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Abstract

The paper studies the controllability properties of the linear 2-D wave equation in the
rectangle Ω = (0, a)× (0, b). We consider two types of action, on an edge or on two adjacent
edges of the boundary. Our analysis is based on Fourier expansion and explicit construction
and evaluation of biorthogonal sequences. This method allows us to measure the magnitude
of the control needed for each eigenfrequency. In both analyzed cases we give a Fourier
characterization of the controllable spaces of initial data and we construct particular controls
for them.
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1 Introduction

Fourier techniques have been used for a long time to study the controllability properties of linear
differential equations (see, for instance the books [2, 19, 38] or the survey articles [29, 39]).
Important and interesting results have been obtained for the heat equation [8, 9, 21, 29], the
wave equation [7, 18, 14, 15], the beam and plate equations [10, 33] and so on. In the recent
years there were many applications to discrete equations too [27, 23, 34].

The main idea is to equivalently transform the controllability problem into a moments prob-
lem of the form: find v ∈ L2((0, T )× Γ) such that

(1)
∫ T

0

∫
Γ
eλk t ϕk(s) v(t, s)dsdt = βk, ∀k ∈ K
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where K is a family of indices, (λk)k∈K is the sequence of eigenvalues of the corresponding
differential operator, (ϕk)k∈K are functions defined on Γ given by the eigenvectors and (βk)k∈K

is a sequence depending on the Fourier coefficients of the initial data to be controlled by v. Here
T is the controllability time and Γ a part of the boundary or of the domain of our equation
where the control acts.

The easiest cases are the one-dimensional problems with boundary control when Γ reduces
to a point and K is N∗ or Z∗. In this situation (1) is only time depending problem and the well-
developed theory of exponential functions may be successfully used. Applications of the moments
problem in several dimensions are somehow more complicated and less frequent. Nevertheless
many of the above cited works contain fine results in this context too.

The following particular case has special relevance. If the initial datum has only one eigen-
mode (for instance, the l-th), then all the coefficients (βk)k∈K are zero, except βl. If βl = 1,
problem (1) becomes: find ψl ∈ L2((0, T )× Γ) such that

(2)
∫ T

0

∫
Γ
eλk t ϕk(s)ψl(t, s)dsdt = δkl, ∀k ∈ K.

A sequence (ψl)l∈K which verifies (2) for every l ∈ K is called biorthogonal to the family(
eλk t ϕk(s)

)
k∈K

in L2((0, T )×Γ). Note that the element ψl may be view as a control for the l−th
eigenmode. Clearly, controls for arbitrary initial data may be obtained from linear combinations
of (ψl)l∈K . Consequently, the study of the biorthogonal sequence’s properties allows to obtain
information about the control of any frequency or range of frequencies. Hence, one may deduce
what frequencies are more difficult to control, estimate the magnitude of the control for any of
them and characterize the spaces of controllable initial data. This is one of the advantages of
the Fourier method’s application in control theory.

In this paper we shall consider the linear wave equation in the rectangular domain Ω =
(0, a)× (0, b) ⊂ R2. The control will act on a part of the boundary which could be one edge or
two adjacent edges. It is known that, in the former case no Sobolev space of initial data may
be controlled with controls in L2 (see, for instance, [5]). On the contrary, in the later case any
initial data in L2(Ω)×H−1(Ω) is controllable (see, for instance, [20]).

The aim of this article is to use the Fourier technique for study of the following two problems:

(P1) to give the space of initial data that can be controlled from one edge

(P2) to give the space of initial data controllable from two adjacent edges.

For problem (P1) we improve a result obtained in [14] by showing the controllability of a
larger space of initial data. Moreover, we give bounds for the control of each frequency and
show which initial data are more difficult to control from one side of the boundary. For problem
(P2) we obtain the space of controllable data L2(Ω)×H−1(Ω), but the control time needs to be
larger than the known optimal value. Although a somehow weaker result is obtained, the study
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reveals at least two interesting facts: how the controls on each edge may be used alternatively
and how their norms change, depending on the range of frequencies we want to control.

The eigenfrequencies corresponding to the wave operator in Ω are

λ±mn = ±π
√
m2

a2
+
n2

b2
, ∀m,n ∈ N∗.

The control problems (P1) and (P2) are reduced to find, for each m ∈ N∗, a sequence
(Ψ1,±

mn)n≥1 and, for each n ∈ N∗, a sequence (Ψ2,±
mn)m≥1 such that∫ T

0
Ψ1,±

mn(t)e−iλ±mltdt = δnl,

∫ T

0
Ψ1,∓

mn(t)e−iλ±mltdt = 0, ∀n, l ∈ N∗,

∫ T

0
Ψ2,±

mn(t)e−iλ±kntdt = δmk,

∫ T

0
Ψ2,∓

mn(t)e−iλ±kntdt = 0, ∀m, k ∈ N∗.

Note that (Ψ1,±
mn)n≥1 and (Ψ2,±

mn)m≥1 are biorthogonals to the families
(
e−iλ±mlt

)
l≥1

and(
e−iλ±knt

)
k≥1

respectively. The numbers 1 and 2 in the biorthogonal’s notation show which

of the indices is kept fixed, the first or the second one.
Once the biorthogonals (Ψ1,±

mn)n≥1 and (Ψ2,±
mn)m≥1 are determined for each m and n, controls

may be constructed for problems (P1) and (P2). Indeed, a control v(t, y) ∈ L2((0, T ) × (0, b))
for problem (P1), acting on the edge {(a, y) : y ∈ (0, b)}, is given by

(3) v(t, y) =
∑
m≥1

∑
n≥1

β±mn sin
(nπ
b
y
)

Ψ1,±
mn(t).

A pair of controls (v1(t, y), v2(t, x)) ∈ L2((0, T ) × (0, a)) × L2((0, T ) × (0, b)) for problem
(P2), acting on the edges {(a, y) : y ∈ (0, b)} and {(x, b) : x ∈ (0, a)} respectively, is given by

(4) v1(t, y) =
∑
m≥1

∑
n≥1

β±mn sin
(mπ
b
y
)

Ψ1,±
mn(t), v2(t, x) =

∑
n≥1

∑
m≥1

β±mn sin
(nπ
a
x
)

Ψ2,±
mn(t).

The coefficients (β±mn) in (4) are proportional to the Fourier coefficients of the initial data we
want to control and are explicitly given in (65). Hence, once the biorthogonals (Ψ1,±

mn)n≥1 and
(Ψ2,±

mn)m≥1 are found, the problem is reduced to see for which coefficients (β±mn) the series (3)
and (4) converge in L2. An answer to this question may be obtained by studying the behavior
of the norms of the biorthogonals (Ψ1,±

mn)n≥1 and (Ψ2,±
mn)m≥1. Roughly speaking, greater the

norms of the biorthogonals are, smaller the coefficients (β±mn) (and, consequently, the space of
controllable initial data) are.

We recall that sin
(

mπ
b y
)
Ψ1,±

mn(t) and sin
(

nπ
b x
)
Ψ2,±

mn(t) are controls for the (m,n)−th eigen-
mode, corresponding to the eigenvalue λ±mn and acting on the edge {(a, y) : y ∈ (0, b)} or
{(x, b) : x ∈ (0, a)} respectively.
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In [7] it is shown that, for any k ≥ 1 there exists a constant C = C(k) such that

(5)
||Ψ1,±

mn ||L2(0,T ) ≤ C(m), ∀n ∈ N∗,

||Ψ2,±
mn ||L2(0,T ) ≤ C(n), ∀m ∈ N∗.

Moreover, the constant C increases exponentially. More precisely, there exist four constants
M1, M2, ω1 and ω2 such that

M1 exp(ω1k) ≤ C(k) ≤M2 exp(ω2k), ∀k ≥ 1.

These estimates allow to deduce that a special space of initial data (very regular in one
direction) may be controlled from one edge.

In [1] a deeper analysis shows that a longer control time T increases the space of controllable
data. Moreover, it was noted that better constant C may be found in (5). In [14] the problem
of evaluating the norms of Ψ1,±

mn and Ψ2,±
mn is reconsidered and it is proved that

(6)

||Ψ1,±
mn ||L2(0,T ) ≤

{
C(m) n

b ≤ I
(

m
a

)
,

C ′ n
b > I

(
m
a

)
||Ψ2,±

mn ||L2(0,T ) ≤

{
C(n) m

a ≤ I
(

n
b

)
,

C ′ m
a > I

(
n
b

)
where C(k) is like above, C ′ is a constant independent of m and n and I(k) ∼ exp(k).

Note that (6) implies that the biorthogonals (Ψ1,±
mn)n≥1 are uniformly bounded in the range

R1 =
{
(m,n) : n

b ≥ I
(

m
a

)}
and the biorthogonals (Ψ2,±

mn)m≥1 are uniformly bounded in the
range R2 =

{
(m,n) : m

a ≥ I
(

n
b

)}
. This proves that even a larger space of initial data may be

controlled from one edge. However, since R1∪R2 6= N∗×N∗, we cannot say that any eigenmode
may be controlled with uniformly bounded controls from one edge or the other.

We point out that techniques like, for instance, multipliers allow to deduce exact controlla-
bility in the space L2 ×H−1 when the control acts on two adjacent edges but do not tell how
the control depends on the frequencies and if we can use only one edge for some frequencies
and the other for the rest of them. Moreover, no information may be obtained for the space of
controllable initial data from one edge and how large the controls are.

The biorthogonal technique is used in this paper to show that in (6) we may take I(k) = k
if T is large enough. This result has several interesting consequences:

• Related to problem (P1), since the index I is smaller than before, a larger class of initial
data is shown to be controllable from one edge. For example, any initial data such that

(7)
∑
n≥1

∑
m
a
≥n

b

∣∣β±mn

∣∣2 +
∑
n≥1

e2
a
b
n
∑

m
a

< n
b

∣∣β±mn

∣∣2 <∞

is controllable with an L2− control acting only on the edge {(0, y) : y ∈ (0, b)}.
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• Related to problem (P2), since now R1 ∪ R2 = N∗ × N∗, uniformly bounded controls on
one edge or another may be alternatively chosen to control the whole range of frequencies.
Indeed, we may choose a pair of controls (v1(t, y), v2(t, x)) ∈ L2((0, T )×(0, a))×L2((0, T )×
(0, b)) acting on the edges {(0, y) : y ∈ (0, b)} and {(x, 0) : x ∈ (0, a)} respectively not like
in (4), where each frequency is controlled simultaneously from both edges, but as follows

(8)

v1(t, y) =
∑
m≥1

∑
n
b
≥m

a

β±mn sin
(mπ
b
y
)

Ψ1,±
mn(t),

v2(t, x) =
∑
n≥1

∑
m
a

> n
b

β±mn sin
(nπ
a
x
)

Ψ2,±
mn(t).

Now, the controls v1 and v2 acts only on the frequencies R1 and R2 respectively. This
choice shows that any initial data with

(9)
∑
m≥1

∑
n≥1

∣∣β±mn

∣∣2 <∞.

is controllable with an L2− pair of controls acting alternatively on two adjacent edges.
This is equivalent to the controllability of any initial data in L2(Ω)×H−1(Ω).

An interesting spectral method is used in [32] to show the controllability of any initial data
from L2 × H−1. It consists of reducing the problem to a Hautus test for the eigenvalues of
the Laplace operator (see also [26, 33, 34]). To our knowledge this is the first study for the
controllability problem of the wave equation in 2-D which uses Fourier methods. Published
after the submission of our paper, [22] gives a direct Ingham type proof for the boundary
observability of N-dimensional wave equation. Our approach, based on Fourier expansion and
biorthogonal sequences, is different and offers more detailed information about the norm of the
controls needed to control each eigenmode from one or two edges. However, our method has a
drawback due to some technical aspects: it does not give the optimal controllability time (see
Remark 10 at the end of the paper).

The remaining part of the article is organized in the following way. Section 2 introduces the
controllability problems and it gives equivalent formulations in terms of some moments problems.
The biorthogonal sequences are introduced and evaluated in section 3 and the controllability
results are deduced in section 4.

2 The controllability problem

Let us consider Ω = (0, a)× (0, b) ⊂ R2 and divide its boundary in two parts ∂Ω = Γ0 ∪Γ1 such
that Γ0 ∩ Γ1 = ∅.
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We are concerned with the following boundary exact controllability property of the wave
equation in Ω: given T > 0 and (u0, u1) ∈ L2(Ω) × H−1(Ω) there exists a control function
v(t, y) ∈ L2((0, T )× Γ0) such that the solution of the equation

(10)


u′′ −∆u = 0 for (x, y) ∈ Ω, t > 0,
u(t, x, y) = v(t, x, y) for (x, y) ∈ Γ0, t > 0,
u(t, x, y) = 0 for (x, y) ∈ Γ1, t > 0,
u(0, x, y) = u0(x, y), for (x, y) ∈ Ω
u′(0, x, y) = u1(x, y), for (x, y) ∈ Ω

satisfies

(11) u(T, ·) = u′(T, ·) = 0.

By ′ we denote the time derivative.
Observe that the reversibility of (10) allows to show that (11) is achieved if and only if for

every target state (u0
T , u

1
T ) ∈ L2(Ω) ×H−1(Ω) there exists v such that u(T ) = u0

T , u
′(T ) = u1

T .
This do not hold in other contexts as the non linear framework or the heat equation.

The exact controllability property of (10) may be characterized by the following immediate
property (see, for instance, [25]).

Theorem 2.1 Let T > 0 and (u0, u1) ∈ L2(Ω) × H−1(Ω). The following two properties are
equivalent:

(i) There exists a control function v(t, y) ∈ L2((0, T ) × Γ0) such that the solution of the
equation (10) verifies (11).

(ii) The following equality holds

(12)

∫ T

0

∫
Γ0

v(t, x, y)
∂ϕ

∂ν
(t, x, y)dxdydt =

< u1, ϕ(0) >−1,1 −
∫

Ω
u0(x, y)ϕ′(0, x, y)dxdy

for any (ϕ0, ϕ1) ∈ H1
0 (Ω) × L2(Ω), (ϕ,ϕ′) being the solution of the homogeneous adjoint

equation

(13)


ϕ′′ −∆ϕ = 0, for (x, y) ∈ Ω, t > 0,
ϕ(t, x, y) = 0, for (x, y) ∈ ∂Ω, t > 0,
ϕ(T, x, y) = ϕ0(x, y), for (x, y) ∈ Ω,
ϕ′(T, x, y) = ϕ1(x, y), for (x, y) ∈ Ω.
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In (12), < · , · >−1,1 denotes the duality product between H−1(Ω) and H1
0 (Ω). Moreover,

we shall make the following notation

(14) 〈(w0, w1), (ψ0, ψ1)〉D =< w1, ψ0 >−1,1 −
∫

Ω
w0(x, y)ψ1(x, y)dxdy

for any (w0, w1) ∈ L2(Ω)×H−1(Ω) and (ψ0, ψ1) ∈ H1
0 (Ω)× L2(Ω).

Our aim is to give sharp estimates for the control’s norm when Γ0 consists of one edge or
two adjacent edges. As we have said before, our analysis is based on the Fourier expansion of
solutions. Therefore, let us now introduce the eigenvalues of the wave operator,

(15) λ±mn = ±π
√
m2

a2
+
n2

b2
, (m,n) ∈ N∗ × N∗

and the corresponding eigenfunctions

(16) Φ±mn(x, y) =

√
2
ab

(
1

iλ±mn

−1

)
sin
(mπx

a

)
sin
(nπy

b

)
, (m,n) ∈ N∗ × N∗.

We denote by Φ1±
mn and Φ2±

mn the two components of Φ±mn.
The sequence (Φ±mn)(m,n)∈N∗×N∗ forms an orthonormal basis in H1

0 (Ω)× L2(Ω). Moreover,

||Φ±mn||L2(Ω)×H−1(Ω) =
1

|λ±mn|
.

Remark 1 Note that it is sufficient to show that (12) is verified by (ϕ0, ϕ1) = Φ±mn for all
m,n ∈ N∗. Indeed, the continuity of the linear form Λ : H1

0 (Ω)× L2(Ω) → C, defined by

(17) Λ(ϕ0, ϕ1) =
∫ T

0

∫
Γ0

v(t, x, y)
∂ϕ

∂ν
(t, x, y)dxdydt− 〈(u0, u1), (ϕ(0), ϕ′(0))〉D

implies that (12) holds for any (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω) if and only if it is verified on a basis

of the space H1
0 (Ω)× L2(Ω).

2

By considering (ϕ0, ϕ1) = Φ±mn in (12), we obtain the following result.

Theorem 2.2 The control v drives to zero the initial data

(18) (u0, u1) =
∑

(m,n)∈N∗×N∗
α±mnΦ±mn

of (10) if and only if, for all (k, l) ∈ N∗ × N∗,

(19)
∫ T

0

e−iλ±klt

(∫
Γ0

v(t, x, y)
∂Φ1±

kl

∂ν
(x, y)dxdy

)
dt =

4
iabλ±kl

α±kl.
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In (19) and elsewhere we shall use the summation rule, α±mnΦ±mn = α+Φ+
mn + α−Φ−mn.

The following two corollaries are direct consequences of the previous Theorem.

Corollary 1 If Γ0 = {(a, y) : y ∈ (0, b)} then the control v ∈ L2((0, T )× (0, b)) drives to zero
the initial data data (18) if and only if, for all (k, l) ∈ N∗ × N∗,

(20)
∫ T

0

e−iλ±klt

(∫ b

0

v(t, y) sin
(
lπy

b

)
dy

)
dt = (−1)k+1 2

√
2√
ab

a

πk
α±kl.

Corollary 2 If Γ0 = {(a, y) : y ∈ (0, b)} ∪ {(x, b) : x ∈ (0, b)} then the control (v1, v2) ∈
L2((0, T )× (0, b))× L2((0, T )× (0, a)) drives to zero the initial data (18) if and only if, for all
(k, l) ∈ N∗ × N∗,

(21)

∫ T

0

e−iλ±klt

(
(−1)k+1 k

a

∫ b

0

v1(t, y) sin
(
lπy

b

)
dy + (−1)l+1 l

b

∫ a

0

v2(t, x) sin
(
kπx

a

)
dx

)
dt =

=
2
√

2√
abπ

α±kl.

3 Biothogonal sequences

The controls v and (v1, v2) from Corollaries 1 and 2 are obtained from an explicitly given biortho-
gonal sequence. Let us consider the family of complex exponentials Λ =

(
eiλ

±
mnt
)

(m,n)∈N∗×N∗
.

Definition 3.1 Let m ∈ N∗ be fixed. The sequence (Θ1,±
mn)n∈N∗ ⊂ L2

(
−T

2 ,
T
2

)
is (1,m)−bior-

thogonal to the family Λ in L2
(
−T

2 ,
T
2

)
if

(22)
∫ T

2

−T
2

Θ1,±
mn(t)e−iλ±mltdt = δnl,

∫ T
2

−T
2

Θ1,∓
mn(t)e−iλ±mltdt = 0, ∀n, l ∈ N∗.

Definition 3.2 Let n ∈ N∗ be fixed. The sequence (Θ2,±
mn)m∈N∗ ⊂ L2

(
−T

2 ,
T
2

)
is (2, n)−bior-

thogonal to the family Λ in L2
(
−T

2 ,
T
2

)
if

(23)
∫ T

2

−T
2

Θ2,±
mn(t)e−iλ±kntdt = δmk,

∫ T
2

−T
2

Θ2,∓
mn(t)e−iλ±kntdt = 0, ∀m, k ∈ N∗.

The notations (1,m) and (2, n) in the above definitions mark the position and name of the
fixed index.

Note that, once the biorthogonal sequences (Θ1,±
mn)n∈N∗ and (Θ2,±

mn)m∈N∗ are available, con-
trols v acting on one edge or (v1, v2) acting on two adjacent edges may be obtained as linear
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combinations of the biorthogonals. However, some conditions have to be imposed to the Fourier
coefficients αmn of the initial data (u0, u1) to ensure the convergence of these combinations in
L2. The conditions are directly related with the magnitude of the norms of the biorthogonal
elements. Therefore, the first thing to do is to construct and evaluate the norm of the biorthog-
onal sequences (Θ1,±

mn)n∈N∗ and (Θ2,±
mn)m∈N∗ for any m and n respectively. This is our aim in the

present section. In the following one we use this information to give the wanted answers to the
controllability problems.

Let us define

(24) ξ1+
mn(z) =

∏
k∈N∗
k 6=n

1− z
iλ+

mk

1− λ+
mn

λ+
mk

 ∏
k∈N∗

1− z
iλ−mk

1− λ+
mn

λ−mk

 .

Lemma 3.1 Let ξ1+
mn(z) be defined as above. Then,

(25) ξ1+
mn(iλ+

ml) =

{
0 if l 6= n,

1 if l = n
, ξ1+mn(iλ−ml) = 0

Moreover, ξ1+
mn is an entire function of exponential type, i.e. there exist two constants Amn,

depending on m and n, and B, independent of m and n, such that

(26) |ξ1+
mn(z)| ≤ Amne

B|z|, ∀z ∈ C.

Proof: We have that |ξ1+
mn(z)| = Qmn Pmn(z) where

Pmn(z) =
∏
k∈N∗
k 6=n

∣∣∣∣1− z

iλ+
mk

∣∣∣∣ ∏
k∈N∗

∣∣∣∣1− z

iλ−mk

∣∣∣∣ , Qmn =
∏
k∈N∗
k 6=n

∣∣∣∣∣∣ 1

1− λ+
mn

λ+
mk

∣∣∣∣∣∣
∏

k∈N∗

∣∣∣∣∣∣ 1

1− λ+
mn

λ−mk

∣∣∣∣∣∣ .

Qmn =
∏
k∈N∗
k 6=n

∣∣∣∣∣∣ 1

1− λ+
mn

λ+
mk

∣∣∣∣∣∣
∏

k∈N∗

∣∣∣∣∣∣ 1

1− λ+
mn

λ−mk

∣∣∣∣∣∣ = 1
2

∏
k∈N∗
k 6=n

(λ+
mk)

2∣∣(λ+
mk)

2 − (λ+
mn)2

∣∣ =

=
1
2

∏
k∈N∗
k 6=n

b2

a2m
2 + k2

|k2 − n2|
=

n2

p2 + n2

∏
k∈N∗

p2 + k2

k2

where p = b
am. Consequently,

(27) Qmn =
n2

p2 + n2

∏
k∈N∗

p2 + k2

k2
.
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By taking into account the Euler formula

(28)
sin(π z)
π z

=
∏

k∈N∗

(
1− z2

k2

)
we deduce that

(29) Qmn =
n2

p2 + n2

sin iπp
iπp

.

Also, from (29), the following estimate may be deduced

(30) Qmn ≤
2n2π2

b2|λ±mn|2
exp

(
πb

a
m

)
.

On the other hand,

Pmn(z) =
∏
k∈N∗
k 6=n

∣∣∣∣1− z

iλ+
mk

∣∣∣∣ ∏
k∈N∗

∣∣∣∣1− z

iλ−mk

∣∣∣∣ = ∣∣∣∣1− z

iλ−mn

∣∣∣∣ ∏
k∈N∗
k 6=n

∣∣∣∣1 +
z2

(λ+
mk)

2

∣∣∣∣ ≤
≤
(

1 +
b|z|
πn

) ∏
k∈N∗

(
1 +

b2|z|2

π2k2

)
≤
(

1 +
b|z|
πn

)
exp

(∫ ∞

0
ln
(

1 +
b2|z|2

π2t2

)
dt

)
=

=
(

1 +
b|z|
πn

)
exp

(
b|z|
π

∫ ∞

0
ln
(

1 +
1
s2

)
ds

)
=
(

1 +
b|z|
πn

)
exp (b|z|) .

The proof ends by considering Amn = 2 π2 n2

b2 |λ±mn|2
exp

(
π b
a m

)
and B any number strictly larger

that b.

The most important element of our construction is the following evaluation of ξ1+mn on the
imaginary axis.

Lemma 3.2 The following estimate holds for the function ξ1+mn on the imaginary axis

(31)
∣∣ξ1+

mn(x i)
∣∣ ≤ C ×



exp

(
b

√
m2π2

a2
− x2

)
|x| ≤ mπ

a

1 mπ
a < |x| ≤ mπ

a

√
1 + a2n2

4b2m2

b

nπ
λ+

mn
mπ
a

√
1 + a2n2

4b2m2 < |x|

where C is a positive constant independent of m and n.
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Proof: We have that, for x ∈ IR,

ξ1+
mn(ix) =

∏
k∈N∗
k 6=n

1− x
λ+

mk

1− λ+
mn

λ+
mk

 ∏
k∈N∗

1− x
λ−mk

1− λ+
mn

λ−mk

 =

=
1
2

(
λ+

mn + x

λ+
mn

) ∏
k∈N∗
k 6=n

(λ+
mk)

2

(λ+
mk)

2 − (λ+
mn)2

∏
k∈N∗
k 6=n

(λ+
mk)

2 − x2

(λ+
mk)

2
.

The first product is evaluated by (27). Let us now evaluate the second product

Pmn(u) =
∏
k∈N∗
k 6=n

(λ+
mk)

2 − x2

(λ+
mk)

2
=
∏
k∈N∗
k 6=n

p2 + k2 − u2

p2 + k2

where p = b
am and bx

π = u. We analyze separately the cases 0 ≤ u ≤ p and p > u.
Case 1: 0 ≤ u ≤ p. Let us denote v =

√
p2 − u2. We have that

|Pmn(u)| = p2 + n2

p2 + n2 − u2

∏
k∈N∗

p2 + k2 − u2

p2 + k2
=
p2 + n2

n2 + v2

∏
k∈N∗

k2 + v2

k2 + p2
=

=
p2 + n2

n2 + v2

∏
k∈N∗

k2

k2 + p2

∏
k∈N∗

k2 + v2

k2
=
p2 + n2

n2 + v2

∏
k∈N∗

k2

k2 + p2

sin iπv
iπv

.

By taking into account (27), it follows that,

(32) |ξ1+
mn(ix)| = 1

2

∣∣∣∣λ+
mn + x

λ+
mn

∣∣∣∣ n2π2

b2

(λ+
mn)2 − x2

sin
(
i b
√

m2π2

a2 − x2

)
i b
√

m2π2

a2 − x2
, if |x| ≤ mπ

a
.

Since in this case |x| ≤ λ+
mn and (λ+

mn)2 − x2 ≥ n2π2

b2
, we obtain that

(33) |ξ1+
mn(ix)| ≤ exp

(
b

√
m2π2

a2
− x2

)
, if |x| ≤ mπ

a
.

Case 2: p < u. Let us denote v =
√
u2 − p2 and remark that, if v = [v] + α, with α ∈ [0, 1),

|Pmn(u)| =
∏
k∈N∗
k 6=n

|k2 − v2|
k2 + p2

=
n2 + p2

|n2 − v2|
∏

k∈N∗

1
k2 + p2

∏
k∈N∗

(v + k)
∏

1≤k≤[v]

(v − k)
∏

k>[v]

(k − v) =
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=
n2 + p2

|n2 − v2|
∏

k∈N∗

1
k2 + p2

∏
[v]+1≤j

(j + α)
∏

0≤j≤[v]−1

(j + α)
∏

j∈N∗
(j − α) =

=
n2 + p2

|n2 − v2|
α

[v] + α

∏
k∈N∗

1
k2 + p2

∏
j∈N∗

(j2 − α2) =
n2 + p2

|n2 − v2|
α

[v] + α

∏
k∈N∗

k2 − α2

k2 + p2
=

=
n2 + p2

|n2 − v2|
α

[v] + α

∏
k∈N∗

k2

k2 + p2

∏
k∈N∗

k2 − α2

k2
=

n2 + p2

|n2 − v2|
sin(πα)
πv

∏
k∈N∗

k2

k2 + p2
.

Now, from (27), it follows that

|ξ1+
mn(ix)| = 1

2

∣∣∣∣λ+
mn + x

λ+
mn

∣∣∣∣ n2π2

b2∣∣(λ+
mn)2 − x2

∣∣ sin
(
π

(
b
π

√
x2 − m2π2

a2 −
[

b
π

√
x2 − m2π2

a2

]))
b
√
x2 − m2π2

a2

.

In order to evaluate |ξ1+
mn(ix)| we analyze the following cases:

• If
mπ

a
< x ≤ mπ

a

√
1 +

a2n2

4b2m2
then 0 <

√
x2 − m2π2

a2 < nπ
2b and consequently

|ξ1+
mn(ix)| =

n2π2

b2

2λ+
mn

x+ π
√

m2

a2 + n2

b2∣∣∣n2π2

b2
−
(
x2 − m2π2

a2

)∣∣∣
∣∣∣∣sin(b√x2 − m2π2

a2

)∣∣∣∣
b
√
x2 − m2π2

a2

≤
n2π2

b2

2λ+
mn

2π
√

m2

a2 + n2

b2

n2π2

b2
− n2π2

4b2

=
4
3
.

• If
mπ

a

√
1 +

a2n2

4b2m2
< x then

|ξ1+
mn(ix)| =

n2π2

b2

2λ+
mn

x+ π
√

m2

a2 + n2

b2(
nπ
b +

√
x2 − m2π2

a2

)√
x2 − m2π2

a2

∣∣∣∣sin(nπ − b
√
x2 − m2π2

a2

)∣∣∣∣∣∣∣∣nπ − b
√
x2 − m2π2

a2

∣∣∣∣ ≤

≤
n2π2

b2

2λ+
mn

x+ π
√

m2

a2 + n2

b2

x2 − m2π2

a2

≤ nπ

2b

x+ π
√

m2

a2 + n2

b2(
x+ mπ

a

) (
x− mπ

a

) .
From

mπ

a

√
1 +

a2n2

4b2m2
< x we deduce that π

√
m2

a2
+
n2

b2
< 2x. Moreover, since

x− mπ

a
>
mπ

a

√
1 +

a2n2

4b2m2
− mπ

a
=

πan2

4b2m√
1 + a2n2

4b2m2 + 1
≥

π2n2

4b2

2λ+
mn
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we deduce that
|ξ1+mn(ix)| ≤ 12 b

n π
λ+

mn.

The proof of the lemma is now complete.

Lemma 3.3 Let m,n ∈ N∗ and ϕmn : R → R be the continuous function defined by

(34) ϕmn(x) =


0, x ≤ λ+

mn − mπ
a ,

b
√

m2π2

a2 − (λ+
mn − x)2, x ∈

(
λ+

mn − mπ
a , λ+

mn

)
bmπ

a , x ≥ λ+
mn.

There exists an entire function Gmn of exponential type less or equal than
e b√

1 + a2

b2
n2

m2 − 1
such that

(35) |Gmn(x)| ≤ e exp (−ϕmn(x)) , ∀x ∈ R,

(36) |Gmn(0)| = 1.

Proof: We use an idea of A. E. Ingham [13], generalized by R. M. Redheffer [35]. We
introduce the function

(37) A(u) = [ϕmn(eu)], u ≥ 0

and we define the product

(38) Gmn(z) =
[ bmπ

a ]∏
k=1

sin(ρkz)
ρkz

where 1
ρk

denotes the k−th discontinuity point of the function A. In (37) and in the sequel [a]
denotes the integer part of a.

The sequence (ρk)k is decreasing and

[ bmπ
a ]∑

k=1

ρn =
[ bmπ

a ]∑
k=1

e

λ+
mn −

√
m2π2

a2 − k2

b2

≤
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≤ e

∫ bmπ
a

0

1

λ+
mn −

√
m2π2

a2 − t2

b2

dt = e b

∫ 1

0

1√
1 + a2

b2
n2

m2 −
√

1− s2
ds ≤ e b√

1 + a2

b2
n2

m2 − 1
.

Since ∣∣∣∣sin(ρkz)
ρkz

∣∣∣∣ =
∣∣∣∣∣∣
∑
i≥0

(−1)i (ρkz)2i

(2i+ 1)!

∣∣∣∣∣∣ ≤
∑
i≥0

|ρkz|2i

(2i)!
≤ exp(ρk|z|)

we have that

|Gmn(z)| =
[ bmπ

a ]∏
k=1

∣∣∣∣sin(ρkz)
ρkz

∣∣∣∣ ≤ exp

|z| [
bmπ

a ]∑
k=1

ρk


and Gmn is an entire function of exponential type less or equal than e b√

1+a2

b2
n2

m2−1
.

Moreover, Gmn(0) = 1.
We pass to evaluate Gmn(x). Evidently, |Gmn(x)| ≤ 1 for any x ∈ R. For x ≥ λ+

mn − mπ
a ,

|Gmn(x)| ≤
∏

ρk x≥1

| sin(ρk x)|
|ρk x|

≤
∏

ρk x≥1

1
ρk |x|

= exp

 ∑
ρk x≥1

ln
(

1
ρk x

) .

Since∑
ρk x≥1

ln
(

1
ρk x

)
= −

∫ x

0

A(u)
u

du ≤ −
∫ x

x
e

ϕmn(eu)− 1
u

du ≤ −
∫ x

x
e

ϕmn(x)− 1
u

du ≤ 1− ϕmn(x)

we deduce that |Gmn(x)| ≤ e exp(−ϕmn(x)) and the proof ends.

We define now

(39) Mmn(z) = Gmn(λ+
mn − z).

Evidently, Mmn is an entire function of exponential type less or equal than
e b√

1 + a2

b2
n2

m2 − 1
such that Mmn(λ+

mn) = 1. Moreover,

(40) |Mmn(x)| = |Gmn(λ+
mn − x)| ≤ e×



1 x ≥ mπ
a

exp

(
−b
√
m2π2

a2
− x2

)
0 ≤ x ≤ mπ

a

exp
(
−bmπ

a

)
x ≤ 0

We are now ready to prove the desired result on the existence of a biorthogonal sequence:
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Theorem 3.3 Let T > 2b
(
1 + e (

√
2 + 1)

)
. For any m ∈ N∗ there exists a (1,m)−biorthogonal

(Θ1,±
mn)n∈N∗ ⊂ L2

(
−T

2 ,
T
2

)
to the family Λ in L2

(
−T

2 ,
T
2

)
such that

(41) ||Θ̂1,±
mn ||L∞(R) ≤ C, ∀n ≥ b

a
m

(42) ||Θ̂1,±
mn ||L∞(R) ≤ C exp

(
b

a
mπ

)
, ∀n < b

a
m

where C is a positive constant independent of m and n.

Remark 2 In Theorem 3.3 and in the sequel f̂ denotes the Fourier transform of the function
f ∈ L2(−B,B) and it is defined by

(43) f̂(z) =
1√
2π

∫ B

−B
f(t)e−iztdt.

We recall that, according to the inversion theorem,

(44) f(t) =
1√
2π

∫
R
f̂(x)eitxdx,

and from Plancherel’s Theorem

(45) ||f ||L2(−B,B) = ||f̂ ||L2(R).

Finally, the convolution rule says that

(46) f̂ ∗ g =
√

2πf̂ · ĝ, f̂ · g =
1√
2π
f̂ ∗ ĝ.

2

Proof: For n ≥ b
am, we define

(47) Ξ+
mn(z) = ξ1+mn(i z)Mmn(z)

sin(δ(z − λ+
mn))

δ(z − λ+
mn)

,

where ξ1+
mn and Mmn are given by (24) and (39) respectively and δ > 0 is arbitrary.

We have that

• Ξ+
mn(λ+

ml) = δnl, Ξ+
mn(λ−ml) = 0, n ≥ b

am, l ∈ N∗.
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• Ξ+
mn is an entire function of exponential type less or equal than

(48) B = b+
e b√

1 + a2

b2
n2

m2 − 1
+ δ ≤ b

(
1 + e (

√
2 + 1)

)
+ δ

where, in the last inequality, we have taken into account that n ≥ b
am.

• Ξ+
mn(x) ∈ L2(R).

Let Θ1,+
mn be defined as follows from the Fourier transform of Ξ+

mn,

(49) Θ1,+
mn(z) =

1√
2π

Ξ̂+
mn(z).

From the properties of Ξ+
mn, by using Paley-Wiener Theorem, it follows that Θ1,+

mn(t) has
support included in [−B,B], it belongs to L2(−B,B) and∫ B

−B
Θ1,+

mn(t)e−iλ+
mltdt = Ξ+

mn(λ+
ml) = δnl,

∫ B

−B
Θ1,+

mn(t)e−iλ−mltdt = Ξ+
mn(λ−ml) = 0, n ≥ b

a
m, l ∈ N∗.

Moreover, from the decay property of Mmn (40) and estimates (31) of ξ+mn on the imaginary
axis we obtain immediately that (41) is verified.

The elements Θ1,−
mn are defined and evaluated as before, being the Fourier transforms of

(50) Ξ−mn(z) = ξ1+
mn(−i z)Mmn(−z)sin(δ(z − λ−mn))

δ(z − λ−mn)
.

For n < b
am, we define

(51) Ξ±mn(z) = ξ1+mn(±i z)sin(δ(z − λ±mn))
δ(z − λ±mn)

,

and we introduce Θ1,±
mn as in (49)

From estimate (31) of ξ1,+
mn on the imaginary axis we deduce that (42) holds.

It follows that (Θ1,±
mn)n∈N∗ is a biorthogonal sequence to

(
eλ
±
mnt
)

n∈N∗
in L2(−B,B) which

verifies (41)-(42). The proof ends.

Remark 3 We may evaluate the L2−norm of the biorthogonal too. If n ≥ b
am, we have that∫ ∞

−∞
|Ξ±mn(x)|2dx ≤ e2C2

∫ ∞

−∞

∣∣∣∣sin(δ(x− λ±mn))
δ(x− λ±mn)

∣∣∣∣2 dx ≤ e2C2

δ

∫ ∞

−∞

∣∣∣∣sin(t)
t

∣∣∣∣2 dt =
e2C2 π

δ
.
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From Plancherel’s Theorem we deduce that

(52) ‖ Θ1,±
mn ‖L2(−B,B)=‖ Ξ±mn ‖L2(R)≤

e2C2 π

δ
.

Hence, the L2−norm of (Θ1,±
mn)n≥ b

a
m is uniformly bounded in m. We shall construct a new

biorthogonal with even better norm properties in Theorem 3.4.

2

Remark 4 Note that, for any σ > 0, there exists T = T (σ) with the property that there exists
a (1,m)−biorthogonal (Θ1,±

mn)n∈N∗ ⊂ L2
(
−T

2 ,
T
2

)
to the family Λ such that

(53) ||Θ̂1,±
mn ||L∞(R) ≤ C, ∀n ∈ N∗, n ≥ σm

where C is a positive constant independent of m and n. Indeed, the exponential type B of Ξ±mn

is, for n ≥ σm,

B = b+
e b√

1 + a2

b2
n2

m2 − 1
+ δ ≤ b+

e b√
1 + a2

b2
σ2 − 1

+ δ.

If we take

T > b

1 +
e√

1 + a2

b2
σ2 − 1


the same proof as in Theorem 3.3 gives (53).

Hence, a larger set biorthogonals is uniformly bounded if we consider a larger time T . Note
also that limσ→0 T = ∞ and consequently not all the elements of the biorthogonal sequence may
be uniformly bounded in a given finite time T .

This type of results were already obtained in [1], where it is proved that, the space of control-
lable initial data from one part of the boundary increases if the time is larger.

2

For any ε > 0, let

Kε =
√

2π
ε2

(χε ∗ χε)

where χε is the characteristic function of the interval
[
− ε

2 ,
ε
2

]
. The following properties of Kε

are almost immediate:

- supp(Kε) ⊆ [−ε, ε]

- K̂ε(ξ) = 4
ε2

sin2( ε
2
ξ)

ξ2 , ∀ξ ∈ R \ {0},
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- K̂ε(0) = 1.

We define ρ±mn(x) = eiλ
±
mnxKε(x) and we note that supp (ρ±mn) ⊆ [−ε, ε].

The following useful result is a consequence of Theorem 3.3 and gives a new biorthogonal
to the family Λ in a slightly larger time interval but with better norm properties. It is inspired
from [16] (see also [19] and [36]).

Theorem 3.4 Let T > 2b
(
1 + e (

√
2 + 1)

)
and (Θ1,±

mn)n∈N∗ be the (1,m)−biorthogonal given by
Theorem 3.3. For any ε > 0, the family (Ψ1,±

mn)n∈N∗ given by

(54) Ψ1,±
mn =

1
2π

Θ1,±
mn ∗ ρ±mn

is an (1,m)−biorthogonal to the family Λ in L2
(
−T

2 − ε, T
2 + ε

)
and there exists a positive

constant C independent of m and n such that

(55)
∫ T

2
+ε

−T
2
−ε

∣∣∣∣∣∑
n∈N∗

c±n Ψ1,±
mn(t)

∣∣∣∣∣
2

dt ≤ C

e 2b
a

mπ
∑

n< b
a
m

|c±n |2 +
∑

n≥ b
a
m

|c±n |2


for any finite sequence (c±n )n∈N∗.

Proof: Evidently, supp (Ψ1,±
mn) ⊂

(
−T

2 − ε, T
2 + ε

)
and (Ψ1,±

mn)n∈N∗ ⊂ L2
(
−T

2 − ε, T
2 + ε

)
.

Moreover, ∫ T
2

+ε

−T
2
−ε

Ψ1,±
mn(t)e−iλ±mltdt =

√
2πΨ̂1,±

mn(λ±ml) = Θ̂1,±
mn(λ±ml)ρ̂

±
mn(λ±ml) = δnl.

On the other hand,we have that∫ T
2

+ε

−T
2
−ε

∣∣∣∣∣∑
n∈N∗

c±n Ψ1,±
mn(t)

∣∣∣∣∣
2

dt =
1
2π

∫
R

∣∣∣∣∣∑
n∈N∗

c±n Θ̂1,±
mn(x)ρ̂±mn(x)

∣∣∣∣∣
2

dx ≤

≤ 1
2π

∫
R

(∑
n∈N∗

|c±n |
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣
L∞(R)

|K̂ε(x− λ±mn)|

)2

dx =

=
1
2π

∫
R

(
Kε(t)

∑
n∈N∗

|c±n |
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣
L∞(R)

eiλ
±
mnt

)2

dx ≤

≤ 2
ε2

∫ ε

−ε

∣∣∣∣∣∣∣
∑

n< b
a
m

|c±n |
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣
L∞(R)

eiλ
±
mnt

∣∣∣∣∣∣∣
2

dt+
2
ε2

∫ ε

−ε

∣∣∣∣∣∣∣
∑

n≥ b
a
m

|c±n |
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣
L∞(R)

eiλ
±
mnt

∣∣∣∣∣∣∣
2

dt.
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Now, we note that |λ±mn+1 − λ±mn| ≥ π
2
√

2b
if n ≥ b

am. Since the family (λ±mn)n≥ b
a
m has

uniform gap we use Ingham’s inequality [12] and obtain that

∫ ε

−ε

∣∣∣∣∣∣∣
∑

n≥ b
a
m

|c±n |
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣
L∞(R)

eiλ
±
mnt

∣∣∣∣∣∣∣
2

dt ≤ C
∑

n≥ b
a
m

|c±n |2
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣2
L∞(R)

with C a positive constant independent of n and m.
On the other hand, for the family (λ±mn)n< b

a
m we have that

∫ ε

−ε

∣∣∣∣∣∣∣
∑

n< b
a
m

|c±n |
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣
L∞(R)

eiλ
±
mnt

∣∣∣∣∣∣∣
2

dt ≤ 2ε
b2

a2
m2

∑
n< b

a
m

|c±n |2
∣∣∣∣∣∣Θ̂1,±

mn

∣∣∣∣∣∣2
L∞(R)

.

Estimate (55) follows from the last two inequalities and Theorem 3.3.

Similar results hold for the other type of biorthogonal sequence. We state them without
proofs.

Theorem 3.5 Let T > 2a
(
1 + e (

√
2 + 1)

)
. For any n ∈ N∗ there exists a (2, n)−biorthogonal

(Θ2,±
mn)m∈N∗ ⊂ L2

(
−T

2 ,
T
2

)
to the family Λ in L2

(
−T

2 ,
T
2

)
such that

(56) ||Θ̂1,±
mn ||L∞(R) ≤ C, ∀m ≥ a

b
n

(57) ||Θ̂1,±
mn ||L∞(R) ≤ C exp

(a
b
nπ
)
, ∀m <

a

b
n

where C is a positive constant independent of m and n.

Theorem 3.6 Let T > 2a
(
1 + e (

√
2 + 1)

)
and (Θ2,±

mn)m∈N∗ be the (2, n)−biorthogonal given by
Theorem 3.5. For any ε > 0, the family (Ψ2,±

mn)m∈N∗ given by

(58) Ψ2,±
mn =

1
2π

Θ2,±
mn ∗ ρ±mn

is an (2, n)−biorthogonal to the family Λ in L2
(
−T

2 − ε, T
2 + ε

)
and there exists a positive con-

stant C independent of m and n such that

(59)
∫ T

2
+ε

−T
2
−ε

∣∣∣∣∣ ∑
m∈N∗

c±mΨ2,±
mn(t)

∣∣∣∣∣
2

dt ≤ C

e 2a
b

nπ
∑

m< a
b
n

|c±m|2 +
∑

m≥ a
b
n

|c±m|2


for any finite sequence (c±m)m∈N∗.
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4 Controllability results

We pass to study the controllability problem (10)-(11). Let the initial data be

(60) (u0, u1) =
∑

(m,n)∈N∗×N∗
α±mnΦ±mn.

In the sequel (Ψ1,±
mn)n∈N∗ and (Ψ2,±

mn)m∈N∗ are the biorthogonal sequences in L2
(
−T

2 ,
T
2

)
given

by Theorems 3.4 and 3.6 respectively.

Theorem 4.1 Let T > 2 b
(
1 + e (

√
2 + 1)

)
. Then, any initial data (60) such that

(61)
∑
n∈N∗

e2a
b
n
∑

m< a
b
n

|α±mn|2 +
∑

m≥a
b
n

|α±mn|2

m2 + n2

 <∞

may be driven to zero by a control v ∈ L2((0, T )× (0, b)). Moreover, v may be taken as follows

(62) v(t, y) =
∑
n∈N∗

sin
(nπy

b

)( ∑
m∈N∗

(−1)m+1

mπ

4
√

2
b
√
ab
α±mne

−iλ±mn
T
2 Ψ2,±

mn

(
t− T

2

))
.

Proof: It is easy to see that, from the properties of the biorthogonal sequence (Ψ2,±
mn)m∈N∗ , v

given by (62) verifies (20). Hence, we only have to prove that the series from (62) converges in
L2((0, T )× (0, b)). Indeed, this follows immediately from the estimate∫ T

0

∣∣∣∣∣
∣∣∣∣∣∑
n∈N∗

sin
(nπy

b

)( ∑
m∈N∗

(−1)m+1

mπ

4
√

2
b
√
ab
α±mne

−iλ±mn
T
2 Ψ2,±

mn

(
t− T

2

))∣∣∣∣∣
∣∣∣∣∣
2

L2(0,b)

=

=
b

2

∫ T

0

∑
n∈N∗

∣∣∣∣∣ ∑
m∈N∗

(−1)m+1

mπ

4
√

2
b
√
ab
α±mne

−iλ±mn
T
2 Ψ2,±

mn

(
t− T

2

)∣∣∣∣∣
2

≤

≤ C
∑
n∈N∗

e2a
b
nπ

∑
m< a

b
n

|α±mn|2 +
∑

m≥a
b
n

|α±mn|2

m2 + n2


where in the last inequality we have used (59) from Theorem 3.6.

Remark 5 Theorem 4.1 shows which part of the spectrum may be uniformly controlled from the
edge {(a, y) : y ∈ (0, b)}: the eigenmodes (m,n) such that n ≥ b

am. This result improves the one
obtained in [14] where the condition n ≥ exp(m) was obtained.

2
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Remark 6 In [7] the equivalent moment problem and biorthogonal estimates are used to study
the controllability properties of the linear wave equation in a parallelepiped from one face. It is
proved that any initial data (u0, u1) like in (60) such that∑

(m,n)∈N∗×N∗
|α±mn|2e2

a
b
n = τ(u0, u1) <∞

are controllable from the edge {(a, y) : y ∈ (0, b)} with a control v ∈ L2((0, T )× (0, b)) such that

||v||L2((0,T )×(0,b)) ≤ Cτ(u0, u1).

Note that our space of controllable initial data given by Theorem 4.1 is larger, since on the
range m ≥ a

bn the conditions on the Fourier coefficients are less restrictive.
Let us also mention that, in [7], it is proved that there exists infinitely differentiable initial

data which are not controllable from one face. This is obtained by proving an estimate from
below for the biorthogonal sequence.

2

Let us now pass to the problem with a control acting on two adjacent edges.

Theorem 4.2 Let T > 2 max
{
a+ e (

√
2 + 1)a, b+ e (

√
2 + 1)b

}
. Then, any initial data (60)

such that

(63)
∑

m∈N∗

∑
n∈N∗

|a±mn|
2

m2 + n2
<∞

may be driven to zero by a control (v1, v2) ∈ L2((0, T )× (0, b))× L2((0, T )× (0, a)). Moreover,
(v1, v2) may be taken as follows

(64)

v1(t, y) =
∑
n∈N∗

sin
(nπy

b

) ∑
m∈N∗, m

a
> n

b

(−1)m+1

mπ

4
√

2
b
√
ab
α±mne

−iλ±mn
T
2 Ψ2,±

mn

(
t− T

2

)
v2(t, x) =

∑
m∈N∗

sin
(mπx

a

) ∑
n∈N∗, n

b
≥m

a

(−1)n+1

nπ

4
√

2
a
√
ab
α±mne

−iλ±mn
T
2 Ψ1,±

mn

(
t− T

2

) .

Proof: It is easy to see that

(−1)k+1kπ

a

∫ T

0
e−iλ±klt

∫ b

0
v1(t, y) sin

(
lπy

b

)
dydt =


0 if l

b ≥
k
a

2
√

2√
ab
α±kl if l

b <
k
a ,
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(−1)l+1 lπ

b

∫ T

0
e−iλ±klt

∫ a

0
v2(t, x) sin

(
kπx

a

)
dxdt =


0 if l

b <
k
a

2
√

2√
ab
α±kl if l

b ≥
k
a .

It follows that (21) is verified by the controls (64). Moreover, inequalities (55)-(59) from
Theorems 3.4 and 3.6 and condition (63) ensure the convergence of the series in (64) in L2((0, T )×
(0, b)) and L2((0, T )× (0, a)) respectively.

Remark 7 Condition (63) is equivalent to (u0, u1) ∈ L2(Ω) × H−1(Ω), which is known to be
the optimal space of controllable initial data.

2

Remark 8 From estimate (59) on the L2−norm of the biorthogonal sequence (Ψ2,±
mn)m we may

deduce information about the dependence of the controls’ norms with respect to the rage of
frequencies of the initial data (u0, u1). For instance, if we want to control from the edge {(a, y) :
y ∈ (0, b)} an initial data of the form (u0, u1) = Φ±mn we may use the control

vmn(t, y) =
(−1)m+1

mπ

4
√

2
b
√
ab

sin
(nπy

b

)
e−iλ±mn

T
2 Ψ2,±

mn

(
t− T

2

)
.

From (59) we deduce that

||vmn||L2((0,T )×(0,b)) ≤ C ×


1
m

if m ≥ a
bn

1
m

exp
(a
b
nπ
)

if m < a
bn

where C is a constant independent of m and n.
Hence, the norm of the control vmn is bounded in the range m ≥ a

bn but may be exponentially
large for m < a

bn. This gives a quantitative expression of the fact that it may be very costly to
control, from a vertical edge, very oscillatory modes in the x−direction. In [7] estimates from
below for the norms ||vmn|| are given, showing that these are indeed exponentially large for n
large enough.

2

Remark 9 Note that the pair of controls given by (64) has the following alternating property:
v1 controls the eigenmodes (m,n) such that m

a > n
b and leaves unchanged the other ones. On

the contrary, v2 controls the eigenmodes (m,n) such that n
b ≥

m
a and leaves unchanged the first

ones.
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Of course, other choices are possible for the controls. For instance,

(65)

v1(t, y) =
1
2

∑
n∈N∗

sin
(nπy

2

)( ∑
m∈N∗

(−1)m+1

mπ

4
√

2
b
√
ab
α±mne

−iλ±mn
T
2 Ψ2,±

mn

(
t− T

2

))

v2(t, x) =
1
2

∑
m∈N∗

sin
(mπx

2

)(∑
n∈N∗

(−1)n+1

nπ

4
√

2
a
√
ab
α±mne

−iλ±mn
T
2 Ψ1,±

mn

(
t− T

2

))
.

However, in this case, the space of controllable initial data is much smaller, since the presence
of the biorthogonals Ψ1,±

mn with n
b ≥

m
a and Ψ2,±

mn with m
a > n

b , which have greater norms, imposes
additional restrictive conditions on the corresponding coefficients αmn.

2

Remark 10 The controllability time given by Theorem 4.2 is

T > 2 max
{
a+ e (

√
2 + 1)a, b+ e (

√
2 + 1)b

}
which is greater than the known optimal one, 2

√
a2 + b2. Further investigations on the multiplier

function Gmn from Lemma 3.3 are needed to obtain this optimal time. More precisely, we should
deduce the existence of a function Gmn with the same properties as in Lemma 3.3 but with
exponential type equal to

√
a2 + b2 − b. This remains an open problem.

2
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