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Abstract—The increasing availability of network data is leading
to a growing interest in processing of signals on graphs. One no-
table tool for extending conventional signal-processing operations
to networks is the graph Fourier transform that can be obtained
as the eigendecomposition of the graph Laplacian. In this letter,
we used the graph Fourier transform to define a new method for
generating surrogate graph signals. The approach is based on sign-
randomization of the graph Fourier coefficients and, therefore, the
correlation structure of the surrogate graph signals (i.e., smooth-
ness on the graph topology) is imposed by the measured data.
The proposed method of surrogate data generation can be widely
applied for nonparametric statistical hypothesis testing. Here, we
showed a proof-of-concept with a high-density electroencephalog-
raphy dataset.

Index Terms—Electroencephalography (EEG), graph Lapla-
cian, graph signals, nonparametric hypothesis testing, phase
randomization, surrogate data.

I. INTRODUCTION

N ETWORK modeling and analysis is an increasingly im-
portant topic in many disciplines of science. The signal

processing community has found interest in developing and tai-
loring classical operations to graphs [1], [2]. In this Letter, we
propose to extend the widespread method of phase randomiza-
tion to graph signals.

Statistical hypothesis testing works by invalidating a given
null hypothesis that expresses that the measured effect is not
present; e.g., it can plausibly be explained by “randomness.”
The method of phase randomization has been proposed to gen-
erate surrogate data under the null hypothesis that the measured
signal is part of a class of stationary signals with prescribed
second-order statistics [3], [4]. Practically, data (e.g., a time
course or an image) are transformed into the Fourier domain
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where the phases of the Fourier coefficients are randomly per-
muted or generated. Each realization of the surrogate data is then
obtained by a different randomization followed by the inverse
Fourier transform (IFT). This method is widely deployed be-
cause it leads to a more realistic (and stronger) null hypothesis;
e.g., direct permutation of samples would completely destroy
correlation structure, while it is preserved in phase-randomized
surrogate data.

Complex datasets can benefit from representations based on
graphs (i.e., a topology described by vertices and edges) and
graph signals (i.e., a signal that is expressed on the vertices). The
emerging field of signal processing on graphs has extended and
generalized already many classical signal operations to graphs
such as Fourier [5], [6] and wavelet analysis [7]. In these tools,
the graph Laplacian operator is used to define a spectral decom-
position that is similar to the Fourier transform (FT) on regular
grids [1], [8].

Here, we propose a novel method for generating surrogate
graph signals that preserves correlation structure as captured by
the graph Laplacian [9]. In particular, we combine the graph
spectral decomposition with a sign-randomization of the graph
Fourier coefficients.

Outline of the paper: Section II briefly reviews graph theory
and the graph Fourier transform (GFT); Section III describes
the proposed method for generating surrogate graph signals;
Section IV shows the feasibility of the approach by an example
graph and graph signal; Section V concludes the paper and
provides extensions and future research directions.

II. SPECTRAL GRAPH TRANSFORM

A. Graph Signal

Let us consider a graph G = (X,E,W ), where X denotes
the ensemble of N vertices (i.e., |X| = N ), E the ensemble of
edges connecting the vertices, and W the adjacency matrix. The
positive real-valued edge weight Wi,j represents the strength of
the connection between the ith and the jth node. In a binary
graph, Wi,j is either 0 or 1 indicating the presence of an edge;
in a weighted graph, Wi,j indicates the (positive) strength. For
an undirected graph, which is the case we will assume further
on, the matrix W is symmetric by construction.

A graph signal is an N-dimensional vector x that associates a
value to each vertex.

B. Graph Fourier Transform

The graph Laplacian operator is defined as L = D − W ,
where the degree matrix D is a diagonal matrix whose ith ele-
ment Di is the degree of the ith vertex; i.e., the sum of all weights
of edges of this vertex. The graph Laplacian of an undirected
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Fig. 1. A) Left: the edges between the 235 EEG electrodes. Right: the adja-
cency matrix W . B) Left: the corresponding normalized Laplacian matrix

�L.
Right: the eigenvalues of the normalized Laplacian matrix. C) Eigenvectors cor-
responding to eigenvalues λl with l = 2 (left) and l = 221 (right). Interpolation
between vertices (i.e., EEG electrodes) was performed for visualization.

graph is real and symmetric, and, thus it has a complete set
of orthonormal eigenvectors, V = [vl ]l=0,1,...,N−1 , that relate
to nonnegative eigenvalues satisfying LV = V Λ. The basis V
formed by the eigenvectors of the graph Laplacian constitutes
the GFT [1]. The eigenvalues can be interpreted as frequencies,
and the eigenvectors as associated “oscillatory” signals. For
spatial graphs that embed a regular grid with periodic boundary
conditions, the conventional discrete FT is retrieved [5], [6].
For instance, the cycle graph leads to the equivalent of the one-
dimensional FT; for each frequency, the complex exponential is
split in two 90° phase-shifted eigenvectors (similar to a sin/cos
pair) with the same eigenvalue (frequency) [10]. For more gen-
eral graphs, these basis functions still correspond to our notion
of FT; i.e., for larger eigenvalues, the oscillatory nature of the
associated eigenvectors increases as well [6]. Since the eigen-
vectors are real-valued, the coefficients are also real-valued, and
they only carry amplitude and sign.

Depending on the graph properties and on the application,
it can be useful to consider alternative definitions of the graph
Laplacian [5]. For instance, when the graph has a heterogeneous
degree distribution, it is often convenient to consider the sym-
metrically normalized graph Laplacian:

�L = D−1/2LD−1/2

where each weight Wi,j is normalized by a factor of
1/

√
DiDj [1].

Fig. 2. A) GA waveforms of all electrodes time locked with the subject’s
response (red line) between 200-ms pre- and 500-ms postresponse. B) Topogra-
phy (P3f topography) of the positive peak occurring 125-ms postresponse (i.e.,
tP3f green arrow). Interpolation was performed for visualization.

Fig. 3. A) An example of a surrogate data topography for the P3f topography.
Interpolation was performed for visualization. B) Graph spectrum. Red and grey
points indicate original and surrogate graph spectrum c, respectively. The inset
shows a detailed view.

The GFT coefficients of a graph signal x are obtained by
the projection c = V T x. The inverse transform corresponds
to x = V c. This unitary transform preserves energy (Parseval
property).

III. RANDOMIZATION IN THE SPECTRAL GRAPH DOMAIN

In the classical phase-randomization method, the amplitudes
of the measured data’s FT coefficients determine those of the
surrogate data, which implies that the power spectral density of
the surrogates is imposed as well as the autocorrelation in virtue
of the Wiener–Khintchine theorem [3].

Similarly here, after transforming the measured graph signal
into the spectral graph domain, we propose randomization by
permuting or randomly generating the signs of the GFT coef-
ficients c. Next, the inverse GFT provides a realization of the
surrogate graph signal. The graph equivalent of phase random-
ization preserves the amplitudes of the GFT coefficients and
effectively imposes the surrogates’ autocorrelation as defined
via the graph Laplacian [9]. Specifically, under the null hypoth-
esis, the measured graph signal is assumed part of the class
of stationary signals with prescribed power spectral density or,
equivalently, autocorrelation structure [9]. The null distribution
of a test statistic can then be obtained from the surrogate graph
signals and compared against its value for the measured signal.
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Fig. 4. A) Null distribution of the correlation coefficients for an EEG topography for which ρP 3f is statistically not significant (Top) and significant (Bottom).
The distribution is binned for visualization purposes. B) ρP 3f for each time point of a single trial between 200-ms pre- and 500-ms postresponse. Red and
green lines indicate the subject’s response and the time tP3f , respectively. Time points highlighted in grey are statistically significant using the proposed GFT
sign-randomization, those in black using naı̈ve spatial random permutation. C) Topography at the time point with the highest (significant) correlation (blue arrow
in B). Interpolation was performed for visualization. D) Percentage of trials that have a statistically significant ρP 3f for an interval around the tP3f (–25 ms to
25 ms). Zero corresponds to time tP 3 f .

IV. APPLICATION TO EEG

We chose high-density electroencephalography (EEG) to
demonstrate the feasibility of the proposed method. We used
a single-subject five-box visuospatial selective attention task
dataset [11]. In the experiment, a monitor was showing five
empty boxes arranged horizontally above the center of the screen
that was placed in front of the subject. The subject was then in-
structed to press a response button whenever a disc appeared at
the attended location.

We can build a spatial graph representation of the EEG cap
(i.e., 235-electrodes cap) by associating each electrode with a
vertex and encoding information of spatial neighborhood into
the adjacency matrix [see Fig. 1(A)]. An edge between two
vertices is present if the Euclidean distance between their three-
dimensional coordinates does not exceed r:

Wi,j =
{

1, if dist (vi, vj ) < r
0, otherwise.

We use r = 4 cm, which leads to a minimum/mean/maximum
number of neighbors of 4/11/18. A similar scheme has been
used to build a brain graph from magnetic resonance imaging
(MRI) data [12]. We then use the eigendecomposition of the
normalized Laplacian to define the GFT [see Fig. 1(B)]. Indeed,
the eigenvectors associated with low eigenvalues are smooth
and have for instance less zero-crossing than those with higher
eigenvalues [see Fig. 1(C)].

Let us now consider a single EEG topography (i.e., reflecting
the spatial distribution of the electrical potential) as a graph
signal for which we can create surrogate signals with similar
smoothness.

One common question in EEG analysis is to determine the
similarity between a grand-average (GA) event-related-potential
(ERP) topography (i.e., topography obtained by averaging single
trial topographies) and topographies of single trials. This is

important since the analysis of GA ERP features only fails
to address the effects of behavioral tasks on the dynamics of
cortical activity in single trials [11].

Here, we show that surrogate graph signals obtained using
the proposed method can be employed to address this ques-
tion with a stronger control of false positives than naı̈ve spatial
random permutation. The GA ERP topography is obtained by
averaging the EEG data across 100 trials (time locked to the
subject’s response: –200 ms pre- to 500-ms postresponse) and
by considering the time point tP3f at which the GA waveforms
present a positive peak [i.e., tP3f = 125 ms postresponse, see
Fig. 2(A)]. The positive peak (P3f) had a large activation maxi-
mal at forehead sites [see Fig. 2(B)] in agreement with previous
studies [13].

Using the proposed procedure with sign-randomization, we
obtained Ns = 999 surrogate graph signals for the P3f topogra-
phy, which allows determining p-values at a resolution of 0.1%.
In Fig. 3(A), we show one realization of such a surrogate sig-
nal. By construction, the amplitudes of GFT coefficients for the
original (c) and the surrogate data (c̃) are identical, but their
signs differ [see Fig. 3(B)].

We can now obtain the null distribution of the Pearson corre-
lation coefficient between an EEG topography at a given time
point and trial, and the surrogate P3f topographies. Correlation
with the true P3f topography (ρP 3f ) can then be considered
significant when it is unlikely to occur according to this null
distribution [see Fig. 4(A)]; i.e., when ρP 3f exceeds the 99th
percentile p99 , we reject the null hypothesis at α-level 1%, which
is the probability of rejecting the null when it is true [14].

In Fig. 4(B), we report an example of a single-trial’s correla-
tion curve between instantaneous EEG topographies and the true
P3f topography. The time points highlighted in gray are those
at which the correlation is statistically significant using the pro-
posed method (α-level = 1%). In black, significant correlation
is indicated according to naı̈ve spatial random permutation to
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generate surrogates. As expected, this null hypothesis is much
weaker and less realistic (i.e., it does not impose correlation
structure), and thus it leads to more false positives at the same
α-level. Also notice that at the moment of maximum correla-
tion, the EEG topography presents a large positive activation
at the forehead electrodes similar to the P3f topography [see
Fig. 4(C)].

With our method, we can count the number of trials in which
this similarity is significant in a given interval (e.g., 50 ms around
tP3f ) by repeating the procedure with all the trials [Nt = 100,
see Fig. 4(D)]. The majority of the trials (55%) have a positive
frontal activation similar to that of the P3f topography 10 ms
after tP3f . Despite the decreased similarity over time, the frontal
activation is retained in around 40% of the trials within the
50-ms interval around tP3f . These results demonstrate that the
frontal positive peak is preserved across single repetitions [13]
showing the value of surrogate graph signals in assessing single-
trial responses.

Furthermore, extensions of nonparametric testing in EEG
analysis could include clustering of adjacent temporal samples
such as proposed in [15].

V. CONCLUSION AND FUTURE EXTENSIONS

We proposed a novel framework for the generation of
surrogate graph signals based on the GFT. Inspired by
classical phase randomization of FT coefficients, we applied
sign-randomization to the real-valued GFT coefficients. By
construction, the power spectral density of the surrogate graph
signals will be matched to spectral information of the original
graph signal and as such maintain autocorrelation [9], [16].

We demonstrated a proof-of-concept with a high-density EEG
dataset of 235 channels. Surrogate graph signals were generated
that preserved “smoothness” of the reference EEG topography.
We showed how the surrogate data could then be used to gen-
erate a null-distribution of correlation coefficients to evaluate
the similarity between EEG topographical maps. We showed
that this approach could contribute to analyze the effects of
behavioral tasks on single-trial EEG topographies.

To conclude, we highlight a few extensions that could further
increase the applicability of the proposed method.

A. Amplitude Adjustment

The amplitude histogram of the surrogate graph signal is not
guaranteed to match the one of the original signal. Therefore, as
in the original method [3], it is possible to adjust the amplitudes
after reconstruction of the sign-randomized GFT coefficients
using histogram matching.

B. Increased Randomization

Sign-randomization of real values has less degrees-of-
freedom than phase randomization of complex values. How-
ever, it is possible to increase the amount of randomization by
considering coefficients with close eigenvalues; i.e., GFT coef-
ficients corresponding to such a group of K eigenvalues can be
randomized using an arbitrary K-dimensional unitary transform.

C. Time-Dependent Graph Signals

In the case of time-dependent graph signals, the method can
be combined with conventional phase randomization in the tem-
poral Fourier domain. Similar schemes for spatiotemporal grid-
ded data have been proposed for functional MRI [17]. In this
case, the surrogate x̃ would be obtained from the original time-
dependent graph signal x (N × T ) as

x̃ = V SS V T xFST F T

where SS ∈ RN ×N is a diagonal matrix encoding sign-
randomization of the GFT coefficients; ST ∈ RT ×T is a di-
agonal matrix encoding phase randomization of the temporal
Fourier coefficients [3], [4]; F and F T indicate temporal FT
and IFT, respectively. Note that the sign-randomization of the
GFT coefficients is the same over time in order to preserve the
spatiotemporal correlation structure of the measured signal.
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