A spectral sequence for the homology of a finite algebraic delooping

Birgit Richter joint work in progress with Stephanie Ziegenhagen

> Fourth Arolla Conference on Algebraic Topology 2012

*E*_n-homology

A resolution spectral sequence

A Blanc-Stover spectral sequence

Examples

Little *n*-cubes

Let C_n denote the operad of little *n*-cubes. $C_n(r)$, $r \ge 0$. n = 2, r = 3:

 C_n acts on and detects *n*-fold based loop spaces.

*E*_n-homology

 $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \overline{A}_* denote the augmentation ideal.

The sth E_n -homology group of \bar{A}_* , $H_s^{E_n}(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_* .

Theorem [Fresse 2011]

There is an *n*-fold bar construction for E_n -algebras, B^n , such that

$$H_s^{E_n}(\bar{A}_*)\cong H_s(\Sigma^{-n}B^n(\bar{A}_*)).$$

I.e., E_n -homology is the homology of an *n*-fold algebraic delooping.

Some results

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Livernet-Richter (2011): Functor homology interpretation for $H_*^{E_n}$ for augmented commutative algebras.

 $H_*^{E_n}(\bar{A}_*) \cong HH_{*+n}^{[n]}(A_*)$, Hochschild homology of order *n* in the sense of Pirashvili.

What is $H_*^{E_n}(\bar{A}_*)$ in other interesting cases such as Hochschild cochains, $A_* = C^*(B, B)$, or $A_* = C_*(\Omega^n X)$?

In the following k is a field, most of the times $k = \mathbb{F}_2$ or $k = \mathbb{Q}$. The underlying chain complex of A_* is non-negatively or non-positively graded. Over \mathbb{F}_2 : n = 2; for \mathbb{Q} : arbitrary n.

1-restricted Lie algebras

Definition

A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2 -vector space, \mathfrak{g}_* , together with two operations, a Lie bracket of degree one, [-,-] and a restriction, ξ :

$$\begin{array}{ccc} [-,-] \colon & \mathfrak{g}_i \times \mathfrak{g}_j \to \mathfrak{g}_{i+j+1}, & i,j \geq 0, \\ & \xi \colon & \mathfrak{g}_i \to \mathfrak{g}_{2i+1} & i \geq 0. \end{array}$$

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

[a, [b, c]]+[b, [c, a]]+[c, [a, b]] = 0 for all homogeneous $a, b, c \in \mathfrak{g}_*$.

The restriction interacts with the bracket as follows:
 [ξ(a), b] = [a, [a, b]] and ξ(a + b) = ξ(a) + ξ(b) + [a, b] for all homogeneous a, b ∈ g_{*}.

1-rL: The category of 1-restricted Lie algebras.

1-restricted Gerstenhaber algebras

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2 -algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

(Poisson relation)

[a, bc] = b[a, c] + [a, b]c, for all homogeneous $a, b, c \in G_*$.

(multiplicativity of the restriction)

 $\xi(ab) = a^2\xi(b) + \xi(a)b^2 + ab[a, b]$ for all homogeneous $a, b \in G_*$.

1-rG: the category of 1-restricted Gerstenhaber algebras. In particular, the bracket and the restriction annihilate squares: $[a, b^2] = 2b[a, b] = 0$ and $\xi(a^2) = 2a^2\xi(a) + a^2[a, a] = 0$. Thus if 1 denotes the unit of the algebra structure in G_* , then [a, 1] = 0 for all a and $\xi(1) = 0$.

Free objects and indecomposables

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_* .

The free commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_* :

$$1rG(V_*) = S(1rL(V_*)).$$

For $G_* \in 1rG$ let $Q_{1rG}(G_*)$ be the graded vector space of indecomposables.

Note: $Q_{1rG}(G_*) = Q_{1rL}(Q_a(G_*)).$

Homology of free objects

Lemma

$$H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)).$$

Proof: Let X be a space. F. Cohen desribes $H_*(C_2(X); \mathbb{F}_2)$. Observation by Haynes Miller: $H_*(C_2(X); \mathbb{F}_2) \cong 1rG(\bar{H}_*(X; \mathbb{F}_2))$. (Dyer-Lashof operations only give algebraic operations.) Take X with $\bar{H}_*(X; \mathbb{F}_2) \cong H_*(\bar{A}_*)$, then $H_*(E_2(\bar{A}_*)) \cong H_*(C_2(X); \mathbb{F}_2)$.

Resolution spectral sequence

Theorem There is a spectral sequence

$$E^2_{p,q} \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H^{E_2}_{p+q}(\bar{A}_*)$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$. $E_{p,q}^1: H_q^{E_2}(E_2^{p+1}(\bar{A}_*)) \cong H_q(E_2^p(\bar{A}_*))$

$$H_q(E_2^p(ar{A}_*))\cong 1rG^p(H_*ar{A}_*)_q\cong Q_{1rG}(1rG^{p+1}(H_*ar{A}_*))_q.$$

 d^1 takes homology wrt resolution degree.

Example

For X connected: $(\mathbb{L}_{\rho}Q_{1rG}(H_*(C_*(\Omega^2\Sigma^2X;\mathbb{F}_2)))_* = (\mathbb{L}_{\rho}Q_{1rG}(1rG(\bar{H}_*(X;\mathbb{F}_2)))_*.$ This reduces to $\bar{H}_q(X;\mathbb{F}_2)$ in the $(\rho = 0)$ -line and

$$H_q^{E_2}(C_*(\Omega^2\Sigma^2X;\mathbb{F}_2))\cong \overline{H}_q(X;\mathbb{F}_2).$$

The rational case is much easier:

$$H_*(E_{n+1}\bar{A}_*)\cong nG(H_*(\bar{A}_*)),$$

the free *n*-Gerstenhaber algebra generated by the homology of \bar{A}_* . We get:

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_{n+1}}(\bar{A}_*)$$

for every E_{n+1} -algebra \bar{A}_* over the rationals.

General Blanc-Stover setting

Let C and \mathcal{B} be some categories of graded algebras (*e.g.*, Lie, Com, *n*-Gerstenhaber etc.) and let \mathcal{A} be a concrete category (such as graded vector spaces) and $T: C \to \mathcal{B}, S: \mathcal{B} \to \mathcal{A}$. If TF is is S-acyclic for every free F in C, then there is a Grothendieck composite functor spectral sequence for all C in C

$$E^2_{s,t} = (\mathbb{L}_s \overline{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- ▶ Note: *T*, *S* non-additive.
- ► $\bar{S}_t(\pi_*B) = \pi_t(SB)$ if *B* is free simplicial; otherwise it is defined as a coequaliser.
- ► S̄ takes the homotopy operations on π_{*}B into account (B a simplicial object in B): π_{*}B is a Π-B-algebra.
- B = Com: π_{*}(B) has divided power operations. B = rLie: π_{*}B inherits a Lie bracket and has some extra operations.

In our case

Theorem

Hochschild cochains, rational case

Let V be a vector space. Then $C^*(TV, TV)$ is an E_2 -algebra. How close is $H^{E_2}_*(\bar{C}^*(TV, TV))$ to V, *i.e.*, how free is $C^*(TV, TV)$ as an E_2 -algebra?

Proposition

For $V = \mathbb{Q}$, *i.e.* $TV = \mathbb{Q}[x]$ the E_2 -homology of the reduced Hochschild cochain complex is non-trivial in all degrees $r \ge -1$, more precisely

 $H_r^{E_2}(\overline{C}^*(\mathbb{Q}[x],\mathbb{Q}[x]))\cong\mathbb{Q}$

for all $r \geq -1$.

Thus in this case E_2 -homology of the Hochschild cochains on $T\mathbb{Q}$ is much larger than the vector space \mathbb{Q} we started with.

The calculations uses the equivalence of categories of *n*-Lie algebras and graded Lie-algebras given by *n*-fold (de)suspension. Thus (up to suspension) we have to calculate ordinary Lie-homology of $AQ_*(HH^*(\mathbb{Q}[x],\mathbb{Q}[x]))$ and this is concentrated in homological degree zero and there it is $\mathbb{Q}\langle x_0, y_{-1}\rangle$ with trivial 1-Lie structure.

 $\infty > dim(V) > 2$

In these cases we can determine the input for the Blanc-Stover spectral sequence:

$${\it AQ}_*({\it HH}^*({\it TV},{\it TV})|\mathbb{Q};\mathbb{Q})\cong {\it HH}^{(1)}_{*+1}(\mathbb{Q}
times {\it M}(-1);\mathbb{Q})$$

and the first Hodge summand $HH^{(1)}_*(\mathbb{Q} \rtimes M(-1); \mathbb{Q})$ is additively isomorphic to the free graded Lie-algebra generated by the graded vector space M(-1). However, $M(-1) = HH^1(TV, TV)$ is *not* free as a Lie-algebra.

Chains on iterated loop spaces

Let k be \mathbb{Q} and let X be an (n + 1)-connected nice topological space.

Then $H_*(\Omega^{n+1}X;\mathbb{Q}) \cong S(\Sigma^{-n}\pi_*(\Omega X)\otimes\mathbb{Q})$ as *n*-Gerstenhaber algebras.

Proposition

$$\mathbb{L}_{s}(Q_{nG})(H_{*}(\Omega^{n+1}X;\mathbb{Q}))_{q}\cong \operatorname{Tor}_{s+1,q+n}^{H_{*}(\Omega X;\mathbb{Q})}(\mathbb{Q},\mathbb{Q}).$$

Conjecture

This does not just look like a shifted version of the Rothenberg-Steenrod E^2 -term, but there is an underlying isomorphism of spectral sequences. The RS-spsq converges to $H_*(X; \mathbb{Q})$.