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A spectral-element method for modelling cavitation in transient
fluid–structure interaction
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SUMMARY

In an underwater-shock environment, cavitation (boiling) occurs as a result of reflection of the shock
wave from the free surface and/or wetted structure causing the pressure in the water to fall below
its vapour pressure. If the explosion is sufficiently distant from the structure, the motion of the
fluid surrounding the structure may be assumed small, which allows linearization of the governing
fluid equations. In 1984, Felippa and DeRuntz developed the cavitating acoustic finite-element (CAFE)
method for modelling this phenomenon. While their approach is robust, it is too expensive for realistic
3D simulations. In the work reported here, the efficiency and flexibility of the CAFE approach
has been substantially improved by: (i) separating the total field into equilibrium, incident, and
scattered components, (ii) replacing the bilinear CAFE basis functions with high-order Legendre-
polynomial basis functions, which produces a cavitating acoustic spectral element (CASE) formulation,
(iii) employing a simple, non-conformal coupling method for the structure and fluid finite-element
models, and (iv) introducing structure–fluid time-step subcycling. Field separation provides flexibility,
as it admits non-acoustic incident fields that propagate without numerical dispersion. The use of
CASE affords a significant reduction in the number of fluid degrees of freedom required to reach a
given level of accuracy. The combined use of subcycling and non-conformal coupling affords order-
of-magnitude savings in computational effort. These benefits are illustrated with 1D and 3D canonical
underwatershock problems. Copyright � 2004 John Wiley & Sons, Ltd.
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1. BACKGROUND AND MOTIVATION

In the context of fluid–structure interaction (FSI) pertaining to underwater shock, cavitation
occurs as a result of the reflection of the shock wave from the free surface and/or wetted
structure, which causes the pressure in the water to fall below its vapour pressure [1]. The
instantaneous bulk modulus of cavitated water is orders of magnitude smaller than that of
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Figure 1. Cavitation-region envelope for a 45 kg charge of HBX-1 detonated at a 15 m depth. Also,
shown is the aft view of a box-like ship with 9.1 m beam, 4.6 m height and 3.1 m draft.

uncavitated water, which produces non-linear material behaviour. A simple but satisfactory
constitutive model is a bilinear one, in which the bulk modulus is that of water as an acoustic
medium when the condensation (roughly, negative volume strain) is positive, and zero when
the condensation is negative [2]. Although pure water has been found to sustain substantial
negative pressures, even small amounts of dissolved gases nullify the effect [3].

Near-free-surface underwater-shock problems are further complicated by the existence of
three greatly different spatial scales: the size of the ship, the decay length of the incident
wave, and the spatial extent of the cavitation. This is best illustrated by an example: a 45 kg
charge of HBX-1 detonated at a depth of 15 m yields a cavitation region with maximum
diameter 489 m and maximum depth 9 m [4]. This region is shown with a representative ship
in Figure 1. The associated 1/e decay length of the shock wave when it reaches the ship is
0.9 m [5, 6].

1.1. Cavitating acoustic finite-elements (CAFE)

1.1.1. CAFE approach. When the underwater explosion is sufficiently removed from the struc-
ture, the motion of the fluid surrounding the structure is small, which allows the fluid to be
treated as acoustic but subject to cavitation. In 1984, Felippa and DeRuntz [7] developed a
cavitating acoustic finite-element (CAFE) for FSI calculations based on the work of Newton
[8–11], in which the wave field in the fluid is represented by a scalar displacement poten-
tial. Trilinear, isoparametric, eight-node brick elements were formulated; a six-node wedge
element was added later [12]. The CAFE semi-discrete equations were integrated in time with
a central-difference algorithm. Cavitation was treated node-by-node in an on/off fashion in the
time-update equations. Numerical damping was employed to suppress the occurrence of spuri-
ous cavitation, which they called frothing; the damping also had a beneficial effect on structure
responses in an acoustic fluid, as oscillatory numerical artifacts were smoothed. Their choice
of explicit time integration over unconditionally stable implicit integration seems appropriate
because the time scales associated with the incident wave and cavitation are typically very
small [13].

The CAFE solution strategy for a ship-shock simulation consists of four steps (Figure 2): (i)
construct a finite-element (FE) model of the structure, (ii) interface it with a CAFE model of
the fluid region in which cavitation is expected to occur, (iii) enclose the CAFE mesh with a
non-reflecting boundary and (iv) start integrating the CAFE equations just before the incident
wavefront reaches either the free surface of the fluid or the wet surface of the structure [7, 14].

CAFEs were first implemented in the cavitating fluid analysis (CFA) code [7], with the
structure equations being handled by the structural analysis of general shells (STAGS) [15]
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Figure 2. FE/CAFE/non-reflecting-boundary approach for ship-shock simulations; incident wavefront
shown just before the onset of cavitation.

finite-element program. The fluid mesh was bounded by a first-order doubly asymptotic ap-
proximation (DAA) [16, 17], as implemented in the underwater shock analysis (USA) code
[18]. A staggered-time-integration procedure [19] was used, in which the structure equa-
tions were integrated with an implicit trapezoidal-rule scheme. A similar approach is used
in the NASTRAN-CFA-DAA code [14, 20]. The CAFE approach has been implemented in
LS-DYNA/USA [18, 21] (the MAT90 element formulation), where the fluid and structure semi-
discrete equations are integrated explicitly, and the fluid mesh is bounded by a DAA or plane-
wave-approximation boundary. A similar CAFE formulation is currently being incorporated into
ABAQUS [22, 23], where the fluid domain is truncated by a curved-wave-approximation (CWA)
boundary.

For problems in which the underwater explosion is near or in contact with the structure, the
fluid motion can no longer be considered small. In this case, a hydrocode [24] must be used,
which is much more expensive per unit volume of fluid, but is required only for localized
analysis.

1.1.2. Deficiencies of the CAFE approach. Although the approach of Felippa and DeRuntz [7] is
well developed, it has deficiencies that make it too expensive for accurate 3D simulations. First,
CAFEs exhibit high numerical dispersion due to their use of low-order basis functions [25];
high mesh refinement is typically required. With the occurrence of cavitation, a phenomenon
that is highly local in space and time, the refinement requirement is extreme. The need for a
‘super-refined’ mesh is demonstrated in 1D and 2D problems by Sprague and Geers [13] and
by Sprague [26].

Also demonstrated in Sprague and Geers [13] is that the integration of CAFE equations with
a time increment substantially smaller than the critical time increment for stable integration
produces spurious regions of cavitation. In an explicit-fluid/explicit-structure implementation
with one-to-one fluid–structure nodal coupling, the critical time increment for the structure
equations is typically much smaller than that required for the fluid equations because the sound
speed in steel is more than three times that in water. In a CAFE/FE implementation where the
structure and fluid equations are integrated with the same time increment [7, 21], integration
of the fluid equations with a too-small time increment is often unavoidable.

The CFA [7] and LS-DYNA [21] implementations feature one-to-one coupling between the
fluid and structural nodes at their interface. Thus, fluid-mesh refinement requires structure-mesh
refinement; if the structure mesh is already adequately refined, this constitutes a waste of
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computer resources. Furthermore, if the CAFE implementation employs explicit-fluid/explicit-
structure time integration, the structure-FE critical time increment is also reduced with mesh
refinement. In the ABAQUS implementation [22], the requirement for one-to-one structure–fluid
nodal coupling has been removed by a sophisticated membrane-coupling approach that allows
an arbitrary CAFE mesh to be coupled to an arbitrary structure mesh.

For accurate simulation, Felippa and DeRuntz [7] recommend that the CAFE mesh encompass
all regions of fluid that experience cavitation. However, this is an impractical recommendation
for most near-free-surface shock problems because the size of the cavitation region is extremely
large relative to the decay length of the incident wave. A CAFE mesh that is sufficiently refined
to model accurately the incident wave and that also encompasses the entire cavitation region
is untenable.

Finally, Felippa and DeRuntz [7] recommend that time integration begin before the incident
wavefront contacts the structure or causes regions of cavitation, which can produce the situation
illustrated in Figure 2. There, the incident wavefront (which is usually discontinuous) must be
propagated an appreciable distance through the dispersive mesh before reaching the structure,
thereby distorting the incident wave as it travels.

1.2. Improvements to the CAFE approach

Here, we describe four improvements that combine to make the CAFE approach a viable
treatment for 3D near-free-surface shock analysis. These improvements are:

• introduction of field separation,
• replacement of the trilinear basis functions (finite-element method) with Legendre-polyno-

mial basis functions (spectral-element method),
• incorporation of a novel non-conformal fluid–structure coupling method,
• implementation of fluid–structure subcycling.

1.2.1. Field separation. The far field produced by an acoustic shock wave in an unbounded
fluid (the incident field) is relatively easy to define [27] and is typically known in closed form.
This presents two opportunities:

• the discontinuous wave may be propagated without numerical dispersion,
• the incident wave may be propagated ‘quasi-acoustically’, in conformance with experi-

mental data [27, 28].
In order to exploit these opportunities, we employ a technique used frequently in linear

scattering problems: separating the total field into a known incident field and an unknown
scattered field, and employing the fluid mesh to calculate the scattered field only. The technique
has been applied to transient FE FSI calculations by Chan [29, 30] and is also implemented in
ABAQUS [22]. It has also been applied to transient finite-difference electrodynamics calculations
[31].

Recently, a 1D implementation of field-separation was used to demonstrate that, when the
simulation is started with the incident wavefront very close to the structure, field separation
neither improves nor degrades the structure response [32]. Here, we investigate the efficacy of
field separation when applied to 3D FSI calculations in an acoustic fluid with and without the
occurrence of cavitation.
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1.2.2. Cavitating acoustic spectral elements. As discussed above, a fundamental limitation of
low-order elements is the high numerical dispersion produced in wave-propagation problems;
this is exacerbated when the field contains discontinuities, as in underwater-shock problems.
Convergence is attained by refinement of the mesh (h-refinement). With high-order schemes,
convergence may be attained with a combination of h-refinement and an increase of element
order (p-refinement). High-order elements generate less dispersion, but have traditionally been
avoided for two reasons [33]: (i) they typically produce higher maximum mesh eigenvalues, thus
decreasing the critical time increment for explicit integration, and (ii) they often produce more
troublesome spurious oscillations when applied to wave-propagation problems with solution
discontinuities. However, the reduced dispersion can more than compensate for the presence of
the oscillations and reduced critical time increment [34]. This is clearly shown in [35], where
a numerical example is used to illustrate that information is contained in these oscillations and
that high-order schemes retain more information than low-order schemes.

The spectral-element method (SEM) combines the accuracy of spectral methods [36–39]
with the geometric flexibility of the finite-element method (FEM) [33]. The most effective
spectral elements (SEs) appear to be the Legendre-polynomial-based elements [40, 41], which
display impressive wave-propagation capabilities [34, 42]. For problems with regular domains
and adequately smooth solutions, the SEM enjoys exponential convergence; this is lost when
the solution contains discontinuities, as examined in several investigations [35, 43–45]. Finally,
spectral methods are well suited to parallel-CPU implementation [46].

The SEM was first introduced by Patera [47], who applied the method to the incompressible
Navier–Stokes equations in 1D and 2D. While most of the early work with the SEM used
SEs with Chebyshev-polynomial basis functions [47–51], Legendre polynomials [40, 41, 46, 52]
have emerged as the preferred basis functions. This is because Legendre basis functions with
Gauss–Lobatto–Legendre quadrature:

• allow fast matrix–vector-product evaluation with tensor-product factorization [41],
• produce diagonal mass matrices [40],
• yield matrices with better conditioning and sparsity relative to those produced with

Chebyshev basis functions [42, 46],
• exhibit convergence rates comparable to those for Chebyshev polynomials [40].
In a recent investigation [32], we demonstrated that a 1D implementation of CASE provided

significant savings in terms of required fluid degrees of freedom and memory storage for a
given level of accuracy. In terms of computational operations, the requirements of CASE and
CAFE were comparable. Here, we use a 3D implementation to compare CASE and CAFE in
terms of computational resources required to achieve a fixed level of accuracy. These resources
pertain to (i) fluid-model degrees-of-freedom, (ii) memory storage and (iii) CPU effort.

1.2.3. Fluid–structure coupling. The CAFE approach is best utilized if the fluid and structure
meshes can be refined separately. To this end, we propose a novel coupling method that is
considerably simpler than that used in the ABAQUS implementation [22]. With this method,
the fluid may be refined to an arbitrary level without requiring a change in the structure
mesh.

While there are several methods for coupling two geometrically different meshes [53, 54],
the method used here, which may be classified as consistent-interpolation coupling [53], is
simple in terms of implementation. The gains associated with more complex coupling, which
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may be ‘mathematically optimal’, are small and not worth the associated computational cost
for the class of problems studied here [53].

1.2.4. Fluid–structure subcycling. Time-step subcycling [55–57] is a simple technique that
is suitable for CAFE/FE staggered time integration. It allows both the structure and fluid
equations to be integrated with near-optimal time increments. In the approach used here, the
fluid equations are updated at an integer multiple or division of the time increment for the struc-
ture equations. This is a valuable improvement, as it allows gains in accuracy with considerable
reduction of computational cost.

2. FORMULATION AND IMPLEMENTATION

2.1. Continuum fluid models

We address the underwater shock problem illustrated in Figure 2. We assume that fluid motion
is inviscid and irrotational, thus allowing a potential representation of the field. As discussed
in Section 1, the fluid model uses a bilinear constitutive relation [2] to account for cavitation,
which is such that the fluid cannot transmit negative pressures and cavitation is treated as a
macroscopically homogeneous phenomenon.

In an underwater shock problem, the total field may be represented as the sum of three
fields: equilibrium, incident and scattered. The equilibrium field is easily determined as that
due to atmospheric plus hydrostatic pressure, the incident field is less easily determined as that
due to a quasi-acoustic shock wave propagating in a homogeneous, unbounded fluid and the
complicated scattered field is caused by the presence of both the structure and the free surface.
We consider two models for the field. The first is called the total-field model (TFM) because
its dependent variables are composed of incident and scattered quantities. The second model is
called the scattered-field model (SFM), as it treats only the scattered field on the assumption
that the incident field is known for all time throughout the domain.

2.1.1. Total-field model. In deriving the governing equations for the acoustic fluid subject to
cavitation, we begin with the bilinear equation of state [2],

p = pv +
{

Ba(�/�a − 1), � � �a

0, � < �a

(1)

which is illustrated in Figure 3. Here, Ba is the bulk modulus of the acoustic fluid in the
absence of cavitation, p(X, t) is the total pressure in the fluid, pv is the vapour pressure of
water at temperature T0, �a is the corresponding density of the saturated liquid, and �(X, t)

is the instantaneous density; X is the global-position vector and t denotes time. We assume
that T0, �a and pv are constant throughout the domain of interest. By definition, Ba = �ac

2,
where c is the sound speed in the uncavitated acoustic fluid, and S = (�/�a − 1) is the total
condensation. These definitions allow us to rewrite the equation of state as

p = pv +
{

�ac
2S, S � 0

0, S < 0
(2)
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Figure 3. Bilinear equation of state for an acoustic fluid subject to cavitation.

The continuity equation may be written [58]
��

�t
+B ·

(
�

�u

�t

)
= 0 (3)

where u(X, t) is the total fluid displacement. If |S|>1, (3) becomes

�S

�t
+B · �u

�t
= 0 (4)

The Euler momentum equation [58], which pertains to inviscid flow, may be written

�2
u

�t2
+
(

�u

�t
·B

)
�u

�t
= 1

�
Bp −BVg (5)

where Vg(X) is the gravity-potential field. If |S|>1 and the convective term is much smaller
than the inertial term, (5) becomes

�a

�2
u

�t2
= −Bp − �aBVg (6)

Since fluid motion is assumed irrotational, we may write the total displacement field as

u = −B� + ueq (7)

where �(X, t) is the dynamic displacement potential and ueq(X) is the equilibrium displace-
ment field. We utilize (7) to write the continuity equation (4) as

�S

�t
− ∇2 ��

�t
= 0 (8)

which may be integrated in time to yield

S = ∇2� + Seq (9)

where Seq(X) is the equilibrium condensation field. Similarly, the momentum equation (6) may
be written

B
�2�

�t2
= 1

�a

Bp +BVg (10)
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which may be integrated in space to yield

�2�

�t2
= 1

�a

p + Vg + h (11)

where h(t) is a ‘constant’ of integration. If we consider the equilibrium problem, (11) becomes

�2�

�t2
= 1

�a

(p − peq) (12)

where peq = −�a(Vg + h) is the equilibrium pressure, i.e. the sum of atmospheric pressure
and hydrostatic pressure. The introduction of (2) into (12) then yields

�a

�2�

�t2
= −peq + pv +

{
�ac

2S, S � 0

0, S < 0
(13)

Now, if we utilize peq = pv + �ac
2Seq, define the dynamic densified condensation s =

�a(S − Seq), and the densified displacement potential � = �a�, we may write from (9) and
(13) the system of governing equations

s = ∇2�, �̈ =
{

c2s, c2s �pv − peq

pv − peq, c2s < pv − peq

(14)

where an overdot denotes a temporal partial derivative. The use of these scalar field quantities,
as opposed to vector quantities, minimizes the number of unknowns at each point in the fluid
domain and enforces irrotationality of the flow. The fluid domain governed by (14) has essential
boundary conditions at the free surface and natural boundary conditions along the interface with
the structure and the non-reflecting boundary.

The vapour pressure of the water is so much smaller than the equilibrium pressure that it
may be neglected. For example, at 10◦C the vapour pressure of water is approximately 103 Pa,
whereas the minimum equilibrium pressure, i.e., atmospheric pressure, is 105 Pa.

2.1.2. Scattered-field model. Here, we separate the total field into three component fields: equi-
librium, incident and scattered. Hence, we write s = sinc + ssc and � = �inc + �sc, where all
of these variables constitute deviations from equilibrium.

Introducing s = sinc + ssc and � = �inc + �sc into (14), we obtain the scattered-field model

ssc = ∇2�sc + �1, �̈sc =
{

c2ssc + �2, c2ssc > −(peq + pinc)

−(peq + pinc), c2ssc � − (peq + pinc)
(15)

where pinc = �̈inc is the incident pressure and

�1 = ∇2�inc − sinc, �2 = c2sinc − �̈inc (16)

Because |sinc|>1, and because the fluid motion is irrotational and inviscid, sinc = ∇2�inc,
which produces �1 = 0. If the incident field propagates acoustically, we may write from (14)

�̈inc = c2sinc (17)
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which produces �2 = 0. Note that the second of (15) involves a dynamic quantity on the right
sides of the inequalities, in contrast to the second of (14). In addition, the free-surface (FS)
essential boundary condition for the scattered-field equations is time dependent, i.e.

psc|FS + pinc|FS = 0 (18)

An important advantage of the scattered-field model over the total-field model is the oppor-
tunity to propagate any incident field through the fluid domain with total fidelity. For example,
Hunter and Geers [27] recently developed a realistic field model in which the shock wave
propagates quasi-acoustically, i.e. the wavefront propagates with the fluid sound speed, but the
waveform slowly distorts as it travels. Although incorporation of such a model violates the
acoustic-field assumption in (17), �2 is negligible locally, and may be ignored.

2.2. Spatial discretization

2.2.1. CASE: total-field model. We seek to construct cavitating acoustic spectral elements
(CASE) based on the irrotational-flow formulation of Newton [8–11]. A subparametric
discretization is used: first-order (trilinear) basis functions are used for geometry represen-
tation and higher-order basis functions are used for field-variable representation. The finite
fluid volume �fl is separated into ne hexagonal elements defined by eight corner points. The
geometry within each element is expressed as

X = �T(�, �, �)X, Y = �T(�, �, �)Y, Z = �T(�, �, �)Z (19)

where X, Y, Z are column vectors of element-corner-point locations in global co-ordinates, � is
a column vector of standard trilinear shape functions (see, e.g. Reference [33]), a T superscript
denotes vector transposition, and (�, �, �) are the element natural co-ordinates (−1 � �, �, � � 1).

The dependent field variables are represented within each element as

s(�, �, �, t) = �T(�, �, �)se(t) =
N∑

i,j,k=0
�i (�)�j (�)�k(�)s

e
ijk(t)

�(�, �, �, t) = �T(�, �, �)�e(t) =
N∑

i,j,k=0
�i (�)�j (�)�k(�)�

e
ijk(t)

(20)

where se and �e are column vectors of (N+1)3 time-dependent nodal values (se
ijk and �e

ijk), and
� is a column vector composed of 1D, N th-order-polynomial basis functions �i (�)�j (�)�k(�).
The essence of the spectral-element method lies in the choice of �i and the associated quadrature
rule; here, we use Lagrangian interpolants given by [40]

�i (�) = − (1 − �2)P ′
N
(�)

N(N + 1)PN(�i )(� − �i )
(21)

where PN is the Legendre polynomial of degree N , the prime denotes differentiation with
respect to argument, and �i is the ith Gauss–Lobatto–Legendre (GLL) quadrature point defined
by the corresponding root of

(1 − �2)P ′
N
(�) = 0 (22)
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Figure 4. 1D Lagrangian interpolants based on Legendre polynomials for N = 4 refinement.

Expression (21) satisfies the relation [40]
�i (�j ) = �ij (23)

where �ij is the Kronecker delta. The 1D Lagrangian interpolants (21) are shown in Figure 4
for N = 4. Element-node locations are coincident with the quadrature points, which are located
at the (N +1) zeroes of (22). Finally, the expressions for the derivative of (21) when evaluated
at GLL quadrature points may be written as [39]

��i

��

∣∣∣∣
�=�j

=




PN(�j )

PN(�i )

1

�j − �i

, i �= j

− (N + 1)N

4
, i = j = 0

(N + 1)N

4
, i = j = N

0, otherwise

(24)

The governing equations for the TFM (14a) are discretized with a standard Galerkin approach
[33]: premultiplication of (14a) by �, integration over the element fluid volume, and application
of Green’s first identity. This yields∫

�e
�s d� +

∫
�e
B� ·B� d� =

∫
�e

�B� · n d� (25)

where �e is the element domain, �e is its surface and n(X) is the outward unit vector normal
to �e. Substitution of (20) into the dependent variables on the left-hand side of (25) yields the
element-level algebraic equations

Qese + He�e = be (26)

where the capacitance matrix, reactance matrix and boundary-interaction vector are given by

Qe =
∫

�e
��T d�, He =

∫
�e
B� ·B�T d�, be =

∫
�e

�B� · n d� (27)
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respectively. Both Qe and He are symmetric. Note that B� is maintained in its continuum
form for be because it is provided by the displacements at the structure and non-reflecting
boundaries.

The element-level equations may be assembled into a global system; the resulting semi-
discrete equations are

Qs + H� = b (28)

where Q and H are the global matrices corresponding to Qe and He, respectively, and b, s, and
� are the global vectors corresponding to be, se and �e, respectively. The bilinear constitutive
equations (14b), when evaluated at node j , become

{�̈}j =
{{c2s}j , {c2s}j > −{peq}j

−{peq}j , {c2s}j � − {peq}j
(29)

where peq is a column vector of nodal equilibrium pressures.
The integrals in (27) are approximated with GLL quadrature. Since nodes and quadrature

points are coincident, and because of (23), Qe is diagonal, which facilitates use of the explicit
time-integration scheme used here. For this study, the capacitance matrix is always formed
and stored as a global diagonal matrix. In the explicit scheme (discussed below), most of the
computation time is devoted to evaluation of the matrix–vector product H�, which must be
evaluated at each time step. For Legendre-polynomial spectral elements, it is most efficient
to evaluate the matrix–vector product element-by-element using tensor-product factorizations
[41, 46, 59, 60], of which a detailed description may be found in Reference [61]. In addition to
fast evaluation of the matrix–vector product, tensor-product factorization removes the memory
requirements associated with storing H and/or He, which can be demanding due to the high
inter-element nodal coupling. We postpone discussing the formation of be until Section 2.2.5.

2.2.2. CASE: scattered-field model. We spatially discretize (15a) with the standard Galerkin
approach as outlined in the previous section; the resulting scattered-field global CASE equations
are

Qssc + H�sc = bsc

{�̈sc}j =
{{c2ssc}j , {c2ssc}j > −{peq + pinc}j

−{peq + pinc}j , {c2ssc}j � − {peq + pinc}j
(30)

where Q and H are formed as discussed in the previous section, pinc is a column vector of
known nodal incident pressures, and the scattered boundary-interaction vector bsc is composed
of element-level vectors defined by

be
sc =

∫
�e

�B�sc · n d� (31)

Numerical implementation of the above scheme is identical to that discussed in the previous
section.
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0

1

X0 X1� = -1 � = 1

Figure 5. Basis functions for N = 4 CAFE refinement of a 1D element with endpoints at X0 and X1.
The natural co-ordinates (−1 � � � 1) pertain to the basis functions shown with the solid lines. This

is the CAFE equivalent of Figure 4.

2.2.3. CAFE. We use the above CASE formulation to develop a CAFE formulation similar to
that of Felippa and DeRuntz [7]. This is achieved by replacing the Lagrangian interpolants (21)
with a series of bilinear functions, as illustrated in Figure 5 for a 1D element with endpoints
at X0 and X1, and N = 4 CAFE refinement. This approach is equivalent to separating the
original fluid element into multiple CAFEs. The basis functions and the natural co-ordinates
for a single sub element are illustrated by the solid lines in Figure 5. Standard 8-point Gauss
integration is used for evaluation of the 3D element-level matrices in (27), which produces a
non-diagonal element-level capacitance matrix Qe; following Reference [7], we diagonalize Qe

with row-sum lumping. The semi-discrete equations appear identical to (28) and (30a) for the
TFM and SFM, respectively.

Henceforth, we use N as a general refinement parameter. For CASE refinement, N denotes
the polynomial order of the basis functions; for CAFE refinement, N denotes the number of
element divisions applied to the base fluid element in each of the natural-co-ordinate directions.
With either method, N refinement fills a base fluid element with (N + 1)3 nodes.

As with the CASE model, the diagonal global capacitance matrix is formed and the most
expensive part of evaluating the time-update equations lies in the evaluation of H�. However,
unlike CASE, because of reduced nodal coupling and the absence of a tensor-product factoriza-
tion, the most efficient method for evaluation is achieved with a global matrix–vector product.
The matrix H for CAFE is created by forming the element-level matrices and storing them
globally with a sparse-storage scheme in which only non-zero entries are stored.

2.2.4. Non-reflecting boundary and structure finite-elements. For this study, the non-reflecting
boundary is the curved-wave approximation (CWA), which is an early-time approximation [62]
in that it approaches exactness as t → 0. More advanced non-reflecting boundaries may be
used; Felippa and DeRuntz [7] truncated their CAFE mesh with a first-order DAA boundary.
While the DAA is much better than CWA because it treats added-mass effects, it is expensive
in terms of memory storage. In fact, a DAA is unnecessary, as an adequate CAFE or CASE
mesh handles most of the added-mass effects. The specific CWA equations for the TFM and
SFM may be found in Reference [61].

For the purposes of this study, the structural finite-element model is limited to 4-node,
isoparametric, quadrilateral shell elements. The well-known semi-discrete FE equations for
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linear, undamped structural motion (relative to equilibrium) at the element level are

Meẍe + Kexe = fe (32)

Here, Me and Ke are the symmetric consistent-mass and stiffness matrices, respectively, and
xe and fe are column vectors of nodal displacements and nodal forces, respectively.

For this study, the element-level matrices Me and Ke are generated with ABAQUS [22].
For the shell elements, the fully integrated S4 quadrilateral element is used. This element has
a consistent mass matrix, six degrees of freedom at each node, and accounts for membrane,
bending and shear stiffness, as well as rotatory inertia. For the explicit time-integration scheme
used here, evaluation of (32) is simplified and accuracy is improved with the use of a diagonal
lumped-mass matrix, M̃e. For the shell elements, this is formed from Me with an HRZ (Hinton,
Rock and Zienkiewicz) lumping scheme [33].

2.2.5. FE/fluid-volume/non-reflecting-boundary coupling. With the above formulation, we
have three separate semi-discrete models that interact at their interfaces: structure, fluid-volume
and non-reflecting boundary. Displacements are output from the structure FE model and non-
reflecting boundary to the fluid-volume mesh, from which pressures are returned [7]. This
section discusses the specifics of numerical implementation for coupling of the three discrete
models. Most importantly, a novel technique for coupling the fluid to the structure is introduced.

As discussed in the introduction, we wish to couple the structure and fluid models in a
manner such that an arbitrary level of fluid refinement is allowed. To this end, we approach
the problem as follows: (i) create a ‘sufficiently refined’ structure FE mesh composed of
quadrilateral elements, (ii) create a base mesh for the fluid volume consisting of hexagonal
elements whose quadrilateral faces are coincident with structure-element faces along the fluid–
structure interface. With this approach, a coupling scheme may be constructed such that the
base fluid mesh may be refined indefinitely with p (CASE) or h (CAFE) refinement without
changing the structure mesh. This is illustrated in Figure 6 for N = 4 refinement, where we
have maintained a one-to-one coupling between fluid and non-reflecting-boundary nodes.

With this method, the fluid and structure models are joined by a membrane composed of
quadrilaterals. The fluid pressure may be numerically integrated over this surface and applied
to the structure nodes. Likewise, the structure displacement at any point on the quadrilateral
may be found by linear interpolation of the displacements at the corner points for output to
the fluid mesh.

Structure forcing due to fluid response occurs as a pressure normal to the shell surface; there
is no forcing on structure rotational DOF. The element-level structure-FE forcing vector fe is
assembled from three 4-component (4-node) vectors fe

X, fe
Y and fe

Z , each corresponding to one
of the three global Cartesian directions; again, the components of fe for rotational DOF are
zero. The vector for i-direction forcing is evaluated as

fe
i = 	e

i

∫
�wet

Np̄e
dyn d� (33)

where N is a column vector of the standard bilinear shape functions [33], p̄e
dyn is the

average of the dynamic pressure (p − peq) over the element face, and 	e
i is the cosine of the

angle between the structure-element normal (positive going out of the fluid) and the ith global
Cartesian direction. Numerical experiments comparing the use of p̄e

dyn instead of pe
dyn(�, �)
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Structure FE

Base Finite Element
(CAFE with N = 1)

Fluid-Mesh Refinement

h; Refinement
(CAFE with N = 4 )

p Refinement
(CASE with N = 4 )

Nonrefl-. Bound.

Structure FE Nodes
Base-Mesh Fluid Nodes
Refined-Mesh Fluid Nodes
Nonreflecting-Boundary Nodes

Figure 6. Fluid-refinement approaches and fluid–structure coupling, shown for a
single hexagonal fluid element.

have been performed with � and � as the natural co-ordinates over the shell surface. For the
cases studied, the use of the constant pressure yields more accurate structure responses as a
result of reduced spurious ringing. A similar pressure-averaging approach for fluid–structure
coupling has been successfully used for over 20 years in the USA code [63].

The fluid CAFE or CASE model is coupled at every boundary point to either a known-
pressure boundary (free surface), a symmetry plane, a flexible structure or a non-reflecting
boundary. At a known-pressure boundary, the boundary values are enforced in the time-update
equations. At a symmetry plane, the normal fluid displacements must vanish, i.e. −�aB�·n = 0,
where n is the normal vector for the plane. As this is a natural boundary condition, � is left
free along symmetry planes. Forcing at the structure/fluid and fluid/non-reflecting-boundary
interfaces occurs through the boundary-interaction vector.

For the total-field fluid model, the boundary interaction vector (27c) is evaluated as

be = −�a

∫
�e

st

�x̄e d� − �a

∫
�e

nrb

��T(ue − ue
eq) d� (34)

where x̄e is the average normal structure displacement (positive going out of the fluid) at
the centre of the wet-structure element, �e

st is the quadrilateral area separating the wet-
structure element from the fluid element, and �e

nrb is the quadrilateral area of the non-
reflecting boundary. The first integral in (34) is evaluated in closed form; the second is eval-
uated with GLL quadrature for CASE refinement and trapezoidal-rule integration for CAFE
refinement.
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For the scattered-field model, the boundary-interaction vector (31) is evaluated as

be
sc = −�a

∫
�st

�x̄e
sc d� − �a

∫
�nrb

��Tue
sc d� (35)

where x̄e
sc is the average scattered normal displacement (positive going into the fluid) at the

centre of the wet-structure element; it is formed by subtracting the known incident displacement
from each node’s total displacement, projecting the resulting scattered displacement onto the
normal of the element, and calculating the average over the element face.

2.3. Temporal discretization

2.3.1. Staggered integration with subcycling. The semi-discrete fluid and structure equations
are both integrated with a conditionally stable explicit central-difference algorithm. Integra-
tion of the fluid and non-reflecting-boundary equations follow the method of Reference [7],
where the fluid equations are integrated with numerical damping proportional to ṡ in or-
der to suppress frothing. Unlike the previous implementation, we incorporate structure and
fluid time-step subcycling, which allows for efficient and accurate integration of the system
equations. With subcycling, we allow both the fluid and structure to be integrated with time
increments close to the maximum values allowed by their respective stability criteria. In the
following, we give a qualitative description of our time-integration procedure; a detailed de-
scription may be found in Reference [61]. The implementation is the same for both CASE
and CAFE.

We consider first subcycling of the structure equations so that �tfl/�t = 
 � 1, where �tfl
and �t are the fluid and structure time increments, respectively. The time-update procedure for

 = 2 is illustrated in Figure 7(a). We assume that the state at all system nodes is known at
time t (and at the previous time step) and we wish to update the values at all nodes to time
t + 
�t .

The surface-normal displacements at all nodes on the wet structure and on the non-reflecting
boundary are predicted at time t + 
�t using a simple Euler scheme, i.e. f (t + �t) = f (t) +
�t ḟ (t) (step 1). These predicted values are denoted by the circled × and circled square. With
these predicted values, the fluid equations are updated with central differences to t = 
�t = 2�t

(step 2). The updated fluid values are then used to correct the normal displacements of the non-
reflecting-boundary nodes (step 3). With the fluid state known at t +
�t , the nodal pressures on
the structure–fluid interface at t +�t are calculated by interpolation and the structure equations
are updated with central differences (step 4). This is repeated until the state of all structure
nodes is known at t + 
�t (step 5).

For 
 < 1, the fluid equations are subcycled rather than those of the structure, as illustrated
in Figure 7(b) for 
 = 1

2 . This procedure is very similar to that for 
 � 1, however, the structure
state must be predicted for each fluid update.

2.3.2. Stability. Felippa and DeRuntz [7] performed a detailed stability analysis of integration
with the FE/CAFE/non-reflecting-boundary approach; the structure model was integrated im-
plicitly whereas the fluid model was integrated explicitly. Owing to the complexity of our
system, we restrict ourselves to a stability analysis of the uncoupled fluid equations. We begin
by assuming that we have a conservative estimate for the critical �t for the structure and
we use the results of Reference [7] for our stability analysis of the discrete fluid equations.
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Figure 7. Information transfers for explicit-structure/explicit-fluid integration with: (a) structure sub-
cycling (
 = 2); and (b) fluid subcycling (
 = 1/2). The circled numbers in (a) correspond to

the step numbers discussed in the text, and �t is the structure time increment.

For the fluid equations, an upper bound for the time increment is

�tcr = 2

c
√

�max(1 + 2�)
(36)

in which � is the artificial-damping constant and �max is the maximum eigenvalue of the global
generalized eigenproblem

(H − �Q)z = 0 (37)

The global �max may be bounded by the largest eigenvalue of the unassembled element-level
matrices [33], i.e. �max = max(�e

max), where �e
max is the maximum eigenvalue of the element-

level eigenproblem

(He − �eQe)ze = 0 (38)

For the CAFE implementation, �max may be bounded above by 4/�x2
min [7, 64] where �xmin

is the minimum distance between nodes in the fluid mesh. With this bound, the CAFE stability
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limit may be written as

�tcfl
cr = �tcfl√

1 + 2�
(39)

where �tcfl = �xmin/c is the Courant–Freidrichs–Lewy (CFL) [33] increment limit.
For CASE discretization, a simple upper-bound estimate on �max is not available. However,

we may form the element-level matrices and use Gerschgorin’s theorem to obtain an upper
bound on �max [33, 65]. For the generalized Eigenproblem (38), Gerschgorin’s theorem states
that

�e
max � �e,g

max = max

[(
He

ii +
(N+1)3∑
j=1,j �=i

|He
ij |
)/

Qe
ii

]
, ∀i ∈ {1, . . . , (N + 1)3} (40)

where He
ij and Qe

ij are elements of He and Qe, respectively, and Qe is assumed diagonal. We
define the Gerschgorin critical time increment for CASE as

�tgcr = 2

c
√

�g
max(1 + 2�)

(41)

where �g
max = max(�e,g

max), ∀e ∈ {1, . . . , nel}. We note that �tcfl
cr does not require the formation

of any matrices, whereas �t
g
cr requires the formation of element-level matrices.

2.4. Error factors

In this section, we discuss a modified form of the Geers comprehensive error factor [32, 66],
which may be used to quantify the error of transient response histories relative to an accepted
benchmark solution. The comprehensive error (C-error) factor is given by C = √

M2 + P 2, in
which M = √

ϑcc/ϑbb − 1 and P = 1
 arccos(ϑbc/

√
ϑbbϑcc), where

ϑbb = (t2 − t1)
−1
∫ t2

t1

b2(t) dt, ϑcc = (t2 − t1)
−1
∫ t2

t1

c2(t) dt

ϑbc = (t2 − t1)
−1
∫ t2

t1

b(t)c(t) dt

(42)

In these equations, c(t) is a candidate solution in the form of a response history, b(t) is
the corresponding benchmark history, and t1 � t � t2 is the time span of interest. M is the
magnitude error factor, which is insensitive to phase discrepancies, and P is the phase error
factor, which is insensitive to magnitude discrepancies. In earlier applications, the phase error
factor was given by P̃ = 1 − ϑbc/

√
ϑbbϑcc, which we have found to be insufficiently sensitive

to phase errors.

3. 1D EVALUATION: 2-DOF FLOATING MASS–SPRING OSCILLATOR

3.1. Problem description

For initial evaluation of CASE, field separation, and non-conformal fluid–structure coupling,
we use a benchmark model consisting of a semi-infinite, 1D fluid column that supports a
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Figure 8. Physical model used to represent a ship for the 1D benchmark problem; the lower mass
represents the ship’s hull and the upper mass its internal structure and equipment.

2-degree-of-freedom (2DOF) mass–spring oscillator; the lower mass represents the ship’s hull
and the upper mass its internal structure and equipment. This model was productively employed
in a recent evaluation of field separation and a 1D CASE implementation [32].

The benchmark model mentioned above is shown in Figure 8. The hull mass is m1 and the
total mass of internal structure and equipment is m2. The masses are separated by a linear
spring with stiffness k and the fluid column has cross-sectional area a. The displacements of
m1 and m2 are u1(t) and u2(t), respectively. Depth relative to the equilibrium position of the
wet surface of m1 is denoted by X, and g is the acceleration of gravity.

The incident field driving the hull mass is due to a plane, upward propagating, step-
exponential acoustic wave defined by

pinc(X, t) = p0 exp

[
− t + (X − dinc)/c

�

]
H [t + (X − dinc)/c] (43)

where p0 and � are the peak pressure and decay time, respectively, and H() is the Heaviside
step function. At t = 0, the incident wavefront is located at a standoff dinc from the wet surface
of m1.

The physical properties used in the 1D calculations are �a = 1026 kg/m3, c = 1500 m/s,
patm = 0.101 MPa, g = 9.81 m/s2, and a = (0.3 m)2. For the ship model, m2/m1 = 5 and
m1 = 76.9 kg, which produce an equilibrium draft for the corresponding 3D structure of 5 m.
The spring stiffness k is such that the fixed-base natural frequency of m2 is 5 Hz. The incident
wave corresponds to the shock wave generated by a 45.4 kg charge of HBX-1 detonated at a
10 m standoff from the wet surface of the hull mass, so that p0 = 16.2 MPa and � = 0.42 ms
[67].

3.2. Discrete model and benchmark solution

The upper and lower structure masses are represented by square 4-node structural plate finite-
elements with cross-sectional area equal to (0.3 m)2. The base fluid mesh (N = 1 refinement)
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Figure 9. (a) Benchmark velocity histories of m1 produced with a 1D CAFE model [13] and a 1D
Lagrangian spring–mass model; and (b) the associated space–time cavitation zones produced with the
CAFE model. The dashed line in (b) denotes a fluid characteristic, which relates the pressure pulse

caused by cavitation closure to the associated change in structure velocity.

is composed of 10 cube elements with 0.3 m sides. The fluid mesh is terminated by a plane-
wave-approximation boundary element located at dpw = 3 m, which is exact for 1D waves. The
CAFE and CASE models are integrated without subcycling (
 = 1) and with �t = 0.75�tcfl

cr
and �t = �t

g
cr, respectively. The artificial-damping coefficient � = 0.25. Time-step subcycling

is not used because the critical time increment for the structure was too large for accurate
solutions. At t = 0, the incident wavefront is located one base fluid element from the wet
surface of m1 (dinc = 0.3 m).

The benchmark results are the product of a 1D CAFE research code, which has been validated
[13] with the benchmark problem of Bleich and Sandler [2]. The super-refined benchmark CAFE
mesh has 24 000 equal-length elements and employs a mesh with dpw = 3 m, which lies below
the 2.5 m maximum depth of cavitation [13].

The benchmark velocity responses of m1 calculated with and without cavitation are shown
in Figure 9(a) as a function of the delayed time t̃ = t − dinc/c. Also, shown are the results
produced with a Lagrangian mass–spring model of the fluid, which is discussed below. Clearly,
cavitation has a profound effect on the structure response. Figure 9(b) shows the associated
space–time cavitation zones; the grey areas indicate the existence of cavitation, where and
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when absolute pressure is zero. We note that the abrupt changes in u̇1 at t̃ = 49 ms and
t̃ = 129 ms are due to pressure pulses caused by closure of the initial two cavitation regions
(see Figure 9(b)). The closure of the third, and smallest, cavitation region causes a small kink
in u̇1 at t̃ = 144 ms.

When deriving the linearized governing equations (14), we assumed that the condensation
was small and that the convective term in the momentum equation was negligible. In order
to test these assumptions, we now repeat the analysis of the above problem, but represent the
fluid with a discrete system of springs and masses. Hence, this model employs a Lagrangian
treatment of motion, in which the dynamic pressure between two fluid masses mi and mj is
given by

pij =




Ba

�ij
1 + �ij

, pij �peq

−peq, pij < peq

(44)

Here, �ij = (ui − uj )/�X, where ui is the dynamic displacement of mi , and �X is the
equilibrium separation of mi and mj . As with the benchmark CAFE model, the system is
bounded by a plane-wave boundary at dpw = 3m, and the semi-discrete equations are integrated
in time with a central-difference algorithm and ṡ-proportional damping.

As mentioned above, Figure 9(a) shows the m1 velocity histories calculated with the CAFE
benchmark model and a highly refined spring–mass fluid model (20 000 DOF). The agreement
is seen to be quite good (C = 0.040), where the differences may be attributed to the neglected
terms in the CAFE governing equations. The discrepancy between the response histories is too
small to justify the expense associated with a hydrocode that treats the neglected terms. With
cavitation effects neglected, the two models produce response histories that are indistinguishable
from one another.

3.3. Results and discussion

Using the base fluid model discussed above, we examined the performance of CAFE refinement
with the scattered-field model (CAFE-SFM) and CASE refinement with both the scattered-field
model (CASE-SFM) and with the total-field model (CASE-TFM). In particular, we calculated C-
errors for m1 velocity-response histories (relative to the benchmark solution discussed above)
as a function of fluid DOF, memory storage and operations. Memory-storage and operation
requirements pertained to storage and evaluation of the matrix–vector product H�, which must
be evaluated for each time step and is the most expensive component of time integration.

The conclusions drawn from this study agree with those reached in the performance study
of our 1D CAFE and CASE implementations [32]. Because of this, we discuss the conclusions
but do not show numerical results, which may be found in Reference [61]. For a given level
of accuracy, CASE offers significant savings over CAFE in terms of fluid DOF and required
memory; operation requirements were similar. Further, CASE produces greater gains in accuracy
than CAFE for the same increase in spatial refinement. Also, although the scattered-field model
degrades CASE performance for coarse meshes, it produces solutions with accuracy equivalent
to those produced with the total-field model for refined meshes. Finally, the non-conformal
coupling approach provides significant savings in the structure FE model, as no refinement is
required to accommodate fluid-model refinement.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:2467–2499



SPECTRAL ELEMENT METHOD 2487

4. 3D EVALUATION: SUBMERGED SPHERICAL SHELL

In the previous section, a 1D problem was used to test the performance of CAFE-SFM, CASE-
SFM, CASE-TFM, and non-conformal fluid–structure coupling. In this chapter, we extend the
analysis to 3D by investigating the axisymmetric response of an empty, submerged spherical
shell excited by an incident step-exponential spherical wave. Time-increment restrictions for
the structure model also allow us to validate the use of time-step subcycling.

4.1. Problem description

A schematic of the spherical shell and incident wave is shown in Figure 10. The fluid is infinite
and homogeneous and gravity is neglected. The shell has thickness h, mid-surface radius a,
Young’s modulus E, density �s and Poisson’s ratio �. Meridional and radial displacements are
denoted by v and w, respectively. Cartesian (X, Y ) and spherical (r, �) co-ordinate frames are
shown. The incident-wave centre is located at Xc = (Xc, Yc, Zc), and the pressure field is
defined by

pinc(X, t) = R0

R
p0 exp

[
− t − (R − R0)/c

�

]
H [t − (R − R0)/c] (45)

where R = |X − Xc|, and the wavefront has radius R0 and peak pressure p0 when t = 0. As
in the 1D problem, dinc is the wavefront standoff from the structure when t = 0. The physical
parameters used in this analysis are listed in Table I. The incident-wave peak pressure and
decay time correspond to a 60 kg charge of HBX-1 [5, 6] detonated at a 12 m standoff. The
uniform hydrostatic pressure corresponds to a depth of 50 m.

4.2. Discrete model, validation and benchmark solution

4.2.1. Discrete models. Since this problem is axisymmetric, we use quarter-symmetry models
that reduce computational cost but retain the complexity of the 3D system. Figure 11 shows

Figure 10. Schematic of the spherical shell and incident spherical wave with associated variables.
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Table I. Properties used for the spherical shell, water and incident wave.

Young’s modulus E 195 × 109 Pa
Shell density �s 7700 kg/m3

Poisson’s ratio � 0.3
Shell radius a 5 m
Shell thickness h 0.05 m
Water density �a 1026 kg/m3

Water sound speed c 1500 m/s
Hydrostatic pressure phyd 0.604 MPa
Inc.-wave peak press p0 16.26 MPa
Inc.-wave decay time � 0.464 ms
Inc.-wave centre Xc, Yc, Zc (17, 0, 0) m

Figure 11. Quarter-symmetry discrete models used in the response calculations for a submerged
spherical shell: (a) 150-element structure finite-element model; and (b) 1650-element base fluid mesh.

(a) the structure FE model and (b) the base fluid mesh that surrounds it. The structure mesh is
composed of 150 quadrilateral elements, which was shown in Reference [61] to be sufficiently
refined for the current problem. The fluid mesh is composed of 1650 hexagonal elements, has
an outside radius of 15 m, and is surrounded by CWA elements.

4.2.2. Validation without cavitation. With cavitation effects neglected, this problem has been
solved with modal methods for plane-step-wave excitation by Zhang and Geers [68]; their solu-
tion method has been incorporated into SPHSHK/MODSUM [69], a public-domain FORTRAN
program. The program has been extended by Sprague and Geers [70] to include spherical and
plane step-exponential incident waves. We use results produced with SPHSHK/MODSUM to
validate our approach in the absence of cavitation.

For validation, subcycling and the scattered-field model were employed. Figure 12 shows
non-dimensional structure radial-velocity response histories at � = 0◦ and 180◦ as a function of
non-dimensional delayed time. The responses were calculated with the 1650-element base fluid
model and either N = 10 (1.7 × 106 DOF) or N = 14 (4.6 × 106 DOF) CASE refinement with
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Figure 12. Non-dimensional spherical-shell radial-velocity histories calculated with two super-refined
CASE fluid meshes coupled to the 150-element structure model. Cavitation effects are ne-
glected. Also shown are the modal solutions produced by SPHSHK/MODSUM [69, 70]. The C-
error values for the N = 10 solutions relative to the N = 14 solutions are C = 0.003 and

0.006 for � = 0◦ and 180◦, respectively.


 = 1
5 or 
 = 1

9 , respectively (�tfl = 
�t). For this and subsequent calculations, the structure
was integrated with �t = 7.5×10−6 s and the incident wave was located a single base element
from the structure at t = 0 (dinc = 0.909 m). Again, � = 0.25 was used. Also, shown are
the response histories produced by SPHSHK/MODSUM with the first 8 modes. Differences
between the two CASE solutions are indiscernible, which indicates convergence in terms of
both spatial and temporal refinement. In addition, good agreement is seen between the CASE
and modal solutions except at late time for � = 180◦. These differences may be attributed to
differences between the two structure formulations (the modal model neglects rotatory inertia
and shear stiffness). These results serve to validate the implementation of CASE, fluid–structure
coupling, and time-step subcycling. Solutions produced with CAFE appear identical to those
shown for CASE for N = 10 and 14 refinement. We remark that in order to achieve a
fluid-refinement level equivalent to the N = 14 model with the original one-to-one CAFE-FE
coupling approach, the structure model would require 150N2 = 29 400 elements.

4.2.3. Benchmark solution with cavitation. Having validated CAFE, CASE, subcycling and our
fluid–structure coupling, we investigate the performance of the proposed method applied to
the submerged shell, but in the presence of cavitation. In the absence of benchmark solutions
for 3D FSI problems with cavitation, we use a super-refined CASE-SFM model to generate
a benchmark solution. We use CASE-SFM because of its superiority demonstrated in the 1D
test problem.

Figure 13 shows response histories for the front and back of the shell, as produced by CASE-
SFM, subcycling, and either N = 10 or 14 refinement with � = 0.25. The response histories
produced with N = 10 and 14 are virtually indistinguishable, thus indicating a converged
solution. Further, it was found that the differences between response histories produced with
N = 14 and either � = 0.1 and 0.25 were indistinguishable. Also, shown are the validation
solutions for the non-cavitating system. Cavitation has a strong effect on the late-time response
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Figure 13. Non-dimensional spherical-shell radial-velocity histories calculated with two super-refined
CASE-SFM fluid models coupled to the 150-element structure model. The hydrostatic pressure
corresponds to a 50 m depth, and cavitation effects are included. Also, shown are the bench-
mark responses from Figure 12, which were calculated with cavitation effects neglected. The
C-error values for the N = 10 solutions relative to the N = 14 solutions are C = 0.009 and

0.015 for � = 0◦ and 180◦, respectively.

at the back of the shell but only a modest effect on early-time responses at the front of the
shell.

Figures 14 and 15 show cavitation snapshots of the axisymmetric plane at various
non-dimensional times. After the initial impact of the incident wave on the structure, the
flexible shell behaves in a manner similar to a free surface; this behaviour causes the early-
time formation of the cavitation region seen at the front of the shell. We see that cavitation
also occurs at the shell’s back side. While the size of this cavitation region shrinks rapidly, a
small region of cavitation remains ‘attached’ to the back side of the shell for 2 < t̃c/a < 10.
It is this cavitation that causes the large late-time oscillations.

4.3. Results and discussion

In this section, we compare the performance of CAFE and CASE models with many fewer
fluid DOF than the number used in the benchmark model. Table II shows the fluid DOF
and subcycling ratios used for each refinement level. The subcycling ratios are based on
�t = 7.5 × 10−6 s, and were chosen such that 
�t was less than 75% �tcfl

cr for CAFE and
less than �t

g
cr for CASE. We see that, because most of the ratios are quite different than

one, subcycling offers significant computational savings. We note that the fluid time increment
(
�t) is reduced more rapidly with CASE than CAFE with fluid refinement, thus offering more
aggressive temporal refinement with spatial refinement.

Figure 16 shows radial-velocity response histories at the front and back of the shell calculated
with CAFE-SFM or CASE-SFM and N = 1, 2 or 3 refinement. The solutions produced by
both methods appear to be converging to the benchmark solutions with increasing refinement.
Further, we see that CASE consistently outperforms CAFE and that CAFE fails to produce a
response at � = 180◦ with C < 0.1. CASE, however, requires N = 3 refinement to produce
response histories at the two positions with C < 0.1. It is interesting to note the appearance
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Figure 14. Axisymmetric cavitation snapshots for a spherical shell at a depth of 50 m for
0.5 � t̃ c/a � 3.0. Light grey represents the shell, dark grey represents the uncavitated fluid and
white represents cavitated fluid. Results are a product of a CASE-SFM model with N = 14:
(a) t̃ c/a = 0.5; (b) t̃ c/a = 1.0; (c) t̃ c/a = 1.5; (d) t̃ c/a = 2.0; (e) t̃ c/a = 2.5; and (f) t̃ c/a = 3.0.

of the abrupt oscillations at t̃ c/a = 2 for the response histories at � = 180◦. This is due to
the fluid mesh’s inability to capture the discontinuous scattered field associated with the arrival
of the discontinuous incident wave. The magnitude of the oscillations decreases rapidly with
increasing fluid-mesh refinement, however.

Figures 17–19 compare the performance of CAFE-SFM, CASE-SFM and CASE-TFM in
terms of required fluid DOF, operations and memory, respectively. Here, we look at refinement
levels that are well beyond those expected in practice in order to examine the convergence
rates and overall performance of the methods.

In terms of required fluid DOF (Figure 17) for a given accuracy level, CASE-SFM appears
to be the best choice. CAFE-SFM exhibits very slow convergence at � = 180◦ and CASE-
TFM performs consistently worse than CASE-SFM. At � = 0◦, CAFE-SFM requires about 1.6
times the number of fluid DOF required by CASE-SFM to produce C ≈ 0.1. At � = 180◦, if
one neglects the serendipitous ‘dip’ in CASE-SFM error at 1.5 × 104 fluid DOF, CAFE-SFM
requires about 36 times the fluid DOF required by CASE-SFM to produce C ≈ 0.1. In terms
of required operations (Figure 18), CAFE-SFM slightly outperforms CASE-SFM for � = 0◦,
but produces unacceptable convergence at � = 180◦. Finally, in terms of required memory
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Figure 15. Axisymmetric cavitation snapshots for a spherical shell at a depth of 50 m for 3.5 � t̃ c/a � 8.
Light grey represents the shell, dark grey represents the uncavitated fluid and white represents cavitated
fluid. Results are a product of a CASE-SFM model with N = 14. The cavitation snapshots for
8 � t̃ c/a � 10 appear very similar to that in (f): (a) t̃ c/a = 3.5; (b) t̃ c/a = 4.0; (c) t̃ c/a = 4.5;

(d) t̃ c/a = 5.0; (e) t̃ c/a = 5.5; and (f) t̃ c/a = 8.0.

Table II. Fluid-model properties for CAFE and CASE refinement
of the 1650-element base fluid mesh shown in Figure 11(b).

N Fluid DOF CAFE 
 CASE 


1 2052 20 14
2 14 743 10 4
3 47 974 6 2
4 111 645 5 2
5 215 656 4 1/2
6 369 907 3 1/2
8 868 729 2 1/3

10 1 687 311 2 1/5
14 4 600 555 1 1/9
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Figure 16. Non-dimensional radial-velocity histories for the spherical shell calculated with the ei-
ther CAFE or CASE and the SFM. The benchmark solutions are the product of a CASE-SFM
model with N = 14. The numbers in parentheses are the C-error values associated with the re-
sponse histories at � = 0◦ and 180◦, respectively: (a) N = 1: 2052 fluid DOF; (b) N = 2: 14 743

fluid DOF; and (c) N = 3: 47 974 fluid DOF.
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Figure 17. C-error values as a function of total fluid DOF for radial-velocity histories produced
at the (a) front and (b) back of the spherical shell. Benchmark results were produced with an

N = 14 CASE-SFM model: (a) � = 0◦; and (b) � = 180◦.
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Figure 18. C-error values as a function of total operations required to evaluate the matrix–vector
product H� for radial-velocity histories produced at the (a) front and (b) back of the spherical shell.
Benchmark results were produced with an N = 14 CASE-SFM model: (a) � = 0◦; and (b) � = 180◦.
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Figure 19. C-error values as a function of total memory storage required to evaluate the matrix–vector
product H� for radial-velocity histories produced at the (a) front and (b) back of the spherical shell.
Benchmark results were produced with an N = 14 CASE-SFM model: (a) � = 0◦; and (b) � = 180◦.

(Figure 19), CASE-SFM is the clear winner. Although these results are not monotonically
converging with refinement like the results for the 1D problem, they do follow the same
trends. Overall, CASE-SFM exhibits the strongest convergence rates, and offers the greatest
efficiency at a given refinement level.

In the above results, CASE-SFM significantly outperformed CASE-TFM for all but the
coarsest mesh. As discussed earlier, we attribute the poor performance of TFM to distortion
of the incident field. This distortion is caused by the inherent dispersion associated with the
discrete fluid mesh and, less obviously, by spurious cavitation. Figure 20 shows cavitation
snapshots for t̃ c/a = 1. The results are the product of an N = 6 CASE model with either
the TFM or SFM. For the TFM (Figure 20(a)), we see extensive frothing throughout the fluid
domain in front of the shell, which is due to the passage of the incident wavefront. In the

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:2467–2499



SPECTRAL ELEMENT METHOD 2495

Figure 20. Axisymmetric cavitation snapshots for a spherical shell at a depth of 50 m at
t̃ c/a=1.0. Results are a product of an N =6 CASE model with the (a) TFM and (b) SFM.
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Figure 21. C-error values as a function of the artificial-damping parameter � for radial-velocity histories
produced with CASE-SFM and N = 4 at the front and back of the spherical shell. Benchmark results

were produced with an N = 14 CASE-SFM model.

CASE-TFM model, pressure oscillations that reach the cavitation threshold are produced by
the mesh attempting to simulate the discontinuous incident field. This is not seen in the SFM
model. Thus, frothing degrades incident-wave propagation and impedes model performance.

In the preceding test cases, the artificial-damping parameter was � = 0.25. Here, we examine
the sensitivity of CASE-SFM responses to changes in �. Figure 21 shows the C-error of shell
response histories calculated with CASE-SFM, N = 4 refinement, and various levels of damping.
The performance of CASE-SFM is largely unaffected by changes in � for 0.25 < � < 1.0. For
� < 0.25, the error grows sharply with decreasing �. These results serve to support our choice
of � = 0.25 in the preceding simulations.

For the sake of brevity, we have omitted several of the results found in Reference [61], but we
mention here the findings obtained. First, for the submerged spherical shell, the advantages of
CASE over CAFE are enhanced when cavitation is absent. Second, regarding Gauss quadrature
for evaluation of the element-level integrals for CAFE matrices, full integration (8 point) should
be used for hexagonal elements, as 1-point integration yields significantly poorer accuracy.
Finally, the use of CASE and CAFE without the use of time-step subcycling not only required
more operations, but significantly reduced accuracy.
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5. SUMMARY AND CONCLUSIONS

In this paper, we introduced four improvements to the original cavitating acoustic finite-element
(CAFE) approach for treating fluid cavitation in underwater-shock computations. These im-
provements are: (i) incorporation of field separation, (ii) replacement of CAFE with cavitating
acoustic spectral elements (CASE), (iii) introduction of a new non-conformal structure–fluid
coupling method and (iv) utilization of time-step subcycling. The improvements are independent
of one another, thus allowing utilization of all or some in current finite-element software.

The efficiency of the improvements was examined by means of two canonical problems: (i)
a 2-DOF floating mass–spring oscillator excited by a plane, step-exponential wave and (ii) a
submerged spherical shell excited by a spherical, step-exponential wave. Both problems were
examined with and without cavitation. The conclusions reached are as follows:

• Field separation: Separation of the total field into equilibrium, incident and scattered
fields, i.e. the use of an SFM, is appealing because it allows accurate propagation of
the incident field and admits realistic, quasi-acoustic shock fields. For the 1D problem,
TFM and SFM exhibited similar performance. For the 3D problem, SFM considerably
outperformed TFM, thereby allowing substantial reduction in the required number of fluid
DOF.

• Cavitating acoustic spectral elements: For the 1D problem, CASE offered significant
savings in required fluid DOF and memory storage relative to CAFE; moderate savings
were seen in terms of required operations. The superiority of CASE was also seen in the
3D problem, but the savings were not as significant. Overall, CASE is a clear choice over
CAFE due to comparable operation requirements, much smaller memory requirements
and ease of parallelization. The CAFE implementation used here, which requires many
fewer operations than an element-by-element formulation, is cumbersome due to the global
sparse-storage scheme. CAFE can be efficiently implemented at the element level only if
reduced integration is used. However, reduced integration degrades the method’s accuracy
to an unacceptable level.

• Non-conformal fluid–structure coupling: The use of non-conformal coupling greatly re-
duced the computational effort required to treat the structure. With satisfactory refinement
in the structure, a converged fluid model was found without further structure refinement.
Further, the coupling method is very simple in terms of implementation.

• Time-step subcycling: With subcycling, the structure and fluid may be integrated with
near-optimal time increments. For the problems investigated, time-step subcycling offered
large gains in accuracy for a given number of operations.
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