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1. Introduction. Let &/ be a von Neumann algebra of Type I with center &
and let I, be the ideal in &/ generated by the abelian projections of &/, The ideal I,
is the natural analogue in a von Neumann algebra of the ideal of completely
continuous operators on a Hilbert space. Here, however, the center & functions
in the same way that the complex numbers function in the case of completely
continuous operators. In fact, we prove that every positive operator A4 in I, may
be written in the form A=3 {4,E;|j=1,2,...} where {E;|j=1,2,...} is a
sequence of mutually orthogonal abelian projections such that E; >FE,>- .- and
{4,]j=1,2,...} is a sequence of positive central elements such that 4,2 4,2 ---
and lim; 4,=0. This decomposition for 4 will be unique in the same sense that the
spectral decomposition for completely continuous operators is unique.

The ideal I, is the maximum GCR ideal in the von Neumann algebra A4. In fact,
I, is a CCR ideal and it has a Hausdorff structure space. In §3 we show that the
structure space of I, can be identified with the spectrum of the center Z. Then we
describe the positive elements 4 in I, and in & with continuous trace i.e. those
positive elements A such that ¢ — Trace (¢(4)) is a continuous function from the
space of equivalence classes of irreducible representations of /, and & respectively
to the complex field.

In §4 we define in & analogues % and J to the Schmidt class and trace class in
the algebra of all bounded linear operators on a Hilbert space. The sets & and J
are ideals of & contained in I, and &?=7. Furthermore, a trace Tr (with values
in &) is defined on J. This trace can be extended to a normal trace on &/*. The
ideal & under an inner product defined by Tr becomes a Z-module [9] and the set
of all uniformly continuous functions on I, into £ that are linear over Z is
identified with 7. Also, a norm equal to the operator bound on J gives a Banach
*.algebra structure on J. With this norm the set of all continuous functions of 7
into & that are linear over Z is identified with & and the operator bound is the
norm defined on /. The positive elements in .7 are identified with the normal
function of & into & which are linear over 2. These are analogues of results
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concerning scalar valued traces on von Neumann algebras and results on compietely
continuous operators on Hilbert space.

Finally, we justify the use of the name Schmidt class and trace class by showing
that these ideals contain all other ideals which produce Z-modules. We also show
the way in which this theory differs from the usual noncommutative integration
theory.

2. Diagonalization of self-adjoint operatorsin /,. Let &/ be a Type I von
Neumann algebra with center 2 and let Z be the spectrum of Z. For each (e Z
define [{] to be the closed two-sided ideal given by

[{)=closure {3 {4,B,| 15j<n}| A, € A, B, € L, n a positive integer}.

There is for each { € Z an irreducible representation i, of =« whose kernel is {{] on
the Hilbert space H({). We denote the image of A4 in &/ under ; by A({). Then
the function {— |A({)| of Z into the positive real numbers is a continuous
function [4, §4]. The image of I, under ¢, is the ideal of all completely continuous
operators of H({). If 7 is homogeneous of finite degree n, the Hilbert space H({)
is n-dimensional.

We shall use the following terminology. Let & be a commutative von Neumann
algebra with spectrum Z. The projection in & whose image under the Gelfand
isomorphism 4 — A” of Z onto the set of continuous complex-valued functions
on Z is the characteristic function of an open and closed set in W in Z will be called
the projection corresponding to W.

In order to obtain the decomposition for self-adjoint elements in I, we need the
following lemma.

LEMMA. Let &7 be a finite Type 1 von Neumann algebra which has only finitely
many homogeneous components of distinct degrees. Let Z be the center of </ and let
Z be the spectrum of Z. Let A be a self-adjoint element of &/ and let A, be an element
in Z such that for each { in Z the riumber A7 (L) is a proper value of the matrix A({)
on the finite-dimensional Hilbert space H({). Then there is an abelian projection E
in & of central support 1 such that AE=A,E [1).

The following theorem allows us to apply the results of this lemma.

THeorREM 2.1. Let &/ be a Type 1 von Neumann algebra on the Hilbert space H;
a projection E in the ideal I, generated by the abelian projections of s is the sum of
a finite number of mutually orthogonal abelian projections.

Proof. The algebra E&/F is a Type I von Neumann algebra on E(H). If ¢ is an
irreducible representation of E<ZE on a Hilbert space K, then K is finite dimensional.
Indeed, there is an irreducible representation ¢’ of % on a Hilbert space K’ which
contains K as a subspace such that ¢’(E) is the projection corresponding to K and
¢'(A)x=¢(A)x for every xe K and 4 € E&/E. We have that ¢'(I,) is the set of
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completely continuous operators on K’. This means that ¢'(E) is a finite-dimen-
sional projection and, therefore, that K is finite dimensional.

Let {P,} be a net of mutually orthogonal projections in the center of E&/E such
that the least upper bound of the P, is E and E«/EP, is homogeneous. Each
E«/EP, must have finite degree and so we may assume {P,} is either a finite set or
an infinite sequence such that if f(n) is the degree of E&ZEP, then f(n)<f(n+1)
(n=1,2,...). It is sufficient to prove that the set {P,} is a finite set. We argue by
contradiction. If there are an infinite number of {P,} there is a point { in the spec-
trum of the center of E&/E such that P, ({)=0 for all n. Let {E,, | 1<j<f(n)}
be mutually orthogonal equivalent abelian projections of sum P,. Let F;=
> {E. | k+1=n} whenever f(k)+1<j<f(k+1) for k=0, 1,2,... where f(0)=0.
Each F; is an abelian projection; if f(k)+1 £j=< f(k+1) the central support of F, is
> {P.| k+1=n}. We havethat (G {P, | n<k})"()=0and so G {P,| k+1n})"()
=1. Thus F;({)#0for 1 £j<co. There is an irreducible representation with kernel [{]
of E«ZE on a Hilbert space H({). This means that 3 {F({) | 1 £j<f(k)} < E({) for all
k. Because {F,({)} is a sequence of nonzero mutually orthogonal projections, H({)
must be infinite dimensional. This is impossible. So there are only finitely many P,.

We now apply Lemma and Theorem 2.1 to the spectral decomposition of a self-
adjoint operator in I, to obtain a diagonalization. By a rearrangement of this
diagonalization we prove a spectral theorem analogous to the spectral theorem for
self-adjoint completely continuous operators.

THEOREM 2.2. Let &/ be a Type 1 von Neumann algebra with center Z and let I,
be the ideal generated by the abelian projections of /. Let A be a positive element in
I.. There is an at most denumerable set {E,} of mutually orthogonal abelian pro-
Jections such that E; >E, > - - - and at most denumerable set {A,} of positive elements
in Z such that A, 2 A, 2 - - - and such that lim, A,=0 if there are infinitely many A,
with the property A=73, A.E,(%).

Proof. Let Z be the spectrum of the center &. Because the function { — || A({)|
of Z into the real numbers is continuous, there is an element A4; in 2 * such that
AT(8)=| A(D)| for every { € Z. There is no loss of generality in the assumption that
A =1. Let X,=closure {{€Z | AT()>(n+1)"1} for n=1,2,.... The sets X,
are open and closed subsets of Z. By induction we may define the sets X; = X7 and
X,=X;—\U{X.]|1=2k<j} for j=2,3,.... The sets X, are mutually disjoint
and are open and closed. Let P, be the central projection which corresponds to X,
for each n=1,2,....

Let n be a fixed natural number and let B= AP,. Let Z be a maximal commutative
*-subalgebra of &P, that contains B and let Z (%) denote the spectrum of #. Let E
be the projection in # which corresponds to the open and closed set closure
{' e Z(#B) | B~({')>(2(n+1))~1}. The spectral projection E of B has the property
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B2(Q2(n+1))"'E and B(1 —E)=(2(n+1))~*(1 — E). The central support of E in &/
is P,. Indeed, if E({)=0 for some { € X,, then | B())| = |B(1—EX)|=Qn+1))"
This is impossible. Thus E({)#0 for every { € X,. Now B2 (2(n+1))~1E implies
that there is an element C in 4 such that CB= E. Therefore E is a projection in /,.
We have that | B({)|| =max {||BE(()|, | B(1 — E){)|} for every { € X,. Since

1B -EXYDI = 2(n+1)7,

we find that | B(¢)| = | BE({)| for every { € X,. Let B'=BE. By Theorem 2.1 the
Type I algebra &7 is finite with finitely many homogeneous components of distinct
degrees. Let Z(.%7;) be the spectrum of the center of <. The function {” — || B'({")|
is continuous on Z(<%) and there is an element B, in the center of %% such that
BT (L")=|B'(L")| for every {" € Z(sy).

There is an abelian projection F=F, in & of central support E such that
BF= B, F. Considering F as a projection of &7, we see that F is an abelian projection
of & of central support P,. The center of &/ is ZE and the function p(C)=CE
of ZP, onto ZE is an isomorphism. Let 4; be the unique element in 2P, such
that A1E=B,; we show that A;=A4,P,. Let { € X, and let {' be the maximal
ideal in 2P, given by {'={CP,| Ce{}; then A4;°()=B(()=]B(c)]=
inf {|B'+ D|| | De[p({)}y Zinf{| B + D] | D& [¢}} = | BO)| = A7 () because the ideal
[p(¢)] in & is contained in the ideal [{] in &/. So 4} = 4,P,. However, if { € X,
and if D € [{]it is easy to see that EDE € [p({')]. This means that 47~({)= | B'(p({')|
<||[EBE—EDE| £|B— D), for every D e [l]. Thus, A;"({)< || B()||=A47() for
every { € X,. So A1 £ 4,P,. Consequently, we have found an abelian projection F,
of central support P, such that AF,=A4,F,.

Let P=3 {P,|n=1,2,...} and let E,=> {F, | n=1,2,...}; the projection E,
is abelian and has central support P which corresponds to the closure of the set
{teZ| |A)|#0}. Furthermore, AE,=A4,F;. Then the operator A(1—E,) is a
positive operator in I, and for every { in Z the relation {|A4(1 - E,\)(Q)| = [AQ)|
(A= EXD)| £ A7 ({) is true. By induction we can construct a sequence {4,} of

positive central elements such that 4, > 4,2 --- and a sequence of mutually
orthogonal abelian projections {E, | n=0, 1, 2, ...} such that
(i) E;=0;

(i) AE,=A,E, (n=1,2,...);

(iii) The function {— |A(1-3{E;|0Zjsn—1}}0)| on Z is equal to A;
(n=1,2,...); and

(iv) The central support Q, of E, corresponds to the closure of the set

{{eZ |47 # O}

In view of (iii) in order to show 4=73, 4,E, (uniformly), it is sufficient to show
that lim,, 4,=0 (uniformly). Indeed,

|4=-S (4E |1 gj ) =40~ E |1 2j = )| = |4nsil.
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We prove lim, 4,=0 by arguing by contradiction. Suppose lim, 4,#0. Taking
into consideration the ordering of the sequence {A4,}, there is a number §>0
such that | 4,] > & for every n. So for each n there is a maximal ideal ¢, in Z such
that 4;({,)28. For j=1,2,...,8 24 ((n+)S A7) Let £ in Z be a
limit point of the set {{,|n=1,2,...}. For every j=1,2,... we have that
A7 () zlim inf, A7(L,) = 8. Because each A7 ({) is not zero, each EJ{) is a one-
dimensional projection on the Hilbert space H(Z). The sequence {£,({)} is a sequence
of orthogonal one-dimensional projections on H({) such that A(Q)E({)= A7 (DEAL)
foreach j=1, 2, .... This shows that the compact operator 4({) has infinitely many
proper values which are greater than or equal to the strictly positive number 8.
This is impossible. Hence, we conclude lim, 4,=0.

Finally, if Q, is the central support of E, (n=1,2,...), then Q, corresponds to
the set closure {{€Z | A7 ()#0}. So Q0,2 Q,= ---. Thus E; >Ey>---.

Using the spectral theorem for completely continuous self-adjoint operators on a
Hilbert space, we prove that the representation obtained in Theorem 2.2 is unique.

THEOREM 2.3. Let A be a positive element in I, and let {4; | 1 £ j<m} (respectively,
{B; | 1Sj<n}) be a set of positive central elements and {E; | 1 £ j<m} (respectively,
{F;| 1 £ j<n)}) be a set of orthogonal abelian projections with the following properties:
(1) A;#0 (respectively, B;#0) for all j; (2) Ay 2 Az Z - - - (respectively, By Z By 2 - - -);
(3) if Z is the spectrum of the center, then

{LeZ | E(L) # O} = closure {{ € Z | A}({) + O}

(respectively, {{ € Z | F{({)#0}=closure {{ € Z | B (L) #0}) for every j; (4) if m= 40
(respectively, n= +o0), then lim; A;=0 (respectively, lim; B;=0); (5) 3 A;E;=A
(respectively, > B;F;=A). Then m=n and A;=B; for every j.

Proof. For every { in Z the element A({) is a completely continuous operator on
H({). We have that > A7 (DE(L)=A()=2 B (DF(L) on H(L) since for both sums
A is the uniform limit of the partial sums > {4,E; | 1Sj<n}and J {B;F;| 1 £j<n}.
However, {47(0)} and {B;"({)} are decreasing sets of positive numbers and the
nonzero E({) and F({) are one-dimensional projections on H({). Because E;({)=0
(respectively, Fj({)=0) implies E({)=0 (respectively, F({)=0) whenever j<k,
we have by the spectral theorem on H({) that 47 (£)#0 if and only if By ({)#0 and
that A7 ()= B; ({) for all j such that A7 ({)#0. Thus, we have the result that m=n
and A7 (0)=B; () for all { € Z. Thus, 4;=B, for all j. Q.E.D.

We call the representation for a self-adjoint operator A4 in Theorem 2.2 a spectral
representation for A.

3. Elements with continuous trace. Let o/ be a C*-algebra and let P(%) be the set
of all primitive ideals of & with the hull-kernel topology. The space P(%) is called
the structure space of . Let &/” be the set of all equivalence classes of irreducible
representations of &7 with the reciprocal topology induced by the function ¢ —
kernel ¢ of &/ into P(<f). For each A in &7+ the trace of the image of 4 under any
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of the representations in a single equivalence class ¢ in " is invariant; the trace is
denoted by Tr (¢(A4)). If 4 is an element in & * such that Tr (#(4)) is finite for all
¢ € & and such that ¢ — Tr (¢(A4)) is continuous on =", then A is said to have a
continuous trace. The set of all positive elements with continuous trace is the set
of all positive elements of a two-sided ideal in m(2/) of & [3, §4]. In this section we
study the elements with continuous trace in a von Neumann algebra.

We first prove a theorem concerning the structure space of 1,.

THEOREM 3.1. Let o be a Type 1 von Neumann algebra and let Z be the center of
& ; let Z be the spectrum of Z. The structure space P,=P(l,) is homeomorphic
to Z under the map f({)=[{1N I,.

Proof. The set P, is equal to {{{] N I, | { € Z}. Therefore f is a surjection. We
prove that fis an injection and that fis bicontinuous.

Suppose {, and {, are distinct elements in Z. There is a projection P in £ such
that P™({;,)=1 and P"({;)=0. Let E be an abelian projection of central support P;
then E({;)#0 and E({;)=0. Now for any A4 in I, and any { €Z we have that
A = ALl N L) ; thus, E ¢ f(£,) and E € f(£5) 50 f(£,) #f(£2). This shows that
f is an injection.

We now show that f is continuous. Let X be an open set in P,. Then there is
a closed two-sided ideal I in I, such that X={Je P, | JDI}. We show that the
set {{eZ|f({)e X} is open in Z. Indeed, we have that f({)I if and only if
[C1 1. But if [{,]d ] there is a projection F in I such that |[F({,)] =1. The set
{CeZ]|F()|=1} is open in Z and contains [{,] and so {{ € Z | f({)$ I} is open
in P,. Thus fis continuous.

Let Y be a closed set in Z. The set Y is compact and, therefore, f(Y) is compact
in the Hausdorff space P,. So f(Y) is closed in P,. This proves f is closed and that
S ~1is continuous. Q.E.D.

Because I, is a CCR algebra, the space I is homeomorphic to P, under the
mapping ¢ — kernel ¢. If ¢ is an irreducible representation whose equivalence
class is () the function { — () is a homeomorphism of Z onto I;.

We are now ready to characterize m(/,)*. Let 2 be the set of all positive elements
A in I, such that if > A,E; is a spectral resolution of A then > A, converges uni-
formly in Z. In particular 2 contains every projection of I,. By Theorem 2.3 the
sum 2 A, depends only on A. Define the trace Tr (4) of Ato be 3 4;.

THEOREM 3.2. Let & be a Type 1 von Neumann algebra and let & be the center
of . Let I, be the ideal in &/ generated by the abelian projections of /. The set
m(l,)* of positive elements of I, with continuous trace is equal to the set 9. Further-
more, if A € 2, Tr (A~ ({)="Tr (Y (A)) for each { in the spectrum Z of Z.

Proof. Let A be an element in 2 and let > A,E; be a spectral representation of A.
For each ¢=(y,) in I where { € Z we see that Tr (¢(4))=2 A7 )=Tr (4)~(D).
Since Z is homeomorphic to I under the mapping { — (¥;), ¢ — Tr ($(4)) is
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continuous on I7. Indeed, this function is the uniform limit of continuous functions.
So 2em(l,)*.

Conversely, suppose that 4 € m(I,)* and let > A,E; be a spectral representation
of A. Then the function { — 3 A7 ({)=g({) is continuous on Z because Tr (Y(4))
=3 A7({). For each j let us assume 4;#0. Then if g, =2 {47 | 1 j<k}, the se-
quence {g,} of monotonically increasing continuous functions converges pointwise
to the continuous function g. By Dini’s theorem g is the uniform limit of the g, i.e.
> A; converges uniformly. So 4 € 2. This proves m(I;)* < 2.

COROLLARY. For each A;, A,€ 2 and C,, Co,€ Z* C,A,(j=1, 2) are elements
Of-g and Tr (ClAl + C2A2)= C]_ Tr (A1)+ Cz Tr (Az).

Proof. It is obvious that C;4; € 2. Also for each (e Z

Tr (C14,+ Ca45)~(§) = Tr (CT(DA41(D) + C5(DA(L)
= CT () Tr (4:(D)+ C2 (D) Tr (42(2)
= (C, Tr (/_41)'*' C; Tr (42)"(D).

Thus, Tr (3. C,4,)=> C, Tr (4;). We show that m(l,) is an ideal in <.

THEOREM 3.3. The ideal m(I,) of elements in I, with continuous trace is an ideal
in .

Proof. If Acs/ and A*Ael, then Ael, Thus, J={de€l,| A*Aec 2}=
{Ae | A*A € 2}. The set 2 has the following properties: (1) 2+2<2; (2) if
Ae s and A*4 € 2 then A4*€ 2; and (3) if Be 2, A€ &/ and 0 A< B, then
A € 2. So J is a two-sided ideal in & and m(I;)=J% is an ideal in /. Q.E.D.

In the standard way Tr on 2 may be extended to a function of m([,) into & such
that Tr (Cy4;+ Cydy)=C, Tr (4,)=C, Tr (4;) for every A;, A,em(l) and
C,, C;e Z. For each { € Z and 4 e m(l,) it is true that Tr (4)"({)="Tr (A(])).

LEMMA. Let &/ be a Type 1 von Neumann algebra with center &, Let Z be the
spectrum of Z and let { € Z. Let {x,} be a sequence of orthonormal vectors in H({).
There is a sequence of abelian projections {E,} in & such that E,>E, ., and E,({)x,
=x, for all n.

Proof. This lemma is a simple extension of a result of Glimm {15, §5, Lemma 11].
Let E; be a projection in the ideal I, generated by the abelian projections such that
E,({)x, = x,. Indeed, I,(¢) is the ideal of completely continuous operators on H({).
Suppose E,, E,, . . ., E, have been constructed. Let F be a projection in 7, such that
F() is the projection of H({) onto the subspace spanned by x,,, and such that
(Ey+E,+- - +EXDF)=0 in an open and closed neighborhood W of (.
Let F’ be an abelian projection whose central support R is the same as the central
support of F. Then F'({)#0 and so F'({) is the projection of H({) on the subspace
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spanned by x,.,. Let P be the central support of E, and let Q be the central
projection corresponding to W. Then let E,,,=F'PQ. We have that E,,, is
abelian and E,,()=F'({). Also E;E,,;=0 for j=1,2,...,n and E,>E, .,
because the central support of E, majorizes that of E,.,. Q.E.D.

THEOREM 3.4. Let m(l,) be the ideal of elements with continuous trace in the ideal
generated by the abelian projections of a Type 1 von Neumann algebra /. For every
{ in the spectrum Z of the center of s the image m(I1,)({) of m(l,) under the homeo-
morphism i, of & with kernel [{] is the trace class of H({).

Proof. Let A € 2. Then y(A) ({ € Z) has a trace on H({). So A({) is of trace class
on H(Z). Thus m(1,)({) is contained in the trace class of H({).

Now let 4 be in the trace class of H({). We may assume A4 is positive. There is a
sequence {x,} of orthonormal vectors in H({) and a decreasing sequence of positive
real numbers such that 4 =73 o,P; where P, is the one-dimensional projection on the
subspace spanned by x;. There is a sequence of mutually orthogonal abelian
projections {E,} in & such that E;>E;,; (all j) and Ey{)=P;. Then the operator
> oE;=Bis in I, and if R, is the central support of E;, > («;R))E, is a spectral
resolution for B. But > |lo;R;[| =2 ;< +00 and so B e 2. Furthermore, B({)=A.
This proves m(I,)({) contains the trace class of H({). Hence, m(I,)({) is the trace
class of H({). Q.E.D.

We now determine the set m(=/)* when & is a von Neumann algebra.

THEOREM 3.5. Let o/ be a von Neumann algebra with center Z. For each n
=1,2,... let R, be the largest projection P in & such that /P is of Type 1,. Let
R=3> R, and let 2R={A € 2| A(1-R)=0}. Then m(&)* is equal to the set of all
A in 2R such that lim, Tr (4)R,=0.

Proof. The uniform closure 7 of m(«7) is a uniformly closed two-sided ideal in
& ; the space I is homeomorphic to the open subset {¢ € &/ | kernel ¢ I'} under
the inverse of the map () — ($|I). Therefore ¢ — Tr (¢(4)) is continuous on I™
for all A € m(#)*. This shows that I is a CCR ideal in &/ [3, §4]. Because I, is the
maximal GCR ideal in &7, we have that I<I,. So if P is the central projection of &
such that &P is discrete and /(1 — P) is continuous we have that m(«/)-(1 —P)=0.

Now we show that m(&)} P— R)=(0). Let A € m(«)*. Assume P— R+#0. Let Z
be the spectrum of & and let X={{ € Z | (P— R)"~({)=1}. For each { € X the ideal
I, +[{] is proper. Indeed, the representation ¢, is an irreducible representation of .&/
on H({) such that $(1,) is the ideal of completely continuous operators on H({).
But for any n=1, 2,..., P— R may be written as the sum of # equivalent projec-
tions; so ¥,(1) does not have finite dimensions in H({) and thus ¢,(1) ¢ ¢(I,). There
is therefore an element ¢ € & such that kernel ¢ > 1,4 [{]. Let U be a neighbor-
hood of ¢ in &, There is an ideal I’ in &/ such that U={¢' € &/~ | kernel ¢’ 1'};
so kernel ¢ I’ and thus kernel (y)=[{]bI’. This shows that (¥, e U. So a
net each of whose terms is (¥;) converges to ¢ in &". But Tr (4(4))=0 since
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m()*<l,. If 3 A;E; is a spectral representation of A, then .(4)=2; AT(DE({)
and so Tr (Y(A4)=2,; A7 ()< +oco. This shows that 3 A7T()=Tr (4(4))=0
and that 4({)=0. We have therefore that A(P— R)=0 and consequently that
m(Z Y P— R)=0.

Since I, is homeomorphic to the open subset {¢ € &/ | kernel ¢ 7} under
inverse of the map () — (¢|1,), the function ¢ — Tr (¢(4)) is continuous on I
for each 4 € m(«/)*. This means that m(&/)* < 2R. Let 4 € m(=/)*. We show that
lim, Tr (A)R,=0. Arguing by contradiction we assume that there is an ¢>0 such
that ||Tr (4)R,] 2 ¢ for an infinite number of n. There is no loss in generality in
assuming that |Tr (4)R,] = ¢ for every n, since we may replace {Tr (4)R,} by a
subsequence if necessary. For each n there is'a {, in the set Y, ={{ e Z | Ry ({)=1}
such that (Tr (A)R,)"({,)=¢/2. There is a cluster point {, for the set
{{n | n=1,2,...}. We have that {,e Y-\, Y, where Y={{eZ| R ({)=1}.
However, I,+[{,] is a proper ideal in /. Let ¢ € &/ be such that kernel ¢>1,
+[£,]. Every open neighborhood of ¢ in &/” contains ({;,). Since Z is homeo-
morphic to I; =P, and since I is an open subset of &/~, () is a cluster point of
{() | n=1,2,...} in &, So there is a subset of {Tr (y;,(4))} converging to
Tr (#(A4)). This is impossible since Tr (#(A4))=0 and Tr (¢, (4))=¢/2 for all n.
Therefore, lim, Tr (4)R,=0.

Now suppose that 4 € 2R and lim,, Tr (4)R,=0. Since the set {¢ € &/ | kernel ¢
P A(1~R)}={p € & | kernel $ >R} is open and closed and since Tr ($(A4))=0
for all ¢ in this set, it is sufficient to prove that ¢ — Tr (¢(A)) is finite and continuous
on{¢ € " | kernel > (1 — R)}={¢ € & | kernel ¢p LR} =S. Let ¢, € S; there
is a unique ¢, € Y such that kernel ¢,>[{,). Let e>0.

If {, € Y, for some n, then (;,)=¢,. There is a projection @ in Z such that
QO £ R, such that 0™({o)=1 and |Tr (4)"(Le)—Tr (4)"({)| <& whenever Q™({)=1.
For every ¢ in the open set {¢ € & | kernel ¢ o/ Q}, there is a { € Z such that
0" ()=1and ($;)=¢. Indeed, there is a { € Z such that kernel ¢ > [{]; so &/ Q is not
contained in [{] and @™ ({)=1. This shows that /() is the algebra of all linear
operators on an n-dimensional Hilbert space and so ¢=(;). So if ¢ € &" and
kernel ¢ o7 Q0 then ¢ =(y) for some { such that @~({)=1, Tr (¢(4))=Tr (4)" (D),
and |Tr ($o(4)) ~ Tr ($(A))] = |Tr () (L)~ Tr (4" ()| <e.

If on the other hand {, € Y—\J, Y, then Tr (¢(4)) =0 because 4({,)=0. There
is an integer N such that |Tr (A}1—2{R,|1Sn=N})|<e. The open set V
={p e | kernel > (1> {R, | 1 Sn< N})} can be written as the union of
three disjoint sets S,, S,, S; ‘where S;={¢ e .&" |kernel (1 —R)}, S,=
{$ € & | kernel $2[{] for some { in Y—{J, ¥,} and. Sz={¢ € & | kernel ¢
=[] for some { in Yy,,,j=1,2,...}. So we have that ¢(4)=0 whenever ¢ € S,
and #(A4)=0 (because A({)=0) whenever ¢ € S,. Finally, Tr (4)~({) £ ¢ whenever
{eYy,;(j=1,2,...)and so Tr ($(4))=Tr (4)"({) £ ¢ whenever ¢ € S; and kernel ¢
>{t]. This shows that Tr (¢(4)) <= on an open set V containing ¢,. Therefore, the
function ¢ — Tr (¢(A4)) is continuous on &~. Q.E.D.
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4. The Schmidt class and the trace class of a Type I von Neumann algebra. Let
&/ be a Type I von Neumann algebra with center Z'; let I, be the ideal generated
by the abelian projections. Let 2 be the set of all positive elements A4 in I, such
that if > A,FE; is a spectral representation for 4 then the increasing sequence
{Z(4,| 12j<n)}, is strongly convergent in Z. Thus, 42 if and only if
{3 (4,] 12j<n)} is bounded above. The set 2 will serve as the starting point for
the construction of the Schmidt class and the trace class.

If 4 €I} and if { — Tr (4()) is defined in a neighborhood of the point £, in the
spectrum of & and is continuous at {,, then there is a central projection P with
P~({o)=1and AP € 2. Indeed, if > A,E; is a resolution of A for all £ in some open
and closed neighborhood U of {, we have that lub, 3 {47() | 1 £jSn} £ Tr (4(,))
+1. Thus {3 (4,P | 1 £j=n)}, is bounded above in Z. Here P is the projection
which corresponds to U.

The relation of 2 and 2 (§3) is clarified by the following theorem based on a result
of von Neumann [10].

THEOREM 4.1. Let A be an element of the set . There is a set S of mutually
orthogonal central projections of least upper bound 1 such that PA € 2 for each
PeS.

Proof. Let 3 A,E, be a spectral resolution for A. It is sufficient to show that there
is a nonzero projection P in & such that {3 (4,P | 1 £j<n)}, converges uniformly.
Let # be the C*-algebra generated by {4, |j=1,2,...} U {1}. The algebra & is
separable. Let H be the Hilbert space of &/ and let x be a unit vector of H. The
subspace K=closure {Bx | B € #} is separable and the projection E’ corresponding
to K is an element of the commutator %’ of &4 on H. If E is the central support of
E’, then E is an element of the commutative von Neumann algebra #” generated
by & on H. Also "< Z because #” is the weak closure of # and #"E is isomorphic
to the von Neumann algebra #"E’ on E'(H). Let B,=> {4, | 1SjSn}E',n=1,
2,.... Then {B,} converges strongly to some B in #"E’. There is a subsequence
{B,} of {B,} and an element C € #"E’ such that (1) Cy=0implies y=0fory € E’'(H)
and (2) E'23 {((Bn,— B)C)*((B,,— B)C) | 1=k =mj} for all m=1,2,.... So

E' 2 C*CS {(By,—B)(Bn,—B) |1 S k < m}

for all m=1,2,.... There is a nonzero projection Fe #"E’ such that FC*C
2271F||C|?2. Therefore, there is an «>0 such that

oF 2 3 {(By,—B)*(By,—B)| 1 S k < m}F
forallm=1,2,.... For all { in the spectrum X of #"E’ we have that
lim,, BL(O)F(8) = B (DFD).

Because {(B, F)"}, is a monotonically increasing sequence of continuous functions
on the compact set X, we have lim; B, F=BF (Dini’s Theorem). So lim, B,F=BF
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(uniformly). Because #“F is isomorphic to #”E’ there is a projection P in Z such
that {> (4P | 1 £j=n)} converges uniformly. Q.E.D.

Let F be an abelian projection in the Type I algebra 7 with center 2 and let P
be the central support of F. The algebra F&/F is isomorphic to ZP. We let 7:(A4)
denote the unique element in &P such that FAF=r(A)F.

We make use of the following lemma.

LEMMA. Let & be a Type 1 von Neumann algebra and let E and F be abelian
projections. Then vg(F)=1:(E).

Proof. We have FEFEF is equal to both rg(F)rx(E)F and (7:(E))*F; similarly,
i F)rp(E)E=(r5(F))*E. If P (respectively Q) is the central support of E (re-
spectively F), the elements 75(F) and 7x(E) are majorized by PQ. Let { be an
element in the spectrum of the center of & such that (PQ)~({)=1. Then F({)#0
and E(Q)#0, and 7x(F) QP =1(F) O EY(O)=7HE)E)? So 7x(F) ()
=7(E)"({); this shows that 7z(F)"({)=7x(F)"~({) for all { in the spectrum of the
center. Thus, 7(F)=7(E).

PROPOSITION 4.2. Let & be a Type 1 von Neumann algebra with center % and let
I, be the ideal generated by the abelian projections. Let A be a positive element in o/,
and let S be a set of mutually orthogonal abelian projections. Let F(S) be the set of all
finite subsets of S. Let N(A, S) be the increasing net in &+ given by

{3 ey | Fem} | me F(S)}.

Then A is an element of & if and only if N(A, S) is bounded above for every set S of
mutually orthogonal abelian projections.

Proof. Let A be an element of £ and let 3 4,E; be a spectral resolution of 4.
Let > A, denote the least upper bound of {3 (4| 15j<n)},. Let S be a set of
mutually orthogonal abelian projections and let F(S) be the set of all finite subsets
of S. Then if = € F(S),

D {rs(d) | Fem} = 3 {(z A,E,) | Fe ,,}
= EA’TEf(Z{FI Fe"}) = ZA:'

because lim, 7z(3, {4,E; | 1 £j<n})=r:(A) uniformly. Indeed, 7 is an isometry of
Fo/F onto ZP (P central support of F) and lim, >, {4,E; | 1 £j<n}= A uniformly.
This proves that {3 {r(4) | Fen} | = € F(S)} is bounded above by 3 4,.
Conversely, suppose that A4 is a positive element in &/ and that for every set S of
mutually orthogonal abelian projections the set {3 {rs(4) | Fen} | = e F(S)} is
bounded above. We show that A4 is an element of 2. 1t is sufficient to show 4 is an
element of I,. If e>0 is given we find an element B € I, such that [|[B— 4| Se. Let
Z be the spectrum of the center of . Suppose { € Z; we show A({) € I(0). Indeed,
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if A(0) ¢ I,(L), there is a sequence x; of orthonormal vectors in H({) such that the
set (3 {(A(D)x;, x;) | 1 £j£n}), is not bounded above because I,({) is the set of all
completely continuous operators on H({). Now there is a sequence {F;} of orthog-
onal abelian projections in & such that F,({) is the one-dimensional projection on
the subspace generated by x;. We have that (3 {7z (4) | 1 £j<n}), is not bounded
above in the center because (3 {r7(4) | 1Sj=m) Q) =2 {(AQ)x;, x;)) | 15j<n} is
not bounded above. This is a contradiction. So we conclude that A({) € I({) for
every { in the spectrum of the center. Since {— |C({)| (C € &) is continuous
on the spectrum Z there are a finite number {U, | 1 £j<m} of disjoint open and
closed sets and a corresponding number {B, | 1 <j<m} of elements in f, such that
| 4@)—BL)| <e for { e U; and 1<j<m. If P;(1Sj<m) is the projection of &
corresponding to U; (1Sj<m), then B=3 B,P;e I, and |A—B|<e. Q.E.D.

Let A be an element of & and let 4 have the spectral resolution Y 4;E;. Define
the trace Tr (4) of A to be the least upper bound of the increasing sequence
G {d;| 15j<n}), in Z. The trace of A4 is a function in & since the elements 4,
are uniquely determined by A. In fact we have the following proposition.

PROPOSITION 4.3. Let A be an element of the set P. Let S be a set of mutually
orthogonal abelian projections in </ of least upper bound 1; let F(S) be the set of all
finite subsets of S. Then

lub {Z {re(d) | Fen} | me F(S)} = Tr (4).

Proof. From the proof of Proposition 4.2 we obtain that Y {rn(4) | Fen}
=Tr(4) for all we F(S). So B=lub {3 {rx(4)| Fen}|me F(S)}<Tr (4).
Conversely, let n be a positive integer. For every = € F(S) we have that

S{(C{4E|1sj<n)|Fen} s B

since > {A;E;| 1SjSnm}<A. So {4z O {F|Fen})|12jSn}<B for every
7 € F(S). However, for every abelian projection E, we have that

Wb {+:G{F| Fen}) | me F(S)} = 1.

Indeed, lim, 3 {F| Fen}=1 (strongly) and therefore lim, vz(3 {F|Few})=1
(ultraweakly). Since {rx(3, {F| Fen}) | = F(S)} is bounded above, the strong
limit of this increasing net exists and must be equal to the ultraweak limit 1.
This shows that

lub 3 {453 (F|Fem) |1 sjsnf=3(4|15jsn

is less than or equal to B. Because n is arbitrary Tr (4)£B. Q.E.D.
Now we show that 2 is the set of positive elements of a two-sided ideal T in <.

THEOREM 4.4. Let &/ be a Type 1 von Neumann algebra and let 1, be the ideal
generated by the abelian projections of sZ. Let P be the set of positive elements
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A in I, such that if 3 A,E; is a spectral representation of A then (3, {A; | 1 Sj<n}),
is bounded above. Let ¥ ={A € o | A*A € P}; the set & is a two-sided ideal in /.

Proof. It is sufficient to show that the following three facts about £ are true:
(1) P+P<P?;(2)if Ac o and A*A e P, then AA* e P;and B)if Ae o/, Be P
and 0 A4<B, then 4 € 2.

First let 4 and B be elements of &; then A €l and BeI}. Let S be a set of
orthogonal abelian projections and let F(S) be the set of all finite subsets of S.
We have that 3 {r(4+B)| Fen}=3 {r(4) | Fem}+> {rx(B) | Fen} < Tr (4)
+Tr(B). So A+Be .

Now let 4 € o/ and A*4 € 2. Let 3 A,E, be a spectral resolution of 4*A4. Let U
be a partial isometric operator of & such that U*U is the domain support of 4,
UU* is the range support of 4 and U|A4|=A4 (|4| =(4*4)"'?). We have that 3 E,
is the domain support of 4*4 and thus > E,= U*U. The projection F,=UE,U* is
abelian and equivalent to E,. Also AA*=U|A4| |A|U*=UQ A;E)U*=3 A,F;.
However, > A,F; is a spectral resolution for AA4*; thus, 44* € #. Notice that
Tr (A*4)=Tr (44%).

Finally, let 4 € &/, Be #, and 0 A< B. Let S be a set of mutually orthogonal
abelian projections and let F(S) be the set of all finite subsets of S. We have that
2{ri(A) | Fen} <3 {rp(B) | Fen}<Tr(B) for every =€ F(S). This proves
Ae?. Q.E.D.

We define the Schmidt class of a Type I von Neumann algebra & to be the ideal
& and the trace class of the algebra &7 to be the ideal 7 = %2, The set of positive
clements of  is then precisely the set 2.

The next proposition extends the trace Tr to J.

PROPOSITION 4.5. Let o/ be a Type | von Neumann algebra and let I be the trace
class of . There is one and only one function Tr on 7 into the center Z of & with
the following properties: (1) if A is a positive element in I with spectral resolution
A=3 A,E, then Tr (A)=Iub, 3 {4, | 1 Sj<n}; (2) if A1, A, are elements of I~ and
C., C, are elements of & then Tr (CyA,+ CaAy)=C, Tr (4,)+ C, Tr (4,); 3) if
Ae T, then Tr (U*AU)=Tr (A) for every unitary operator U in &; and (4) if
A €T the function f(B)=Tr (BA) is continuous on <.

Proof. Let 4, and A4, be elements of & and let S be a set of mutually orthogonal
abelian projections of least upper bound 1; let F(S) be the set of all finite subsets of
S. Suppose > Ay E,; is a spectral resolution for A, (k=1, 2). Let n be given. Then

z {dy+45|12jsn
=lub Y [r(D {AuExs |1 Sj S nk=1,2))| Fen]

S lub D [1:(4;+Ag) | Fen] £ Tr (A)+Tr (4y).
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Therefore, Tr(A;)+Tr (Ay)<Tr (A, + A;)<Tr (4,)+Tr (4,). This proves that
Tr (A, +A5)=Tr (4,))+Tr (A4y) if A,, A, are in 2.

Now let Ce &+ and let 4 € Z. Assume C#0. Let P be the projection in &
corresponding to the closure of the open set of all { in the spectrum of 2 such that
C™(0)#0. Then CA has the spectral resolution > (CA,)(E,P) where 3 A;E; is a
spectral resolution of 4. We have that

Tr(CA) = lub > {CA; |1 S j s m}=Club> {4,|1 £j < n} = CTr(4).

If A is a self-adjoint element in the trace class, then 4 may be written as the
difference 4=A4,— A, of two elements 4, and A, in 2. Setting Tr (4)=Tr (4,)
—Tr (A;) uniquely defines the function Tr on the self-adjoint elements of the trace
class. If A4 is an arbitrary element of the trace class, then 4 may be written as a linear
combination 4= A4, +iA, of two self-adjoint elements 4, and A, of the trace class.
Setting Tr (4)=Tr (4,)+i Tr (4;) uniquely defines Tr on elements of the trace
class. The function Tr will then have properties (1) and (2).

Now let A€ and let A=3 A,E; be a resolution of A; let U be a unitary
element of &/. We see that U*AU € & and Y 4,U*E,U is a resolution for U*AU.
Thus, Tr (4)=Tr (U*AU). Since every 4 in J is a linear combination of four
elements in Z, Tr (U*AU)=Tr (4) for every 4 in 2,

Finally, let A€ * and let Be &/*. We have Tr (4V/2B4"2) < || B|| Tr (4) since
0= A4'2BAY2 < |B||A. So Tr (BA)< ||B| Tr (4). If B is an arbitrary element of <7,
we may write B=B,—B,+i(B;— B,) where B, is positive and B,B;=B,B,=0.
Thus |Tr (BA)| £ 2 (| Byl | Tr (4)]|)<4| B | Tr (4)|. If A is an arbitrary element of
J, we may write A=A, — A;+i(A;— A,) where the 4, are elements of 7 +. So
ITr (BA)|| <4|B| X [ Tr (4,)||. This shows that the function B->Tr (BA) is
continuous on & for fixed 4 in . Q.E.D.

Let A and B be two elements of the Schmidt class, Define the function of & x &
into 2 by (4, B)=Tr (B*4). Then this function satisfies the properties: (1) (4, B)
=(B, A)*; (2) (4, A)20 and (4, 4)=0if and only if 4=0; and (3) (CA+C’'A4’, B)
=C(4, B)+C'(4', B) for C,C' e Z, A’ € ¥ Define |A|=(4, A)Y* and ||4|,=
(4, A)|*"2. We have that 4] <] A4, for all 4 in & Indeed, let 3 4,E; be a
spectral resolution for 4*4. We have that |4, | = [ 4*4|. So | 4]|?= | 4*4| = | 4,]
S| Tr (4*4)|| = | 4|3. The function 4 — | 4|, on & defines a norm [9]. We show
that & is complete in this norm.

THEOREM 4.6. Let < be a Type 1 von Neumann algebra and let & be the
Schmidt class of /. Under the norm |A|3=|Tr (4*4)|, the Schmidt class &
is complete.

Proof. Let {4,} be a Cauchy sequence in . The relation |B| < | B|, for Be &
implies that {4,} is a Cauchy sequence in I,. There is an element A4 in I, such that
lim, |4, — 4] =0. We prove that 4 € & and that lim, |4, 4|, =0.
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Let S be a set of mutually orthogonal abelian projections and let F(.S) be the set
of all finite subsets of S. For each = € F(S) we have that

[3 {(r:((4 - 44~ 4,)) | Fen}]"*
< [ (ril(A~-An)*(A4-A4,) | Fem}]™*
+[2 {rr(An— A)*(An— A4y)) | Fen}]"™.

Indeed, let { be an arbitrary point in the spectrum of the center of &/. For each
Fen, F({) is a projection on H({) of dimension at most one. Let x;, x5, ..., x, be
an orthonormal set of vectors in H({) which respectively span the subspaces
corresponding to the nonzero F({) with Fe =. Then

[D {(7:((4= 4)*(4,— 4)) | Fem}]"*" ()
= [3 14— AnD)x,)2]
< [ 1A = 4n@)x 171+ [3, 1(An(® — A0, 1]
= [2, (7s((A— 4n)*(A— 4,)) | Fem]™* ()
+[2 {ri(An— A)*(An— 42)) | Fe m}]"*7(0).

Since { is arbitrary, we have the desired result. Therefore,

[D (A= 44— 4) | Fem}]"? £ [D ro((A— Ay (A~ An) | Fe =]
+ (An - Ams An - Am)112~

Since lim,, | 75((4 — An)*(4—A4,))]| =0 and since {4,} is Cauchy, given any ¢>0
there'is an N such that n2 N implies ||[D {rp((4—A4,)*(4—A4,)) | Fe n}]?| <k,
for every = € F(S). This shows that 4 — 4y € & and thus that 4 € % It also shows
that |4 — A,||; < whenever n2 N. Thus lim, |4 — 4,[,=0. We obtain that % is
complete. Q.E.D.

Let M be a module over a commutative 4 W*-algebra Z. Suppose there is an
inner product (4, B) of M with values in 2 satisfying (1) (4, B)=(B, A)*; (2)
(CA, B)=C(4, B); (3) (A+A', B)=(4, B)+(4’, B); and (4) (4, 4)=0 and
(4, A)=0 if and only if 4=0, for all 4, 4’, Bin M and C in &. By setting | 4|,
= (4, A)'?| for each 4 in M we define a norm in M. The Z-module M is said to
be an AW*-module over Z if (1) M is complete; (2) if R is a set of mutually
orthogonal projections in £ of least upper bound 1 and if 4 € M, then PA =0 for
every P € R implies A=0; and (3) if R={P; | j € J} is a set of mutually orthogonal
projections in £ of least upper bound 1 and if {4,|jeJ} is a bounded set of
elements of M, then there is an 4 € M such that P,A=P,A; for every jeJ [9]
We show that the Schmidt class of a Type I von Neumann algebra .« is an
AW*-module over the center.
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THEOREM 4.7. Let &7 be a Type 1 von Neumann algebra with center &. Let & be
the Schmidt class of <. Under the inner product Tr (B*A)=(A, B) on &, the ideal &
is an AW *-module over Z.

Proof. The only point which remains to be verified is the following: if {P, | je J}
is a set of mutually orthogonal central projections of least upper bound 1 and if
{A,|jeJ} is a bounded set of elements in & there is an 4 € % such that AP,
= A;P; for all j. However, let | Tr (4} A4,)| <n for allj; then | 4,2 = | Tr (4F4,)| =n.
Let A=3 A,P;in &. Let S be a set of mutually orthogonal abelian projections. For
each finite subset 7 of S and for each j € J we have

P(D {re(a*4) | Fem}) = P {rr(4}A4)) | Fem}) < Tr (4} 4,)P; S nP,.

Thus,
D {rHA*4) | Fen} S n-1.

However, the set = is arbitrary and {3 {r;(4*4) | Fe =} | = a finite subset of S}
is bounded above. Therefore 4 € & So & is an AW *-module over Z.

Let o be a Type I von Neumann algebra with center 2 and let M be an 4 W*-
module over Z. A function ¢ of I, (respectively, M) into Z is called a Z-linear
functional if ¢(C;A4;+ CyA)=C1¢(A;)+ Cod(Az) for all Cy, C,e Z and A4,
Az eI, (respectively, 4,, A, € M). We now show that the set of all uniformly
continuous Z’-linear functionals on 7, is identifiable with the trace class of /. We
need the following lemma to show this.

LEMMA. Let M be an AW *-module over the AW *-module Z. If ¢ is a continuous
Z-linear functional on M, there is a unique Ay € M such that $(4)=(A, A,) for all
A e M (9, Theorem 5].

THEOREM 4.8. Let & be a Type 1 von Neumann algebra on the Hilbert space H and
let Z be the center of . Let I, be the ideal generated by the abelian projections of o,
let T be the trace class of o and let Tt denote the trace function on 7. If ¢ is a
uniformly continuous Z-linear functional of I, into &, there is a unique A, in 5
such that ¢(A)="Tr (AA,) for all AI,.

Proof. We first settle the question of the uniqueness of A,. Suppose Tr (44,)
=Tr (44,) for all A € I,. In particular if we let 4 =(4,— Ao)*, then || 4o— A5, =0.
So Ay=A,.

The uniformly continuous Z-linear functional ¢ is a linear combination of two
uniformly continuous Z-linear functionals é,(4)=¢(4)+H(4*)* and ¢;(A4)
=i(¢(A)—(A4%)*). For each A4 € I,, we have that ¢, (4)=¢,(4*)* (j=1,2). So we
may assume that ¢(4)=¢4(A4*)* for each 4 e .

Let ¢ be the restriction of ¢ to the Schmidt class & Because || 4] <] 4|, for each
A e &, ¢ is a Z-linear functional on & which is continuous in the topology on &
induced by | - ||,. By the lemma, there is a unique 4, € & such that Y(A4)=Tr (4o4)
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for each 4 € & For each abelian projection E in &, $(E)=y(E*)*=y(E)*;
therefore 72(A4,) Tr (E)=4y(E) is self-adjoint. Thus, A, is self-adjoint.

We prove that 4, is an element of the trace class 7. In fact let 4, and A, be the
positive and negative parts of A, respectively. Let P be the domain support of 4,
and let S be a set of mutually orthogonal abelian projections majorized by P. Then
for any finite subset = of S we have that

|2, {rs(do) | Fem}| = |Tr (3 {F | Fen}do)| = |¢(C. {F| Fem})| < |4].

So {3 {7(A4,) | F € w}}, is bounded above. This proves that 4, = 4,P is an element
of 7. Similarly 4, € 7.

Finally the function 4 — Tr (44,) is continuous on &/. The relation Tr (EA4,)
=¢(E) for every abelian projection E in I, implies that ¢(4)=Tr (44,) for all
Ainl,, QE.D.

Let L(I,, Z) be the Banach space of all bounded linear transformations of I, into
Z. Let L=La(l,, &) be the set of all Z-linear transformations in L(I,, Z). The
set L is a linear manifold and is closed in the norm topology of L(I,, &). In fact if
{¢.} is a sequence in L(I,, &) which converges to ¢, then for each Ce & and
A € I, we have ¢(CA)=lim, ¢,(CA)=C lim ¢,(A)=Cé(A). This shows that L is a
Banach space under the norm induced on L by L(I,, Z).

THEOREM 4.9. Let I be the trace class of the Type 1 von Neumann algebra of
with center Z. For each A€ T let | A|y=|Tr (A*A)*2)|); the function |||, is a
normon J under which 7 is a Banach algebra with involution. If L=La(I,, &) is the
Banach space of all continuous Z-linear functionals on I, and if A, is the unique
element in I such that $(A)=Tr (AA,) where ¢ € L, then the function § — A, is an
isometric isomorphism of L onto J (as a Banach space).

Proof. Because the function ¢ — A4, is an isomorphism, it is sufficient to prove
léll=|Tr ((4%34,)*'®)| in order to show that J is a Banach space and that the
function ¢ — ||4,] is an isometry. Let A'=4, and |A'|=(A"*A4")'"2, Let U be a
partial isometric operator in & such that U|A4’|=A’. For each 4 € I, we have

(D] = ITr (44)]| = | Tr (AU |4’ [V (AU A" ["2)) V2| Tr (4D
= |U*a*AU V2| Te (|4'D) = (4] [ Te (J4°D].

Therefore, |6 = ||Tr (|4'])||. Conversely, let > A,E; be a spectral resolution for
|4’|. We have lub, |3 {4, | 1=5j<n}|=|Tr(|4'])|. Because F,=3 {E;| 1<j<n}
is an element of I, of norm 1, we obtain |¢| 2 |Tr (F,U*4")| =|Tr (F,|4’])|
=|2{4; | 15j=n|. Hence ||¢] 2 |Tr (|4'])]. This shows 4] =|Tr (|4’

Because || 4] =] |4 | <|[Tr (|4])] for every A €7, we have |AB|:= 4] |B],
< | 4]z | B, for every 4 and B in . So J is a Banach algebra.

Finally, let A€Z and let U|4|=A be the polar decomposition of 4. Then
|A*|=U|A|U*. Therefore, |A*||;=Tr (U|A|U*)=Tr (|4|)=| 4| ;. Therefore, 7
is a Banach *-algebra. Q.E.D.
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THEOREM 4.10. Let &7 be a Type 1 von Neumann algebra with center Z over the
Hilbert space H and let 7 be the trace class considered as a Banach space with that
topology induced by the norm |- |,. Let Ao € ; the function $(A)=Tr (AA4,) is a
continuous Z-linear function of 7 to Z. Conversely, if ¢ is a continuous Z-linear
Sfunction of 9 into Z, there is a unique A, € S such that $(A)=Tr (AA,) for all
A € T, The function ¢ — A, is an isometric isomorphism of the Banach space of all
continuous Z-linear functions of  into Z onto .

Proof. Let 4, € & and let 4 € 7. Then we have
ITr (d4o)| = |Tr (U|4| o)} = |Tr (|4]**| 4[24, V)]
S I Tr (JADY2] [ Tr (U*A45 (4] 4:U) 2|
s |Tr (4D 4 UU*AZ| M < | 4]l [ Tr (|4D],

where U|A4| is the polar decomposition of 4. Thus ¢(4)=Tr (44,) is a continuous
Z-linear function on J and |¢| £ | 4,]. On the other hand, given £¢>0 there are
two abelian projections E and F both having central support 1 such that |[EA(F|
2 [[Ao| —e. There is a partial isometric operator U in J such that U*U=E and
UU*=F. Because Tr (JU[|)=Tr (E)=1, we have that

I$1 2 I Tr (Udo)| = | Tr (ro(UAo)F)|

= |7o(UAo)|| = |FAZU*UAF|'? = |EAoF| 2 | 4o —=.

Since £> 0 is arbitrary, we have ||¢| 2 | 4o|. Hence, we have proved that ||} = || 4,

Let ¢ be a continuous Z-linear functional of 7 into Z. Let % be the Schmidt
class of & with the norm || 4], = | Tr (4*A4)*/2|. For every fixed B € & the function
A—¢(B*4) on & is a continuous Z-linear functional. In fact, |#(B*A4)| =
Il [ Tr (|B*A[)|- Now we obtain an estimate for |Tr (|B*A4()| [12, Lemma 5.14].
Let A=U|A| be the polar decomposition of 4 and let B*4 =V |B*A4| be the polar
decomposition of B*A4. Then [B*A|=V*B*A=V*B*U|A|. Because V*B*U and
|A| are elements of & we have

ITe (|B*AD] < [Tr (V*B*UY*(V*B*U))'2| - | Tr (|4])'2]
= |Tr (U*BV*VB*U)*?| |Tr (147"
< [IUN IV Tr (B*B)'2|| [ Tr (4*4)*2| = | B ]4]..

Therefore |$(B*4)| < 4] | B]:]4]..

There is for every Be & a unique ®(B) e & such that ¢(B*A)=Tr (®(B)*4)
=(A4, ®(B)) for every A € & Let F be a projection in I,. Define 8(F)=F®(F)F.
Let E be an abelian projection. Then

Ire(®FN] = [(E, F)| = |$(FE)| = ¢l |Tr (IFED]
= |l ITe (EFFEY"?)| = || | Tr (r=(F))"*E)|
= [gll §==(F)*2| < [4l.
Therefore, | ®(F)| =2)4] and }6(F)| =2|4].
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Let S be the set of all projections in I,; the least upper bound (in the lattice of
projections of &) of two projections of I, is again a projection in I,. Therefore,
S is a directed set under the usual ordering for projections.

If F and G are two projections in S such that FZG, then 6(F)=F6(G)F.
Indeed, for every A € ¥ we have (4, 0(F))=(FAF, O(F))=¢(FAF)=¢(GFAFG)
=(GFAFG, ®(G))=(A4, FO(G)F). Hence, if x € H and if there is a projection Fe §
such that Fx=x, then the net {(6(E)x, x) | E € S} is eventually constant. So for
every such x € H, limg (6(E)x, x) exists. Let x be an arbitrary element in H. We
show that limg (8(E)x, x) exists by showing that the net {(8(E)x, x) | E€ S} is
Cauchy. Let ¢é>0 be given. Let G be an element in § such that |(I1-G)x| <«
and let y=Gx. For every F and F’ in S such that F2G and F' =G we have

(6(F)y, y)=(6(F")y, y). Thus,
[(6(F)x, x)—(6(F)x, x)| £ [(8(F)x, x)—(6(F)y, y)|
+{(0(F")y, y)—(6(F")x, x)| < {(0(F)(x~y), %)|
+[(0(F)y, x—y)| +|(6(F Xy —x), »)|
+{(0(F)x, y—x)| = 8¢|¢] ||x|

because |6(E)| <2|¢| for all E€S. This shows that for every x € H the net
{(6(E)x, x) | E € S} converges. By the standard arguments there is a bounded linear
operator 4, on H such that (1) |4,| £2|¢| and (2) lims (6(E)x, y)=(A4,x, y) for
every x, y € H. Therefore, 4, is an element of &7.

Now let E be a projection in the set S. We have (EA4qEx, y)=limg (8(F)Ex, Ey)
=(0(E)x, y). This means that EA,E=0(E).

Let Be & and Ce & and let E be a projection in I,. We have that the range
projection of B*ECE is equivalent to a projection majorized by E. So the range
projection of B*ECE is in the set S. Let F be a projection in S majorizing both E
and the range projection of B*ECE. Then

(C, EBAE) = (ECE, BA,) = (B*ECE, A,E) = (FB*ECEF, A,E)
= (B*ECE, FA,F) = (B*ECE, 6(F)) = (B*ECE, ®(F))
= $(FB*ECE) = §(B*ECE) = (ECE, ®(B)) = (C, E®(B)E).
So for every E€ S, E®(B)E= EBA,E. This proves that ®(B)=BA,.
Finally, let Be &. Then BY% e & We have
#(B) = $(B2B') = (B, O(BY2) = (B, B Aq) = Tt (4FB).

Therefore, for every Be 7, $(B)=Tr (A§B).

If Tr(BAo)=Tr (BA,) for every Be J, then 75(4,—Ao) for every abelian
projection. This shows that 4,=4,. Therefore, if ¢ is a continuous Z-linear func-
tion of function J into £ there is one and only one A4, in & such that ¢(4)
=Tr (44,) for all A € 7. Since the function ¢ — A4, is linear (in fact it is Z’-linear),
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the function is an isometric isomorphism of the Banach space of all continuous
Z-linear functions of 7 into & onto /. Q.E.D.

We now study the properties of the trace Tr relative to the weak topology. If &/
and & are two von Neumann algebras, a linear function ® of &7 into 4 is said to be
normal if (1) ®(«/*)=H* and (2) if {4,} is a monotonically increasing net in &+
such that lub, 4,=A(4 € & *) then lub, ©(A4,)=D(A4). A linear function ¢ of &
into #Z which carries &/* into #* is normal if and only if ® is continuous in the
ultraweak topologies of &/ and #. The ultraweak topology for &/ on the Hilbert
space H is the weakest topology such that all linear functionals of the form
A — 3 {(Ax;, y;) | 1 £j< oo} are continuous where {x;} and {y;} are sequences of H
such that 3 ||x;]2< +o0 and 3 |y, < +o0.

If A is an element of the trace class the function B — Tr (BA) is an ultraweakly

-continuous linear function of &/ into its center. We prove this in the following
form.

THEOREM 4.11. Let o/ be a Type 1 von Neumann algebra with center & and let
be the trace class of /. Let P be the set of positive elements of J. Assume that
{A, | n€ D} is a monotonically increasing net of elements of P which is bounded
above and suppose A=1lub, A, is an element of . Then lub, Tr (4,)=Tr (A).

Proof. If x is an arbitrary vector of the Hilbert space of 7 it is sufficient to
show lim, Tr (4,)x=Tr (4)x in order to show lub, Tr (4,)=Tr (4) because
{Tr (4,) | n € D} is a monotonically increasing net in & bounded above by Tr (4).
Let S be a set of mutually orthogonal abelian projections of least upper bound 1
and let F(S) be the collection of finite subsets of S. For each E € S we have 75(4,)
=< 75(A) and lim,, 75(A4,)=75(A) (strongly). Now given >0 there is an element =
in F(S) such that |> {7x(4) | F € »'}x| <eforevery n' € F(S)suchthat# N 7= o,
So |3 {r(4,) | Fe n'}x| <e for every ' € F(S) such that ' N == & and for every
ne D. There is an ny € D such that ||(2 {re(4,) | Fea}—=3 {rs(4) | Fe n})x| <e
whenever n 2 n,. Therefore, if #’ is in F(S) and »' > = we have

IG {re(dn) | Fen} =2 {re(4) | Fen'}x| < 3e,

whenever nz n,. Thus, |(Tr (4,)—Tr (4))x|| < 3¢ whenever n 2 n,. This proves that
lim, Tr (4,)x=Tr (4)x and that lim, Tr (4,)=Tr (4) (strongly). Q.E.D.

COROLLARY. Let A be an element of the trace class. The linear function ¢(B)
=Tr (BA) of & into & is ultraweakly continuous.

Proof. We may write 4 as a linear combination of four positive elements in the
trace class. So we may assume that 4 is an element of 2. If Be «/* then ¢(B)
=Tr (BA)=Tr (B24B"?) 2 0; therefore ¢ is a positive function. If {B, | ne D}isa
monotonically increasing net in &/* with least upper bound B, then
{A'2B,AY* | ne D} is a monotonically increasing net in the trace class with
least upper bound A'2BA'2? in the trace class. This means that lub, ¢(B,)=
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lub, Tr (42B,A"?)=Tr (4*2BAY?)=¢(B). This shows that ¢ is ultraweakly
continuous. Q.E.D.

We now extend the trace Tr to & *. Let {P; | j €J} be a set of mutually orthog-
onal central projections such that for each j ;= ZP; is o-finite. If H is the Hilbert
space of &, let x; be a separating vector in P;H for Z;. Let Z, be the spectrum of Z.
This is identified with the compact set {{ € Z | P;({)=1}. Let v, be the measure on Z;
such that w(4)=(A4x,, x,)=j'z, A dv(l) forevery A€ Z,. Let X=\J{Z, | je J}
with the topology induced by the union. Let » be the measure on X induced by
each v, acting on Z,. Then Z is isomorphic isometric to the algebra LE(X, v) of all
essentially bounded complex-valued functions on X.

For each j the function w;- Tr (4) on £P; is normal in the sense of Theorem 4.11.
There is a unique faithful normal semifinite trace ¢, on &/*P; such that ¢,(4)
=w,-Tr (4) for every A € ZP;. If F(J) denotes the collection of all finite subsets of
J, the function of &+ defined by

$(4) = sup {3 ($(4) | jem) | me FU)}

defines a faithful normal semifinite trace on &/ *. Let 2°~ * be the set of all positive
(finite or infinite) v-measurable functions on X. Define the trace w on Z~* by
w(f)=sup {outer integral of fgy|gy characteristic function of a compact set Y}.
There is a faithful normal #map ® of &/* into &~ * such that w- ®(4)=¢(A)
for all Ae*. If Ae PP, then w(Tr (AP))=¢(A)=wd(A)=w,(D(4P))).
However, if B is any element in 2} then wy(B Tr (4))=w,(BD(A)); so Tr(4)
= D(A4).

For any A €2, Tr (A)P;=D(A)P; for all j. Therefore, ®(4) e & and Tr (4)
=®(A). {2, 111, §1, (Problem 11) and §4; I, §6 (Proposition 9)}.

Let ¢ be an ultraweakly continuous Z’-linear function of & into 2. The functions
61 (A)=2"YH(A)+(4*)*) and ¢5(A4)=(2i) (P(A)—p(A*)*) are Z-linear ultra-
weakly continuous functions such that ¢,(4*)=¢,(4)* and ¢4(4*)=¢.(4)*. We say
that a Z-linear function ¢ on &/ is hermitian if ¢(4*)=¢(4)* for each 4 in &.
Thus, every ultraweakly continuous Z-linear function may be written as a linear
combination of two hermitian ultraweakly continuous Z-linear functions.

The next theorem shows that each ultraweakly continuous hermitian 2-linear
function may be written as the difference of normal Z-linear functions.

THEOREM 4.12. Let o be a Type 1 von Neumann algebra with center & on the
Hilbert space H. Let ¢ be a hermitian ultraweakly continuous Z-linear function
of  into Z. There is a projection E in & such that §(AE)=¢(EA) for every A in &
and such that the Z-linear functions $,(A)=¢(AE) and $(A)= —$(A(1—-FE)) of
& are normal.

Proof. Let x be a nonzero vector in H. The linear functional p(4)=(¢(4)x, x) on
&/ is a nonzero ultraweakly continuous hermitian linear functional. There is a pro-
jection F in & such that p(FA)= p(AF) for every A in &/ and such that A — p(4F)
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and 4 -> — p(A(1 — F)) are normal functionals on «&/. Forevery Bin &£ and 4 in «/*
we have that

0 < ($(AFB*B)x, x) = ($(AF)Bx, Bx) = (¢(FA)Bx, Bx),
and
0 = —(¢(A(1—-F))B*Bx, x) = —($(A(1 — F))Bx, Bx).

Let G’ be nonzero projection in the commutator 2’ of £ that corresponds to
the subspace closure {Bx|Be Z)}. Since 0S(¢(AF)y,y)=(#(FA)y,y) and
0= —(¢(A(1 —F))y, y) for every A in &* and y in closure {Bx | B € Z}, we have
that ¢(AF)G' =H(FA)G' and —¢(A(l—F))G’ are positive central elements in
G'Z'G’ for every A in &/*. Let G be the projection in Z corresponding to closure
{B'x | B'€ Z'}. The function 4 — AG’ of ZG onto ZG’ is an isomorphism.
So H(AF)G=¢(FA)G and —¢(A(1 — F))G are positive operators for each 4 in &7 *.

Now let {G,} be a maximal net of nonzero orthogonal central projections such
that for each n there is a projection E, majorized by G, such that §(4E,)=¢(E,A)
and —¢(A(G,— E,)) are positive for each 4 in &/*. Let G=3 G, and E=3 E,.
Then ¢(AE)=¢(EA) and —¢(A(G— E)) are positive for each 4 in &/ due to the
ultraweak continuity of ¢. From the preceding paragraph we see that the maxi-
mality of {G,} implies that G=1. Q.E.D.

We now identify the elements of trace class with the ultraweakly continuous
Z-linear functions of .« into Z.

THEOREM 4.13. Let & be a Type 1 von Neumann algebra and let & be the center
of /. Let P be the set of positive elements of the trace class T of o and let Tr be the
trace function. If A € 7, let ¢, be the function on o defined by ¢, B)=Tr (BA). The
Sunction A — ¢, is an isometric isomorphism of I onto the set of all ultraweakly
continuous Z-linear functions of « into Z. The function A — ¢, takes P onto the
set of all normal Z-linear functions.

Proof. Let ¢ be an ultraweakly continuous Z-linear function of & into Z. By
Theorem 4.12 and the remarks preceding it the function ¢ may be written as a linear
combination of four normal Z-linear functions ¢, (1 < j<4). There is a constant K
such that

I:B)}AB)*| = K|¢(B*B)| = K|,(D] | B

for every B in &. Therefore, the functions 4, restricted to I, are uniformly contin-
uous Z-linear functionals. There are unique elements 4, in J such that ¢,(B)
=Tr (BA,) for each B in I,. For every abelian projection E in &/ we have that
0= ¢ E)=1x(A;). This shows that each A, is an element of 2.

Finally, the functions 8,(B)=Tr (BA,) are normal on «. However, the ideal I,
is ultraweakly dense in &7. Since 6, is equal to ¢, on a dense subset of <7, we have
that 6, is equal to ¢, for each j. Thus the function 4 — ¢, of J maps onto the set
of ultraweakly continuous Z-linear functions of & into 2 and maps £ onto the
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set of normal Z-linear functions. This function is certainly a monomorphism.
Furthermore, by Theorem 4.9 we have | Tr ({4])| =1ub {|¢.(B)| | |B| =1, Be L}.
By the Kaplansky density theorem [6] the unit sphere of I, is strongly dense in the
unit sphere of 7. Let £>0 be given; then there is an operator B in the unit sphere
of & and unit vectors x and y in the Hilbert space H of & such that |¢,]
< [(@4(B)x, y)| +¢. Therefore, there is an element C in the unit sphere of I, such that
(4] £ 1(B4(C)x, ¥)| +2e. S0 |da]l £($u(C)x, y)| +2e = |Tr (|A])]| +2e. Because
¢>0 is arbitrary, we have that |¢,[ < |Tr (|4])|. Finally, we obtain that |¢|
=| Tr (|4])|. Therefore, the function 4 — ¢, is an isometric isomorphism of J~
onto the space of all ultraweakly continuous Z-linear functions of .« into Z.
Q.E.D.

Let &/ be a semifinite von Neumann algebra with center Z. Let X be a locally
compact topological space and let v be a positive measure on X so that the set of all
essentially bounded measurable functions LE (X, v) on X is isometrically isomor-
phic to Z. Let ® be a normal semifinite faithful #-map of &/* into the set of
all positive (finite or infinite valued) measurable functions on X. Let
N ={AdeA| D(A*A) e Z} and # =A% For 4 and Be A, let (4, B)=D(B*A)
and let |4, = | ®(4*4)*?|. The function 4 — || 4|, on 4" is a norm. The following
theorem gives part of our reason for not studying the subject of the preceding
section in a more general context.

THEOREM 4.14. Let ® be a normal semifinite faithful #-map on the von Neumann
algebra ¢ with center % ; then the ideal ¥/ ={A € o | D(A*A) € Z} is complete
under the norm ||A|,= || ®(4*A)"?| if and only if there is an «>0 such that | A|
A}, for all A€ N In particular o is of Type 1.

Zfa

Proof. Let A4 be complete under the norm [|4||;. There is no loss of generality
in assuming either that .7 is of Type I or that &7 is of Type II. Suppose first that =/
is of Type I and there is no >0 such that | 4] S«| 4|, for all 4 € 4" There is a
sequence {4,} of elements of 4" such that ||4,| =1 and | 4,|, <2-@**D. We may
assume that A, € &/* for each n. There is for each n a nonzero abelian projection
E, such that 42=2*E,. Thus

|Eals = I O(E)"2| = 22| D(43)"2] < 272~

Let P, be the central support of E, and let X,, be the set in the spectrum Z of 2 to
which P, corresponds. We consider two cases: (1) there is a subsequence {X,} of
{X.} such that "N {X,, | j=1,2,...}# &; (2) for every subsequence {X,} of {X,},
N{X, |j=1,2,.. }=2. In case (1) let N{X, |j=12,...}# . Let Q)=
P, P, --P, and let F;= Q,E,. Then {F,} is a sequence of nonzero abelian pro-
jections such that |F,|,£2-%" and F,,,<F, We may assume therefore that
F,.,<F,(n=1,2,...) by choosing inductively appropriate projections equivalent
to each of the original F, and by passing to a subsequence if necessary. Let G,
=F,—F,.;(n=1,2,...). Then {G,} is a sequence of nonzero disjoint abelian
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projections such that |G, |, <2~2". Now consider case (2). There is a sequence {m,}
of nonempty finite disjoint subsets of natural numbers with the following proper-
ties: (1) if i<j and ke m, lex; then k<l; (2) Q;= x{P; | k e m;}#0 for each j;
and (3) if k> then P, is orthogonal to Q, for each / € m,.. Let m(j) be the largest
integer in 7; and let G, = Q,E,;. Then {G,} is a sequence of nonzero disjoint abelian
projections such that |G,[,<272"

Now for either case let B,=> {2*G,. | 1<k =<n} for n=1,2,.... Since

O((Bn— B)*(Bu— B)V? = (3 (240(G) | m+1 < j s )"
for m<n, we have
I1Ba=Bulls £ O 2¥|19G)| | m+1 = j s m) <27,

Thus, the sequence {B,} is Cauchy in 4. By assumption there is a Bin A" such that
lim, |B,— B|,=0. However, the sequence {B,> (G, |1l < k £ m)}, which is
eventually constant converges to > (G, | lSk<m)Bin A So (G, | 1Sksm)B
=3 (2¢G, | 1 £k =m) and hence || B] = 2™. Because m is arbitrary this is impossible.
We have proved that if =/ is of Type I, and 4" is complete there is an « >0 such that
|4 <«|A|, for every 4 in A"

Let o be a Type II algebra and let E be a nonzero projection in A, Let Fy,=F
and let {F,; | n=0,1,...; 1516} be projections in & such that {F,; | | £j<16}
is a set of orthogonal equivalent projections of sum F,_,,, for each n=1,2,....
Then O(F,_,))=2; ®(F,))=16D(F,,). Let B,=3 {2'F;; | 1 £j<n}. We have that
{B,} is a Cauchy sequence in 4. Indeed

|Ba—Bul = |[3, 2¥O(F,z) | m+1 = j < m]™|
= “Z {222-4®(E) [m+1 £ < n}””2
< 2-m| O(E)| 2

whenever m <n. Now there is a B € 4" such that lim, B,= B in 4. However, the
sequence {B, > {F;; | | £j<mj}}, which is eventually constant converges to
S{Fu|1SjSmB. So 5 {(2F;| 1SjSm)=5{F,|1<jsm}B. Thus |B|z2".
This is impossible. Hence &/ cannot be of Type II.

Conversely, suppose there is an «>0 such that | 4| S«| 4|, for every 4 € 4.
Let {4,} be a Cauchy sequence in A4 We show that {A4,} converges to an element 4
in &/ using the method of Theorem 4.6. Because {4,} is Cauchy, the sequence {4,}
converges uniformly to 4 € .&7. Let S be a set of orthogonal abelian projections in
A" with least upper bound 1. Let 7 be a finite subset of S. Then the relation

D (re((4— 44— A))O(F) | Fem}]™*
(1) < D (A - A (A— An))D(F) | Fem}]"®
+[2 (ril(An— A)*(4n— A))O(F) | Fem}]™™,
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which is obtained in a manner entirely similar to that in which the corresponding
formula of Theorem 4.5 is obtained, gives

"(A _An)Fulll é "(A —Am)Fn”1+ ”(Am"'An)FnHI

where F,=3 {F | F € n}. So there is a constant M such that (4 — 4,)F,|, S M for
every finite subset = of S. Therefore, 4— A4, €4 and consequently A e .4
Furthermore, the relation (1) shows that lim, |4—4,],=0. Q.E.D.

We now are able to show that the theory obtained by using a normal semifinite
faithful #-map with values in the center is different from the theory obtained by
using a trace with values in the scalar field. Let ¢ be a normal semifinite faithful
trace (with scalar values) on a Type I von Neumann algebra «. Let 4 =
{4 € o | $(A* A)<+0c0} and let A4 =.A4"2. Define the norm on A" by || 4| ;= H(4*4)*>.
If A4 is complete with this norm, a simple reworking of the proof of Theorem 4.14
shows that there is an «> 0 such that | 4| «|A4], for all 4 € #. By a theorem of
Ogasawara and Yoshinago [11, Theorem 5] &/ contains minimal abelian projec-
tions. (In fact =7 is the product of factors.) This is not the situation if ¢ is a normal
semifinite faithful #-map with values in the center of 7.

THEOREM 4.15. Let &/ be a Type 1 von Neumann algebra with center & and let ®
be a faithful normal semifinite #-map on . Let /"'={Ad e A | D(A*A) € &} and
let M =A% If A is complete with the norm |A|,=|®(A*A)*2|, the ideal N is
contained in & and the ideal M is contained in I. There is a By € Z* such that
A — AB}? is an isometric isomorphism of & onto N and A — AB, is an isometric
isomorphism of I onto M with the norm | A= | O(|A4])|.

Proof. Let o>0 be a number such that | 4| Sal/ 4], for every 4 € 4. Let Fbe a
projection in " and let P be the central support of F. We have that Fe I, and
O(F)zo'P, where o'=«"2 So there is a B in (ZP)* such that |B| =<« and
BO(F)=P. Let {F} be a set of mutually orthogonal abelian projections in A"
whose least upper bound F is a maximal abelian projection. Let P, be the central
support of F; and let B; € (ZP;)* have the property Bi®(F,)=P, and |B] s«'.
There is a Bye &* such that ByP,=P, for each i. Because B,®(F)=Tr (F),
By ®(A)=Tr (A) for every Ae/* [2,1II, §4, Theorem 2]. If E is any abelian
projection in A, then B,®(E)=P where P is the central support of E. Thus,
BY2®(E)2=P. Thus A€ & implies AB}y2e A4 and O((ABE?)*(ABY?) 2=
Tr (A*A4)'2. Also if A €7 then AB, € # and ®(|AB,|)=Tr (|A]). So A — AB}?
and A — AB, are isometric isomorphic functions of & into A4 and J into A4
respectively.

Let A € #°*. Since every projection of A is an element of I, the element 4
is a member of 1,. If 3 A;E; is a spectral resolution for 4, then A*4=A4%=3 A?E,
and O(A*A)=3 A}D(E)). Now > A,P(E)V2E; is an element of &. Indeed, if
B,=3 {A,Q(E)2E;| 1£j<n}, the sequence {B,} converges uniformly to an
element B in I} which has a spectral resolution 3 A,®(E;)E,. The relation E,
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>E,--- implies ®(E,)'?= ®(E;)22 - - - and the relation «|G|, 2 |G| for every
projection G € A" implies that the product A,D(E,)'2E; has property (iv) of
Theorem 2.2. Also lim 4,®(E,)'"*=0. We have that BB}?=3 A,B}*®(E,)\*E,
=> A,E;. Therefore, the function 4 — 4B}/> maps & onto A"

If Ae #*, then A is an element of I,. Let > A,E, be a spectral resolution of 4;
we have ®(|4|)=®(4) =3 A,P(E,). In the same manner as the preceding paragraph
2. {A;O(E)E, | 15jsn} converges uniformly to an element B in I} whose spectral
resolution is 3, A;®(E))E;. Then Be 9 and B,B=3 A,E; This shows that the
function A — AB, of 4 into  is onto #. Q.E.D.

COROLLARY. If # =Z, then B, is invertible.
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