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Abstract. This paper shows how to construct a generative model for graph struc-
ture. We commence from a sample of graphs where the correspondences between
nodes are unknown ab initio. We also work with graphs where there may be struc-
tural differences present, i.e. variations in the number of nodes in each graph and
the edge-structure. The idea underpinning the method is to embed the nodes of the
graphs into a vector space by performing kernel PCA on the heat kernel. The co-
ordinates of the nodes are determined by the eigenvalues and eigenvectors of the
Laplacian matrix, together with a time parameter which can be used to scale the
embedding. Node correspondences are located by applying Scott and Longuet-
Higgins algorithm to the embedded nodes. We capture variations in graph struc-
ture using the covariance matrix for corresponding embedded point-positions. We
construct a point distribution model for the embedded node positions using the
eigenvalues and eigenvectors of the covariance matrix. We show how to use this
model to both project individual graphs into the eigenspace of the point-position
covariance matrix and how to fit the model to potentially noisy graphs to recon-
struct the Laplacian matrix. We illustrate the utility of the resulting method for
shape-analysis using data from the COIL database.

1 Introduction

The literature describes a number of attempts aimed at developing probabilistic models
for variations in graph-structure. Some of the earliest work was that of Wong, Constant
and You [4], who capture the variation in graph-structure using a discretely defined
probability distribution. Bagdanov and Worring [3] have overcome some of the compu-
tational difficulties associated with this method by using continuous Gaussian distrib-
utions. For problems of graph matching Christmas, Kittler and Petrou [1], and Wilson
and Hancock [2] have used simple probability distributions to measure the similarity
of graphs. There is a considerable body of related literature in the graphical models
community concerned with learning the structure of Bayesian networks from data [5].

Recently there has been some research aimed at applying central clustering tech-
niques to cluster graphs. However, rather than characterising them in a statistical man-
ner, a structural characterisation is adopted. For instance, both Lozano and Escolano
[7], and Bunke et al. [8] summarize the data using a supergraph. Each sample can be
obtained from the super-graph using edit operations. However, the way in which the
super-graph is learned or estimated is not statistical in nature. Jain and Wysotzki, adopt
a geometric approach which aims to embed graphs in a high dimensional space by
means of the Schur-Hadamard inner product [9]. Central clustering methods are then
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deployed to learn the class structure of the graphs. The embedding offers the advantage
that it is guaranteed to preserve structural information present. Unfortunately, the algo-
rithm does not provide a means of statistically characterising the modes of structural
variation encountered.

Hence, the methods described in the literature fall well short of constructing genuine
generative models from which explicit graph structures can be sampled. The aim in this
paper use ideas from the spectral analysis of graphs to construct a simple and explicit
generative model for graph-structure. To this end, we use the heat-kernel embedding
to construct a generative model for graph-structure. We use the heat-kernel to map the
nodes of a graph to positions in a vector space. Our aim is to construct a statistical model
that can account for the distribution of embedded point-positions for corresponding
nodes in a sample of graphs. A reference graph is selected, and the correspondences
between the nodes of each sample graph and the reference graph are established using
the point-matching method of Scott and Longuet-Higgins [6]. We capture variations
in graph structure using the covariance matrix for the corresponding embedded point-
positions. We construct a point distribution model for the embedded node positions
using the eigenvalues and eigenvectors of the covariance matrix. We show how to use
this model to both project individual graphs into the eigenspace of the point-position
covariance matrix and to fit the model to potentially noisy graphs to reconstruct the
Laplacian matrix. We illustrate the utility of the resulting method for shape-analysis.
Here we perform experiments on the COIL data-base, and show that the model can be
used to both construct pattern spaces for sets of graphs and to cluster graphs.

2 Heat Kernel Embedding

We are interested in using the heat-kernel to embed the nodes of a graph in a vector
space. To commence, suppose that the graph under study is denoted by G = (V, E)
where V is the set of nodes and E ⊆ V × V is the set of edges. Since we wish to adopt
a graph-spectral approach we introduce the adjacency matrix A for the graph where the
elements are

A(u, v) =
{

1 ifu, v ∈ E
0 otherwise

(1)

We also construct the diagonal degree matrix D,whose elements are given byD(u, u)
=

∑
v∈V A(u, v). From the degree matrix and the adjacency matrix we construct the

Laplacian matrix L = D − A, i.e. the degree matrix minus the adjacency matrix. The
normalised Laplacian is given by L̂ = D− 1

2 LD− 1
2 . The spectral decomposition of the

normalised Laplacian matrix is L̂ = ΦΛΦT , where Λ = diag(λ1, λ2, ..., λ|V |) is the
diagonal matrix with the ordered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |)
is the matrix with the ordered eigenvectors as columns. Since L̂ is symmetric and
positive semi-definite, the eigenvalues of the normalised Laplacian are all positive.
The eigenvector associated with the smallest non-zero eigenvector is referred to as
the Fiedler-vector. We are interested in the heat equation associated with the Lapla-
cian, i.e. ∂ht

∂t = −L̂ht, where ht is the heat kernel and t is time. The heat kernel can
hence be viewed as describing the flow of information across the edges of the graph
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with time. The rate of flow is determined by the Laplacian of the graph. The solu-
tion to the heat equation is found by exponentiating the Laplacian eigen-spectrum, i.e.
ht = Φ exp[−tΛ]ΦT .

We use the heat kernel to map the nodes of the graph into a vector-space. Let Y be the
|V |×|V | matrix with the vectors of co-ordinates as columns. The vector of co-ordinates
for the node indexed u is hence the uth column of Y . The co-ordinate matrix is found
by performing the Young-Householder decomposition ht = Y T Y on the heat-kernel.
Since ht = Φ exp[−Λt]ΦT , Y = exp[− 1

2Λt]ΦT . Hence, the co-ordinate vector for the
node indexed u is

yu = (exp[−1
2
λ1t]φ1(u), exp[−1

2
λ2t]φ2(u), ...., exp[−1

2
λ|V |t]φ|V |(u))T

The kernel mapping M : V → R|V |, embeds each node on the graph in a vector space
R|V |. The heat kernel ht = Y T Y can also be viewed as a Gram matrix, i.e. its elements
are scalar products of the embedding co-ordinates. Consequently, the kernel mapping
of the nodes of the graph is an isometry. The squared Euclidean distance between the
nodes u and v is given by

dE(u, v)2 = (yu − yv)T (yu − yv) =
|V |∑
i=1

exp[−λit](φi(u) − φi(v))2 (2)

3 Generative Model

Our aim is to construct a generative model that can be used to represent the statistical
variations in a sample of graphs. Let the sample be T = {G1, G2, ..., Gk, ....GK} where
the kth graph Gk = (Vk, Ek) has node-set Vk and edge-set Ek. The result of performing
heat-kernel embedding of the nodes of the kth graph is a matrix of co-ordinates Yk.

Our aim in this paper is to construct a generative model that can be used to de-
scribe the distribution of embedded node co-ordinates for the sample of graphs. Since
the graphs contain different numbers of nodes, we truncate the co-ordinate matrices to
remove the spatial dimensions corresponding to insignificant eigen-modes of the kernel
matrix. Hence, we retain just the first N rows of each co-ordinate matrix. For the graph
Gk the truncated node co-ordinate matrix is denoted by Ŷk.

3.1 Node Correspondences

To construct the generative model, we require correspondences between the nodes of
each sample graph and the nodes of a reference structure. Here we take the reference
graph to be the graph in the sample with the largest number of nodes. This graph has
index k∗ = argmaxGk∈T |Vk|.

To locate the correspondences between the nodes of each sample graph and those
of the reference graph, we use the Scott and Longuet-Higgins algorithm. The algorithm
uses the distances between the reference graph nodes and the nodes of the sample graph
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k to compute an affinity matrix. Let ŷi
k is the ith column vector of the truncated co-

ordinate matrix Ŷk, i.e. the co-ordinates of the node i ∈ Vk. For the node i of the
sample graph Gk and the node j the affinity matrix element is

Rk,k∗(i, j) = exp[− 1
σ2 (ŷi

k − ŷj
k∗)T (ŷi

k − ŷj
k∗)]

where σ is a scaling parameter.
According to Scott and Longuet-Higgins [10] if Rk,k∗ is a positive definite |Vk| ×

|Vk∗ | matrix, then the |Vk|× |Vk∗ | orthogonal matrix R∗
k,k∗ that maximises the quantity

Tr[Rk,k∗(R∗
k,k∗)T ] may be found by performing singular value decomposition. To do

this they perform the matrix factorisation Rk,k∗ = V ΔUT , where V is a |VD| × |VD|
orthogonal matrix, U is a |Vk∗ |× |Vk∗ | orthogonal matrix and Δ is a |Vk|× |Vk∗ | matrix
whose off-diagonal elements Δi,j = 0 if i �= j and whose “diagonal” elements Δi,i

are non-zero. Suppose that E is the matrix obtained from Δ by making the diagonal
elements Δi,i unity. The matrix R∗

k,k∗ which maximises Tr[Rk,k∗(R∗
k,k∗)T ] is R∗

k,k∗ =
V EUT . The element R∗

k,k∗(i, j) indicates the strength of association between the node
i ∈ Vk in the graph Gk and the node j ∈ Vk∗ in the reference graph. The rows of R∗

k,k∗ ,
index the nodes in the graph Gk, and the columns index the nodes of the reference graph
Gk∗ . If R∗

k,k∗(i, j) is both the largest element in row i and the largest element in column
j then we regard these nodes as being in one-to-one correspondence with one-another.
We record the state of correspondence using the matrix Ck,k∗ . If the pair of nodes (i, j)
satisfies the row and column correspondence condition, then we set Ck,k∗ (i, j) = 1,
otherwise Ck,k∗ (i, j) = 0 .

3.2 Embedded Point Distribution Model

Once we have correspondences to hand, then we can construct the generative model for
the set of graphs. To do this we model variations in the positions of the embedded points
using a point distribution model. We commence by computing the mean point positions.
The matrix of mean-position co-ordinates and the associated covariance matrix are

X̂ =
1
T

∑
k∈T

CT
k,k∗ Ŷk

Σ =
1
T

∑
k∈T

(CT
k,k∗ Ŷk − X̂)(CT

k,k∗ Ŷk − X̂)T

To construct the point-distribution model, we perform the eigendecomposition Σ =
ΨΓΨT where Γ = diag(γ1, γ2, ...., γK) is the diagonal matrix of ordered eigenvectors
and Ψ = (ψ1|.....|ψK) is the matrix with the correspondingly ordered eigenvectors as
columns.

We deform the mean-embedded node positions in the directions of the leading eigen-
vectors of the point-position covariance matrix Σ. Let Ψ̃ be the result of truncating
the matrix Ψ after S columns and let b be a parameter-vector of length S. We con-
vert the mean point position matrix with a long vector form. Let Coli(X̂) be the
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ith column of the mean-point position matrix X̂ . The long vector is given by Ẑ =
(ColT1 (X̂), ColT2 (X̂), ...). The long vector corresponding to deformed point set posi-
tion is Z̃ = Ẑ + Ψ̃ b. The matrix with deformed point position as column is X̂ .

An observed configuration of embedded nodes Ỹ may be fitted to the model. To do
this the best fit parameters estimated using the least squares procedure

b∗ = arg min
b

(Ỹ − X̂ − Ψ̃ b)T (Ỹ − X̂ − Ψ̃ b)

The best-fit parameter vector is b∗ = Ψ̃T (Ỹ −X̂) and the reconstructed set of embedded
point positions is Ỹ ∗ = X̂ + Ψ̃ Ψ̃T (Ỹ − X̂). From the reconstructed point-positions we
can recover the Laplacian matrix for the corresponding graph. The heat-kernel for the
reconstructed embedded graph is h∗

t = (Ỹ ∗)T (Ỹ ∗) = exp[−L̂∗t] and the Laplacian is
hence L̂∗ = − 1

t ln{(Ỹ ∗)T (Ỹ ∗)}. From the reconstructed Laplacian we can compute
the corresponding adjacency matrix

A∗ = D − D
1
2 L̂∗D

1
2 = D +

1
t
D

1
2 ln{(Ỹ ∗)T (Ỹ ∗)}D

1
2 .

Finally, the similarity of a pair of graphs can be measured using the difference in their
best-fit parameter vectors. Since the parameter-vector is just the projection of the cor-
responding graph into the eigenspace of the model, the difference is parameter vectors
is related to the distance between graphs in the eigenspace. Suppose that the graphs
Gk1 and Gk2 have best fit parameter vectors b∗k1

and b∗k2
respectively. The Euclidean

distance between the parameter vectors is

d2(k1, k2) = (b∗k1
− b∗k2

)T (b∗k1
− b∗k2

) = (Ŷk1 − Ŷk2 )
T Ψ̃ Ψ̃T (Ŷk1 − Ŷk2)

4 Experiments

In this section we provide some experimental evaluation of our generative model for
real-world data. We use the COIL data-base. The data-set contains multiple views of
the same object in different poses with respect to the camera. Example images from
the data-set are shown in Figures 1. We extract the feature points using the methods of
[11]. We have extracted graphs from the images by computing the Voronoi tessellations
of the feature-points, and constructing the region adjacency graph, i.e. the Delaunay
triangulation, of the Voronoi regions.
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Fig. 1. Three objects from the COIL data-base
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Fig. 2. Embedded point positions and fitted covariance ellipsoids with varying t(from left to right,
top to bottom t = 0.001, 0.01, 0.1, 1, 10, 100) for the heat kernel

In Figure 2 we show the result of projecting the nodes into the space spanned by the
leading two eigenvectors of the heat-kernel. The different panels in the figure are for
different values of t ,from left to right and top to bottom the t are 0.001, 0.01, 0.1, 1,
10, 100. For this experiment we have taken 15 images from the duck sequence. Each
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Fig. 3. Embedded point positions and fitted covariance ellipsoids for Laplacian matrix
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blue point in the embedding corresponds to a single node of one of the 15 sample
graphs. Superimposed on the node-positions as red-points are the locations of the mean
node positions. Around each mean node position we have drawn an ellipse. The ma-
jor and minor axes of the ellipse are in the principal directions of the eigenvectors
of the node-position covariance matrix and the lengths of the semi-major axes are
the corresponding eigenvalues. There are a number of features to note from this fig-
ure. First, for small values of t the embedded points form relatively compact clus-
ters. Second, there is a significant variation in the size and directions of the ellipses.
The compactness of the clusters supports the feasibility of our embedding approach
and the variation in the ellipses underpins the need for a relatively complex statis-
tical model to describe the distribution of embedded point positions. As the value
of t increases then so the overlap of the ellipses increases. For comparison Figure 3
shows the result of repeating the embedding by using the Laplacian spectrum. The
node-clusters are more overlapped than those obtained with the heat kernel for small
values of t.

To investigate the role of the number of Laplacian eigenmodes in the reconstruc-
tion of the graph-structure we have examined the value of the Froebenius norm F =
||A − A∗|| between the original graph adjacency matrix A and the reconstructed ad-
jacency matrix A∗ computed by fitting the generative model. In Figure 4 we show the
value of F as a function of the number of eigenmodes used. The different curves in the
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Fig. 4. Froebenius norm as a function of number of eigenmodes

Fig. 5. Eigen-projection of graphs from 15 images in duck sequence
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Fig. 6. Distance matrix for fitted parameter vectors

plot are for different values of t. The best reconstructions are obtained with small values
of t and an increasing number of eigenmodes.

In Figures 5 we show the result of projecting the embedded node vectors for the
graphs extracted from the duck sequence in the COIL data-base onto the eigenvectors of
the embedded node position covariance matrix Σ. We have placed a thumbnail image at
the location specified by the first three components of the parameter-vector b. The line
connecting the thumbnails corresponds to the sequence order of the original images.
The main feature to note is that neighboring images in the sequence are close together
in the eigenspace.

We have also experimented with the generative model as a means of clustering
graphs. In Figure 6 we show the matrix distances between the best fit parameter vectors.
The main feature to note is that there is a clear block structure emerges corresponding
to the different objects.

5 Conclusions

In this paper we have used the heat-kernel embedding of graphs to construct a genera-
tive model for graph structure. The mapping allows nodes of the graphs under study to
be embedded as points in a vector-space. The idea underpinning the generative model
is to construct a point-distribution model for the positions of the embedded nodes. The
required correspondences needed to construct this model are recovered using the Scott
and Longuet-Higgins algorithm. The method proves to be effective for computing dis-
tances between graphs and also for clustering graphs.

Our future plans revolve around the use of a mixture model to describe the positions
of the embedded nodes, and to assess uncertainty in the computation of correspondence.

References

1. W.J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision using
probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(8):749–764, 1995.

2. R.C. Wilson and E.R. Hancock. Structural matching by discrete relaxation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19(6):634–648, June 1997.



A Spectral Generative Model for Graph Structure 181

3. A.D. Bagdanov and M. Worring, First Order Gaussian Graphs for Efficient Structure Classi-
fication Pattern Recognition, 36, pp. 1311-1324, 2003.

4. A.K.C Wong, J. Constant and M.L. You, Random Graphs Syntactic and Structural Pattern
Recognition, World Scientific, 1990.

5. D. Heckerman, D. Geiger and D.M. Chickering, Learning Bayesian Networks: The combi-
nation of knowledge and statistical data Machine Learning, 20, pp. 197-243, 1995.

6. G.L.Scott,H.C.Longuett-Higgins An algorithm for associating the features of two images
Proceedings of the Royal Society of London, 244, pp. 21-26, 1991.

7. M. A. Lozano and F. Escolano, ACM Attributed Graph Clustering for Learning Classes of
Images In Graph Based Representations in Pattern Recognition, LNCS 2726, pp.247-258,
2003.

8. H.Bunke et al., Graph Clustering Using the Weighted Minimum Common Supergraph. In
Graph Based Representations in Pattern Recognition, LNCS 2726, pp.235-246, 2003.

9. B. J. Jain and F. Wysotzki, Central Clustering of Attributed Graphs. Machine Learning, Vol.
56, pp. 169-207, 2004.

10. G.L.Scott and H.C.Longuet-Higgins, An Algorithm for Associating the Features of two Im-
ages. Proceedings of the Royal Society of London, Vol. 244, pp. 21-26, 1991.

11. C.G.Harris, and M.J.Stephens, “A Combined Corner and Edge Detector”, Fourth Alvey Vi-
sion Conference, pp. 147–151, 1994.


	Introduction
	Heat Kernel Embedding
	Generative Model
	Node Correspondences
	Embedded Point Distribution Model

	Experiments
	Conclusions

