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Abstract—Anomaly target detection methods for hyperspectral
images (HSI) often have the problems of potential anomalies and
noise contamination when representing background. Therefore, a
spectral–spatial hyperspectral anomaly detection method is pro-
posed in this article, which is based on fractional Fourier transform
(FrFT) and saliency weighted collaborative representation. First,
hyperspectral pixels are projected to the fractional Fourier domain
by the FrFT, which can enhance the capability of the detector to
suppress the noise and make anomalies to be more distinctive. Then,
a saliency weighted matrix is designed as the regularization matrix
referring to context-aware saliency theory and combined with the
FrFT-based collaborative representation detector. The saliency-
weighted regularization matrix assigns different pixels with differ-
ent weights by using both spectral and spatial information, which
can reduce the influence of the potential anomalous pixels embed-
ded in the background when applying collaborative representation
theory. Finally, to further improve the performance of the proposed
method, a spectral–spatial detection procedure is employed to
calculate final anomaly scores by using both spectral information
and spatial information. The proposed method is compared with
nine state-of-the-art hyperspectral anomaly detection methods on
six HSI datasets, including two synthetic HSI datasets and four
real-world HSI datasets. Extensive experimental results illustrate
that the proposed method’s detection performance outperforms
other nine well-known compared methods in terms of area under
the receiver operating characteristic (ROC) curve values, visual
detection characteristics, ROC curve, and separability.

Index Terms—Collaborative representation, context-aware
saliency, fractional Fourier transform, hyperspectral anomaly
target detection, spectral–spatial information.
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I. INTRODUCTION

I
N RECENT years, hyperspectral remote sensing has at-

tracted much attention on distinguishing different land sur-

face materials. Hyperspectral image (HSI) is a 3-D data cube

that contains rich spectral and spatial information simultane-

ously [1]. The spectral resolution of an HSI is no more than 10

nm, and the spectral range is from visible to even far-infrared

spectrum. Therefore, an HSI usually has hundreds of spectral

channels and can provide continuous spectral curves of the

materials. Compared with traditional visible or multispectral

remote sensing data, hyperspectral data contain richer spectral

information, which are more suitable for many remote sens-

ing applications, such as classification, target detection, and

anomaly detection [2], [3].

Hyperspectral anomaly detection can be seen as a special

type of target detection, where there is no prior information for

the target object. Therefore, a target is called as an anomaly in

the anomaly detection task. For the pixel under test (PUT) in

an HSI, it is classified as an abnormal pixel or a background

pixel by a hyperspectral anomaly detection method. As there

is no requirement for any prior information [4], hyperspectral

anomaly detection is viewed as an unsupervised binary clas-

sification problem [5]. As there is not enough information in

practical applications, hyperspectral anomaly detection has been

successfully applied in many important areas and scenarios [6],

such as environmental scenes monitoring, mineral exploration,

and military investigation [7].

In general, anomalies usually occur with low probabilities

in an HSI and their spectral curves are significantly different

with those of the background pixels [8]. To detect anomalies in

HSIs correctly, many kinds of hyperspectral anomaly detection

methods have been designed and proposed in the past decades.

The well-known Reed–Xiaoli (RX) method is the most typical

anomaly detection algorithm for HSIs in this field [9]. The RX

method uses Mahalanobis distance to calculate the difference be-

tween the PUT and the background pixels. When the whole HSI

is directly used for estimating the distribution of the background,

the RX method is called as the global version of RX (GRX) [10].

And if a local sliding window is adopted to estimate the reference

background, it is called as the local RX (LRX) [11]. Although

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9331-2278
https://orcid.org/0000-0002-7308-9590
https://orcid.org/0000-0003-2354-0141
https://orcid.org/0000-0001-7015-7335
mailto:zhaochunhui1965@163.com
mailto:lichuang2017@hrbeu.edu.cn
mailto:fengshou1988@163.com
mailto:sunan08@hrbeu.edu.cn
mailto:liwei089@ieee.org


ZHAO et al.: SPECTRAL–SPATIAL ANOMALY TARGET DETECTION METHOD BASED ON FRACTIONAL FOURIER TRANSFORM 5983

the RX method is used as a benchmark method for hyperspectral

anomaly detection, its false-alarm rate (FAR) is usually high and

its detection performance is not satisfactory. The main reason is

that the RX method assumes that the distribution of the back-

ground is the multivariate normal Gaussian distribution [12],

but the Gaussian distribution is too simple to model complex

characteristics of the real HSIs accurately [13]. Besides, the

problem that some anomalies and noise may contaminate the

background can also reduce its detection performance [14].

In order to reduce the influences of the problems mentioned

above, many revisions of the RX method have been proposed to

get a high detection performance. For example, the weighted-

RXD (WRX) method aimed to reduce the influence of anomalies

on the covariance matrix when estimating background statis-

tics [15]. The blocked adaptive computationally efficient outlier

nominator (BACON) method was proposed in a paper by Billor

et al. [16], which updates the background information based

on an iteration strategy to solve the background contamination

problem [17]. By taking advantage of nonlinear kernel function,

the kernel-RX (KRX) is proposed to map the original data to a

high-dimensional space, which can distinguish anomalies from

the background pixels more easily in that feature space [18]. Fur-

thermore, a modified KRX method was proposed in apaper by

Khazai and Mojaradi [19] to improve the calculation efficiency

of the traditional KRX. Du and Zhang [20] proposed the random-

selection-based anomaly detector method, which adopted a

sample random selection process to get a purified background

set by picking out some representative pixels iteratively. The

cluster-based anomaly detector, proposed by Carlotto [21], uses

the k-means clustering method to segment the whole HSI and

get a purer background. In order to suppress the noise in the

background, the principal component analysis (PCA) technique

is employed as a preprocessing procedure before using the RX

method [22].

However, although these methods show their ability to im-

prove the performance of RX, the basic distribution assumption

for the background is not changed. Generally speaking, this

assumption is not in line with the fact that the background

distribution is very complicated in real-world HSIs and cannot

be simply described as the Gaussian distribution [23]. To avoid

estimating the statistical distribution of the background, other

anomaly detection methods have been successfully proposed for

real-world HSIs. As sparse representation (SR) theory has been

successfully applied to image processing applications, some

anomaly detection methods based on SR have been proposed

for HSIs. For instance, a sparse representation hyperspectral

anomaly detector was proposed by Chen et al. [24]. This method

is based on the assumption that a background pixel can be

well represented by only a few atoms from a sparse dictionary.

Zhang et al. [25] proposed a hyperspectral anomaly detection

method by using the low-rank and sparse matrix decomposition

technique. This method decomposes the HSI data matrix into

three parts: a low-rank matrix, a sparse matrix, and a noise

matrix, which can provide more comprehensive information

about the background pixels and anomalies. The SR-based

methods have the advantage that there is no need to set up

an assumption for the statistical data distribution of the HSI

dataset [26]. To preserve the local geometrical structure and spa-

tial information in the HSI, an anomaly detection method based

on graph and total variation regularized low-rank representation

(GTVLRR) is proposed [27]. But they also have a drawback

that it is hard to select a suitable sparsity level as there is no

prior information that can be used. Li and Du [28] proposed

a collaborative representation-based anomaly detector (CRD)

for HSIs. Compared to SR-based methods, the CRD method

utilizes the constraint of l2 norm minimization, and the pixel

under test is represented by all background pixels, which is

easier to implement. Su et al. [29] combined PCA with CRD

to propose a new anomaly detection method, in which the usage

of PCA is to extract the main information of the background and

to remove anomalies and noise in the background.

There are still other hyperspectral anomaly detection methods

proposed in the related literature, such as the supporting vector

data description (SVDD) method [30]. In SVDD, a minimum

hypersphere boundary is calculated according to the HSI data,

and pixels beyond the boundary are decided as anomalies. The

anomaly detection methods mentioned above are most only

based on spectral signatures. As an HSI is viewed as a 3D data

cube [31], it not only contains abundant spectral information,

but also contains the spatial information. By taking advantage

of these characteristics, anomaly detection methods have been

designed by making use of both spatial information and spectral

information [32]. For example, local sparsity divergence (LSD)

detector proposed in paper [33] is a spectral–spatial anomaly

detection method. The assumption of the LSD method is that an

anomaly pixel cannot be represented by only a few background

pixels selected from its spectral neighbors or its spatial neighbors

simultaneously.

Although these hyperspectral anomaly detection methods

have proven their effectiveness in related studies, some other

important issues can also affect the detection performance of

these methods. The first problem is that the background infor-

mation is usually contaminated by the anomalies or noise [34].

As real-world HSIs commonly contain various materials with

different spectral properties, noise is inevitably included, which

can deteriorate the detection performance when modeling the

background. Besides, when using the whole HSI to extract

background pixels, anomalies may interfere the estimation of

the background. To reduce these effects, a sliding rectangular

window or dual window is adopted to select reliable background

pixels. However, some anomalies can also be selected as back-

ground pixels, which will reduce the detection performance of

the method. The second problem is how to make use of the

rich spatial information of HSIs, as taking advantage of both

spatial information and spectral information can improve the

performance of an anomaly detection method [35].

In order to solve these two issues, a novel spectral–spatial

anomaly target detection method based on fractional Fourier

transform (FrFT) , context-aware saliency, and collaborative

representation theory (SSFSCRD) is proposed for HSIs in this

article. First, an FrFT-based CRD is designed and the original

HSI data are projected to the FrFT domain. By taking advantage

of the fractional Fourier transform, the noise suppression and

discrimination capability of the detector between anomalies and
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background can be enhanced [36]. Then, a saliency-weighted

matrix is proposed for the FrFT-based CRD as the regularization

matrix. Inspired by the visual saliency theory, the similarity of

two pixels are not only depended on their spectral informa-

tion, but also related with their spatial position information.

The new saliency-weighted regularization matrix used in the

collaborative representation theory is designed based on this

idea, which can reduce the effect of the abnormal pixel infor-

mation mixed in the background when applying collaborative

representation theory. Hence, the background can be represented

more accurately and precisely. Finally, the SSFSCRD method

also contains a spectral–spatial detection procedure to get the

final results, which can use both spectral information and spatial

information to enhance the anomaly detection performance.

All of these three parts can ensure that the performance of

the proposed SSFSCRD method is better when compared with

other state-of-the-art detection methods. Extensive experiments

on two synthetic HSI datasets and four real-world HSI datasets

are carried out to show the effectiveness and performance of the

proposed method. When compared with nine state-of-the-art hy-

perspectral anomaly detectors, the detection performance of the

proposed method outperforms other compared detectors in terms

of area under the receiver operating characteristic (ROC) curve

(AUC) values, visual detection characteristics, ROC curves, and

separability. The main contributions of the proposed SSFSCRD

method are as follows.

1) The FrFT is employed to design the FrFT-based CRD in

the proposed method. By taking advantage of the FrFT,

not only the influence of noise on the detection accuracy

can be reduced, but also the discrimination between the

background and anomalies can be improved to some ex-

tent.

2) Learning from the relevant principles of visual saliency

theory, a saliency-weighted regularization matrix is pro-

posed according to context-aware saliency and combined

with the FrFT-based CRD. The new regularization ma-

trix uses both spectral and spatial information to set

the weights for the background pixels. By adjusting the

weights of each pixel in the selected background, the in-

terference of potential anomalies to the detection accuracy

is reduced.

3) A spectral–spatial detection procedure is designed and

integrated in the proposed method to get the final detection

results. Through the comprehensive utilization of both

spectral information and spatial information, the detection

performance of the proposed SSFSCRD method is further

improved.

The remainder of this article is structured as follows. Section II

introduces the details of the proposed method. The experimental

datasets, settings and results of the proposed method and other

methods are given in Section III. Section IV discusses and

analyzes the parameters of the proposed method. Finally, the

conclusion of this article is outlined in Section V.

II. THE PROPOSED METHOD

The proposed SSFSCRD method mainly includes three parts.

In the beginning, the HSI data is projected to fractional Fourier

domain by using FrFT. Then, a saliency-weighted FrFTCRD is

used to get the preliminary detection result of the HSI. Finally,

a spectral-spatial detection procedure is applied to get the fi-

nal anomaly detection result. The framework of the proposed

method is shown in Fig. 1.

A. Collaborative Representation-Based Detector

In order to explain the CRD method clearly, some math-

ematical definitions and notations are given first. Let X =
{xi}M×N

i=1 ∈ RL×M×N be a 3D HSI data cube, where L is the

number of spectral bands. xi is the ith spectral vector which can

be written as xi = (xi
1, x

i
2, . . . , x

i
L)

T . Denote the total number

of pixels inX asD, whereD = M ×N , andX can be rewritten

as a 2-D matrix X = {xi}Di=1 ∈ RL×D.

The basic idea of collaborative representation theory is that a

pixel belonging to the background of an HSI can be represented

by its spatial neighborhoods, while an anomaly cannot. The

spatial neighborhoods of a PUT form its background set, which

can be considered as a reconstruction dictionary used in the SR

theory. A sliding dual-window is adopted to select the spatial

neighborhoods of a PUT, and the pixels between the inner

window and the outer window are used as the background set, or

as atoms of the dictionary. For an under test pixely, letwin be the

size of the inner window andwout be the size of the outer window,

and the pixel number of the background set can be calculated

as s = wout × wout − win × win. Therefore, the background set

can be denoted as a matrix Xs = {xj}sj=1, where xj represents

a pixel between the outer and inner windows.

For an under-test pixel y, its collaborative representation

weight vector α is minimized by the following formulation:

argmin
α

||y −Xsα||+ λ||α||22 (1)

where λ is a Lagrange multiplier.

(1) is equivalent to the following formulation:

argmin
α

[αT (XT
s Xs + λI)α− 2αTXT

s y]. (2)

The weight vector α can be calculated by taking derivative

with regard to α of (2) and setting the resultant equation to zero,

which can be written as the following equation:

α = (XT
s Xs + λI)−1XT

s y. (3)

Considering the spectral similarity among the under-test pixel

and its each surrounding pixels in the matrix is different, so a

regularization matrix Γy is introduced as

Γy =

⎡

⎢

⎢

⎣

||y − x1||2 . . . 0

...
. . .

...

0 . . . ||y − xs||2

⎤

⎥

⎥

⎦

(4)

where x1,x2, . . . ,xs are the elements of the set Xs.

Adding the regulation Γy to (1), the optimization function is

modified as

argmin
α

||y −Xsα||+ λ||Γyα||
2
2. (5)

Accordingly, the final result of α can be written as

α = (XT
s Xs + λΓT

y
Γy)

−1XT
s y. (6)
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Fig. 1. Framework of the proposed method.

With the matrix Xs and the weight vector α, the PUT y can

be reconstructed as

ŷ = Xsα (7)

where ŷ is the reconstructed pixel of y.

The residual error between y and its reconstructed pixel ŷ can

be calculated as

r1 = ||y − ŷ||2 = ||y −Xsα||2. (8)

If r1 is larger than a given threshold σ, then the PUT is

determined as an anomaly.

B. Fractional Fourier Transform-Based CRD

The FrFT is an extension version of the traditional Fourier

transform (FT) [37]. By using FrFT, HSI pixels can be trans-

ferred into the fractional Fourier domain, and the features ob-

tained in this domain contains the information of both original

spectral domain and frequency Fourier domain. Projecting HSI

data to the fractional Fourier domain can not only suppress the

noise in the background, but also increase the discrimination

of anomalies. By taking advantage of these merits mentioned

above, FrFT is combined with CRD (FrFTCRD) to process the

HSI data in the proposed method.

Let xi = (xi
1, x

i
2, . . . , x

i
L)

T be a pixel in X = {xi}M×N
i=1 ,

and its representation through FrFT is denoted as ϕ(xi), where

ϕ(xi) = (xi
p(1), (x

i
p(2), . . . , x

i
p(L))

T can be calculated by the

following equation:

xi
p(u) =

1

L

L
∑

f=1

xi
fKp(f, u) (9)

in which u and f are indices and p is the fractional order of FrFT.

In (9), Kp(f, u) is defined as

Kp(f, u) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Aφexp[jπ(f
2cotφ− 2fucscφ+ u2cotφ)]

, φ �= nπ

δ(f − u), φ = 2nπ

δ(f + u), φ = (2n± 1)π

(10)

where the rotation angle φ is related to p as φ = pπ
2 [38], and

Aφ can be figured out by

Aφ =
exp[−jπsgn(sinφ)/4 + jφ/2]

|sinφ|
1
2

. (11)

To implement FrFT into CRD, the new optimization problem

can be written as

argmin
α

||ϕ̃(y)− ϕ̃(Xs)α||+ λ||Γϕ̃(y)α||
2
2 (12)

where ϕ̃(y) is the amplitude of ϕ(y), ϕ̃(Xs) = {ϕ̃(xj)}sj=1,

and Γϕ̃(y) is defined as

Γϕ̃(y) =

⎡

⎢

⎢

⎣

||ϕ̃(y)− ϕ̃(x1)||2 . . . 0

...
. . .

...

0 . . . ||ϕ̃(y)− ϕ̃(xs)||2

⎤

⎥

⎥

⎦

.

(13)

The weight vector α can be calculated by the following

equation:

α = (ϕ̃T (Xs)ϕ̃(Xs) + λΓT
ϕ̃(y)Γϕ̃(y))

−1ϕ̃T (Xs)ϕ̃(y). (14)

Then, the anomaly score is represented by

r1 = ||ϕ̃(y)− ϕ̃(Xs)α||2. (15)

C. Saliency-Weighted FrFTCRD

The regularization matrix Γy used in the CRD can assign

pixels in the background with different weights. These weights

are only calculated based on the spectral information, which

cannot well eliminate the influence of potential anomalies on the

background. To solve this problem, a new regularization matrix

is designed referring to the relevant principles of context-aware

saliency. The new regularization matrix can use both spectral and

spatial information to set the weights for the background pixels,

which can further reduce the influence of potential anomalies.

Combined with FrFT and CRD, a saliency-weighted FrFTCRD

is proposed for hyperspectral anomaly detection.

Detecting the salient regions of an image is a challenging

issue in the filed of computer vision. The context-aware saliency

detection method was proposed by Goferman et al. [39], and its
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basic idea is that salient regions are distinctive with respect to

both their local and global surroundings [40]. From the psycho-

logical point of view, human visual attention mechanism follows

four basic principles: local considerations, global considera-

tions, visual organization rules, and some prior information.

According to these four principles, the context-aware saliency

detection method defined a dissimilarity measure d between two

patches pi and pj of an image as [41]

d(pi, pj) =
dcolor(pi, pj)

1 + c× dposition(pi, pj)
(16)

where dcolor is the euclidean distance between patches pi and pj
in the color space, and dposition is the euclidean distance between

the positions of patches pi and pj .

It is easy to find that the dissimilarity measure is proportional

to the appearance difference and inversely proportional to the

positional distance. Based on this idea of saliency, we proposed

a hyperspectral dissimilarity measure to quantitatively represent

the dissimilarity between the under-test pixel y and a pixel xi in

the background set Xs. Let dposition be the relative positional dis-

tance between y and xi, the hyperspectral dissimilarity measure

dh can be defined as

dh(y,x
i) =

||y − xi||2
dposition(y,xi)

. (17)

By taking advantage of the hyperspectral dissimilarity mea-

sure dh, a new saliency-weighted regularization matrix ΓS
y

is

defined as

ΓS
y
=

⎡

⎢

⎢

⎢

⎣

||y−x
1||2

dposition(y,x1) . . . 0

...
. . .

...

0 . . . ||y−x
s||2

dposition(y,xs)

⎤

⎥

⎥

⎥

⎦

. (18)

This new saliency-weighted regularization matrix is com-

bined with FrFT and CRD to form a saliency-weighted

FrFTCRD method. The optimization function of the saliency-

weighted FrFTCRD method can be written as

argmin
α

||ϕ̃(y)− ϕ̃(Xs)α||+ λ||ΓS
ϕ̃(y)α||

2
2 (19)

where ΓS
ϕ̃(y) is defined as

ΓS
ϕ̃(y) =

⎡

⎢

⎢

⎢

⎣

||ϕ̃(y)−ϕ̃(x1)||2
dposition(ϕ̃(y),ϕ̃(x1)) . . . 0

...
. . .

...

0 . . . ||ϕ̃(y)−ϕ̃(xs)||2
dposition(ϕ̃(y),ϕ̃(xs))

⎤

⎥

⎥

⎥

⎦

. (20)

Accordingly, the weight vector α can be calculated by the

following equation:

α = (ϕ̃T (Xs)ϕ̃(Xs) + λ(ΓS
ϕ̃(y))

TΓS
ϕ̃(y))

−1ϕ̃T (Xs)ϕ̃(y).
(21)

Then, the anomaly score of the saliency-weighted FrFTCRD

method can be figured out by

r1 = ||ϕ̃(y)− ϕ̃(Xs)α||2. (22)

Algorithm 1: The Framework of SSFSCRD Algorithm.

Input:

X: Three-dimensional hyperspectral image; win: the

inner window size; wout: the outer window size; p: the

fractional order; the regularization parameter λ; the

weighting coefficient β.

Output:

Anomaly detection map.

1: forall Pixels do

2: For each under test pixel y, obtain its background set

Xs

3: Project y and Xs to the fractional Fourier domain

by using (9)

4: Calculate the new saliency weighted regularization

matrix by using (18)

5: Calculate the weight vector α by using (21)

6: Calculate the anomaly score according to (22)

7: endfor

8: for all pixels do

9: For each under test pixel y, calculate its final

anomaly score according to (23)

10: endfor

D. Spectral–Spatial Detection Procedure

Many studies have proved that taking advantage of spatial

information can improve the performance of a hyperspectral

anomaly detection method. Although the saliency-weighted

FrFTCRD has comprehensively utilized both spectral and spatial

information, a spectral–spatial detection procedure is proposed

in this section to make further use of spatial information.

According to the characteristics of hyperspectral remote sens-

ing, a pixel and its surrounding pixels in an HSI usually reflect

the same or similar ground objects. Therefore, when these pixels

are represented by CRD, their residual errors should be approx-

imately the same [42]. Based on this assumption, the spatial

information can be incorporated for HSI anomaly detection by

considering the relative position of a PUT and its neighbors. The

closer relative position between the PUT and a neighbor pixel

means their residual errors are more similar.

In this spectral–spatial detection procedure, the anomaly score

of an under-test pixel is assigned as the weighted value of its

residual error and the weighted average value of its adjacent

pixels’ residual errors. For a PUT y, this strategy can be written

as the following formula:

ry = βry1 + (1− β)
∑

i∈ψ

1

e
dposition((y),(xi))+|r

y

1
−ri

1
|

∑

j∈ψ
1

e
dposition((y),(xj))+|r

y

1
−r

j

1
|

ri1

(23)

where ry is the final anomaly score of the PUT y, ψ is the set

of its adjacent pixels, β is the weighting coefficient, and ry1 and

ri1 are the residual errors calculated by formula (22).

This spectral–spatial detection procedure uses relative posi-

tional information and anomaly scores of PUT and its adjacent
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Fig. 2. First synthetic dataset. (a) False-color image. (b) Ground truth.

pixels calculate anomaly score of the PUT, and can reduce the in-

fluence of noise contamination in the background. Furthermore,

this strategy is independent of the detection process, with less

calculation and easy to implement. The main steps of SSFSCRD

are summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, a number of experiments are conducted to show

the performance and effectiveness of the proposed method from

different perspectives. The details of two synthetic HSI datasets

and four real-world HSI datasets used in the experiments are

introduced first. Next, the relevant settings of the experiment

and the selected evaluation criteria are given. Finally, the ex-

perimental results of the proposed method and the compared

methods are analyzed.

A. Experimental Datasets

There are totally six hyperspectral datasets selected for con-

ducting experiments, which include two synthetic HSI datasets

and four real-world HSI datasets. These HSI datasets were cap-

tured by two different sensors over different kinds of scenes, and

their spatial resolution and spectral resolution are also different.

With the help of these different datasets, the performance and

effect of the proposed method can be tested more comprehen-

sively. The details of these HSI datasets are described in the

following part.

1) Synthetic HSI Datasets: The first one synthetic HSI

dataset (hereinafter referred to as S1) was collected over Pavia,

Northern Italy, by the Reflective Optics System Imaging Spec-

trometer (ROSIS) sensor [43]. Its size is 105× 100 pixels with

102 spectral bands. The spatial resolution is 1.3 m, and the

spectral resolution is 4 nm. Six anomalies were scattered in the

background with white noise to get the synthetic HSI dataset.

The sizes of these anomalies are 4× 3, 4× 3, 2× 2, 2× 2,

3× 3, and 2× 4, respectively. The false-color image of the

first synthetic data is shown in Fig. 2(a), and positions of six

anomalies are shown in Fig. 2(b).

The second synthetic HSI dataset (hereinafter referred to

as S2) was also collected by the ROSIS sensor, over Pavia

University, Northern Italy. So its spatial resolution and spectral

resolution are the same with those of the S1 dataset. The S2

dataset consists 300× 200 pixels and the number of its spectral

bands is 103. The synthetic anomalies are embedded into the

background by using the following equation [44]:

S = B × (1− p) + T × p (24)

Fig. 3. Second synthetic dataset. (a) False color image. (b) Ground truth.

Fig. 4. First real dataset. (a) False color image. (b) Ground truth.

where T is the pure anomalous pixel, B is the selected back-

ground pixel, and the p is the mixture percentage of the anoma-

lies. The false-color image of the second synthetic HSI data is

shown in Fig. 3(a), and the ground truth is given in Fig. 3(b). It

can be found that there are 25 anomalies in total, and the sizes

of these anomaly targets are 2× 1, 1× 2, 2× 2, and 3× 2,

respectively.

2) Real HSI Datasets: Four different real HSI datasets which

are widely used in many related studies are selected for the

experiment. These HSIs were captured over different locations

by two different imaging spectrometer sensors. Their scenes, the

number of spectral bands, spatial and spectral resolution, and

anomalies selected to be detected are also different. Therefore,

these four real HSI datasets are very suitable for testing the

comprehensive detection performance of the proposed method

under different scenes and circumstances.

The first real HSI dataset (hereinafter referred to as R1)

is collected by airborne visible infrared imaging spectrometer

(AVIRIS). It is a part of the real HSI of the San Diego Inter-

national Airport, USA [45]. The selected image contains 38

anomalies, and its size is 100× 100 pixels with 126 spectral

bands. The spatial resolution is 3.5 m, and the spectral resolution

is 10 nm. The false-color image of this dataset is shown in

Fig. 4(a). The actual distribution of 38 anomalies is shown in

Fig. 4(b).

The second real HSI dataset (hereinafter referred to as R2) is

also collected by the AVIRIS sensor [46]. It is a HSI of an airport

in Los Angeles, USA [47]. The spatial resolution is 7.1 m, and

its spectral resolution is the same as R1’s. The image has 224

spectral channels in wavelengths ranging from 400 to 2500 nm.

After removing the bands severely affected by moisture and the

low-signal-to-noise (SNR) bands, there are 204 spectral bands

remained. The size of the R2 HSI data is 100× 100 pixels, and
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Fig. 5. Second real dataset. (a) False-color image. (b) Ground truth.

Fig. 6. Third real dataset. (a) False-color image. (b) Ground truth.

Fig. 7. Fourth real dataset. (a) False-color image. (b) Ground truth.

there are three anomalies in it [6]. The false color image of the

R2 dataset is shown in Fig. 5(a), and its corresponding ground

truth is shown in Fig. 5(b).

The third HSI dataset (hereinafter referred to as R3) is an

urban scene of Texas coast, USA [48]. It is also captured by the

AVIRIS sensor, and its spatial resolution is 17.2 m. There are

207 spectral bands in this image, whose wavelengths range from

400 to 2500 nm. The image size of the HSI data is 100× 100
pixels, and are chosen as anomalies. The false color image of

the R3 HSI dataset is shown in Fig. 6(a), and its corresponding

ground truth is shown in Fig. 6(b).

The fourth real HSI dataset (hereinafter referred to as R4) was

collected by the ROSIS sensor over the Pavia city in Northern

Italy [49]. The spatial resolution is 1.3 m, and the spectral

resolution is 4 nm. The R4 image’s size is 150× 150 pixels,

and it has 102 spectral bands in wavelengths ranging from 430

to 860 nm. The vehicles in the R4 HSI dataset are selected as

anomalies [50]. The false-color image of the R4 HSI dataset and

the image of its ground truth are shown in Fig. 7(a) and (b).

B. Evaluation Criteria and Experimental Settings

In this part, the evaluation criterion, compared methods, and

parameter settings related to experiments are introduced as

follows.

1) Evaluation Criteria: In order to accurately evaluate and

analyze the performance detection efficiency of a hyperspectral

anomaly detector qualitatively and quantitatively, the ROC curve

and the AUC value are adopted as evaluation criteria [6].

The ROC curve is the most commonly used evaluation crite-

rion used in the area of hyperspectral anomaly detection [51].

It shows the relationship between the FAR and the true positive

rate (TPR) under different threshold. The FAR and TPR can be

figured out as follows, respectively.

FAR =
FP

FP + TN
(25)

TPR =
TP

TP + FN
(26)

where TP is the number of anomalies that were also predicted

as anomalies, TN is the number of background pixels that

were predicted correctly, FN is the number of anomalies but

wrongly predicted as background pixels, and FP is the number

of background pixels but wrongly predicted as anomalies [52].

For a set of methods, a method that has a higher TPR value

when compared with others under the same FAR can be consid-

ered to have better performance. The AUC value is used to show

the average performance of a method, which can be calculated by

carrying out the integral operator for ROC curve [53]. It should

be noted that the larger the value of AUC is, the better a detector

performs.

2) Compared Methods: To verify the performance of the pro-

posed method, nine hyperspectral anomaly detection methods

which are commonly used as compared methods in many studies

are selected for complete comparison. The compared methods

include the GRX method, LRX method, KRX method, CRD

method, KCRD method, PCA-RX method, FrFE+RX method,

GTVLRR method, and LSD method.

These methods are selected as competitors by considering the

diversity and popularity comprehensively. Specially, GRX and

LRX are two versions of the benchmark Reed–Xiaoli method

which are based on the statistical distribution hypothesis of the

background. CRD is the classical CRD. KRX and KCRD are

the RX and CRD methods combined with the kernel function

theory.

As the proposed method used FrFT and context-aware

saliency to suppress noise, reduce the effect of the anomalies

and enhance the discrimination between background pixels and

anomalies, some related detectors are chosen. FrFE+RX is the

combination of FrFT and RX proposed by Tao et al. [36].

In addition, as the proposed method takes advantage of both

spectral and spatial information, a spectral–spatial detector, the

LSD detector, is also added to the set of compared methods.

LSD is based on the assumption that an abnormal pixel cannot

be represented by very few background samples from the local

surrounding both in the spectral and spatial domains. GTVLRR

is the representative of the low-rank and sparse-based methods,

which incorporates the local geometrical structure and spatial

information of an HSI.

In summary, it can be found that different types of anomaly

detectors are chosen as competitors. Therefore, the choice of the

comparison methods is suitable and reasonable, which can be

used to show the performance of the proposed method effectively

and accurately.
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TABLE I
OPTIMAL PARAMETER SETTINGS FOR THE TESTED METHODS

3) Parameter Settings: All the programs and experiments are

run by MATLAB 2017 on a workstation with core i7-7700,

CPU@2.8 GHz and 16-GB RAM. The code for the proposed

SSFSCRD method is available online.1 The optimal parameter

settings of these compared methods are given in Table I. LRX

method has two parameters: inner window size win and outer

window size wout. KRX method has three parameters: inner

window size win, outer window size wout, and kernel parameter

σ. CRD method has three parameters: inner window size win,

outer window size wout, and regularization parameter λ. KCRD

method has four parameters: inner window size win, outer win-

dow size wout, regularization parameter λ, and kernel parameter

σ. PCA+RX method has just one parameter: optimal principal

component n. GTVLRR method has three parameters: tradeoff

parameters λ, β, and γ. LSD method has three parameters:

inner window size win, outer window size wout, and optimal

principal component n. There are five critical parameters in the

proposed method: inner window size win, outer window size

wout, fractional order p, Lagrange multiplier λ, and the weighting

coefficient β. The details of corresponding parameter selection

experiments and the effect of these parameters are conducted

and analyzed in tSection IV.

C. Experimental Results and Analysis

In order to evaluate the performance of the proposed method

comprehensively and convincingly, extensive experimental re-

sults are deeply discussed and analyzed in this part. Table II

shows the AUC values of the respective methods on all syn-

thetic and real HSI datasets, and the best value in each HSI

dataset is highlighted in italics. The AUC values of the proposed

method obtained in two synthetic HSI datasets and four real

HSI datasets are 0.9856, 0.9494, 0.9761, 0.9935, 0.9957, and

0.9989, respectively. It can be clearly found that the proposed

method is superior to all other compared methods on all six

1[Online]. Available: https://github.com/lichuang0529/SSFSCRD

TABLE II
AUC SCORES OF THE GRX, LRX, KRX, CRD, KCRD, PCA+RX, FRFE+RX,

GTVLRR, LSD, AND SSFSCRD METHODS ON SIX DATASETS

TABLE III
AUC SCORES OF THE GRX, LRX, KRX, CRD, KCRD, PCA+RX, FRFE+RX,

GTVLRR, LSD, AND SSFSCRD METHODS ON SIX DATASETS WITH THE

SAME DUAL WINDOW SIZES

datasets. Furthermore, as the spatial and spectral resolution of

the experimental HSIs is different, it can be observed that the

proposed method can provide a much more stable detection

result and have a good performance on datasets with different

spatial and spectral resolution. Results on these different datasets

can show that the proposed SSFSCRD method is suitable for

different kinds of datasets. Besides, AUC scores of SSFSCRD

method and compared methods on six datasets with the same

dual window sizes are shown in Table III. It can be declared

that the AUC values of SSFSCRD method is also superior to all

other compared methods on all six datasets with the same dual

window sizes.

Figs. 8–13 illustrate the visual anomaly detection result maps

of different methods on all six scenarios. In terms of visual

effects, it is obvious that the proposed method has the best

detection performance. As can be seen in Fig. 8, the noise

suppression effect and the discrimination ability between the

background and anomalies of the proposed method is good in

S1 because the fractional transform is employed in the proposed

method. As shown in the Figs. 9 and 12, the proposed method

can detect more pixels in the detection results of S2 and R3.

This phenomenon shows that the interference of the potential

anomalies to the detection results is much reduced by adjusting

the weight of each pixels in the saliency weighted matrix. In

the detection result maps obtained by the LSD method and the

proposed SSFSCRD method as shown in Figs. 9(i) and 10(i),

it is clear that the spectral–spatial postprocessing procedure

integrated in the proposed method can improve the detection

capability more effectively.
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Fig. 8. The visual detection maps of the first synthetic dataset. (a) GRX method, (b) LRX method, (c) KRX method, (d) CRD method, (e) KCRD method,
(f) PCA+RX method, (g) FrFE+RX method, (h) GTVLRR method, (i) LSD method, (j) SSFSCRD method.

Fig. 9. The visual detection maps of the second synthetic dataset. (a) GRX method, (b) LRX method, (c) KRX method, (d) CRD method, (e) KCRD method,
(f) PCA+RX method, (g) FrFE+RX method, (h) GTVLRR method, (i) LSD method, (j) SSFSCRD method.

Fig. 14 illustrates the ROC curves obtained for all methods

with six HSI datasets. For S1 dataset shown in Fig. 14(a), it

is clear that the proposed SSFSCRD method has better perfor-

mance than all the other anomaly detection methods, as the FAR

is about 0.08 when the TPR of the proposed SSFSCRD method

climbs to 1. For the S2 dataset revealed in Fig. 14(b), the result

of SSFSCRD demonstrates a better performance than other

anomaly detection methods. When the TPR of the proposed

SSFSCRD method is up to 1, the FAR is about 0.4. For the

R1 dataset shown in Fig. 14(c), it is easy to find that the ROC

curve of the proposed SSFSCRD method is always above those

of other anomaly detection methods. For the R2 dataset shown

in Fig. 14(d), the ROC curve of the proposed SSFSCRD method

rises more sharply than the other anomaly detection methods.

And when the TPR of the proposed SSFSCRD method is 1, the

FAR of the proposed SSFSCRD method is approximately 0.1.

For the R3 dataset, the ROC curve of the proposed SSFSCRD

and LSD are almost the same and the results of ROC curve are

consistent with the results of AUC value. As for the R4 dataset

shown in Fig. 14(f), the ROC curve of the proposed SSFSCRD

also increases relatively rapidly. And when the TPR of the

proposed SSFSCRD is 1, the FAR of the proposed SSFSCRD
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Fig. 10. Visual detection maps of the first real dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.

Fig. 11. Visual detection maps of the second real dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.

Fig. 12. Visual detection maps of the third real dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.
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Fig. 13. Visual detection maps of the fourth dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.

Fig. 14. ROC curve of different anomaly detectors. (a) First synthetic dataset. (b) Second synthetic dataset. (c) First real dataset. (d) Second real dataset.
(e) Third real dataset. (f) Fourth real dataset.

method is about 0.01. Above all, the ROC curves show that

the detection probability of the proposed SSFSCRD method is

higher than other compared methods at a lower FAR.

To demonstrate the separability between abnormal targets

and background, we compare SSFSCRD with other methods

by box graphs. As shown in Fig. 15, there are anomaly and

background columns for each method, in which the detection

values are normalized to 0–1. The red and green boxes in Fig. 15

represent the distribution of the abnormal targets’ detection

values and background’s detection values, respectively. And

their positions illustrate the separability of abnormal targets and

background. Furthermore, the black line inside each box is the

median values, and the upper and lower edges of the box reflect

10th and 90th percentiles, respectively. And the whiskers are the

extreme values. For the S1 dataset shown in Fig. 15(a), the gaps

between two abnormal targets and background for the proposed

SSFSCRD method and GTVLRR method are bigger than the

other methods. However, the upper whisker of background box

for SSFSCRD method is lower than GTVLRR’s, which means

that the proposed SSFSCRD method suppresses the background

more effectively than GTVLRR method. For the S2, R1, R3, and

R4 datasets as shown in Fig. 15(b), (c), (e), and (f), it is obvious

that the gaps between two abnormal targets and background for

the proposed SSFSCRD method are bigger than other methods.

For the R2 dataset, the gaps between abnormal targets and

background for the proposed SSFSCRD method are nearly the
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Fig. 15. Separability maps of different anomaly detectors. (a) First synthetic dataset. (b) Second synthetic dataset. (c) First real dataset. (d) Second real dataset.
(e) Third real dataset. (f) Fourth real dataset.

same to those of the KRX method. Therefore, the results of

separability maps of different methods reveal that the proposed

SSFSCRD method has excellent discrimination ability between

anomalies and background.

In summary, through comprehensive analysis of AUC values,

visual detection results, ROC curves, and separability maps,

the proposed SSFSCRD method is a significant and effective

method compared with nine state-of-the-art HSI anomaly de-

tection methods.

D. Capability of Suppressing Noise

By taking advantage of the suppressing noise ability of FrFT,

Tao et al. employ FrFT as the preprocessing for RX detector [36].

To verify the capability of the proposed SSFSCRD method to

suppress the noise, the relevant experiments are conducted in

this section. We use the S1 dataset as the experimental dataset

and add different levels of zero-mean Gaussian white noise into

it. The SNR ranges from 20 to 60 dB and the step size is 10 dB.

Table IV lists the AUC values of all detectors on the S1 dataset

with different levels of zero-mean Gaussian white noise and

the highest value under different levels of zero-mean Gaussian

white noise is highlighted in italics. From Table IV, it can be seen

that the proposed SSFSCRD always get the highest value under

different levels of zero-mean Gaussian white noise. Besides,

with the decreasing of SNR, the AUC values of SSFSCRD

method drop to a small degree. Therefore, it can be concluded

that the proposed SSFSCRD method can suppress the noise

efficaciously.

TABLE IV
AUC VALUES OF ALL DETECTORS ON THE S1 DATASET WITH DIFFERENT

LEVELS OF ZERO-MEAN GAUSSIAN WHITE NOISE

Furthermore, Fig. 18 shows the comparison of the 50th band

between the S1 data with 20 dB SNR and the FrFT domain of

the S1 data with 20 dB SNR. It is clearly found that the FrFT

can suppress the noise and make anomalies to be distinctive. In

particular, the two targets in the bottom left corner cannot be

distinguished under the interference of noise, but they can be

clearly distinguished from the background after FrFT.

E. Computational Efficiency Analysis

The computational efficiency is also a significant criterion for

evaluating the performance of HSI anomaly detector. For the

proposed SSFSCRD method, the FrFT and the calculation of

the weight vector α cost the most running time. Table V lists the

running time of the SSFSCRD method and compared methods.

It can be found that the running time of SSFSCRD is at a medium
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Fig. 16. AUC values of the proposed method with respect to the outer window size wout and the inner window size win. (a) First synthetic dataset. (b) Second
synthetic dataset. (c) First real dataset. (d) Second real dataset. (e) Third real dataset. (f) Fourth real dataset.

TABLE V
RUNNING TIME (S) OF ALL DETECTORS ON SIX DATASETS

level in the running time of all comparison algorithms. However,

considering the excellent detection accuracy of SSFSCRD, the

computational complexity of SSFSCRD is acceptable.

IV. DISCUSSION

The influence of crucial parameters involved in the proposed

method are analyzed and discussed in this section. The proposed

method contains four sensitive parameters in total. They are the

window size, fractional order p, Lagrange multiplier λ, and the

weighting coefficient β, respectively. The AUC value is adopted

as evaluation standard to distinguish the effect of each parameter

on the proposed method’s performance. When analyzing one

sensitive parameter, the values of other parameters are fixed as

default parameters.

To analyze and discuss the effects of these parameters com-

pletely and objectively, explicit experiments are conducted on

all the six HSI datasets. As for the window size parameters win

and wout, their effects are jointly analyzed. The fractional order

p, Lagrange multiplier λ, and the weighting coefficient β are set

as 0.5, 0.5, and 10−6, respectively. The experimental results are

illustrated in Fig. 16.

Taking all the results of all the HSI datasets into considera-

tion, the detection performance of the proposed method stably

changes within a promising range in most cases. Specifically,

for S2, R2, R3, and R4 dataset, when wout is approximately less

than 13, all the AUC values are good and nearly unchanged,

which fully demonstrates the stability of the proposed method.

As for S1 and R1 dataset, the AUC value changes a lot with wout

because the anomalies of these two datasets are close spatially.

Furthermore, it is easy to find that the window size can affect

the detection performance of the proposed method. A large

outer window can provide sufficient background information,

but potential anomalies and noise may also be used to represent

the under test pixel. Therefore, the optimal window size may be

different with different HSI datasets, and the optimal value of

win should be a little larger than the size of anomalies.

For the fractional order p and the weighting coefficientβ, their

effects on the AUC value of the proposed method are given in

Fig. 17. The fractional order p can reflect the amount of original

spectral information contained in the FrFT domain. When the

proposed method gets the best AUC value, the value of p is

0.8, 0.7, 0.3, 0.9, 0.3, and 0.3 on six HSI datasets, respectively.

These results clearly demonstrate that taking advantage of the

FrFT domain information can improve detection performance

of the proposed method. As shown in Fig. 17(a) and (b), for the

synthetic HSI datasets of S1 and S2, the optimal AUC values

are 0.9856 and 0.9494 when β is 1. The anomalies in these

two synthetic datasets are inserted artificially, and the sizes of

these anomalies are very small. This situation does not meet the

assumption that a pixel and its surrounding pixels in an HSI

usually reflect the same or similar ground objects. However, for
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Fig. 17. AUC values of the proposed method with respect to the fractional order p and the weighting coefficient β. (a) First synthetic dataset. (b) Second synthetic
dataset. (c) First real dataset. (d) Second real dataset. (e) Third real dataset. (f) Fourth real dataset.

Fig. 18. Illustration with a hyperspectral band of the S1 dataset. (a) Fiftieth
band of the data with 20 dB SNR. (b) Fiftieth band of the data with 20 dB SNR
after FrFT when p = 0.8.

the real HSI datasets, the optimal AUC value is obtained when

β is 0.1 or 0.2. Then, the AUC value rapidly decreases with the

increase of β, and the smallest AUC value is obtained when β
is 1. From the above analysis, for the real HSI datasets, it can be

found that the best AUC values are reached when β is no larger

than 0.5. This phenomenon shows that the proposed spectral–

spatial postprocessing procedure is effective for improving the

detection accuracy of hyperspectral anomaly detector.

V. CONCLUSION

This article proposes a spectral–spatial anomaly detection

method based on FrFT and context-aware saliency-weighted

collaborative representation for HSIs. The proposed method

aims at solving the unsatisfactory detection performance caused

by two problems. The first problem is that the background

information is usually contaminated by the anomalies or noise,

and the second one is the insufficient use of spatial information.

The proposed method mainly consists of three important parts,

including FrFT, context-aware saliency-weighted FrFTCRD,

and the spectral–spatial detection procedure. Through projecting

all the hyperspectral pixels to the fractional Fourier domain, the

noise can be suppressed and the anomalies can be highlighted.

Referring to the relevant principles of context-aware saliency, a

saliency-weighted matrix is designed as the regularization ma-

trix. The new saliency-weighted regularization matrix uses both

spectral and spatial information to set the weights for the back-

ground pixels, which can further reduce the influence of potential

anomalies. Combining the new saliency-weighted regularization

matrix with FrFT and CRD, a context-aware saliency-weighted

FrFTCRD is designed to explore more accurate and pure back-

ground information. Consequently, collaborative represented

background can not only have low noise influence, but also

benefits from reducing effects of potential anomalies. To take ad-

vantage of the spatial information effectively, a spectral–spatial

detection procedure is designed to calculate the final anomaly

score for each PUT, which can further improve the performance

of the proposed method. In order to evaluate the performance

and effectiveness of the proposed methods, the proposed method

is compared with nine state-of-the-art detectors on two synthetic

HSI datasets and four real HSI datasets captured from different

scenes. Extensive experimental results demonstrate that the

proposed method outperforms other state-of-the-art anomaly

detection methods on all six HSI datasets. Furthermore, through

deeply analyzing and discussing the critical parameters, the

proposed method also has good stability and effectiveness.
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