Ú [2 M(A - Am)*(A - Am))<t>(F) | F g tt}] 1/2

+ [2{TF((Am-An)*(Am-An)MF) | Ferr}]112,
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which is obtained in a manner entirely similar to that in which the corresponding
formula of Theorem 4.5 is obtained, gives

H04-/UFX =£ \\(A-Am)Fjx+\\(Am-An)Fn\\x
where F„ = 2 {F | Fe n}. So there is a constant M such that \\(A-An)Fn\\x = M for
every finite subset n of S. Therefore, A — AneJf and consequently Ae Jf.
Furthermore, the relation (1) shows that limn ||/4-.4nfl1=0.   Q.E.D.

We now are able to show that the theory obtained by using a normal semifinite
faithful #-map with values in the center is different from the theory obtained by
using a trace with values in the scalar field. Let <f> be a normal semifinite faithful
trace (with scalar values) on a Type I von Neumann algebra sé. Let Jf=
{Aesé\ <f>(A*A)<+oo} and let J(=Jf2. Define the norm on ^Tby \\A \\x=<f>(A*A)112.
If Jf is complete with this norm, a simple reworking of the proof of Theorem 4.14
shows that there is an <x>0 such that \A\ -¿.a\A\x for all AeJf. By a theorem of
Ogasawara and Yoshinago [11, Theorem 5] sé contains minimal abelian projec-
tions. (In fact .sé is the product of factors.) This is not the situation if ¿ is a normal
semifinite faithful #-map with values in the center of sé.

Theorem 4.15. Let sé be a Type I von Neumann algebra with center X and let <I>
be a faithful normal semifinite §-map on sé. Let Jf={A e sé \ <t>(A*A) e 2£} and
let Ji = Jf2. If Jf is complete with the norm \\A\X= \<b(A*A)ll2\\, the ideal Jf is
contained in if and the ideal Jt is contained in ff". There is a B0e 2f* such that
A -> ABo12 is an isometric isomorphism of if onto Jf and A-+ AB0 is an isometric
isomorphism of ff" onto J( with the norm \A\2= \^>{\A\)\.

Proof. Let a > 0 be a number such that fl A fl ̂  a fl A fl x for every A eJf. Let F be a
projection in Jf and let P be the central support of F We have that F e 70 and
0(F)äa'F, where a=a.~2. So there is a F in (2fP)* such that \\B\\=a and
B$(F)=P. Let {F(} be a set of mutually orthogonal abelian projections in Jf
whose least upper bound F is a maximal abelian projection. Let F¡ be the central
support of F i and let 5íe(^'Fí)+ have the property Fi<5(Fi) = Fi and ||Ft||^ce'.
There is a BQe2f* such that B0P¡=Pi for each /'. Because 770<D(F) = Tr (F),
B0®(A) = Tr (A) for every A ese* [2, III, §4, Theorem 2]. If F is any abelian
projection in Jf, then B0<t>(E)=P where P is the central support of F. Thus,
FJ'2<D(F)1,2 = F. Thus Aeff implies ABh'2 e Jf and <b((ABll2)*(ABll2))ll2 =
Tr (A*A)112. Also if A e ff" then AB0 e J( and <D(M770|) = Tr (|^|). So A -> AB\12
and A -*■ AB0 are isometric isomorphic functions of if into Jf and ff" into JÍ
respectively.

Let A e Jf*. Since every projection of Jf is an element of Ia, the element A
is a member of Ia. If 2 A,Ej is a spectral resolution for A, then ,4*j4=/12 = 2 A2E¡
and <t>(A*A) = 2A2<b(Ej). Now 2 ^0(F,)1/2F; is an element of if. Indeed, if
Bn = 2{AjQ>(E,)ll2Ej\ l¿j¿n}, the sequence {Bn} converges uniformly to an
element B in II which has a spectral resolution 2 A^E^Ej. The relation Ex
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>E2- • implies O^)1'2 ^ $(£2)1/2 ä ■ • ■ and the relation a\\G\\x^ ¡G\\ for every
projection G eJf implies that the product A,Q>(E,)1I2E, has property (iv) of
Theorem 2.2. Also limA,<!>(E,)m=0. We have that ££01'2 = 2 A,BX0,2<5>(E,)XI2E,
= 2A,E,. Therefore, the function A -*■ ABtf2 maps if onto Jf.

If A e Jt*, then A is an element of Ia. Let 2 A,E, be a spectral resolution of A ;
we have 0(|^|) = <5>(A) = 2 A,<^(E,). In the same manner as the preceding paragraph
2 {A,Q>(E,)E, | 1 új^n} converges uniformly to an element B in I* whose spectral
resolution is 2 A,Q>(E,)E,. Then Be F and B0B=2A,E,. This shows that the
function A -> AB0 of ¡F into J( is onto .^.    Q.E.D.

Corollary.   IfJ(=3~, then B0 is invertible.
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