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ABSTRACT

Motivation: High-throughput image-based assay technologies can
rapidly produce a large number of cell images for drug screening,
but data analysis is still a major bottleneck that limits their utility.
Quantifying a wide variety of morphological differences observed in
cell images under different drug influences is still a challenging task
because the result can be highly sensitive to sampling and noise.
Results: We propose a graph-based approach to cell image
analysis. We define graph transition energy to quantify morphological
differences between image sets. A spectral graph theoretic
regularization is applied to transform the feature space based on
training examples of extremely different images to calibrate the
quantification. Calibration is essential for a practical quantification
method because we need to measure the confidence of the
quantification. We applied our method to quantify the degree of
partial fragmentation of mitochondria in collections of fluorescent cell
images. We show that with transformation, the quantification can
be more accurate and sensitive than that without transformation.
We also show that our method outperforms competing methods,
including neighbourhood component analysis and the multi-variate
drug profiling method by Loo et al. We illustrate its utility with a
study of Annonaceous acetogenins, a family of compounds with
drug potential. Our result reveals that squamocin induces more
fragmented mitochondria than muricin A.
Availability: Mitochondrial cell images, their corresponding feature
sets (SSLF and WSLF) and the source code of our proposed method
are available at http://aiia.iis.sinica.edu.tw/.
Contact: chunnan@iis.sinica.edu.tw
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Recently, high-throughput image-based assay technologies, or high-
content analysis, have become a useful tool for drug discovery (Jones
et al., 2009; Lang et al., 2006), small molecule screen (Tanaka et al.,
2005), subcellular localization (Huang and Murphy, 2004; Lin et al.,
2007), etc. These technologies make it possible to visualize, trace
and quantify cellular morphological changes in high resolution and
play an increasingly crucial role to the understanding of biological
processes.

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First authors.

Fig. 1. Representative microscopic fluorescent images of single cells with
different levels of fragmentation of mitochondria. Intact mitochondria
forms filamentous networks (top row), completely fragmented mitochondria
have round shape (bottom row) and partially fragmented mitochondria
(middle row).

Since the cost of acquiring a large number of microscopic cell
images is decreasing, the analysis tools must be powerful. Consider
a study aiming at correlating drug influences to morphological
changes of mitochondria. This topic has become increasingly
important mainly because of its relation to apoptosis and aging
process. Figure 1 shows some representative cell images with
different levels of fragmentation of mitochondria. As we can see,
intact or completely fragmented mitochondria are relatively easy
to recognize, but it is difficult to quantify partial fragmentation.
In fact, in addition to fragmentation, mitochondria may become
tubular, shortened, elongated or swollen. All these morphological
changes are important biological indicators (Brooks et al., 2007;
Lee et al., 2004; Tamai et al., 2008). However, off-the-shelf analysis
software only distinguishes morphological patterns at cellular level.
No partial change or mixture of patterns at subcellular level can be
readily detected. Quantification requires human inspection, which is
infeasible for high-throughput screening (Taguchi et al., 2007; Zhou
and Wong, 2006).

Our goal is to derive an objective and reliable quantification tool
to correlate drug influences and morphological differences at cellular
or subcellular levels. We assume that cell images are characterized

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/12/i29/283584 by guest on 16 August 2022

http://aiia.iis.sinica.edu.tw/
http://creativecommons.org/licenses/


[10:51 12/5/2010 Bioinformatics-btq194.tex] Page: i30 i29–i37

Y.-S.Lin et al.

Fig. 2. Given two sets of cell images with extremely different morphology
patterns as training examples; our method transforms the feature space so
that regularized graph transition energy between the two sets is minimized.
Then we can quantify the morphological difference of cells by computing
their graph transition energy with the training examples in the transformed
feature space.

by a feature set extracted from the images and can be considered as a
data point in the feature space. A straightforward quantification is to
measure the Euclidean distance between data points or apply other
sophisticated similarity metrics. However, there are key challenges
that must be addressed.

• A wide variety of morphological categories must be considered.

• Influence of a drug is a random variable, the difference must be
estimated between pairs of cell-image collections. Averaging
pairwise differences of single images is not appropriate here
because of the presence of noise and outliers.

• Whether a selected similarity metric can actually quantify the
difference that matches the purposes of the study depends
heavily on the selected features.

• Calibration is essential for a practical quantification method
because we need to measure the confidence of the
quantification.

Our solution is a graph-based approach. Previously, graph-
based approaches have been shown to be effective for clustering,
semi-supervised learning and image segmentation (Belkin and
Niyogi, 2003b; Zhu and Ghahramani, 2002; Zhu et al., 2003).
In our approach, graph transition energy is defined to quantify
the similarity between collections of images. To accommodate a
wide variety and combinations of morphological differences to
be quantified, we adopt a supervised paradigm where two sets of
extremely different cell images are assumed to be given as training
examples. For example, to quantify mitochondrial fragmentation,
sets of cell images with intact and completely fragmented
mitochondria are assumed to be given. Figure 2 illustrates this
graph-based approach. By applying a spectral graph theoretic
regularization (Chung, 1997), we developed a method to transform
the feature space based on the training examples so that regularized
graph energy between data points of extremely different morphology
is minimized. In this way, calibration of the quantification can
be achieved. Then we can quantify a new set of cell images

by computing the graph transition energy between the set and
training examples in the transformed feature space. Experimental
results show that our method quantifies the morphological difference
more accurately and sensitively than that without transformation.
Results also show that our method outperforms competing methods,
including neighbourhood component analysis (NCA; Goldberger
et al., 2005) and the multi-variate drug profiling method by Loo
et al. (2007). Finally, we illustrate the utility of our method with a
study of Annonaceous acetogenins and their impact to mitochondrial
fragmentation. Our result reveals that squamocin induces more
fragmented mitochondria than muricin A.

The remainder of this article is organized as follows. Section 2
reviews related work. Section 3 presents our method. Section 4
reports experimental evaluation of our method and an application to
the study of Annonaceous acetogenins. The last section concludes
and discusses our future work.

2 REVIEW OF PREVIOUS WORK
We briefly review previous work on image-based approaches
for drug screening, mitochondrial fragmentation, graph-based
approaches and feature space transformation.

2.1 Image-based approach for drug screening
Recently, high-throughput image-based approaches have received
great attention for drug screening (Carpenter, 2007; Lang et al.,
2006; Loo et al., 2007). Among them, Loo et al. (2007) proposed
an image-based multivariate profiling method for drug screening.
In their method, support vector machines (SVMs) are applied
to establish a hyperplane in the feature space between cell
images representing control and images of cells under different
perturbation. Then the unit normal vector of the hyperplane is used
as a multivariate profile to indicate the phenotypic direction of
the greatest separation between the two cellular populations. By
clustering these profiles, a new compound with unknown effect can
be associated with compounds with known effects to infer the effects
of the new compound. Clustering these profiles may also reveal new
usage of an old drug if its profile is similar to another drug with
target effects. Their method is interesting in that it can consider
a large number of features and is not study-dependent. However,
their approach fails when the images in the feature space are not
linearly separable. Also, the images may distribute in the feature
space so widely that the hyperplane may have a very high sampling
variance. In this article, we report an experimental comparison of
our graph-based method with their approach in Section 4.2.

2.2 Mitochondrial fragmentation
Mitochondria are essential organelles in eukaryotic cells, because
they play a central role in energy metabolism and the integration of
diverse apoptotic stimuli. Recent investigations reveal that dynamics
of mitochondria morphology is important during apoptosis as the
organelle undergoes massive fragmentation. Yaffe (1999) suggested
that over fragmentation of mitochondria may result in breakage of
mtDNA that causes excess free radicals due to impaired functions
in respiration. Other reports show that mitochondrial fragmentation
is an early step of apoptosis (Desagher and Martinou, 2000; Frank
et al., 2001; Karbowski and Youle, 2003). However, mechanisms
behind the relationship between mitochondrial fragmentation and
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apoptosis is still unclear (Jeong and Seol, 2008). High-content
screening can play a key role in revealing their relationship and
shed new light on the discovery of potential drugs for the treatment
of related diseases, such as neurodegenerative diseases and diabetes.

2.3 Graph-based approach
Graph-based approaches have been successfully applied in various
machine-learning problems including classification (Belkin and
Niyogi, 2003b; Goldberger et al., 2005; Zhan et al., 2009; Zhu
et al., 2003), spectral clustering (Azran and Ghahramani, 2006)
and dimension reduction (Belkin and Niyogi, 2003a; Roweis and
Saul, 2000; Tenenbaum et al., 2000). These methods create a graph
whose nodes correspond to data points, while the edge weights
encode the similarity between each pair of data points. It is crucial
to choose a proper distance metric to estimate the similarity as the
performance of graph-based models depends considerably on the
similarity measure of the graph.

Zhu et al. (2003) uses a Gaussian random field model to construct
a weighted graph representing labeled and unlabeled data for semi-
supervised learning. For dimension reduction, Isomap (Tenenbaum
et al., 2000) applies geodesic distance to create a graph that captures
the manifold structure to recover the intrinsic dimension of the data.
Though geodesic distance can serve as a useful quantification of a
given type of morphological difference, the isomap method requires
input data uniformly distributed in the feature space with a high
density to accurately recover the manifold, a requirement that is
infeasible in most of biological study because the distribution of
cell images is usually very skew.

Other promising applications of the graph-based approaches in
bioinformatics include immune cells detection (Chang et al., 2008),
cell images segmentation (Isfahani et al., 2008) and protein function
prediction (Borgwardt et al., 2005).

2.4 Feature space transformation
Feature space transformation is widely applied to data visualization
and learning algorithm enhancement. Here, we reviewed two
methods, linear discriminant analysis LDAand NCA, that are closely
related to our method. Fisher LDA uses the label information to find
informative projection such that the separation of data of different
classes can be maximized. To that end, LDA tries to maximize
the inter-class scatter matrix and minimize the intra-class scatter
matrix simultaneously. However, LDA suffers from a small sample
size problem when dealing with high-dimensional data, the intra-
class scatter matrix can be nearly singular (Chen et al., 2000).
In our approach, we re-weight the feature space and make no
attempt to compute projections as in LDA. Therefore, the problem
is not an issue here because no inverse matrix is necessary. Also,
LDA is designed for classification. Quantifying difference between
cell images is more of a regression problem than classification.
NCA (Goldberger et al., 2005) learns a linear transformation of
the feature space to optimize leave-one-out (LOO) performance
on training data for k-nearest neighbor (k-NN) classifiers. NCA
is a non-parametric learning method and makes no assumptions
about data distributions. Promising performance of NCA have been
shown in many applications including face recognition (Butman and
Goldberger, 2008) and hyperspectral classification (Weizman and
Goldberger, 2007). Since our quantification method is based on a

distance-weighted k-NN, we empirically compared our method with
NCA and report the results in Section 4.1.2.naveenh

3 METHODS
Our task is to re-weight the feature space to separate the data points with
different labels as far apart as possible. We consider a graph-based model to
solve our problem.

3.1 Adjacency graph
Let {(xi,yi)}∈X ×Y , i=1,...,n be a set of data points where X ∈R

D is an
arbitrary feature space and Y a finite set of labels. In a graph-based model, a
graph G :={V ,E} is constructed for the data points, where V corresponds to
data points and eij ∈E connects xi and xj . A non-negative weight is assigned
to eij to build a weight matrix W by a radial basis function such that:

wij :=exp(−
D∑

d=1

(xid −xjd )2

σ2
d

), (1)

where σd ∈σ is the length scale for the d-th coordinate in the feature space.
A common practice in graph-based methods is to consider weights of nearby
data points only. Other links will be assigned zero weights. Given the weight
matrix W, the graph energy (Zhu and Ghahramani, 2002) can be defined as
a function to measure the stability of a set of data points:

1

n

∑

i,j

wijI(yi �=yj), (2)

where I(φ) denotes the indicator function whose value is 1 if statement φ is
true and 0 otherwise.

3.2 Cheeger’s constant
Our goal is to transform the feature space by re-weighting σ so that the
Euclidean distance in the transformed space correlates with the difference of
the labels of data points. The transformation requires a set of training data
points with different labels. The idea is to re-scale σd such that the energy
is minimized. To avoid overfitting, regularization is required. Well-known
regularization includes graph Laplacian (Belkin and Niyogi, 2003b) and
Cheeger’s constant (Chang et al., 2008). It has been shown that Cheeger’s
constant effectively removes noise, like Laplacian, but preserves better sharp
boundaries needed for classification (Chang and Moura, 2007; Chung, 1997).
Therefore, we chose Cheeger regularization for our problem.

Let f :X →Y be a function that labels data points in G. Cheeger
regularization is defined as

r(f) := fT Lf −βfT D1, (3)

where D=diag(di) is a diagonal matrix with di =∑
j wij , L=D−W is the

Laplacian of G, 1= (1,...,1)T and β is the non-negative weight. We note
that fT Lf is the graph Laplacian regularization given in (Belkin and Niyogi,
2003b). In our problem, f is simply the known label assignment y of training
data. Mapping two labels in the training data to {0,1}, we have

fT Lf = yT Ly= 1

2
(2yT Dy−2yT Wy)

= 1

2

∑

i,j

wij(yi −yj)
2 = 1

2

∑

i,j

wijI(yi �=yj).

To extend its applicability to multiple label problems, we modified the second
term fT D1 in Equation (3) so that we only count if the labels are the same
or not. That is, 1

2

∑
ij wijI(yi �=yj)+∑

ij wijI(yi =yj). Therefore, the Cheeger
regularization is modified as

1

2

∑

ij

wijI(yi �=yj)−λ· 1

2

∑

ij

wijI(yi =yj). (4)
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3.3 Graph transition energy
We embed the constraint that scaling factors sum to one for each i into
Equation (4) by replacing the weight matrix W with a transition matrix T
where Tij := wij∑

k wik
. With the normalization term, T is usually asymmetric.

By doing so, we also need to modify the definition of graph energy function
given in Equation (2) by replacing W with T, which leads to the Graph
Transition Energy, defined as a function of σ:

E(σ) := 1

n

∑

i,j

TijI(yi �=yj). (5)

A low E indicates that G is stable because data points with different labels are
far apart, and vice versa. Therefore, given two sets of cell images as feature
vectors, if their graph transition energy is low than they are quite different,
and vice versa.

3.4 Feature space transformation
We continue our derivation of an objective function from Cheeger’s constant.
In addition to embedding the constraint to the objective function, we also
re-parameterize 1

σ2
d

=eκd in Equation (1) to enforce another constraint so that

σd ≥0,d =1,...,D. Then

wij =exp{−
D∑

d=1

eκd (xid −xjd )2}.

Let κ be a vector with κd ’s as its components. We complete the derivation
of our objective function as a function of κ:

J(κ)=
∑

ij

TijI(yi �=yj)−λ·
∑

ij

TijI(yi =yj). (6)

Minimizing J creates a transformed feature space with wide label separation
and therefore calibrates the quantification with the graph transition energy.
Any minimization method can be applied to minimize J . We simply used a
steepest gradient descent method in our implementation.

The gradient for the objective function is

∂J

∂κd
=

∑

ij

I(yi �=yj)
∂Tij

∂κd
−λ·

∑

ij

I(yi =yj)
∂Tij

∂κd
. (7)

In Equation (7), the computation of
∂Tij
∂κd

by using chain rule is

∂Tij

∂κd
=

∑

s,t

(
∂Tij

∂wst
· ∂wst

∂κd
), (8)

where
∂Tij
∂wst

is
∂Tij

∂wst
= I(s= i)∑

k wik
[I(t = j)−Tij] (9)

and ∂wst
∂κd

is
∂wst

∂κd
=−eκd wij(xid −xjd )2. (10)

Substituting Equation (9) and (10) into (8), we obtain

∂Tij

∂κd
= eκd

∑
k wik

[Tij(
∑

t

wit(xid −xtd )2)−wij(xid −xjd )2]. (11)

Recall that each data point in the graph only connects to its nearest
neighbors. This approximation is sufficient because in a Gaussian energy
model, links of points too far apart are nearly zero. But we cannot rule
out the possibility that a pair of points becomes closer with a new κ after
optimization. Therefore, we design an iteration method where each iteration
applies a gradient descent update to obtain a new κ. Then the graph is rewired
by connecting each point with its nearest neighbors after each iteration. The
iteration repeats until convergence.

We can derive a lower bound of the objective function as follows.

Proposition 3.1. If there exists a κ such that J(κ)=−λ ·n, where n is
the data size, then the data in the transformed feature space can be
separated completely. That is, the transition probability Pr(xi →xj)≥0 if
yi =yj, otherwise Pr(xi →xj)=0

Proof. Because under perfect label separation, we have Tij ≥0 if yi =yj and
0 otherwise. In that case J(κ)≥−λ·n. �

According to Proposition 3.1, the value of J(κ) reveals useful information
to determine if the data with different labels or conditions can be well-
separated or not given the set of features. If J(κ) is still far away from
its lower bound after the re-weighting process, the feature set may not be
sufficient or appropriate for representing the data points. The re-weighted κ

also provides useful information to rank important of the features.

3.5 Quantifying differences
We summarize our method as follows:

(1) Define the label space Y . For example, we may define Y as different
levels of mitochondrial fragmentation, days after drug applications or
drug dosages.

(2) Acquire data points (i.e. cell images) with labels of the two
extremely different cases (e.g. mitochondrial intact and complete
fragmentation).

(3) Extract features for X and minimize Equation (6) to obtain a
transformed feature space.

(4) Then we can acquire more data points and apply Equation (5) to
quantify the difference.

3.6 Feature extraction
We extracted two types of features from each single cell image to serve
as the input in our experiments. Strong detectors are knowledge-driven
features that are supposed to provide strong hints, while weak detectors
are randomly extracted patterns to allow the learning algorithm to consider
subtle characteristics of a class. This set of features has been used in (Lin
et al., 2007) on recognizing fluorescent protein-tagged subcellular organelles
in cell images, including mitochondria.

3.6.1 Strong detectors Our strong detectors consist of both geometric
and texture features. Table S1 in the supplementary data gives the list of
geometric features. The texture features are extracted based on the gray-level
co-occurrence matrix (GLCM) method proposed by Haralick (1979). Twelve
GLCM with distances 1,2 and 10 and angles 0◦,45◦,90◦ and 135◦ are applied
to the bi-leveled images. Then, various co-occurrence quantities including
entropy, energy, contrast, homogeneity and correlation can be evaluated from
the co-occurrence matrix to produce our texture features. The definition of
these quantities are given in Supplementary Table S2.

The above method extracts a total of 155 geometric features and 500
texture features from a cell image. We conducted a backward stepwise
discriminant analysis to select 132 most discriminant features as our final set
of strong detectors.

3.6.2 Weak detectors The weak detectors for each image are extracted in
four steps as follows.

(1) Randomly pick five images of each class as templates.

(2) Randomly extract a set of eight fragments from each template. The
fragments vary in size from 9×9 to 25×25.

(3) Convolve each fragment i with a set of four filters. This set includes
the original image, x derivative, y derivative and a Laplacian filter.

(4) Then for a given image either for training or testing, apply normalized
cross-correlation between the given image and the fragment i to find
where the fragment i occurs and then record the maximum correlation
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(a) (b) (c) (d)

Fig. 3. The results of Mito-Q image processing. (a) The original image;
(b) the image processed by the morphological filter; (c) the image after
power-law transformation; (d) the locations of mitochondrial identified by
Mito-Q.

as the i-th component in the vector of weak detectors for the given
image.

In this study, we have two extreme classes of mitochondrial images: intact
and fragmented completely. We can generate 5(template) ×8(fragment)×
4(filter) ×2(class)=320 weak detectors for each image. If we want to
generate more features, we just increase the number of templates, fragments
or filters.

3.7 Mito-Q
Because we applied our method to detect the mitochondrial fragmentation in
microscopy cell images, we have developed an auxiliary tool called Mito-Q to
assist human inspectors to visually quantify the percentage of fragmentation
of mitochondria for each cell image as our golden standard. Mito-Q helps
human inspectors to filter out noise and poorly focused light spots in an
input image and identify which patterns correspond to mitochondria. A
morphological filter (Serra, 1998), with disk structuring element (of size
2), and power-law transformation with the basic form s=crγ (Gonzalez
and Woods, 2002) are used to enhance the mitochondria objects. A bi-level
operator with an optimal threshold TH, selected by the human inspector, is
applied to generate the template of mitochondrial, as shown in Figure 3.
At last, Mito-Q will generate mitochondrial features for evaluating the
percentage of fragmentation. Though Mito-Q is helpful, it takes a skillful
human inspector to generate desirable output scores and is not designed to
replace automated quantification methods.

4 RESULTS AND DISCUSSION
This section reports the empirical evaluation of our feature space
transformation method.

4.1 Effectiveness of feature space transformation
We first evaluate whether our graph-based feature space
transformation method actually results in a new space that
characterizes the difference between data points better. To this
end, we evaluate whether our method improves a semi-supervised
learning task and a k-NN regression task, both for cell-image
analysis.

4.1.1 Improving semi-supervised learning We applied our
feature space transformation method to improve the classification
performance of Zhu et al.’s (2003) semi-supervised learning
method for the task of recognizing subcellular organelle patterns
in the HeLa cell image data set. We used the 2D HeLa image
data set available from the Murphy lab (See http://murphylab
.web.cmu.edu/data/2Dhela_images.html). This data set contains
862 images. Each image contains a single cell with exactly one
of the 10 distinct subcellular organelles tagged by a fluorescent
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Fig. 4. (a) Influence of the k nearest neighbors. (b) The performance of
semi-supervised learning before and after learning κ in the HeLa cell image
data set.

protein. The feature set that we used was the superset of
SLF16, which consists of 47 features selected by stepwise
discriminant analysis (SDA) from a set of 180 features (See
http://murphylab.web.cmu.edu/data/2Dhela_images_download.html).
Among them, six are DNA-channel features. We used this
180-feature set of the HeLa images in our first experiment.

We split the test images into two subsets. One of the subsets
was used as the labeled data and the other as unlabeled data.
When our method was applied, the labeled data were also used to
transform the feature space. We must first determine k, the number
of the nearest neighbors to construct a graph. We also wanted to
see if our method is sensitive to k. We selected the k-value from
{6,8,10,12,14} according to their classification performance. We
repeated the experiments on each data set for 10 runs with random
partitions of 60% training/40% test instances. It can be observed
from Figure 4a that there is no significant difference for different k.
Therefore, we arbitrarily assigned k =8, the best performing setting,
to construct the graph in our experiments. We also found that our
method is insensitive to choices of λ in Equation (6) over a wide
range. In all of our experiments, we simply set λ=0.1.

The result of semi-supervised learning is given in Figure 4b, which
shows that though both semi-supervised methods improve their
performance as the number of labeled training examples increases,
applying our transformation clearly improves the performance of the
plain semi-supervised learning method. The best accuracy is about
87%, about as good as a supervised neural net reported in (Huang
and Murphy, 2004) for the same set of images. We expect that with
more unlabeled images, semi-supervised learning with transformed
feature space has the potential to achieve an accuracy as good as the
best results by supervised learning.

Moreover, we can compute graph transition energy between
images of different subcellular organelles. The resulting energy
table can serve as a measure of pairwise similarity. Then we can
applied multi-dimensional scaling (MDS) to help us visualize the
morphological similarity of the shape of 10 distinct subcellular
organelles as shown in Figure 5, where we can see that two
Golgi types (Gpp130 and Giantin) are particularly challenging to
distinguish, so are mitochondria and tubulin.

4.1.2 Estimating partial fragmentation of mitochondria Now
we show that our approach can also be applied to improve the
estimation in the fragmentation level of mitochondria in a single
cell without actually identifying each mitochondrion object in a
cell image. Since estimating fragmentation of a mitochondrion is
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Fig. 5. Visualizing shape similarity of 10 distinct subcellular organelles with
a MDS plot derived from pair-wise graph transition energy.

Table 1. Comparing the performance of estimating partial fragmentation of
mitochondria in individual cell images

k-NN NCA k-NN
(before learning κ) (after learning κ)

Correlation 0.696 0.741 0.814
MSE 1.610 1.409 1.006

a regression problem, we applied distance weighted k-NN for this
task. We compared our feature space transformation method with
NCA (Goldberger et al., 2005), which is designed to transform the
feature space to minimize the error of k-NN.

To apply our method, in addition to training data for obtaining
an optimal κ, we need other labeled data in the feature space to
approximate the manifold of the data. With the labeled data, we
can quantify each test image by the weighted average of its nearest
neighbors:

f̂i =
∑K

k=1(wik ∗fk)
∑K

k=1(wik)
, (12)

where fk is the label of the k-th labeled data and K is a pre-defined
constant for the number of the nearest neighbors. In our test case, fk is
simply the score by human inspectors with aid of Mito-Q and K =6.
We used the same κ obtained from mostly impact (MI) and mostly
fragmented completely (MC) and all 392 images as the labeled data.
We then acquired an additional set of 43 new images to evaluate the
above method.

Table 1 shows the performance comparison in terms of correlation
coefficient with the human inspectors’ score and mean-square-
error (MSE). The result shows that our method outperforms NCA
by achieving the highest correlation coefficient and the lowest
MSE. The result also shows that the transformation by learning κ

effectively improves the quality of the estimation.

4.2 Quantifying collective morphological difference
We now consider the main task that our approach is designed for.
That is to quantify morphological difference between collections of
cell images. This task is particularly useful for drug screening, as
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Fig. 6. Influence of the k-NN.

different image sets represent the results of the treatment of different
drugs. The same approach can be applied to study effects of the same
drug under different dosages and time courses.

To test our method for this task, we acquired a collection of
392 single cell images with different percentage of mitochondria
fragmentation. We sorted the cell images according to the output
scores of Mito-Q and labeled the top 36 images as MI and bottom
36 as MC to construct two extreme cases of mitochondria. The
rest of the images (320) are labeled as mitochondrial fragmented
partially (MP) in three equal sized subsets (MP1, MP2 and MP3),
from the least fragmented to the most. For each cell image, we
extracted 452 features that include 132 strong (e.g. morphology,
texture, moment and intensity features) and 320 weak detectors, as
described in Section 3.6.

We sampled with replacement from MI and MC to create 11
treatment sets with different mixture proportion. The k-th set was
a mixture of (11−k)×10% MI images with (k−1)×10% MC.
Then we regarded raw MI as the control set to compute the
difference between each mixture set and control set. Note that the
percentage here refers to the proportion of images sampled from
MI or MC, not the degree of mitochondrial fragmentation. We
compared our approach with the approach proposed by Loo et al.
(2007). Recall that in their approach, SVM is applied to establish
a hyperplane in the feature space to distinguish images of cells
under different perturbation. Then the unit normal vector of the
hyperplane is used as a profile and cosine similarity between profiles
is used to quantify the difference. To duplicate their method, we
obtain a profile between control and each treatment set. In our
graph-based method, we use graph transition energy defined in
Equation (5) to quantify the difference in the transformed feature
space by minimizing Equation (6) with MI and MC as the training
examples. Because of a small set of training data, we determine the
number of the nearest neighbors from {2,4,6,...,20,∞} via leave-
one-out validation based on the classification performance of Zhu
et al.’s (2003) semi-supervised learning method. It is observed from
Figure 6 that the accuracy rate is robust to the number of the nearest
neighbors. Therefore, we just use six nearest neighbors for this task.

We repeated the above trial 1000 times to approximate the
distribution of the similarity of profiles and the distribution of the
energy values to determine which method has higher power of
discrimination. In our experiment, we also compared the energy
distribution obtained in the feature space without transformation to
demonstrate the effectiveness of the re-weighting process. Figure 7
plots the distribution of the resulting 1000 quantification for the
1st (pure MI, 0% MC), 6th (mixture of MI and MC with equal
proportions, 50% MC) and 11th (pure MC, 100% MC) treatment
sets by different approaches. The result shows that the approach
proposed by Loo et al. (2007) yields a large overlapping area among
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(a)

(b)

(c)

Fig. 7. Distributions of the similarity of profiles as proposed by Loo et al.
(2007) (a) and distributions of energy estimated by the graph-based method
with (c) and without (b) feature space transformation for the 1st (pure MI,
0% MC), 6th (mixture of MI and MC with equal proportions, 50% MC) and
11th (pure MC, 100% MC) treatment sets.
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Fig. 8. KL divergence of the distributions of the quantification of the
difference between control (pure MI) and the treatment sets with increasing
proportion of MC.

these distributions, implying that it is quite likely that their approach
will fail to quantify that a sub-sample of MI is more similar to raw MI
(control) than a mixture set of MI and MC. In contrast, our method
yields a small overlapping area and will quantify the difference
in a correct order. Though without transformation, the overlapping
area is still small, but the mean between pure MI and pure MC is
closer than that with transformation. Next, for all treatment sets,
we estimate the KL divergence to measure the difference of the
distributions of the quantification. For an ideal method, the KL
divergence should increase gradually and then surge immediately
after the proportion of MC is increased to more than 50%. Figure 8
plots the result, which reveals that our approach has the highest
discrimination power and that the transformation of the feature space
actually improves the quality of quantification substantially.

Next, we evaluated whether the quantification by our approach
actually reflects the morphological difference. We computed the

Table 2. Graph transition energy between the treatment sets with different
levels of mitochondrial fragmentation

MI MP1 MP2 MP3 MC

MI 0.321 0.269 0.164 0.024
MC 0.024 0.092 0.145 0.261

Mito-Q range 0.00–0.05 0.05–0.15 0.15–0.29 0.29–0.79 0.82–1

energy between each partially fragmented subset and MI/MC in
the transformed feature space. The result is shown in Table 2. As
expected, the energy values are in the same order as their score of
fragmentation measured by human inspectors with aid of Mito-Q.
In our approach, the value of the objective function J(κ) indicates
how well the data are separated in the transformed feature space.
If J(κ) approaches the lower bound of the objective function given
in Proposition 3.1, then the data of extremely different classes can
be separated well, which implies that the feature set characterizes
the difference well, and that the confidence of our quantification is
high. In this case, the lower bound of J is equal to −7.2 (λ=0.1 and
n=72). With the optimal κ learned from MI and MC sets, J(κ) can
reach −6.040 in the transformed space, suggesting a high confidence
for the quantification.

4.3 Analysis of Annonaceous acetogenins
We applied our method to the study of Annonaceous acetogenins.
More than 250 compounds in the Annonaceous acetogenin family
have been isolated from Annonaceae plants. In this article, we report
our results with muricin A and squamocin, two members in the
family with the potential of triggering mitochondria fragmentation
and apoptosis in tumor cells. We measured the effects of the
compounds at different time points by quantifying mitochondrial
morphology changes on Chinese hamster ovary (CHO) cells for 3
days. Besides, we consider the effect of DMSO as the control. For
each group (a compound–day combination), we acquired images,
segmented them into 20–70 single cells, and then applied our method
to analyze the results. We found that the values of graph transition
energy measured against DMSO for both muricin A and squamocin
decrease over time as shown in Figure 9. The lower the energy
the higher the morphological difference compared with the DMSO
groups. That is, from Figure 9, we can conclude that squamocin
induces more fragmented mitochondria than muricinAin CHO cells.
This conclusion can be verified by human inspection. Figure 10
shows the representative images in each group. We can clearly see
that on day 2, mitochondria of squamocin-treated cells have large
round shape, indicating a high degree of fragmentation, while on the
same day, mitochondria of muricin A-treated cells are much smaller.
Our approach allows us to automatically quantify to what extent the
difference is. This is crucial for large scale studies where human
inspection becomes increasingly time-consuming and error-prone.

Again, we can compute graph transition energy between each pair
of image groups of muricin A and squamocin and apply MDS to
plot all image groups in a 2D space as shown in Figure 11. Arrows
in the plot indicate the time course of the morphological change
by these compounds. The plot clearly shows a drastic change of
mitochondrial morphology from day 1 to day 2 in squamocin-treated
cells.
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Fig. 9. Comparing the effect of mitochondrial fragmentation by squamocin
and muricin A in CHO cells.

Day 0 Day 1 Day 2 Day 3

(a)

(b)

(c)

Fig. 10. Representative images of the cells after treated by DMSO (a),
muricin A (b) and squamocin (c) for a certain number of days.

5 CONCLUSION
In the end, we summarize our contributions as follows:

• We defined graph transition energy to quantify morphological
difference of two cell-image collections under different
perturbations.

• We applied a spectral graph theoretic regularization to re-
weight the feature space according to training examples of
extremely different cases. Experimental results show that our
feature space transformation method actually improves the
quality of classification and quantification. The method also
allows for calibration by providing a confidence score of the
quantification.

• We demonstrated how to quantify morphological difference of
collections of cell images in our approach and showed that our
approach has a higher discrimination power than a competing
approach by Loo et al. (2007).

• We showed that after applying our feature space transformation
method, the performance of a semi-supervised learning method
by Zhu et al. (2003) for subcellular localization can be
improved significantly.
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Fig. 11. Morphological similarity of mitochondria in different image groups
by MDS according to the pairwise graph transition energy values.

• Coupling with a k-NN regression method, we demonstrated
that our transformation method improves the accuracy of the
estimation of partial fragmentation of mitochondria in cell
images, and that our method is more effective than NCA.

• In Section 4.3, we demonstrated a case study of two
Annonaceous acetogenin compounds and their effects to
mitochondrial fragmentation.

Our approach is not specific to any particular morphological
differences and can potentially be applied to quantify any difference
with an appropriate set of features. Therefore, it has the potential to
rapidly screen many drug candidates and understand their effects. In
our future work, we will apply this approach to continue our study of
Annonaceous acetogenins and their various effects to mitochondria.
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