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Abstract 

The equivalent circuit representation of the dipole modes of the SLAC damped detuned structure (DDS) 
which is being fabricated at SLAC [ 11 has been analyzed by three different methods. The first two [ 11 are 
based upon a modal analysis: in the first, damped modes are found by a first order perturbation in the cell 
to damping manifold coupling strength; while in the second, preferred when the coupling strength is large 
(as is the case for the SLAC structure) they are determined exactly (a time consuming procedure). The third 
method, which we report here, expresses the wake as a modal sum for modes whose frequencies place 
them outside the propagation bands of the manifolds (a minor contribution) plus a Fourier like integral of a 
spectral function over the propagation band of the manifolds (the major contribution). We will present 
comparisons to previous calculations, assessment of appropriate domains of applicability, and applications 
to the SLAC structure with matched and mismatched manifold terminations. 
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Abstract 

The sum over damped modes, which provides the main 
contribution to the transverse wake of the DDS, is replaced by 
a Fourier-like integral of a spectral function over the 

propagation band of the manifolds. We present comparisons 
to previous calculations, assessment of appropriate domains of 

applicability, and applications to the SLAC structure with 
matched and mismatched manifold terminations. 

1. Introduction 

The recently completed prototype accelerating cavity for the 
NLCTA incorporates both damping and detuning (the DDS 
structure) of the higher order modes (HOM), with the 
objective of suppressing the transverse wakefield experienced 
by trailing bunches [ 1,2]. The current analysis of the structure 
is based upon an equivalent circuit model whose current form 
is described in El]. We use the Bane-Gluckstern two band 
model [3], extended to include the damping manifold. The 
latter is represented by a rectangular TE,, waveguide mode, 
periodically shunted with a series LC circuit, with the shunt 
capacitively coupled to the TE component of the two band 
model. Each section of the structure is described by nine 
circuit parameters defined and determined as described in [ l ]  
along with the beam coupling parameters (cell kick factors 
[3]). In the following sections we the explain the the spectral 
function method, and compare it to our previous methods. 
The spectral function method is then applied to compute the 
dependence of the wake function on the manifold 
terminations. 

2. Review of the Fundamentals of the Wake 
Function Calculation 

The "E and TM cell excitation amplitudes are related to the 
drive beam via the circuit equations. In matrix form and in 
the frequency domain this relation takes the form: 

where the quantities in the above expression are defined in [ 13. 
The elements in the above 2 by 2 matrix are themselves N by 

N matrices, where N is the number of cells. fI and H are 
tridiagonal matrices which describe the coupled chains of TM 
and TE resonant circuits, while H, is the tridiagonal matrix 
with vanishing diagonal elements which describes the 

TE-TM coupling. R, which describes the manifold, is also 
tridiagonal, while G, which describes the coupling of the TE 
chain to the manifold, is diagonal. The diagonal elements of 
H, G, and R are frequency dependent. Corresponding to the 
above, each element of the column vectors are themselves N 

element vectors. To further condense the notation we may 
also write Eq. (1) in 2N by 2N matrix form 

The drive beam, represented by the N component vector B, 
couples only to the TM mode. We take it to be a point charge 
moving at velocity c and normalize it per unit charge per unit 
displacement. With this understanding it takes the form 

(3) 

where L is the periodicity length, K: the Bane-Gluckstern 

kick factor evaluated at the synchronous mode and f: the 

synchronous mode frequency, both evaluated for a uniform 
structure based upon the n'th cell [3]. The transverse wake- 
function (ie wake potential per unit length) for a particle 
trailing a distance s behind a velocity c drive bunch (per unit 
drive bunch charge per unit drive bunch displacement) may be 
written 

w(s) = j[Z(f -j&)exp[(2njs/c)(f - je)]df (4) 

where E is a positive infinitesimal quantity and the wake 

impedance Z is given by 

n,m 

with the 2N by 2N matrix fi given by 

From causality Z(f) can be analytically extended to the LHP, 
and singularities on the real axis are avoided in Eq. (4) by 
integration over f just below the real axis as indicated in Eq. 
(4). Because W is real, we also have Z(f) = Z*(-P), for f i n  the 
LHP. Because Z is real for sufficiently low frequencies on the 
real axis, Z*(Pr) provides an analytic extension of Z into the 
UHP. Since the Z so defined is discontinuous across the real 
axis where Z is complex, cuts are introduced there to render Z 
single valued on what we call the "physical sheet" of its 



Riemann surface. It also satisfies Z(f) = Z(-f), that is, it is an 
even function of f in the complex plane. We note that Z is 
actually a four valued function arising from the sign 

ambiguity in sing, and sing,, quantities which appear in R,, 

and R, respectively [ 11. (The cos+,,, defined by Eq. (4) of [ 13 

are single valued analytic functions, but the corresponding 
sines are defined only by the trigonometric identity, sin2+cos2 
= 1 .) Damped modes appear as complex poles on sheets of the 

Riemann surface adjacent to the physical sheet 

3. The Spectral Function Method for Computing 

the Wake Function 

Because the equivalent circuit wake function contains a small 
non-physical precursor on the [-NL,O] interval [3], it proves 
to be convenient to define a “causal“ wake function by 

W, equals W for s > NL and vanishes for negative s. In the 
interval [O,NL] W(-s) would be zero in the absence of a 
precursor. Hence Eq. (7) represents a smooth way of 
suppressing ~e precursor, and Wc is more likely to portray 

the actual structure than the strict equivalent circuit model. 
From Eq. (4) and the symmetry properties of Z noted in the 
previous section we have 

(8) 

- 
W(-s) = jZ ( f  + j&)exp[(2njs/c)(f + je)]df 

= 4 1  Im{Z(f + je)} sin[(2xjs / c)f]df 

- 
which leads to 

W(s)- W(-s) = 2jl -  Im{Z(f - ja)) exp[(2njs /c)f]df (9) 

(10) 

To include the contribution of poles on the real axis (with real 
residue) in Eqs. (9) and (IO) we interpret 

- - 
0 

and define 4Im{Z(f+j&)] as the spectral function S ( f )  of the 

wake function. Thus we have 

W, (s) = 0(s)J S(f) sin[(2xs / c)f] df (12) 
0 

We note further that the usually displayed wake envelope 

function W (s) associated with Wc is given by 

w 

W, (s) = 0(s) S(f ) exp[ (2ns / c)f] df (13) lo 
For the undamped case, which in the context of the NLCTA 

design is obtained by setting the coupling matrix G to zero, Z 
is real on the real axis and contains a set of poles on the real 

axis at the modal frequencies. The spectral function is then 
simply a sum of delta functions: 

S ( f ) = 2 ~ K p 6 ( f - f , , ) = 2 K , d n / d f  
P 

(14) 

where the f, are the modal frequencies, n(f) is the number of 
modes with frequency less than f, and the K, are called modal 
kick factors. The spectral function and the modal sum 

methods are thus formally identical. In the presence of 
damping, Z is complex on those portions of the real axis 
which lie in the propagation bands of the manifolds, and poles 
which would lie on that portion of the real axis in the absence 
of coupling to the manifold split into complex conjugate pairs 
on the non-physical sheets accessed by analytic continuation 
through the cuts. When the coupling is weak so that their 
position can be found by perturbation theory, their distance 
from the real axis is small compared to their separation, and 
the spectral function has sharp narrow peaks in place of the 
delta functions of the undamped case. As the coupling 
strength increases these poles move further from the real axis, 
the peaks broaden, and while the peaks generally remain quite 
discernable, the behaviour is relatively smooth. The spectral 
function can be computed as a function of frequency by direct 

evaluation of Eq. (5).  A combination of an N by N matrix 
inversion and the solution of a 2N system of linear equations 
is involved. In the weak coupling case it is relatively simple 
to determine the modal frequencies, eigenvectors and Q values 
and hence to compute the damped modal sum. In contrast a 
large number of frequency points is required to adequately 
delineate the nmow peaked spectral function. The situation is 
reversed in the strong coupling case. The process of 
determining the modes has proved to be quite difficult and 
computer time consuming [l], while on the other hand the 
number of frequency points required to adequately describe 
the more smoothly varying spectral function becomes more 
reasonable. The wake functions computed from the modal 
expansion and from the spectral function have been compared 
for the single example of the former which has been carried 
out and found to be in excellent agreement [4]. 

4. Applications of the Spectral Function Method 

Freq. (GHz) 

Fig 1: Spectral Function and integral for Matched HOM 
Coupler and 2K6d6f (Shown Dashed) 



The spectral function method has so far been employed 
principally to explore the effect of manifold mismatch on the 

DDS wake function. We begin with the spectral function for 
the matched manifold case, shown in Fig. 1. We have shown 
the smoothed spectral function, 2&Sn/Sf, for the undamped 

case (ie the G set equal to zero case) on the same curve. (The 
unsmoothed spectral function, 2&dn/df, is a sum of delta 
functions as noted before.) One sees that the effect of the 
damping is to replace the delta functions by broadened peaks 
which produce an oscillation about the smoothed umdamped 
spectral function. The wake envelope function for the 
matched DDS structure and, for comparison, the 
corresponding function for the NLCTA DT structure are 
shown in [5].  There the recoherance peak of the DT is seen to 
be strongly suppressed by the damping. 
0 loo, I I 

Freq. (GHz) 

Fig 2: Spectral Function For Fabricated DDS and its Integral 

A series of investigations demonstrated that the wake function 
was seriously degraded by small mismatches of the manifolds, 

especially on the output (hence downtapered) side. 
Accordingly a major effort was made to design mitered bend 
type structures to match the manifolds to standard waveguide 

(WR62 was used). The results achieved for both the input and 
output side are given in [4]. In order to test the structure in 
the ASSET experiment it is necessary to attach windows and 
loads. The available windows were unfortunately not well- 
matched in the 14 to 16 GHz band that is crucial to the 
damping. The window and manifold added 
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Figure 3: Wake Function for Fabricated DDS, ASSET data for 
DDS and NLCTA DT (Copper Losses Shown Dashed) 

in quadrature are also illustrated in [6]. The combined 
reflection coefficient for the output end of the manifold has a 

minimum of .09 at 15.05 GHz rising to .37 at 14.2 and .4 at 

16. Ghz. At the input end the reflection coefficients are 
similar in the upper half of the frequency range but less than 
.09 for the lower half. 

The effect of these reflections on the spectral function and 

wake envelope function are shown in Figs. 2 and 3. As 
compared to the matched case the oscillations of the spectral 
function show a large increase in amplitude, indicating 
significantly higher Qs for many of the modes, and the wake 
envelope function is substantially degraded. However, even 
with the degradation shown in Fig. 3, the results constitute a 
considerable improvement over the DT structure. Reliminary 
ASSET experimental results have already been obtained 173, 
and the experimental points have been superposed on the Fig. 
3 curve. Matched windows over the required band are in 
preparation, and simulations already performed [4] indicate a 
two-fold improvement in the wake function over that of the 
present structure. 

5. Conclusion 

The DDS described here was designed with rather crude 
theoretical tools [2]. However, the well-founded theoretical 
analysis given here and in [I]  were carried out after the design 
was complete (but prior to fabrication). While the agreement 
between the preliminary experimental results and the 
theoretical predictions is imperfect, given the differences 
(some planned, some inadvertant) between the theoretical 
design and the structure as fabricated, the comparison suggests 
that the present version of the theory provides both the 
physical insight and the quantitative analysis needed to design 
an improved structure, and a number of such improvements 
are under consideration [4]. 
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