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A SPECTRAL FACTORIZATION APPROACH TO THE
DISTRIBUTED STABLE REGULAR PROBLEM;

THE ALGEBRAIC RICCATI EQUATION*

J. WILLIAM HELTON

Abstract. This paper is a study of the discrete-time infinite-dimensional "stable regulator
problem" having a cost function which is not necessarily positive. We take a spectral factorization
approach to the problem. Also there are results on the algebraic Riccatic equation which are

equivalent to results about fixed points for a broad class of symplectic maps.

Introduction. This paper is a study of the infinite-dimensional "stable reg-
ulator problems" having a cost functional which is not necessarily positive. The
control problem will have a solution or approximate solution in feedback form
provided that one "completes" a certain square in a way familiar in control theory.
In this paper, we use a spectral factorization method to obtain necessary and
sufficient conditions for this to be possible ( 2). Section 3 describes the stability of
the feedback system resulting from the optimal control problem. Section 4 treats
the infinite-dimensional algebraic Riccati equation associated with the control
problem. This can also be described as a study of the fixed-point problem for
certain infinite-dimensional "symplectic" maps (see Appendix plus 4).

This paper follows in the footsteps of a paper by Willems [25] in which he
gives necessary and sufficient conditions for solving a broad class of finite-
dimensional continuous time algebraic Riccati equations. In addition to giving a
discrete-time and an infinite-dimensional version of these results, our article
gives proofs which in finite dimensions are rather simple. As this paper was being
written, an elegant spectral factorization approach to Willems results was given by
Molinari [15][16] and then applied to the stable regulator in [17]. His proof
involves some basically finite-dimensional methods such as determinants and
dimension counting while the key step in the proof here is subspace inclusion. The
article [14] is a good reference for infinite-dimensional discrete-time systems
having "positive cost operators". Our article gives a new approach to the
time-invariant regulator results in that paper and extends them in several direc-
tions.

The results in this article apply to most least squares problems associated with
the discretization of systems governed by a heavily damped variable coefficient
wave equation (including the heat equation). A thorough list of applications of the
finite-dimensional theory appears in [25]. Since we do not require our "cost
operators" to be positive, the systems studied are capable Of storing energy, that
is, "cost". The basic principal which emerges in [25] and which is true to a large
extent in infinite dimensions is that one can use the standard feedback approach to
a control problem provided the zero state stores no energy. Roughly speaking,
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conventional approaches suffice even when the system can store energy, but not
when it can spontaneously produce energy.

1. Definitions and setting. We shall consider a system

(1.1) Xi+l Axi h- Bui,

where the xj are vectors in a Hilbert space Y( and the uj are vectors in a Hilbert
space R. The cost of running the system from initial state x0 for N time units is

N

(1.2) JN(xo, u)= Z [(x,, Oxi)+(ui, Rui)].
i=0

Here O: Y and R :R- R are bounded self-adjoint operators. The basic
infinite time interval problem is: given a state x0, determine exact or approximate
a control sequence u which minimizes J(xo, ). The admissible class of control
sequences u =(ui)il in this paper will be those in /2(0, c, ), the set of all
sequences from R whose norms are square summable. Also one usually requires
that xn 0 in some sense as n -. We shall always assume that A is stable, i.e.,
I[A[I <M for all n, and that B is bounded.

Frequently in what follows it will be convenient to look at our system as one
having an output. The natural choice for the output operator is 1011/2 Thus the
problem is equivalent to minimizing the cost

E (Yi, [sgn O]yi) + (ui, Rui)

of running the system

(1.4) Xi+l Axi + Bui, Yi --]O]l/2Xi"
Here sgn O is the operator P+- P_ on , where P+(P_) is the projection onto the
positive (negative) spectral subspace of O. The frequency response function for
the system [A, B, [OI 1/2] is

(1.5) W(z) zlQI1/2(I zA)-IB.

Since A is stable, the spectrum of A is contained inside the disk, and so W(z) is
well-defined and analytic inside the disk. It will be assumed that all systems we
study have a uniformly bounded frequency response function. Let /2(0,,
denote all sequences (ui)i=o from 0//with square summable norm.

If O => 0, then it can be shown (see equations (2.2) and (2.3)) that the cost
J(0, u) of running the system initially at state 0 with 12 input u is finite if and only
if the frequency response function W is uniformly bounded on the disk. In dealing
with the signed O problem, we shall always assume that the cost J(0, u) with
replacing O is finite. This is also equivalent to the statement W(z) is uniformly
bounded on the unit disk, and we shall say that any (1.1) and (1.2) with this
property have absolutely finite cost. This assumption will obviously be satisfied
when A is very stable, for example, if (1.1) arises from discretizing a variable
coefficient heat equation or heavily damped wave equation. This assumption can

certainly be relaxed but the author suspects that the basic structure and proofs will
change little while the technical complication will greatly increase. Thus it seems
unwise to do so without first making a systematic li,t of compelling examples.
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Henceforth, assume that (1.1) and (1.2) have absolutely finite cost. It is well
known (see, [18, Chap. V]) that radial limits of such functions exist almost
everywhere onto the unit circle, so we may consider W as being a function W(e i)
defined for almost all 0.

The mathematical notation will be as follows. The unit circle will be denoted
by T, the set of all complex numbers by C. If is a separable complex Hilbert
space, then L2() denotes the Hilbert space of norm square integrable Lebesgue-
measurable -valued functions. We let H2() [resp., /.r2()] denote the closed
subspace of functions in L2() with zero nonpositive (positive) Fourier coeffi-
cients. The operatorP [resp., P] is the orthogonal projection of L2 onto this
subspace. If and 2 are separable complex Hilbert spaces, then(, 2)
denotes the Banach space of bounded linear transformations from Y( to Yg2. We
abbreviate o(, ) as 5(). MoreoverL(, 2) denotes the Banach space of
essentially bounded weakly-measurable(, 2)-valued functions on T, while
/-(, 2) (resp.,/7/(1, 2)) denotes the subspace of functions with negative
(resp., nonnegative) Fourier coefficients equal to zero. When the context prevents
ambiguities, we will only write/-F and H2.

Functions in the Hardy spaces HZ(ff) [resp.,/q2() and H(Y(, Yg2)] can be
identified with boundary values of functions analytic inside [resp., outside] the
unit disk; see [18, Chap. V]. If q is a function in L(Y(, Y(2), then is the
operator from L2(fftl) to L2(a2) defined by (l’[f)(ei)=qo(ei)f(e i) for f in
L2(gg). A function o inH(, Y(2) is called outer provided thatM restricted to
H2(gg) has dense range in H2(gg2). A function q in /2/(, Y(2) is called
conjugate outer provided that it has the analogous properties on/2(y() and
/2(y(2). Such a function is called invertible outer if its pointwise inverse is
uniformly bounded. The invertible outer functions are precisely those in
H(gg, 2) whose inverse is in H(2, ).

2. Olfimalily. In an infinite-dimensional problem, it is reasonable to expect
the frequent occurrence of unbounded operators. This is so here. In fact, more
unwieldy objects are necessary. For example, the cost of optimally driving a state

Xo to zero may not be finite on all states Xo of the system, while it will frequently be
finite for all states which actually occur in the running of the system. Thus it is only
reasonable to expect the optimal cost functional to be a densely defined (quadra-
tic) functional on the state space, and indeed that is what will be obtained. A good
reference on such objects is [20, Chap. VIII]. The controllability map of a system
[A, B] is the densely defined map c :/2(0 oo, 0).__> o given by

C(Uo, ul, ") Z A kBuk.
k---0

We set range c and c (all sequences with only finite number of nonzero
terms). These are domains which will be commonly used.

A trajectory of the system initially at 0 is a sequence of states {Xn}n_-0 which
results from feeding some input sequences { ui} into the system. Unless otherwise
specified, .trajectory will refer to something arising from a 12(0, oe, oR) input. The
finite cost assumption implies that J(0, u) is well-defined and finite for all u in
/2(R). In this section, we shall deal only with JN for which J(0, u)>0, all u in
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12(/). In this case, we may think of the quadratic functional J(0, u) as giving a
second degenerate norm on 2(R). Let cr be the completion of the orthogonal
complement of .;V the nullspace ofJ in the J-norm. This describes a space of
input strings having finite cost. The elements of o- are not necessarily sequences;
they are equivalence classes of sequences. However, under many circumstances
they may be identified directly as sequences. This will be the case if R is
finite-dimensional or, more generally, if E(e i) has closed range for almost all 0.

We shall approach the problem in the usual way (see [1], [2]), namely, by
completing the square to put the cost functional JN in a reduced form from which
the optimal control law is apparent. This section is devoted to determining when
this procedure is possible.

DEFINITION. The cost functional JN for system (1.1) and (1.2) is in reduced
form when there exists an auxiliary Hilbert space 1 with inner product ,. ), a
continuous operator G" R - 91, an (possibly unbounded) ,operator F" Y(1,
and a symmetric bilinear form K(, whose domain contains such that for all N,

(2.1)
N

Ju(xo, u):= Y’, (Gu +Fx,, Gui +Fx,)+.K(xo, Xo)-K(xu+, xu+)
=0

for u (ui), an input to system (1.1), and xi the corresponding states of the system.
If K(xu, xN)- 0 along trajectories, then J(0, u) is always ->_0, and the finite

cost assumption implies that the map defined on/2(R) sequences by t{u}
{Gui-t-fxi} satisfies cllull2>-_Joo(o, u)-ET_011( u),ll ,; thus /x"/2()/2(y(1). A
reduced form is called outer if Ix has range dense in/2(y(). One could view the
map Ix as taking a dense subspace of o- isometrically to a dense subspace of/2(),

onto
and so we may extend/x to a unitary map 2 cr --/2(1).

Proceed formally for a moment. Once the reduced form is obtained, then to
minimize Joo over inputs u with trajectories xu on which K(xu, xu) - 0, one
would solve Gu -Fx to obtain a control sequence {u}. If K(XN, XN)-- 0 on the
resulting trajectory, then clearly {ui} is the optimal control and the optimal cost is
K(xo, xo). To make this argument rigorous, let xo be the initial state to be
controlled and let v be an input sequence of finite length n whose associated state
sequence has x,/ x0. The approach just described consists of extending v to an
element w (v0," ", v,, u0, Ul ") abbreviated (v, u) in cr with the property that
each entry of the sequence 2u beyond the nth is zero. Such a u can be obtained by
solving/2u =-(y,+, Yn+2, ") where (Y0, Yl," ")=/2,v. This is because/2(v, u)
/x(v, 0)+/2(0, u) (yo, y," .)-(0, .., 0, y,+, .). The element u of r is an
optimal control (also the unique one in or) provided that K(x, xu) 0 on the
trajectory arising from u. It turns out that about the best we can expect is
K(xN, xu)-O along trajectories coming from 12(0//) input strings. Under this
circumstance, given e >0, any u(e) in 12(/)with Jo(O, u-u(e))<e is a control
sequence which runs the system at within e of K(xo, Xo), the optimal cost. Thus we
have a reasonable sense in which to think of u as the optimal control. The
approximate control is an approximate solution to Gu -Fx in the rather strong
sense that Y=0 ][Gum(e)+ Fxi(8)]]2< f.. Conversely, any 12(-//)control u’ within e of
being optimal satisfies e > Jo(O, u’)- K(xo, Xo) >-Y=0 ]]Gul + Fx]l2. Thus the con-
trol problem is solved provided that Ju can be put in outer reduced form with
K(x, x)O along any trajectory coming from an/2(//) input. The goal of this
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section is to show when this can be done. After that is finished, we give some
conditions under which the actual controlling sequence u(e)can be expressed
concretely in terms of u.

The results of this section are given in terms of the power spectrum operator"

(2.2) E(e i) R + W(ei)*[sgn O]W(e)

which is defined for almost all e i on T. In particular, we shall be concerned with
spectral factorizations of it. Recall that an () function P(e i) has a spectral
factorization if it can be written in the form

p(eiO) M(eiO),M(e io),

whereM is in/_(a//, Y(1) for some auxiliary Hilbert space 1. Given a nonnega-
tive operator or matrix-valued function, a spectral factorization may or may not
exist. This is a classical question, and the answer is that a factorization usually
exists. In recent engineering literature, the results of Gohberg-Krein [10] are
usually cited; however, necessary and sufficient conditions are available (see [18,
Chap. V, 4], [23]). The more applicable sufficient conditions for nonnegative P
are

(I) P(e o)>= 6(eO)i with 6 a log integrable function [18. Chapt. V, 7].
(II) For P matrix-valued log det P(e 0) is integrable [11, Thm. 18].

(III) P has a (pseudo) meromorphic continuation to C [23, Thm. 3.1]. This
includes the case where P is a rational function.

Thus there are quite a few ways to check if a function has a spectral factorization
and so the hypotheses of the theorems appearing in this section are hopefully easy
to apply.

Next we shall observe that placing JN in reduced form is related to spectral
factorization of E. Let u(e) denote the Fourier transform of {Un} in /2; it is a
function in H(?/). Fourier transforming (1.1) and the definition (1.2) of the cost
functionJ gives

(2.3) Joo(0, u)= (u(e), E(eO)u(eO)) dO.

Thus E is closely related to J(0, u). Suppose that JN is in reduced form with
K(xu, xN) 0 on each trajectory. Then (2.1) can be Fourier transformed to give

J(O, u)= (u(ei), M(ei)*M(ei)u(ei)) dO,

where M is the uniformly bounded function

(2.4) M(z) G + zF(I-zA)-IB.

Comparing this with expression (2.3) for J(0, u), we find that the Toeplitz
operator generated by E-M*M is identically zero; thus (see [19]) we get that
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That is, E has a spectral factorization. The main theorem of this section says that
not only this but its converse is true.

THEOREM 2.1. Suppose that the reachable states for the system [A, B] are
dense in its state space and that the cost functional JN is absolutely finite. Then the
power density function E(e i) has a spectral factorization if and only if the cost JN
can be put in outer reduced form with an optimal cost functional K satisfying
K(xN, xN) 0 on trajectories {xN} of the system arising from 12(R) inputs.

Proof. One side of the theorem has already been proved. The converse
requires the rest of this section. By hypothesis, E has a spectral factorization.
Spectral factorizations are not unique and not all of these factorizations have the
required form (2.4). However, since E has a factorization, it has 18, Chap. V, 4]
an outer factorization M H(, Y() which is unique up to a constant multiple
and which we will now prove has the form (2.4). The proof relies on realizability
theory, in particular, on that developed in [8] in the one-dimensional case, in
greater generality in [12], and surveyed in [13].

We begin with a quick sketch of realizability theory. The system [A, B] is
called approximately (exactly) controllable if the range of is dense in Y( (is all of
Y). It is continuously controllable if q is a continuous map. Exact controllability is
equivalent to the standard pseudoinverse q- of c being a continuous operator.
This follows immediately from the open mapping theorem. Similar considerations
with adjoint systems give the obvious notions of approximate (exact) observability.
A slight modification of Theorem 3C.1 of [12] is the

REALIZABILITY THEOREM. Any ’(R, Y()-valued function F(z) analytic
and bounded on the unit disk is the frequency response function of some exactly
observable and approximately controllable system [A, B, C, D].

The operators A, B, C, D in the theorem are given explicitly" A is the
restriction of Pu(e)d/l-,o to the subspace X cl PHZ(yg,)a[/[,FI2(O), B li -> X is
given by Buo Pn(,)d/tF(%uoe -i, C is the projection ofX onto the subspace of
constant functions in H2() and D is F(0). The space X is the state space for the
system. This particular realization of F is called the restricted shift realization by
Fuhrmann. A fact critical to our control problem can be read off from this
construction.

LEMMA 2.2. If two functions T(z) and Tz(z) with(, ,_/92) and o(,_03, ’2)
values, respectively, satisfy the hypotheses of the Realizability Theorem, if in the
above representation, T2(z) D + zC(I- zA)-B, and if the state spaceX forT is
contained in the state space X2 for T2, then T(z) can be written in the form
T(z) D + zC(I- zA)-Ba.

It is now easy to show that M has the realization (2.4). Since M is in
/4(, Y), the function/Q defined by/Q(ei) M(e-i)* is in/q(YI, 9/). We
now compare//to the function IY defined by (1.5) using Lemma 2.3. SinceM is
outer,

X/ cl (PH2(O)]/2(l))--cl (PH2(O)///2())

which, in turn, by the definition of E, is contained in

x. d (P,tcta()).
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If r has restricted shift realization [0, A, A], then//has a realization [q, a, A, p].
The function W has two realizations [q*,A*, A*] and [A,B, IQI1/2]. A

straightforward infinite-dimensional version of the state space isomorphism
theorem [12, Thm. 3b.1] says that if [A, B, [OI 1/2] is approximately observable,
there exists a 1-1 densely defined operator/3 Y( -X such that

*fl =flA, A*=flB, [QI 1/2=

This implies that M has the realization [A,B, a*fl, p*], that is, M has the
representation (2.4) with F a*/3 and G p*.

To finish the theorem, we require some fine structure from Theorem 3b. 1 of
[12]. It is shown there under the assumption of continuous controllability and
approximate observability that/3 is @-1, where c (resp.,) is the controllability
operator of [A, B, IQI 1/2] (resp., [q*, A*, A*]) and
These results extend immediately to the case at hand and validate this definition of
/3 provided that it is interpreted as follows. If y , there is u such that Cgu y
define fly @u. To check that this is not ambiguous, note that by the lemma in
[12] null c null* null Hankelw null* and since* is 1.-1 this equals
null ; thus if u 0, then u =0. The construction in the theorem can be
completed by setting F a*fl. Note that when one does not have approximate
controllability, /3 will not be 1-1; in finite dimensions, for example, null/3
(range )-. Also observe thatU a* which is a continuous operator.

Now we must show that having the appropriate factorization for E implies
that JN can be put in reduced form. To see this we first observe

LEMMA 2.3. The costfunctional JN can be written in reduced form (2.1) if and
only if there exist appropriately defined F, G and K( which satisfy

(2.5a) (Guo, Guo) (Uo, Ruo)ou + K(Buo, Buo),

(2.5b) (Fx, Guo)= K(Ax, Buo),

(2.5c) (Fx, Fy) (x, Oy)e + K(Ax, Ay) K(x, y)

for x, y in .
Proof. One simply substitutes (2.5) into the right side of (2.1) and observes,

after using (1.1), that (1.2) the definition of J has been obtained.
As one might expect, the operators F, G, A, B and the space Y(1, appearing in

the representation (2.4) for M, will turn out to be the operators required in the
lemma. Here we let , denote the inner product on Y(1. The optimal cost form
K(. ,. is yet to be constructed. Formally, it is, for x, y ,

K(x, y)= Z (AJx, [Q-F*F]AiY),
=0

and it is not too difficult to check that this formally satisfies (2.5). For example, if
this were a finite-dimensional problem, a very simple manipulation would finish
the proof. However, our task is a bit tiresome.

Now we give the precise definition of K(.,. ). Set

(2.6) L(e) E(e) -[M(e) G]*[M(e) G]-R

G,M(e o) + M(eO),G G*G- R.
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Formally one should think of this as

L(e i) B*(e-i A *)-I[Q F*F](ei A )-IB.
Define

(2.7a)

and

K(A Buo, Bvo)=--- (Uo, L(e Vo)ou e dO

I.___ -ilO(2.7b) K(Buo, A tBvo) (Uo, L(e iO)’l)O)Ol e dO

for ->_ 0. Next we use (2.5c) to define K(,) inductively; it is

K(A +IBuo, AJ+Bvo) (FA Buo, FAJBvo)
(2.7c) (A lBuo, OAlB)o)ge K(A lBUo, AYBvo)

for u0, v0 in 0//. Note that the term involvingF is well-defined on, and so we have
defined a function. After some tedious work, which we leave as an exercise, one
can show that K is a consistently defined bilinear functional on .

By construction, K(,) satisfies (2.5c). The identity (2.5a) follows by setting
l= 0 and performing the integration on the right side of (2.7a) while observing
that 1/27r [._.M(e i) dO G. The identity (2.5b) follows from (2.7) and the fact
that

(FA lBto, Guo) (Vo, L(ei)uo)ou e (/+1)0 dO.

Only one property of K remains unverified; that is, K(x,,, x,,) --> O. This follows
because Joo(0, u)= (1/(27r)) I_= (u, M*Mu)= .,,,= o IlGui + Fx ll2, and so (2.1)
implies that K(x,,, Xn)--> O. The proof of Theorem 2.1 is finished.

The theorem just completed shows that an approximate control sequence
always exists. During the remainder of the section, we describe ways for identify-
ing approximate control sequences explicitly. By the discussion preceding
Theorem 2.1, we are confronted with the problem: Given the outer factorization
M of E and y(e i) in H2(X) (actually, we may take y to be a polynomial in e i0), for
each e >0, find ue(e i) in L 2 such that J[lY-Mull2x< . The Fourier transform
u(e) of u is an /2-sequence which yields an e-approximate optimizing con-
trol. We know that such u must exist, but the problem is to give a method for
finding them explicitly.

We begin by treating the case where E is scalar-valued. The function
u(z) a__ M(z)-ly(z) is analytic on the disk, but can have fearsome boundary values
u(ei). Standard ways to approximate u(e i) with L2-functions are

(i) [Aru](e i) u(rei), Abel approximation,
’r-,N ijO(ii) [PNu](ei.)= L--o ue ,Fourier approximation,

e ’) N
(iii) [Fru]( (1/(N+ 1)) Y’.:--0 P:, Cesaso approximation,
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and the question before us is: Does 02= IlY -MArull2,etc., go to zero? Since y Mu
and E- M’M, an alternative phrasing of this question is" Does Aru - u;
PNu u, or FNu -. u in L2(E dO)? Fortunately, these are standard questions in
harmonic analysis, and the answers are known.

Necessary and sufficient conditions on E for Puf - f i.n L2(E dO) are
(a) (Helson and Szego [26]) E has the form E e g+h where g and h are

bounded functions with sup ]hi< r/2 and/ equals the harmonic conju-
gate of h;

or equivalently
(b) (Hunt, Muckenhaupt and Wheeden [27]) there is a constant C, inde-

pendent of I such that for every interval I,

ii
E(e ’) dO-[ E(eOi dO <-_ C.

Here II[ is the length of L
This settles approximation theory questions surrounding Prq. The first thing to
note is that these conditions are extremely restrictive. They allow E to be singular
or to vanish like E(e i) 0 only if 1 < v < 1 thus rational E with zeros or poles
on the unit circle are eliminated. Traditionally, Cesaro or Abel summation is
much more likely to converge than simple Fourier approximation, and our rather
negative conclusion suggests that we turn to them as being more practical.

The first thingwe mention is a theorem of Rosenblum [22, Thm. 2] which says
that Cesaro summation converges on LZ(E dO) if and only if Abel summation
converges on L2(E dO). Thus we restrict attention to Abel summation. A neces-
sary and sufficient condition [22, Thm. 1] for Arf to always converge in LZ(E dO) is

2,w

Io Pr(ei(-q’)) M(e i)
M(re ’)

2

dO<K

for all 0<r< 1 and . Here P(e i) is the Poisson kernel. Thus a sufficient
condition for the Abel approximation to always work is for

sup
r,0

M(e i)
M(re iO)

that is, M belongs to a class of functions discussed in Chap. 3, 1.3 of [ 18]. This
class does include the rational functions.

In the multi-input case where E is an operator, similar structure holds for
Abel convergence, and we now derive the sufficiency condition, just used,
directly.

{I0
2"n"

}1/2 {f0
2"rr

}1/2]IY -MA,uI[2 <= ]lM(e)u(e)-M(re)u(re)ll2

+ II[M(re)-M(e)]u(re)ll /2.
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The first majorizing term is .20=l]y(e’)-y(re’)]]2 which goes to zero since
H2(X). The second term is

o

2=

]][l M(e i)M(re i0)- 1]y (re

which goes to zero for y in H2(X) if

ess sup I]1-
0

goes to zero or, for y in/4, if 2ollI-M(e)M(rei)-’[12 O. Since M(rei)
M(e i) pointwise, the dominated convergence and uniform boundedness theorem
imply that the first condition is equivalent to M(e)M(rei)- being uniformly
bounded.

Now we turn to a formal question. Recall that the coefficients of the power
series expansion for u(z) M(z)-y(z) give formally our control sequence. The
following proposition gives a reasonable condition on the power spectrum E
which guarantees that M(z)- exists for Izl < 1 and consequently that this formal
sequence exists.

PROPOSITION 2.4. If M in /_(01/, y() is outer, and if M(e)*M(e)>=
N(ei)*N(ei), where N is also outer but with Range N(z)= Y( for some [z[ < 1,
then Range M(z)= Y(. In particular, if M(ei)*M(e) >= 6(ei)I+ T(e i) where
6 => 0, log 6(e i) is integrable and T(e) is a trace class operator with log det [1+
T(e)/6(ei)] integrable, then Range M(z)= Y( for any [z[ < 1.

Proof. The first statement follows immediately from the fact that
M(z)*M(z)>=N(z)*N(z) (see [18, Chap. V, Prop. 4.1]). The log integrabiiity
conditions imply that 3 and I+ T(ei)/6(e) have outer spectral factorizations

0 6 H(C) and q9 analytic with a lenient growth condition (see [23, Thm. 3.8]).
Since q is outer, det q, is outer or identically zero. If it is identically zero, then we
can write q as an infinite matrix with respect to a basis, one subset of which spans
cl (Range q). The determinant of the minor derived from this basis is outer and
so its value at the origin is not zero. Since the pseudoinverse (z)- can be
constructed by Cramer’s rule; this says that it is in fact bounded, and consequently
Range q(z) is closed. The function N qp has closed range and satisfies the
majorization hypothesis of the first part of this theorem. Consequently
Range M(z) .

We now give examples to show that Theorem 2.1 is in several senses the best
possible. Theorem 2.1 says that Ju has reduced form if and only ifE has a spectral
factorization. Since E has the special form R + W* sgn OW, it is conceivable that
a weak assumption such as E >- 0 actually forces E to have a spectral factorization.
The following example shows that this is not the case. Take 0-// to be one-
dimensional R 1, sgn Q =-1 and set W*W n _<- 1. By the realization
theorem, any function W in H(C) with W(0) 0 comes from a system and so can
arise in this context. By Theorem 18 [11], _,log n(e) dO>-oo if and only if n
has a factorization n W*W with W in H(C). However, if E 1 n _-> 0 has a
spectral factorization, then [._,log(1-n(ei))dO>-oo, and this is simply not
guaranteed by the fact that log n is integrable.
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The second example is of a system for which no exact optimal control law
exists. Let = a//=/2(0 00, C), R 0 and O 1. We shall take W(ei), and
consequently E(ei), to be diagonal in the natural basis for 12(0, oO, C) and denote
the diagonal entries of E(e i) by ej(ei). The outer factorM of E is diagonal with
entries mj(e) each of which is an outer factor of % i.e., rimi ei. The functionM
has the representation G + zF(I-zA)-IB, and the system has an exact optimal
control law only if Range G contains F0}. To see this, suppose that for each x
in there is an input v0, vl,’" which gives the optimal performance of the
system. Let Uo, u 1," , un be a control which drives the system from 0 to Xo and
set u =(Uo, ul,. -., u,, Vo, vl,. .). By optimality, J(0, u) is finite. Thus
K(xi, x) - 0 and J(0, u)= Y-,"--o ]lGu, + fxil]2 -]-2j=o ]lal.)j + Fxj+n+l]l2. However,
for each e > 0 we can find a control sequence so that the resulting cost is within e of
the ]n term. Thus the 2oo term is 0, and so we can actually solve Gvo FXn+l
Fx*o, that is, Fx’o Range G.

Range G containsF if and only if for {x}, any trajectory of the vector
I_Fx(e) e-" dO for each 1, 2, 3, belongs to Range G. This is equivalent
to the statement I_,M(e)u(e) e -il dO belongs to Range M(0) for each u
H2(R) and > 0, and this in turn is equivalent to the statement that

Range M, Range Mo,

where M(z)=k=o M,z The operator M, is multiplication by the sequence
{(1/n’)(d"/dz)njl=o}o on 1:2(0, co, C). Now RangeM Range Mo if and only
if M MoY for Y a bounded operator (see [5]). Thus (d/dz)mi(O)/mi(O)=-6i
must be a bounded sequence. The functions mj are outer and consequently can be
written

Thus

and

1 If e"it if Z
log ej(e it) dt.mi(z)=exp e it-z

mi(0) exp log ei

d 1 I --it it)
dz mi(0) e log ei(e dt mj(O).

To obtain the example, choose a sequence l of functions with l](e it) <=0 with
_

l >-oo and I_ e-"l(e") dt --> -oe. Set ej --exp l, let w be a spectral factori-
zation of e which vanishes at z 0, and use the realizability theorem to determine
a system which gives rise to W. By construction 6 --> oe and so Range G F.

Remark 2.1. The case where J can be reduced with K(xN, xN)-A 0 is
analyzed in 4.

Remark 2.2. If O and R are both nonnegative, then (1.2) and (2.1) together
imply that K(.,. is a nonnegative bilinear form.
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Remark 2.3. The feedback law we have obtained can frequently be expressed
in terms of the optimal cost functional K. If Range G l and G-1 denotes the
standard pseudoinverse of G, then formally

ui -G-1Fxi G* G)-1 G*fxi,
(2.8)

ui (R + B*KB)-IB*KAxi.
This expression has a reasonable interpretation even when K is a bilinear
functional. As a further aside, we note that the feedback law can be expressed in
terms of L. Namely, if xi i.=o AJBjvj, then

U "4r"G L(e i) dO 1 L(ei)vi e -i(y+l) dO.
j-=O

3. Stability of feedback systems. In this section, we give some stability
theorems which are suitable for analyzing the behavior of the control systems
found in 1. We shall not belabor this, since our results are near to existing results
(see [4], [3]). Consider the system

(3.1) xi+ Axi q- Bui, Yi Cxi,

with feedback law ui=.Qyi The frequency response function is R(z)--
zC(I-zA)-IB. Define a function (z) 1-OR(z) and note that ifM and R(z)
are scalars, then the classical Nyquist stability criterion (which we shall presently
extend) is expressed in terms of the set {(e i) all 0}. Set C I and note that the
formal feedback law 12=-G-IF, obtained in 2 from the spectral factor M,
satisfies

(3.2) GC(z)= M(z).

If Range G , then is outer. Let G- denote the standard pseudoinverse for
G.

The crux of this business is an easily verified identity

(3.3) (I- z[A -BC])-IB,.(z) (I-- zA )-lu.

If u is an admissible input in 12[0, 0(3, 0/] with Fourier transform u in H2(/), then
the Fourier transform of the trajectory associated with u is x(z)=
z(I-zA)-lBu(z). Thus relates trajectories of the original system to those of
the feedback system.

THEOREM 3.1. Suppose that the power density functionEfor the system [A, B]
with absolutely finite JN satisfies E(e i) >- 6I> O. Then the outer factorizationM of
E gives rise to an optimalfeedback law F via 2 with the property that the feedback
system [A, A +B F] has the same trajectories as the original system. Furthermore,
the ranges of the controllability operators for the two systems are equal.

Thus if all trajectories of the original system tend to zero, then all trajectories
of the controlled system tend to zero. This will also guarantee a weak form of
asymptotic stability; namely, if x is a state of the feedback system which is
reachable in a finite amount of time, then (A + BF)"x
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The first part of this theorem is an immediate consequence of the fact that G
is invertible when E _-> 8I> 0 and of the following

PROPOSITION 3.2. The function (e) (resp., (e)-) is inH(, l) ifand
only if the trajectories of [A +BfIC, B] are contained in (resp., contain) the
trajectories of [A, B].

Proof. One side is obvious. To do the other side, suppose that the trajectories
of the feedback system contain those of the original system. If u is a/a-input
sequence, let x(u) be the corresponding trajectory of the original system. By
assumption, there is an input Lu to the feedback system with trajectory x (u), and
clearly this determines Lu uniquely. So L is a map of/(0, m, ) into itself. It is
trivial to check that the graph of L is closed. Consequently, L is a bounded
operator. However, (3.3) implies that L is just the operator "multiplication by
5(ei) ’’, and so 5 is in/-(). The same type of argument applies to 5-1.

Next we look at (3.3) in terms of controllability operators. Let and
denote the controllability operators for the original and the feedback system. Let
pq2 and Pn denote the orthogonal projection of L 2 onto H2 and/2. If L L,
we define 3-L H2 -> H2 by

3-j P,eMj.

It is called the Toeplitz operator with generating function L. The best reference
for scalar Toeplitz operators is [6]; for Hilbert Toeplitz operators see [19]. Let TL
denote the operator induced on 12 by Fourier transforming on H2. Let
3+(ei) 3(e-). If 5 /-, then 5+. The second part of Theorem 3.1
follows from

PROPOSITION 3.3. If(Z) is in H(R, ), then

%T+=
/f ..-I(z) is in/-(, 0//), then

%T(y+)-,.

The operator Ts+ is invertible if both+ and (+)- are in H(,
Proof. We do the second relationship first. Observe that

{u}=o E ABui =lim
1 -ioA o)

j=0 rl
(I-re )-lBu(e dO.

Equation (3.2) implies

%{u.}=lim
1 I -iOA)-i -io)-i ciO

r’l
(I-re BS(re u( dO.

Since 5(e-i)u(e i) is in L2(/, 0/), it can be written as the sum of its projection V
onto /2 and its projection, Ts+u on H2. Since (I-YA)-lBv(z) is in /, its
integral over T is zero. This gives the desired result. The first part of the theorem
follows similarly. The last statement in the theorem is a standard fact about
Toeplitz operators.

Now that Theorem 3.1 is proved, we make a few remarks. The identity

(3.4) do(z)C(I- z[A B’C])-1 C(I- zA)-l,
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where 50(z) I-R (z)O is the analogue to (3.3) which allows one to connect all
statements about trajectories and controllability in Propositions 3.1 and 3.2 to
statements about observability. Another remark is that one can lift the hypothesis
E >-6I> 0 and get a palatable theorem. Namely, if E has a spectral factorization
and the feedback law F comes from an outer factor M, then there is a set of inputs u
to the feedback system dense in 12(0, oo, 0) whose trajectories are precisely the
trajectories of the original system. This is obtained by strengthening Proposition
3.1 in the obvious way.

Also note that continuous exact controllability and observability imply
stability (see [8, Appendix] or [12, 4, Remark]). The structure is

PROPOSITION 3.4. If a system [F, q] is continuously exactly observable, then p
is asymptotically stable. Ifa system [q, D] is continuously exactly controllable, then
q* is asymptotically stable.

Remark. Suppose that [A, B] is a finite-dimensional controllable system and
that the eigenvalues ofA lie inside Iz[ < 1. Then Theorem 3.1 can be strengthened
because of these additional assumptions. One obtains that the state operator
A +BF for the feedback system has no eigenvalues on [z]= 1 if and only if
E(ei)>=6I>O. The eigenvalues of A +BF always lie in ]z[-< 1.

The last statement follows trivially from (3.2) since M(z)- exists for Iz] < 1.
The absence of eigenvalues on Iz[ 1 follows from Theorem 3.1. Conversely, if E
has a zero on ]z 1, thenM-1 has a pole there. Since (1- zA)-lBvo # 0 for any Vo
or ]zl--< 1, equation (3.3) implies that (I- z[A + BF])-I/3 has a pole on the circle,
and so A +BF has an eigenvalue there.

4. The algebraic Riccati equation. With the control problem we have studied
(when R is invertible), one associates the formal linear fractional map

(4.1) (P) A*P(I+CP)-IA +O,

where C BR-1B * and expects that the optimal cost "operator" K will be a fixed
point ,(K)= K of it. In this section, we give a fairly thorough study of when a
fixed point exists. Although everything done is intimately linked with the original
control problem, we try to present the forthcoming results as a study of the
fixed-point problem for its own sake.

Throughout this section, we shall work with a slightly more general class of
than those given by (4.1). Any self-adjoint operator C can be written in the form
C B*R-1B, where R is an invertible self-adjoint operator. Provided that the
appropriate inverses exist, a simple manipulation converts (4.1) to

(4.2) (P) A*PA A*PB[R +B*PB]-’B*PA + O.

This formula is more symmetric than (4.1) and consequently easier to use. Also R
need not be invertible in (4.2), so it is more general than (4.1). Henceforth, we
work with of (4.2). The self-adjoint operator R +B*PB plays an important role
in the study of ; we denote it by Ap and call it the indicator of P. When, for
example, Y( is finite-dimensional, the natural domain of definition for is
precisely the seto of those matrices P satisfying Range Ap Range B*PA since
these are the matrices for which the second term of (4.2) is well-defined.
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Not too surprisingly, spectral factorizations play as big a role in this section as
they have previously. In fact, we shall require a type of signed factorization. A
signature operatorJ is a self-adjoint operator with the property that j2 L We say
that the self-adjoint (-, Y(, Y()-valued function E has a (outer) signed spectral
factorization if and only if there is a signature operator 5 on a Hilbert space
1 such that for each u in 12(/), the limit as r’ 1 of
,2 (u(eO), M,(reiO)M(eO)u(eO)) dO exists and is t (u(ei), E(e)u(ei)) dO;
here M is a (bounded outer) (Y(, Y()-valued function analytic in the unit disk.
The question of which functions have such factorizations was studied by
Symeninco (cf. [10]), and he obtained that in many situations E has a signed
spectral factorization if and only if E AB for some outer functions A in and
B in H. This is consistent with the fact privately observed by A. Devinetz and
R. G. Douglas that a uniformly invertible E has a signed spectral factorization if
and only if the Toeplitz operator generated by E is invertible. Neither of these
conditions are practical to apply, and it is fortunate for control theory purposes
that only positive factorizations are interesting. Although the main theorems of
this section concern the infinite-dimensional situation, the following corollary (of
Theorem 4.7) is new in finite dimensions and describes the behavior there.

THEOREM 4.1. Suppose that A, B, R, Q are finite-dimensional matrices with
R, Q self-adjoint and all eigenvalues of A less than 1. Then the map has a

self-adjointfixed pointK ino with nonnegative indicator ifand only ifthefunction
E(e i) R + B*(I-eA),-1Q(I-eA )-lB’

is nonnegative. The map has a fixed point ino (if) and only ifE has an (outer)
signed spectral factorization.

By (2.5a) the optimal cost functionals from 2 have positive indicator. These
are the important ones and the author suspects without an improved theory of
signed factorizations that the first part of Theorem 4.1 is the only part of real
interest. It is analogous to the condition of Willems [25] for the continuous-time
Riccati equation although here no controllability assumption is required.

4.1. Decomposition of a map into linear and quadratic parts. The fixed-point
problem for is, to a superficial glance, a quadratic problem, but it can also
contain affine linear fixed-point problems of the form K NKD + Q, one example
being when B 0. These problems have been studied [21 ] and can be treated by
quite a different approach than a purely quadratic problem. Fortunately, the
fixed-point problem decomposes neatly into what we may think of as purely
quadratic and purely linear parts. This we now demonstrate.

Let and R be Hilbert spaces and suppose that A, Q acting on Y(, R acting
on , and B:Y Y( are bounded operators with R and Q self-adjoint. Let
l(0,, ) denote the -valued sequences of finite length and define lZF
by C{xi}=Yq=o ABxi. Set 5 Range c; denote its closure by Ytl and its
orthogonal complement by 2. If P is any self-adjoint operator on , then in the

[P P2] with Pl and P3 self-adjoint.,2 basis it can be written as a matrix p P3
We would like to see how acts on such 2 2 matrices. If F and F2 are the
orthogonal projections of (3 onto and 2, respectively, thenAF FAF1 and
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A*Fa=FaA*Fa’WewriteA=[Ao1Aa]A3 andO=[Ol Oa]andbegincm-o03
puting FiS(P)F."
(4.3) Flffs(P)FI=APIA-APIB(R+B*P1B)-IB*P1AI+Q1;
that is,1 (PI) F18(P)F, where8 is the linear fractional map defined by (4.3),

F(P)FE=[A(-A;PB(R + B*PB)-B*]PEAa
(4.4)

+ O2 +[A,:_APB(R + B,PIB)_IB,]PIA2
that is, F1c(P)F2 is an aftine linear function of P2,

r(P)r. APaAa+[A-APB(R +B*P1B)-B *]
[P1 + P2]A F2

(4.5) + A* *3P).[B(R +B*PB)-B*PA2-A2]
A* *B[R +B* *P2A3,3P2 PIB]-IB

which is an affine linear function of P3. Thus. we see that the only truly quadratic
part of the fixed-point problem o(P) P is the equation o1 (P1) P1. Also this is
the only part of the problem which is interesting from the control theory point of
view. We shall call the map of (4.2) purely quadratic if and only if is dense in. Such maps will take our main attention, and treatment of the linear maps is
postponed to the end of this section.

4.2. Purely quadratic maps. Throughout this section, we assume that o is
purely quadratic. The map is clearly defined on all bounded operators with
invertible indicator. It also will extend continuously to many unbounded
operators, and so it is not clear offhand just what should be the natural domain of
definition. However, the control problem strongly suggests that the natural space
on which should act is the space of all possible cost functionals. We formalize
this: Let denote the space of all symmetric bilinear forms P on with the
property that

N(4.6) e(Cg{u.}-0, v)= P(v, g{u.Ij=o)
is for fixedN continuous in u and v belonging to/2(07/). If P e , then bilinear form
Ae(x, y) (x, Ry) + P(Bx, By) for x, y in og is actually continuous on 0//, and so by
the Riesz representation theorem, there is a bounded operator Ae such that
Ae(x, y) (x, Aey). Naturally, Ae will be called the indicator of the bilinearform P.
Given P in , the bilinear form P(Bx, y) for y in is continuous in x, and,
consequently, there is an operator Ee defined on so that (x, Eey)= P(Bx, y).
We want to have defined on as big a subset of as is reasonably possible. With
this in mind define

o {P there exists a decomposition Ae NSN with S a signature
operator and N a nonnegative self-adjoint operator satisfying

Range N = Range EeA }.

The map is defined on 0 by

(4.7) *(P)(x, y)= P(Ax, Ay)-(N-E,Ax, SN-EeAy)+(x, Oy)
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for x, y in . Here N-1 denotes the standard pseudoinverse of N. This is clearly
consistent with (4.2) when P is a bounded operator, and it is straightforward to
check that the definition of o% depends only on Ae and, consequently, is
independent of which factorization NSN is used.

All results on fixed points will be given in terms of the function W(z)--
zlO[1/2(I-zA)-lB, which we henceforth assume to be in /-(, ), and, in
particular, they will involve

(4.8) E(e i) R + W(ei)* sgn OW(ei).
An operator A will be called asymptotically stable ifA nx - 0 for each x. IfB is an
operator with one-dimensional range, then E is a real-valued function on the
circle and we shall prove

THEOREM 4.2. Consider a purely quadratic map as in (4.2) with B a rank
one operator and A asymptotically stable.

(i) If Y( is finite-dimensional, then has a fixed-point ino if and only ifE
has one sign. The indicator for the fixed point has the same sign as E.

(ii) If Y( is not finite-dimensional, then has many fixed points in Po. Some
fixed points will have positive and some will have negative indicators.

This theorem sets down the basic behavior of the purely quadratic fixed-point
problem. The problem of higher-dimensional B is simply a mixture of these cases.
In Theorem 4.6, we sort out this mixture to a large extent, and Theorem 4.2 will be
an easy consequence of it.

It turns out that fixed points of in 0 fall into two categories, those for
which P(xr, yN) - 0 along trajectories xN, yr of the system [A,B], called
standard points, and those which are not standard. Clearly, P(A"x, Any) - 0 for
x, y if P is standard, and one can show that up to terrible pathologies, fixed
points for of this type are standard. If P has positive indicator, this is always
equivalent to being standard. Standard fixed points are the only ones of obvious
control theoretic interest, and they correspond to signed spectral factorizations as
the following theorem states.

THEOREM 4.3. The map o% has a standard fixed point (if and) only ifE has a

(outer) signed spectral factorization.
In finite dimensions for asymptotically stable A, all points are standard, and

so this theorem describes that situation completely. Before stating our most
complete theorem on fixed points, we give the proof of this theorem since it is
instructive.

Proof. We begin with the observation that the bilinear functional (-,.)
defined on the space Y(1 which was used throughout 2 (see (2.1) and (2.5), in
particular) need not be nonnegative. In fact, had we assumed that Y( has inner
product [.,. and that (x, y)= [, x, y] for some signature operator 5; then the
proofs in 2 would have gone through with the modification that E M*M.
Then Lemma 2.3 and Theorem 2.1 combine to give

PROPOSITION 4.4. There exist G, F and K satisfying (2.5) with signed (. ,.
and having K(A Nx, ANy) 0 ifE has an outer signed factorization. Conversely, if
such G, F, K exist, then E has a signed factorization. In the above statement, K
satisfies AI >-0 if and only if "signed" is removed from the statements about
factorizations.
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One thing which requires clarification is that the existence of G, F, K implies
a signed factorization for E. The function M(z)= G + zF(I-zA)-IB is analytic
inside the disk. If io)U) 12(11), then set y(re) M(rei)u(reg). We wish to show that
[.2o (9y(rei), y(re dO converges to I= (u(ei), E(e)u(ei)) dO. If the power
series for y (z) is 2n

n=o yrZ then the first integral isn=o r (9y,, y,). Finiteness of
the second integral forces the sequence (x, Ox)+(uRui) to be summable, and
since K(XN, XN) --> 0, this implies that (Gui + Fxi, Gui + Fx) is summable. How-
ever, y Gu +Fx and so (5y, yi) is summable; its sum is
[.2o (u(e), E(ei)u(ei)) dO. An Able summation argument (cf. [24, 1.22]) gives
2,--o ra"(Y-, Y-) -> Y’f--0 (Y-, Y-) as r]’ 1.

The next thing to prove is that families of three objects G, F, K satisfying
(2.5) correspond precisely to fixed points of .

PROPOSITION 4.5. The bilinear functional K ino is a fixed point of if and
only if there exist G and F and possibly signed (. ,. so that (2.5) holds.

Proof. Suppose that (2.5) holds. From (2.5a) you see G*G A/. By (2.5b)
the operator E:A is G*5F. If G UN denotes the polar decomposition of G,
then since Range G is dense, U* is an isometry with Range U* c cl Range N
and u*U-(I- U* U)=’ is a signature operator. Now An Nh’N, but E:A
NU*5F, and so An is in 0 and we have

(K)(x, y)= (N-1NU*Fx, 5eN-INU*Fy)+ K(Ax, Ay) + (x, Oy)

=(Fx, Fy)+K(Ax, Ay) +(x, Oy).

By (2.5c) this is just K(x, y).
IfK ino is a fixed point of 0%, then A: NN. Set G N and takeN-1 to be

the standard pseudoinverse of N. The bilinear functional K(BN-I,x, Ay) for
fixed y in and a dense space of x’s equals (N-15x, EI,:Ay)= (x, N-EI,:Ay)
and so is continuous in x. Thus there is an operator F on for which this equals
(x, Fy). One can reverse the brief computations above and get that G, F, 0 and K
satisfy (2.5).

The general situation is described by
THEOREM 4.6. SupposeP in ’o is a fixed point ofo%for which limN-O P(XN, XN)

exists for each trajectory of the system [A, B]. (Note that for any fixed point with
positive indicator this limit either exists or is infinite.) Then there is a bilinearform
A(;) defined on so that limN_,ooP(ASx,ASx2)=A(x,x2), and there is a
self-adjoint function A 6 L(R, oR) so that

(4.9) A (C{u./}, {vi})= -- (u(ei), A(ei)v(ei))ou dO.

The function A has the properties

(4.10a) if both u(e i) and (I-eiA)-lBu(e i) are vector-valued
polynomials in e, then A (ei)u(e i) 0;

(4.10b) E + has a signed spectralfactorization
(4.10c) if u /(0, eo) andu O, then A (e-i)u(e i) H2(R).
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Conversely, if A is an L(, o//) function for which

(4.11a) property (4.10a) holds,

(4.1 lb) E + A has an outer signedfactorization,

(4.11c) i[ u(ei) H2(ll) satisfies W(e-i)u(ei) H2(y(), then
(e-)u(e) H2(),

then has a fixed point P ino which satisfies

P(A NXo, A Nyo) -- h (Xo, Yo),

where A is given by (4.9) and Xo, Yo o.
Pro@ Suppose A 6 L(?/, 0//) is a function which satisfies (4.11). We shall give

a construction for associating a fixed point of o% with ,. The set of u H2 such that
W(e-i)u(e i) H2 is invariant under multiplication by e i, and so by the Lax-
Beurling theorem, there is a qH(a//,//) for which W(e-i)q(e)6
H(I, ) and q(ei)*W(e-i)*e(Y(, 111) is outer. Since (4.11c) is equi-
valent to q(e*A(e-i)f-(,l) we have ClPg2(oU)(dl/la(e-O)ffI2())c
cl Pn2(0u)(elQ2()). This along with (4.11b) is the crucial fact in the proof o(
Theorem 2.1 which yields that there are operators G and F so that the signed
outer factorM of E + A has the representation M(z) G + zF(I-zA)-IB. Now
we can follow the construction in Theorem 2.1 to obtain a bilinear functional K so
that G, F, K reduces JN. Consequently, K is a fixed point of .

To see this, we began by associating a bilinear functional A(.,-) on
with the function ,(e i) by equation (4.9). To see that this is well-defined we
only need A(Xo, X0)=0 whenever x0 or yo=0. That is, if Xl=

_
(I-eA)-Bu(e)e-" dO =0 for u(e) some polynomial of order _-<l in e i,

then I_= (V(eg), A (e)u(e)) dO 0. This is equivalent to (4.1 la). It is immediate
from the definition that A(Ax, Ay)= A(x, y) for x, . Formally, if we set
Kl(x,y)=,,=o(x,A*"(Q-F*F)A"y)+A(x,y), then the fact that K1, etc.,
satisfies (2.5c) is a straightforward consequence ofE + A M*M. It is, however,
unclear that such a K1 can be rigorously defined. To see that K actually does exist
define L by (2.6) and use L + , in (2.7) to define a function. With a bit of work one
can check that this function actually has the properties (2.5) required of K.

Now we do the converse direction. Suppose K is a fixed point of .
Associated with K we have operators G, F, as in (2.5) and the function M(z).
From (2.2) we see that if Ap > 0,

lim K(xrq, XN)
1 (u(e), E(eg)u(ei)) dO

N-.
P

N--1

+ lim 2 IlGui + Fxill2,N--, j=0
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where {XN} is the [A, B] trajectory corresponding to input u, and consequently
limN_ K(xN, xN) exists or is + c, In general,

1 f (cio iO u(e dOlim K(x,xN)=- (u ),[-E(e )+M(ei)*SeM(ei)] io))
/’qoo

is finite for all trajectories if and only if the function )t =M*M-E is in
L(?/, ), thus establishing (4.10b). We also get limu_,oo K(xN, yu) exists. From
(2.1) one can also see that

Y (A nXo, OA"yo) E (FA nXo, FAnyo) + K(xo, Yo)- lim K(A NXo, A Ny0),
=0 =0 N-oo

and so the last limit exists and serves to define ,k (.,.) on . Now , (.,.) will
clearly be given by (4.9), and the fact that A (0, Xo)= A (Yo, 0)= 0 for Xo in is
equivalent to (4.10a).

Finally we verify that , satisfies (4.10c) and in the process show that (4.10c)
and (4.11c) are closely related. Suppose that u e l(0, oo) and CCu 0. Then

and

1 I _iOA)_ eiO)u=GI (1-re Bu( dO=O

1 I_" -ioA iO)ACu 1!11 ei[(I re )- I]Bu(e dO O.

Since j_ eiBu(e i) dO 0, one has limr ’[’11--W.rr ei(I- re-iA)-’Bu(ei) dO O,
and by a similar manipulation of A"u 0, one obtains

lim ei"(I re-A)-Bu(e) dO 0
rtl

for n =0, 1, 2,.... Thus if N is any operator defined on for which N(I-
e-A)-B6, then N(I-e-A)-Bu(e) is in H2 and has the 0th Fourier
coefficient equal to zero. In particular, by taking N [O] 1/2 or N F we get that
W(e-)u(e) or M(e-)u(e) is in H(). Since A (e-)
M(e-i)*M(e-) W(e-i)* sgn OW(e-i)-R, the function A(e-)u(e) is in
H2(); thus (4.10c) holds. Also one sees that statement (4.10c) implies statement
(4.11c) for u 6 10, ). The converse will be true under strong observability
assumptions on the system [O[a/2, A] provided that acts continuously on
12(0, ).

Proofof Theorem 4.2. If is finite-dimensional, then E is rational and so has
a signed spectral factorization if and only if E has one sign. Thus Theorem 4.3
applies. The statement about the indicator is clear from the proof of Theorem 4.3.
If has a fixed point P in 0, then since is finite-dimensional, P is a continuous
functional and the stability of A implies that K(A "Xo, A"yo) 0. Thus Theorem
4.4 implies thut is 0; that is, E has a signed spectral factorization and
consequently has one sign.
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If g) is not finite-dimensional, then (1-zA)-IB cannot be rational. Thus
(1-zA)-lBp(z) can never be a polynomial in z when p(z) is a polynomial in z.
Thus property (4.11a) holds for any real-valued AL(C). Set A(ei)
sup0 [E(ei) + 1 A. The function E + A _-> 6 > 0 certainly satisfies (4.1 lb). Since A
is a constant, (4.11c) is vacuously satisfied by A. The resulting fixed point has a
positive indicator. The functionE A gives a fixed point with negative indicator.

4.3. The linear part. Finally we shall consider maps which are not purely
quadratic. In a formal sense, the linear and quadratic parts of the map have a
very nice relationship as we shall see. Technically speaking, the problems might be
incompatible because the space } is crucial to the quadratic problem, and the
operator F1AF2 A2, which links the linear and quadratic parts of the equation,
might have range very much disjoint from . Note that if P1 satisfies (4.3) and
Range A2 does not strongly intersect the domain of definition of P1, then the last
term in (4.4) is not well-defined. Throughout most of this we shall assume that
Range A2 C and call the linear and quadratic parts of compatible whenever
this happens. This assumption is certainly satisfied when Y( is finite-dimensional.
Although weaker assumptions will do, we shall assume that B has finite-
dimensional range in order to avoid annoying details. If IIA"ll_-< Ka" for some
a < 1, then A is called exponentially stable.

Suppose that A is exponentially stable, that E has an outer signed factoriza-
tionM*M and that P1 is the fixed point of o%1 which corresponds to it. Clearly, P1
satisfies (4.3). Next we seek a solution to (4.4). A formal solution is

(4.12) P2 E N*’PIAaA-1+ , N*’O:A ’3
k=2 k=l

where N* A " AP1B(R +B*PIB)-B *. Note by (2.7) thatN miraculously is
A f + (G-1F*)B and so it is the adjoint of the operator which propagates the states
of the feedback system. We have, in 3, a stability analysis for this operator. IfM
were invertible outer, then by Theorem 3.1 Nkx-, 0 for x. Thus
IPI(Nkx, Ay)I<-_CllA][<-C’a ", and so (4.12) makes good sense. If M is not
invertible outer, then given u(z) in H2 there is a function g(z) such that
M(z)g(z) u(z) for ]zt< 1.

The identity (3.3) which underlies Theoren 3.1 implies that any trajectory
{x,} of the feedback system satisfies IIxll-< cr for any r> 1. Thus IINx ll_-<
C(1/(a + e)) ", and this is clearly enough to guarantee that (4.12) defines a bilinear
functional on x 2.

The final step is to obtain a solution for (4.5). The final solution is

P3 E AkTA,
k=l

where

7"= F:N*PA +t’N*PA-APNF-AP[R +*P]-*P:A.
The first three operators are, in fact, bounded primarily because range NF2 c.
Also B*P2A3 is bounded because of its construction and the continuity of P.
Thus P3 is a well-defined bounded operator and we have
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THEOREM 4.7. Suppose the mapof (4.2) with finite rankB and exponentially
stable A has compatible linear and quadratic parts. Then E has an (outer) signed
spectral factorization (if and) only if has a fixed point.

The fixed point in this theorem is a bilinear functional on the obvious
subspace of Y(, namely,(fg ;) (’). It is continuous on +/- and has the
continuity properties of 0 on .

Appendix. Symplectic maps. The linear fractional maps (4.1) we studied are
close to the class of symplectic maps of C. L. Siegel [28] except we work with
complex rather than real matrices. Complex symplectic maps have the form

(A.1) (K) (Yd +K)( + K)-’,

where the coefficient matrix d/t | M* orc ]satisfies [_ 10]d//=[_ 10]
0 ;]=[ 0 10], These intertwining conditions are equi-equivalently

I_- 1 1
valent to 0//@, @,, c@, c,, 0//@*_@, I which, in turn, are equival-
ent to @*@ @*@, ,07/= c, @*9/-@* L If @ is invertible, a straightfor-
ward computation shows thatA is invertible; then in (4.7) equals G if and only if

(A.2) A =, Q ?-1, C -1c,
or equivalently, if

(A.3) R QA-1C+A *,

This computation in fact shows
PROPOSITION A.1. The map of (4.2) is symplectic if and only if A is

invertible. Any symplectic map with if) invertible can be written in theform (4.2) with
A invertible.

The function E which determines the fixed-point behavior of G is

E(ei) =sgn @-1 +1)-1c]/2() cio)-1,),() io)-11-c([1/2;
the indicator for a point K is AK=sgn-lcg+l@-lc]l/ZKl@-l[ /2 and
Theorem 4.1 translates to

THEOREM A.2. If is the symplectic map (A.1) and the eigenvalues of@ lie
outside of [z] 1, then has a self-adjoint fixed point K in o with nonnegative
indicator if and only irE >=0. It has a self-adjoint fixed point (if and) only ire has
an (outer) signed factorization.

Even though the class of maps given by (4.2) is not the same as the symplectic
maps, these maps do take the set of matrices K with Im K> 0 into those with
Im K->_ 0. This is true because, formally,

(K)- (K)* A*(1 + CK)-I*(K K*)(1 + CK)-IA,
and a glance at (4.2) reveals that is well-defined when sgn C+ ]cI /2KICI is
invertible; Im K> 0 implies such invertibility.
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