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A Spectral Factorization Approach to 
Pseudo-QMF Design 

R. David Koilpillai, Member, IEEE, and P. P. Vaidyanathan, Fellow, IEEE 

Abstract-A new approach to the design of M-channel pseudo- 
quadrature-mirror-filter (QMF) banks is presented. In this ap- 
proach, the prototype filter is obtained as a spectral factor of 
a 2Mth band filter. This completely eliminates the need for op- 
timization whereas in conventional pseudo-QMF designs, the 
main computational effort is in optimization of the prototype. 
As in the conventional approach, the aliasing cancellation (AC) 
constraint ensures that all the significant aliasing terms are 
canceled. The overall transfer function T(z) of the analysidsyn- 
thesis system has a linear phase and an approximately “flat” 
magnitude response in the frequency region E 5 w 5 ( R  - E), 
where E depends on the transition bandwidth of the prototype 
and 0 < E < ( x / 2 M ) .  Three design examples are included. 

I. INTRODUCTION 
HE theory of pseudo-quadrature-mirror-filter (QMF) T banks and their applications [1]-[6] are well known. 

The theory deals with the extension of the two-channel 
QMF solution [7] to M channels, where M is arbitrary. In 
conventional pseudo-QMF designs [ 11, [6], we first ob- 
tain a linear-phase prototype filter H ( z )  by optimization. 
The objective function used in the optimization is a 
weighted sum of the stopband energy and a “flatness con- 
straint” (which is computed by numerical integration). 
Once the prototype is obtained, the analysis and synthesis 
filters are obtained by suitable cosine modulation (incor- 
porating the aliasing cancellation (AC) constraint). So, 
the main computational effort lies in the optimization of 
the prototype. 

In this paper, we present an approach to pseudo-QMF 
design that does not involve any optimization. The pro- 
totype filter of an M channel filter bank is obtained as a 
spectral factor of a 2Mth band filter. This approach is sim- 
ilar to the conventional pseudo-QMF designs with regard 
to the derivation of the AC condition [ l ] ,  [8], but is dif- 
ferent in the way that the filter bank is obtained from the 
prototype. The main features of the proposed method are: 

1) The prototype filter H ( z )  is obtained, without need 
for any optimization, by the spectral factorization of G(z) ,  
a 2Mth band filter. G(z) can be designed by using the 
standard filter design techniques such as 1) the window- 
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based filter design [9]; 2) the method in [lo], which uses 
the McClellan-Parks design program [ 111; or 3) the ei- 
genfilter approach [12]. Hence, the coefficients of G(z)  
are readily obtained. 

2) As in conventional pseudo-QMF designs, the pro- 
totype filter for the new method is designed such that non- 
adjacent filters of the filter bank do not overlap. 

3) The aliasing cancellation (AC) constraint is obtained 
by using a similar approach as in conventional pseudo- 
QMF designs. The AC constraint ensures that all the sig- 
nificant aliasing terms are canceled. 
4) The overall transfer function T ( z )  of the analysis/ 

synthesis system has a linear phase. Hence, the QMF cir- 
cuit is free from phase distortion. However, the prototype 
filter H ( z )  does not have a linear phase. 

5) The magnitude response I T(eJ”)I is “flat” in the fre- 
quency region E I w I (T - E ) ,  where the value of E 

depends on the transition bandwidth of the prototype fil- 
ter, and we always have 0 < E < ( T / ~ M ) .  In this region, 
the extent of amplitude distortion (i.e., the deviation from 
flatness) depends on the stopband attenuation of the pro- 
totype. The flat response is due to the fact that H ( z )  is a 
spectral factor of a 2Mth band filter. Consequently, there 
is no need for a separate flatness constraint. Around w = 
0 and w = T, the response IT(e’”)l has dipdbumps. So, 
except in these frequency regions, the amplitude distor- 
tion is small. In speech processing applications, this is 
acceptable; see for example, [13, chapter 61. For appli- 
cations where this is not acceptable (e.g., in image pro- 
cessing) the bumpddips can be significantly reduced by 
optimizing a single scalar variable O0,  as demonstrated 
later in design Example 3 .  

6) The analysis and synthesis filters are of equal length. 
We will assume that (N - l ) ,  the order of the prototype, 
is a multiple of M (the number of channels), i.e., ( N  - 
1) = mM, where m is a positive integer. This assumption 
is made in order to simplify the derivation of the AC con- 
straint. 

A .  Conventional Pseudo-QMF Designs 
A few salient points of these designs are mentioned 

here. Please see [ l ] ,  and [2] for details. Once the proto- 
type filter has been designed, the analysis and synthesis 
filters are obtained by cosine modulation, as given below: 
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O I ~ I M - 1  (2) 
where Oks are chosen such that the significant aliasing 
terms are canceled [ l ] .  One possible choice is = 
( - l ) k ( n / 4 ) ,  0 I k I M - 1,  which yields an overall 
transfer function T(z )  with an approximately “flat” mag- 
nitude response (i.e., close to unity gain) at all frequen- 
cies. For this choice of Oks,  the analysis and synthesis fil- 
ters do not have linear phase, though the prototype filter 
has linear phase. Another possible choice is 

0, fork  even 

- fork  odd. 
2 ’  

Ok = [a (3) 

In [l], it has been shown that this particular choice of Oks 
yields a T ( z )  with a magnitude response close to unity at 
all frequencies except around w = 0 and w = a, where it 
may have a dip or a bump. Such filter banks find use in 
applications where the regions around w = 0 and w = a 
are treated as do not care bands (see [ 11 and [ 13, chapter 
61). 

B. Outline of the Paper 
In Section 11, the spectral factorization approach to 

pseudo-QMF bank design is introduced. The modulation 
by which the analysis and synthesis filters are derived from 
the prototype filter H ( z )  is given. Along with that, the 
relations between the analysis and synthesis filters are 
stated. Based on this, we get expressions for the channel 
signals in each of the M branches of the QMF circuit (us- 
ing approximations to retain only the significant terms). 
The approximations, which are used, are explained. In 
Section 11-B, we derive the aliasing cancellation (AC) 
condition that ensures that all the significant aliasing terms 
are canceled. In Section 11-C, the expression for T ( z ) ,  the 
overall transfer function of the analysis/synthesis system, 
is obtained. It is shown that T(z )  has an approximately 
flat response, in the region E I w 5 (a - E ) ,  due to the 
fact that H ( z )  is a spectral factor of a 2Mth band filter. 
The main features of the new approach are also summa- 
rized. 

Section I11 deals with the design of the prototype filter, 
which involves spectral factorization. Three design ex- 
amples are presented. The Appendix contains a brief de- 
scription of a spectral factorization approach (based on 
the inverse LPC technique), which was used in the design 
examples. 

Notations: Boldfaced letters indicate vectors and ma- 
trices. Superscripts T and + denote transposition and trans- 
posed conjugation, respectively. The tilde accent on a 
function F ( z )  is defined such that P(z)  = F i ( z - ’ ) ,  V z ,  
where the asterisk (*) subscript denotes the conjugation 
of coefficients. The complex wk is defined as Wk 6 

for any k .  If unsubscripted, then W = W, = 
e -.Qr / M). 

11. SPECTRAL FACTORIZATION APPROACH TO QMF 
DESIGN 

A. The Analysis and Synthesis Filters 
h(n)z-“ be the prototype filter (with 

real coefficients). In this approach, since H ( z )  is obtained 
by spectral factorization, it does not have linear-phase 
symmetry. Assume that (N - l ) ,  the order of H ( z ) ,  is a 
multiple of M ,  the number of channels, i .e.,  (N - 1) = 
mM. (There are no restrictions on M or m).  Let Sk(z)  be 
defined as follows: 

Let H ( z )  = 

where aks are complex constants of unit magnitude; and 
W,, is a complex constant as defined in the introduction. 
Hk ( z )  and Fk ( z ) ,  the analysis and synthesis filter, respec- 
tively, of the pseudo-QMF bank are obtained as shown 
next: 

for k even, 

0 1 k s M - 1  ( 5 )  

As will become evident later, the above choices for the 
analysis/synthesis filters are essential in the derivation of 
the AC constraint. Letting ak = ej”, we can write (4) (in 
time domain) as 

and hence, we get 

for k even, 

fork  odd, 

sk (n)  > 

sk(N - 1 - n) ,  
hk(n)  = 

Next, we define Uk(z)  and V k ( z ) ,  which are complex- 
modulated versions of the prototype H ( z ) .  For 0 I k I 
M - 1  

S k ( z )  = akUk(z)  + a:Vk(z ) ,  0 I k I M - 1. 

(1 1 )  

The signals Yk(z) ,  which are the outputs of the synthesis 
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(b) 
Fig. I .  (a) The M-channel maximally decimated QMF circuit; and (b) the 

desired response of the prototype H ( z ) .  

filters [Fig. l(a)], are given by 
M -  I 1 

M / = 0  
Ykk )  = - F,(z) c Hk(ZW/)X(ZW/). 

O s k s M - l  
M -  I 

+ U: Vk ( z  W ' ) ]  X(zW') ,  if k even 
M -  I 

\ + ak rk (zW')]  X(zW') ,  
Note: ( N  - 1) is assumed to be a multiple of M. 

A key assumption in all pseudo-QMF designs is that 
filters belonging to nonadjacent channels do not overlap. 
For example, in a seven-channel pseudo-QMF bank, 
IH3(e'")( has overlap only with IH2(ejw)I and IH4(ejw)( .  
The passbands of all the other filters lie in the stopband 
of H3(z) .  In this section, we will repeatedly use this as- 
sumption. The following brief discussion will help to 
clarify the notation and the approximations used in this 
section. The typical magnitude response of a prototype 
filter of an M-channel pseudo-QMF bank is given in Fig. 
1 (b). 

Consider for example, the case when M = 4. In Fig. 
2(a) and (b) we have the typical magnitude responses of 
the analysis and synthesis filters of a four-channel pseudo- 
QMF bank (which satisfies the above assumption). In this 
figure, Uk(z)  and V k ( z ) ,  the modulated versions of the 
prototype filter, have also been shown. For this case 

if k odd. 

3 

Yk(Z) = ; F,(z) c Hk(Zwk)X(zW:), 
/ = 0  

O s k 1 3 .  (13)  
In particular, for k = 2 

3 

Y ~ ( z )  = ; F ~ ( Z )  [ ~ 2 u 2 ( ~ W f i )  + ~ ~ * ~ ~ ( Z W ~ ) I X ( Z W : ) .  
/ = 0  

-x -3~14  -xi2 -xi4 0 xi4 rm 3x14 x 

(b) 
Fig. 2 .  A typical four-channel pseudo-QMF bank: (a) the analysis filters 

HL ( z ) ;  and (b) the synthesis filters FA ( z ) .  

A (2) 
2,high 

J 

-X -3~14 -XI2 -xI4 0 rd4 Xn 3rd4 L 

(d) 

Fig. 3 .  The four-channel pseudo-QMF bank ( W  = W4): (a) U 2 ( z )  and its 
shifted versions; (b) Vz (z) and its shifted versions; (c) the synthesis filter 
F,(z);  and (d) the six significant terms in Y z ( z ) .  

Fig. 3(a) and (b) shows U, ( z ) ,  V2 ( z ) ,  and their respective 
frequency shifted versions. In Fig. 3(c)  we have the mag- 
nitude response of F2 ( z ) .  From these figures, it can be 
seen that U2(z)  and V2(z)  overlap with F2(z ) .  Also, the 
modulated versions U, (zWT2) and V2 (z W i )  overlap with 
the low-frequency edges of the filter F2(z)  while 
V,(zWL3) and V, (zW:) overlap with the high-frequency 

(14) edges of F2(z) .  So,  Y2(z)  has a total of six significant 
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terms, as shown in Fig. 3(d): 

Y2 (1) = F2 ( z )  [a2 U2 ( z )X( z )  + a? V2 ( z ) X ( z )  

+ a2 U, (zW,2)x(zW,2) 

+ U? v~(zw:)x(zw:) + a2 U , ( Z W ; ~ ) X ( Z W ; ~ )  

+ a; V,(zW:)X(zW:)1. (15) 

Using similar reasoning, the expressions in (12) can be 
simplified as shown next. Neglecting those terms that do 
not have significant overlap with Fk ( z ) ,  we obtain: 

It can be readily verified that for the special case when M 
= 4 and k = 2 ,  (16) reduces to (15). From (16) and (17), 
we see that the expressions for Yk(z )  have four aliasing 
terms. Of the four terms, two are due to overlap of mod- 
ulated versions of the input (called images) with the low- 
frequency edge of Fk(z ) ,  and two are due to overlap of 
images with the high-frequency edge of Fk(z) .  Let them 
be denoted as Ak,  ( z )  and A!,, high ( z ) ,  respectively [as 
demonstrated in Fig. 3(d)]. For 1 5 k I ( M  - 2), we 
can write: 

So we can express Yk(z)  as 

l S k s M - 2 .  (22) 

Yo(z)  has aliasing terms only due to overlap of images 
with the high-frequency edge of Fo(z) ,  which are denoted 
as Ao,hlgh ( z ) .  On the other hand, Y,- ( z )  has aliasing 
terms only due to overlap of images with the low-fre- 
quency edge of FM- I ( z ) ,  which are denoted as 
A,,., - I, ( z )  . Hence we get the expressions 

B. Aliasing Cancellation 
For the new design approach, we will obtain the alias- 

ing cancellation (AC) condition, which ensures that all 
the significant aliasing terms are canceled, in a manner 
similar to the conventional pseudo-QMF designs [I]. 
From the definitions in  (18) and (19), we can verify that 
the magnitude responses of Ak,  high ( z )  and Ak + I . l o w  ( z )  
overlap each other. Hence the condition 

Ak + I . I U W ( Z )  = -Ak,high(z), 0 I k I M - 2 (25)  

achieves the cancellation of the aliasing terms between 
the signals in  adjacent channels. If (25) is satisfied, the 
analysis/synthesis system is said to be "approximately" 
alias-free, since all the significant aliasing terms have been 
eliminated. We now derive the conditions under which 
(25) can be satisfied. 

Consider the range 0 I k I M - 2. Without loss of 
generality, assume that k is even. The expression for 
Ak,high(Z) is given in (19). Since (k + 1) is odd, we get 
[from (20)] 

Ak+l,I,,w(z) = z - 'N- l l  ~ k + l ( z ) [ d + ,  ~ k + l ( Z W - ' k + l ) )  

. X(zW-'k+ 11 ) + ak+IVk++((ZW'k+l)) 

* X(zW'k + I ) ) ] .  (26) 

Substituting for A!,, high ( z )  and Ak + I ,  low ( z )  in (25), we ob- 
tain the following two conditions: 

ak Fk ( z )  Uk ( z W - ' ~  + I ] )  

- p V - l )  * ak+ I Fk+ ~ ( z )  Dk+ I (zW-'k+ I ) )  (27) - - 

and 

U; Fk ( z )  V, ( z W ' ~  + I ) )  

- - - Z - ' N -  I) a k + I F k + l ( z ) ~ k + l ( z W ( k + l ) ) .  (28) 
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In other words, (25) holds if (27) and (28) are satisfied. 
Substituting for Fk ( z ) ,  the LHS of (27) becomes 

ak Fk ( Z )  uk (zW-‘k + I ) )  

= Z-(N-1)ak[afok((2)  + akvk(z)] uk(zW-‘k+I)) (29) 

ak vk ( z )  (ZW-‘k + I ) )  (30) - - z-(+I) - 

which is obtained by retaining only the significant term 
(the omitted term is a product of two terms that do not 
have significant overlap with each other). In the same 
manner, substituting for Fk + I ( z )  in the RHS of (27) and 
simplifying, we get 

I )  * 
ak + 1Fk + I ( z )  o k  + I(zW-‘k + I ) )  

= Z - ( N -  1 )  * 2  

Z - ( N -  I )  ak 2 vk(z )  Uk(ZW-(k+ I ) )  

ak + I vk + I ( z )  UL + I ( z W - ‘ ~  + I ) ) .  (31) 
Substituting (30) and (31) in (27), it becomes 

- - Z - ( N - I )  *2 ak+ I Vk+ I ( z )  Uk+ I (ZW-(k+ ‘9. (32) - 

From the definitions of uk(z) and v k ( z )  [from ( l o ) ] ,  we 
have 

Vk(z) = ok++I(ZW-(k+l)) ,  u k ( z W - ( k + l ) )  = vk+I(z ) .  

(33) 

Hence, (32) reduces to 

U: + at:l = 0, 0 I k I (M - 2). (34) 
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Choice of Ok:  Two of the several possible choices that 
satisfy (35) are 

(36) 
a 

O k  = 4’ vk 

and 

0, if k is even 

- if k is odd. 
(37) 

C.  The Overall Transfer Function 
With the Ok chosen to satisfy ( 3 3 ,  the analysNsynthe- 

sis system is “approximately” alias-free, and the input- 
output equation is given by 

1 M - l  
M -  1 

k = O  M k = O  
g ( z )  = yk(z) - x(z> Fk(z)Hk(z). (38) 

Hence, using ( 6 ) ,  the overall transfer function T ( z )  can 
be expressed as 

Substituting in (39) from (5) and ( 1  l), we get 
z - ( N -  I )  M -  I 

* [a t  ijk(z) + ak Vk(z) l .  

T(z)  = ~ [ak uk (z)  + af vk (7-11 M k = O  

Retaining only the significant terms in (40), 

Z - ( N -  1) M -  ’ 
T(z)  = 7 k = O  [ uk (z)  Ok (z )  + vk (z)  vk (z)]  

L- 
v 2 

Ti(z) 
Z - ( N -  I )  

+- [ai  U, ( z )  VO (z) + 

+ a a -  U,_ (z) V M -  I (z)  + 

vO (z)  0 0  (z> M ,  2 
Y 

PI ( z )  

1 v , -  I ( z )  O M -  I ( z )  I .  (41) 
L v J 

P2(d 

The above condition is obtained by starting with (27). It 
can be verified that if we start with (28), we obtain the 
same condition as in (34). This result is summarized as 
follows. 

sign, wherein the prototype filter is a spectral factor of a 

Substituting for Uk(1) and Vk(z)  [from ( l o ) ] ,  in the 
expression for TI ( z ) ,  we obtain 

Z - ( ~ -  I )  M -  I 

Tl(Z) = 7 k = O  [ H ( z W $ v  (1/2)))&Wf; ( 1 / 2 ) ) )  
Fact 1: In the proposed approach to pseudo-QMF de- 

2Mth band filter, with analysis and synthesis filters being 
obtained by the modulation of the prototype given in ( 5 )  

ensure that all the significant aliasing terms are canceled. 
Since ak = eJek,  the same condition can be expressed in 
terms of 8kS as 

+ ~ ( ~ ~ ; h k +  (I/2)))A(Z~-(k+(1/2))>1 
2M 

Z - ( ~ -  I )  2 M -  1 

M k = O  
-- c H(zW$,k,’ (1  P)) )  A(zW$$ ( 1 / 2 ) ) ) .  - 

and ( 6 ) ,  respectively, the condition in (34) is sufficient to 

(42) 

D. Flatness Constraint 
In conventional pseudo-QMF systems, we explicitly en- 
force a flatness constraint in the design of the prototype 
filter. In the new approach, we will show that if H ( z )  is 

a 
8 k +  = +(2i + 1) - - 8k, 0 5 k I M - 2 (35) 2 

where i is an integer. 
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chosen as a spectral factor of a 2Mth band filter, then the 
transfer function T ( z )  has an inherent flatness property in 
the region E I w I ( a  - E ) .  This is described below. 

Fact 2: Let G ( z )  be a zero-phase 2Mth band filter. 
Then, as given in [lo], G ( z )  satisfies 

2 M -  I 

C G(zw;,) = c ,  vz (43) 
k = O  

where c is a constraint. 
If the prototype filter H ( z )  is obtained as a spectral fac- 

tor of G ( z ) ,  i .e.,  satisfying the condition G ( z )  = 
H ( z ) f i ( z ) ,  then we have the following property (by Fact 
2) : 

2 M -  1 

C H ( ~ w ~ M ) A ( ~ w ; M )  = C ,  VZ. (44) 
k = O  

Using (44) in (42), we obtain 
z - ( N -  1) 

TI ( z )  = - * c. (45) M 

Substituting (45) in (41), we get 
z - ( N -  1 )  z - ( N -  1 )  

* c + -  [PI ( z )  + p ,  ( 4 1  (46) 

where P,(z) are the cross terms [defined in (41)] that can- 
not be eliminated for any choice of O k .  The magnitude 
response of PI  ( z )  is significant only in the region IwI < 
E ,  while that of P2(z )  is significant only in the region (T 
- E )  < IwI < (a + E ) ,  where E depends on the transition 
bandwidth of H ( z )  and its value lies in the range (0, 
(a /2M)) .  As a direct consequence, we see that 

(47) 

In the regions around w = 0 and w = a ,  the response 
I T(e'")l can have bumpddips, depending on the two cross 
terms. However, the bumpddips can be minimized by a 
suitable choice of the first angle B o ,  as demonstrated later 
in Design Example 3. So the main results of the new ap- 
proach are: 

The "flat" response, given in (47), is an inherent 
feature of the proposed design and is due to the fact 
that the prototype H ( z )  is a spectral factor of a 2Mth 
band filter. 
No optimization is involved in the design of the pro- 
totype filter.H(z). This is the main advantage of this 
method over conventional pseudo-QMF designs. 
The overall transfer function of the analysis/synthe- 
sis system T(z )  has linear phase and hence does not 
have phase distortion. This can be verified from (39) 
and (46). 

M T(z)  = 7 

17'(eJu)l = constant, E I w I (a - E ) .  

E. Comparison with Conventional Pseudo-QMF Banks 
The advantages of the spectral factorization approach 

are mentioned above. However, it has two disadvantages 
when compared with the conventional approach. The pro- 
totype filter in the conventional designs [ l ]  is a linear 

phase filter. So, firstly, we can force the overall transfer 
function to be "flat" at all frequencies. This may be es- 
sential in some applications like image processing. Sec- 
ondly, an efficient implementation of the filter bank based 
on the discrete cosine transform (DCT) can be derived 
[2]. In the spectral factorization approach, the prototype 
does not have linear phase, and hence, does not possess 
these properties. 

On the other hand, in the spectral factorization ap- 
proach, the flatness constraint is inherently present owing 
to the 2Mth band property of G ( z ) .  This result can be uti- 
lized in conventional pseudo-QMF designs, as follows. 
We can force the flatness constraint by including a term 
in the objective function (for optimization) that makes 
H ( z ) f i ( z )  to be as close to a 2Mth band filter as possible 
(i.e., every 2Mth impulse response sample from the mid- 
point must be zero). This is a simple time-domain con- 
straint, which is more readily evaluated than the fre- 
quency domain constraint used in 111. It has been verified 
that using the above time-domain constraint, the optimi- 
zation of H ( z )  converges faster and yields better results. 

111. DESIGN OF PROTOTYPE FILTER 
In the new design approach, the prototype filter H ( z )  is 

obtained by the spectral factorization of G ( z ) ,  a zero- 
phase, 2Mth band filter, i.e., H(z )  satisfies G ( z )  = 

H ( z ) f i ( z ) .  Hence, it does not involve any optimization. 
The order of H ( z )  is (N - l ) ,  i.e.,  H ( z )  = h(n)z -" .  
The design of H ( z )  involves the following three steps: 

1) Design of G'( z ) :  Let G ' ( z )  = C"_-:N- l )g ' (n)z -" ,  
be a zero-phase FIR low-pass filter (noncausal) that is a 
2Mth band filter, i .e.,  it satisfies 

2 M -  I 

C G'(ZW~,,)  = constant. (48) 
k = O  

This condition can be expressed in the time domain as 

The filter G ' ( z )  (satisfying the above conditions), can be 
readily designed by the standard window-based filter de- 
sign techniques [9]. In our design, we will use the Kaiser 
window 191. The coefficients of G ' ( z )  are obtained as fol- 
lows: 

g'(n)  = h i (n )w(n ) ,  - ( N  - 1) I n I (N - 1) 

(50) 

where hi@) are the impulse response coefficients of an 
ideal low-pass filter (with cutoff frequency = (7r/2M) 
rad), which are given by hi (n)  = ( l / a n )  sin ( (a /2M)n) ,  
and w (n )  are the coefficients of a Kaiser window of length 
(2N - 1). The values of w ( n )  depend on the value of the 
window parameter 0 [9]. The main considerations in the 
choice of 0 are: 
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a) If A, is the desired stopband attenuation (in deci- 
bels) of H ( z ) ,  then the stopband attenuation of G'( z )  must 
be 1 ( 2 4  + 6) dB. The additional 6 dB is to account for 
the fact that the spectrum will be raised (as explained in 
the next paragraph) in order to make the spectrum non- 
negative (for the spectral factor computation). 

b) G ' ( z )  should have the same transition bandwidth 
as H ( z ) .  

Having chosen the value of 6 ,  the coefficients of the Kai- 
ser window are easily computed. 

2 )  Design of G(z ) :  Let a2 be the stopband ripple of 
G'( z ) .  Then G ( z )  is obtained as G ( z )  = G ' ( z )  + tS2. For 
examples in this paper, we use the spectral factorization 
algorithm presented in the Appendix. For this algorithm, 
we require that G ( z )  not have any zeros on the unit circle. 
So we use G(z )  = G ' ( z )  + 62 + 6, where 6 is a positive 
real constant that "lifts" the zeros of the spectrum lying 
on the unit circle. G ( z )  can also be expressed as 

g(0) = g'(0) + 6 2  + 6 

g(n)  = g'(n),  n # 0. (51) 

Since G ' ( z )  is a 2Mth band filter, G ( z )  is also a 2Mth 
band filter. 

3) Design of H ( z )  by spectral factorization: From its 
definition in (51), G(e'") has a real, positive spectrum, 
i.e., G(e'") > 0. Hence, its spectral factor can be com- 
puted by the algorithm given in the Appendix or by one 
of the other spectral factorization methods [18], [19]. 
Thus, we obtain the desired prototype H ( z )  satisfying G(z )  

Design Example I :  Using the proposed method, a de- 
sign example for an eight-channel pseudo-QMF bank is 
presented here. Consider a prototype of length N = 97. 
(Its order is 96, which is a multiple of M . )  First, we obtain 
the 2Mth band filter G ' ( z ) ,  whose length N1 = 193. G ' ( z )  
is designed as a Kaiser-window based low-pass filter 
(LPF) in which the cutoff frequency of the ideal LPF is 
~ / 1 6  rads and the Kaiser window parameter ,6 = 15.56. 
The resultant filter G ' ( z )  has stopband attenuation = 
147.91 dB and stopband edge = 0 . 1 1 3 8 ~  radians. The 
value of the peak stopband ripple of G ' ( z )  is ij2 = 4.023E 
- 08. Using 6 = 62/2 in (51), we obtain the impulse 
response coefficients of G(z) .  Hence, the spectrum G(ej") 
does not have any zeros on the unit circle. 

The prototype filter H ( z )  is then obtained as a spectral 
factor of G ( z ) ,  by using the inverse LPC-based spectral 
factorization technique (outlined in the Appendix). The 
resultant prototype H ( z )  has stopband attenuation A, = 
70.94 dB and the stopband edge w, = 0 . 1 1 3 8 ~  rad. Its 
magnitude response is shown in Fig. 4(a). The analysis 
filter bank is obtained by the cosine modulation given in 
( 5 ) ,  (8) with & chosen as in (36). The responses of all the 
analysis filters is shown in Fig. 4(b). 

For this choice of analysis and synthesis filters T(z ) ,  
the overall transfer function of the analysis/synthesis sys- 
tem is obtained using (39). Its magnitude response 

= H ( z ) A ( z ) .  

I T(e'")l is plotted in Fig. 4(c), with an expanded view of 
the "flat" portion shown in (d). For this example, 
IT(e'")l has an approximately flat response in the fre- 
quency region E 5 w 5 ( a  - E ) ,  where E = 0.0% rad. 
In this region, the peak-to-peak error Ep.p = 2.288E - 
02 dB. From Fig. 4(c), it can be seen that IT(eJw)(  has a 
dip around w = 0 and a bump around w = a. The total 
aliasing error is defined as E(w) (l/M)[Cf"=' 
[Al  (e  I " )  1'1 1 / 2  where Al ( z )  = fi-: Hk ( z  Wd) Fk ( z ) .  This 
error is plotted in Fig. 4(e). Its peak value is E, 2 
max,E(w) = 1.5436 - 04, which confirms that all the 
significant aliasing terms are indeed canceled. 

As mentioned in the Section 11-C, the value of E (and 
hence, the extent of the region of flat response of I T(e  I") I) 
depends on the transition bandwidth of the prototype fil- 
ter. On the other hand, the errors Ep.p and E, depend on 
the A,  of the prototype (i.e., the higher the stopband at- 
tenuation, the lower the values of Ep.p and E,). So for a 
given length of the prototype filter, the tradeoff between 
the transition bandwidth and A, is reflected as a tradeoff 
(for the overall analydsynthesis system) between E and 
the errors Ep.p, E,. To illustrate this fact, we present an- 
other design example. 

Design Example 2: This is also an eight-channel 
pseudo-QMF bank designed in an identical manner to the 
previous example, using the same filter length, but the 
prototype filter in this example has a narrower transition 
bandwidth and lower stopband attenuation (when com- 
pared to the prototype of Design Example 1). G ' ( z ) ,  
whose length N ,  = 193, is designed by using a Kaiser 
widow parameter /3 = 10.5. It has stopband attenuation 
= 104.19 dB and stopband edge = 0 . 0 9 7 6 ~  rad. The 
value of 62 = 6.174E - 06 and the impulse response coef- 
ficients of G ( z )  are obtained by using 6 = 62/2 in (51). 
Using the same spectral factorization algorithm, we ob- 
tain the prototype H ( z ) ,  which has A, = 48.82 dB and w, 
= 0 . 0 9 7 6 ~  rad. Its magnitude response is shown in Fig. 

Comparing this prototype with that of the previous ex- 
ample, the tradeoff between the transition bandwidth and 
A, is evident. The responses of all the analysidsynthesis 
filters is shown in Fig. 5(b). The magnitude response 
IT(eJ")I is plotted in Fig. 5(c), and (d), and the total al- 
iasing error is given in (e). For this example, E = 0 . 0 3 4 8 ~  
rad, while EP.,, = 0.1407 dB and E, = 2.77 E - 03. So, 
in this example 1 T ( e  '@)I has an approximately flat re- 
sponse over a wider region than in the previous example, 
but the errors EP.,,, E, are noticeably bigger. In general, 
it has been observed that, in the spectral factorization ap- 
proach to pseudo-QMF design, choosing the prototype 
with the higher stopband attenuation yields a better 
pseudo-QMF design. 

Design Example 3: The main purpose of this example 
is to show how the dipdbumps in the magnitude response 
of the overall transfer function T ( z )  around w = 0 and w 
= T ,  can be minimized. This is particularly useful in im- 
age processing applications. The design parameters are 
the same as the ones in Design Example 2. The main dif- 

5 ( 4 .  
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Fig. 4. Design Example 1 :  (a) response of the prototype filter H ( z ) ;  (b) response of the eight-channel filter bank; ( c )  magnitude 

response of T ( z ) ;  (d) expanded view of ( c ) ;  and ( e )  plot of aliasing error. 

ference is in the choice off& used to obtain the analysis 
and synthesis filters. In Design Example 2, they were 
chosen as Ok = 7r/4, vk. In this example, we will opti- 
mize Oo such that the distortion in T(z )  around w = 0 and 
w = 7r is minimized, and then the other Os, as obtained 
using the relation given in ( 3 3 ,  are 

R 
O k + l  = - - ek, 1 I k I M - 2. (52) 

This is a single-parameter optimization, and can be done 
using any standard technique. For this example, the best 
value was found to be Bo = 0.2121 rad. Fig.. 6(a) shows 
the magnitude response of the analysis filter bank. Fig. 
6(b) shows the magnitude response of T(z) .  Comparing 
Fig. 6(b) with the plot of Fig. 5(c), we note the significant 
improvement around w = 0 and w = R .  As in the other 
examples, the residual aliasing error is negligible. 

This example serves to verify that a suitable choice of 
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Fig. 5. Design Example 2: (a) response of the prototype filter H ( z ) ;  (b) response of the eight-channel filter bank; (c) magnitude 

response of T ( z ) ;  (d) expanded view of (c); and (e) plot of aliasing error. 

eo can significantly improve the flatness of T ( z )  around w 
= 0 and w = R .  

IV. SUMMARY 
A new approach to pseudo-QMF design, based on 

spectral factorization, is presented. The main advantage 
of this approach over conventional pseudo-QMF designs 
is that no optimization is involved in the design of the 
prototype. The aliasing cancellation (AC) constraint en- 

sures that all the significant aliasing terms are canceled. 
The overall transfer function of the analysis/synthesis 
system has a “flat” response in the frequency region E 5 
w I ( R  - E ) ,  where E depends on the transition bandwidth 
of the prototype filter and 0 < E < R / ~ M .  Design ex- 
amples of pseudo-QMF banks, designed by the spectral 
factorization approach, are included. Furthermore by op- 
timizing a single parameter (i.e., do) ,  it is possible to re- 
duce the amplitude distortion around w = 0 and a. 
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(AR) model can be determined by solving the Yule- 
Walker equations (which are linear). On the other hand, 
computing the MA model parameters involves nonlinear 
equations, and so, an indirect approach is to use AR mod- 
eling to do the desired computation. One such method is 
given in [ 161, where the MA parameters are obtained by 
evaluating the AR model parameters corresponding to the 
inverse autocorrelations. This is also known as the "in- 
verse LPC technique" [ 171. 

The spectral factorization algorithm that we present is 
a ' 'one-pass'' algorithm (noniterative) based on the in- 
verse LPC technique. The underlying theory is simple. 
This algorithm works well, except if the zeros of S ( z )  are 
on the unit circle, and in this particular case, we have a 
modified approach. This algorithm is comparable with the 
other iterative and noniterative algorithms [ 181, [ 191, 1201 
in terms of the accuracy of the spectral factor. 

0.0 0.1 0.2 0.3 0 4 0 5 
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A .  The Spectral Factorization Algorithm 
This method of computing the minimum phase spectral 

factor involves the following steps: 

1) Compute the samples of the power spectrum S(e'") 
by evaluating the DFT (using FFT) of the MA autocor- 
relation sequence r (n) .  

N 

~ ( k )  ~ ( e ~ ~ ) l ~ = ( ~ ~ / ~ ) ~  = C r(n>W$, 
n =  - N  

O S k l M - 1  (A. 1) 
(b) 

Fig. 6 .  Design Example 3: (a) response of the eight-channel filter bank; 
and (b) magnitude response of  T ( z ) .  

where W, = M ,  the number of FFT points, is 
typically chosen to be much larger than (2N + l ) ,  the 
length of the autocorrelation sequence [as justified in step 

2) Obtain the FFT samples of the inverse power spec- 
APPENDIX 31. 

SPECTRAL FACTORIZATION USING THE INVERSE LPC 
TECHNIQUE trum. 

In this Appendix, we present an algorithm for spectral 
factorization. This efficient, noniterative algorithm is 
based on the inverse linear predictive coding (LPC) tech- 
nique and can be used to compute the minimum phase 
spectral factor of any moving average (MA) autocorrela- 
tion sequence. 

The MA process is one of the basic models of time- 
series analysis and stochastic modeling of linear systems. 
In a variety of situations, we are interested in finding a 
spectral factor of an MA power spectrum. The spectral 
factorization problem can be stated as follows: given a 
real MA autocorrelation sequence r ( k ) ,  satisfying r ( k )  = 
0, Ikl > N a n d  r ( - k )  = r(k) .  S ( z ) ,  the 2-transform of 
r ( k ) ,  is given by S(z )  = E r =  - N t - ( k ) ~ - k ,  and S(e j")  is the 
power spectrum of r ( k ) .  Spectral factorization involves 
the computation of a polynomial C ( z )  = Et=oc(n ) z - f l ,  
such that it satisfies S ( z )  = C ( z )  C ( z - ' ) .  In order to obtain 
a unique solution for C(z ) ,  we impose the constraint that 
C ( z )  should be minimum phase (i.e.,  none of the zeros 
are outside the unit circle in the Z-plane). 

In parametric modeling [ 141, [ 151, given the autocor- 
relation sequence, the parameters of the autoregressive 

0 5 k 5 M - 1 (A.2) 

where the inverse power spectrum SI,, (e  j " )  is defined as 
the reciprocal of the original power spectrum S ( e J w ) ,  as- 
suming that S ( z )  does not have any zeros on the unit 
circle. 

3) Obtain rlnv ( n ) ,  the inverse autocorrelation sequence 
(i.e., the autocorrelation sequence associated with the in- 
verse power spectrum), as given by rlnv(n)  = IFFT 
[RI , ,  (k)] . Typically, rlnv (n )  is a doubly infinite sequence. 
In order to avoid time-domain aliasing (which is an arti- 
fact of FFT), we choose M >> (2N + 1). 

4) Having obtained rlnv ( n ) ,  we use the Levinson-Dur- 
bin recursion to compute C ( z ) ,  the desired spectral factor. 
C ( z )  satisfies the equation 

('4.3) 

Therefore, S ( z )  = C ( z )  C ( z - ' ) ,  and C ( z )  is guaranteed to 
be minimum phase. 
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Note: The above‘method works well even if the zeros 
of the power spectrum are close to the unit circle. But if 
there are zeros on the unit circle, the spectrum must be 
“raised” by adding a positive constant 6, i.e., S ’ ( e J “ )  = 
S(e’”) + 6. However, the value of 6 can be chosen to be 
small enough such that the computed spectral factor [of 
S’(z)] is very close to the spectral factor of S ( z ) .  

B. Computational Complexity 
Using the inverse LPC method, the total computation 

involved are two M-point FFT’s, the reciprocation of the 
FFT samples S ( k )  and a Levinson-Durbin recursion of 
order N .  As the value of M is increased, the accuracy of 
the spectral factor also increases. The spectral factoriza- 
tion algorithm works well for most cases, even when the 
order of the spectral factor is high and the zeros of the 
spectrum are close to the unit circle. 
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