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ignored because of serious problems that appear due to an additional ghost degree of free-

dom. Most dangerously, it causes an immediate decay of the vacuum. However, breaking

Lorentz invariance can cure such abominable behavior. By analyzing a model that describes

a massive graviton together with a remaining Boulware-Deser ghost mode we show that

even ghostly theories of modified gravity can yield models that are viable at both classical

and quantum levels and, therefore, they should not generally be ruled out. Furthermore,

we identify the most dangerous quantum scattering process that has the main impact on

the decay time and find differences to simple theories that only describe an ordinary scalar

field and a ghost. Additionally, constraints on the parameters of the theory including some

upper bounds on the Lorentz-breaking cutoff scale are presented. In particular, for a sim-

ple theory of massive gravity we find that a breaking of Lorentz invariance is allowed to

happen even at scales above the Planck mass. Finally, we discuss the relevance to other

theories of modified gravity.
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1 Introduction

Despite the fact that the standard theory of gravity, general relativity (GR), is already

around one century old, there has always been interest in finding viable modifications to

it. In particular, the discovery of the late-time acceleration of our Universe [1, 2] driven

by some dark energy has led to an additional motivation, as GR requires a technically

unnatural cosmological constant (CC) in order to be compatible with observations. The

list of problems with the standard theory goes much further (see for example ref. [3] for

a recent review): GR is not renormalizable and can only be regarded as an effective field

theory (EFT). Furthermore, the formation of structure at early times needs an additional

inflationary epoch, and even the requirement of some additional dark matter might be

the consequence of the inability of GR to properly describe the evolution of the cosmic

structure. It is however not only these problems that make a search for modifications of

GR attractive; there is also the more fundamental question of which classes of theories are

allowed and consistent.
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Under certain assumptions, Vermeil and Cartan independently proved that Einstein

equations are the only allowed field equations to describe gravity [4, 5]. In particular,

if a rank-2 tensor K is naturally constructed from only a pseudo-Riemannian metric g,

and is symmetric, divergence-free, only second order in the derivatives of g, and linear in

these derivatives, then K has to be a linear combination of the Einstein tensor and the

metric itself. Later, Lovelock showed that the requirements of symmetry and linearity

are redundant in four dimensions [6]. A generalization of this theorem has recently been

suggested by Navarro and Sancho [7], who replaced the assumptions of the number of

dimensions and absence of higher order derivatives by a simpler requirement that K is

homogeneous, i.e., K(λ2g) = λwK(g) ∀g, ∀λ > 0, and of weight w > −2.

Thinking about modifying GR can be translated into relaxing these so-called Lovelock

assumptions. Higher dimensional spacetimes, as well as unnaturalness (understood in the

mathematical sense, i.e., either breaking of locality or generally non-C∞), enable a richer

phenomenology and do not necessarily require a CC in order to fit current observations.

Additionally, a pseudo-Riemannian geometry is quite restrictive as it both implies a van-

ishing torsion and enforces the connection to be metric-compatible. Certainly the strongest

assumption, however, is the dependence on the metric only. Consequently, most theories

of modified gravity assume additional fields that can be either scalar, vector, or tensor.

There is, however, one assumption that usually stays untouched: the absence of

higher order derivatives. An old theorem from Ostrogradski states that non-degenerate

Lagrangians that lead to third or higher order derivatives in the equations of motion (EoM)

always house an additional ghost, i.e., a degree of freedom with the wrong kinetic sign. But

even degenerate Lagrangians producing third order derivatives are affected by ghosts [8].

The consequences that come along with a ghost are usually believed to be fatal (see, e.g.,

refs. [9, 10]). Such a negative energy mode could drive the classical theory into an instabil-

ity. Even though this might still be acceptable as long as the theory is in agreement with

observations, it indeed limits the number of viable theories drastically. The real catastro-

phe appears, however, at the quantum level: ghost fields can decay into ordinary matter

fields by reaching arbitrarily large negative energy states. And, even worse, this decay will

practically happen instantaneously (see refs. [10, 11] for more details). Such a theory can-

not describe a stable vacuum and therefore has to be ruled out. The origin of the fast decay

lies in an integration over the entire phase space when computing scattering amplitudes

which diverge in the ultraviolet (UV) region. Therefore, the only way to tame the ghost is

to modify the integration in the UV. In ref. [12], the authors suggested that new operators

beyond the EFT would allow us to cut this integral and, therefore, a theory with ghosts

could theoretically be cured. In fact, it has been shown that the vacuum in simple theories

with two oscillators, of which one is a ghost, can indeed have a decay time that is larger

than the Hubble time [12, 13] (see also refs. [14, 15] for discssions of ghosts in Chern-Simons

and Hořava-Lifshitz theories, respectively). The energy scale at which new physics might

enter and break Lorentz invariance (LI) can be low enough to slow down the vacuum decay

sufficiently and circumvent any violation of experimental constraints, but at the same time

be high enough to be above the cutoff of the EFT. In fact, a Lorentz breaking (LB) does

not render the theory unappealing as long as it occurs above the EFT cutoff scale.
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In this work, we discuss a theory of modified gravity that automatically introduces a

ghost instead of adding a simple ghost field by hand to a well behaved theory. In fact, as

will be shown, many properties of such a theory, like the decay time of the vacuum, may

be significantly different, and therefore the conclusions from simpler toy models should

not be adopted blindly. In order to modify GR suitably, we assume a massive graviton.

Even though the idea of studying massive gravity is very old [16], ghost-free non-linear

theories were discovered only recently [17–23]. Here we use the so-called ghost-free de

Rham-Gabadadze-Tolley (dRGT) theory to construct a theory of a massive graviton with

an additional Boulware-Deser (BD) ghost [24], which we then dub haunted massive gravity

(HMG). We first study the classical behavior of the theory for a Friedmann-Lemâıtre-

Robertson-Walker (FLRW) background in order to identify the models that do not intro-

duce potentially dangerous instabilities already at this level. With HMG we find the first

theory of a canonical non-linear massive gravity which possesses models that are free of any

background pathologies, and allows for dynamical, even self-accelerating, FLRW solutions.

We finally discuss the quantum stability of the viable models by computing the ghost and

vacuum decay rates in HMG.

Although the theory that is discussed in this work has some nice features, e.g., it

can provide a solution to the dark energy problem, it is certainly not the most promising

contender of GR. For example, the construction of the mass term is mainly based on keeping

simplicity, and the strong coupling scale of the theory is very low, losing predictivity on

small scales. This work, however, does not intend to present a new theory of modified

gravity in order to address the problems with GR, but rather to examine the behavior of

ghosts appearing in more realistic theories of gravity. We find that the scattering processes

that dominate in the ghost and vacuum decay rates do not coincide with those that appear

in theories with two coupled canonical scalar fields where one of the fields is a ghost. While

in such a simple scenario the decay time has been found to scale only quadratically with the

cutoff at which Lorentz violation (LV) occurs [12] (see also refs. [13, 25] for a discussion on

decay rates for other setups), we find a completely different scaling for HMG. Furthermore,

we expect the type of interaction that we find in this work as the most important one in

HMG to in fact determine the decay time also in many other theories of gravity with a

present ghost mode.

2 HMG with dRGT limit

Since we are interested in a theory of a massive graviton with an additional BD ghost, we

could simply study any non-linear theory that does not coincide with the dRGT theory.

However, we would like to keep a ghost-free limit, and therefore, we start with dRGT and

modify the tuning between the coefficients of interaction terms.

The dRGT massive gravity can be written as [22, 26]

SdRGT = M2
P

∫
d4x
√
−g
[
R+ 2m2U(K)

]
, (2.1)

where U(K) is the mass term, which depends on the eigenvalues of K ≡
√
g−1f−1 ≡ X−1,

and is equivalent to
∑3

n=0 βnUn with Un ≡ en (X), en being the elementary symmetric
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polynomials of the eigenvalues of X. Additionally, f is a non-dynamical symmetric rank-2

tensor field, and βn depend on the two free dimensionless parameters of the theory, α3

and α4 [26]:

β0 = 6− 4α3 + α4, (2.2)

β1 = −3 + 3α3 − α4, (2.3)

β2 = 1− 2α3 + α4, (2.4)

β3 = α3 − α4. (2.5)

Let us first discuss the simplest model, the so-called minimal model [26], and choose α3

and α4 such that we can switch off the highest order interactions, i.e. β2 = β3 = 0, and

obtain

α3 = α4 = 1 ⇔ β0 = 3, β1 = −1. (2.6)

The action in this case becomes

Smin = M2
P

∫
d4x
√
−g
[
R+ 2m2 (3− [X])

]
, (2.7)

where [X] denotes the trace of X. If we change the prefactors of the mass term, we then

change either the CC or the graviton mass (or make it tachyonic). Thus, in order to

introduce a ghost, we should switch on higher order interactions. One possibility would be

to remove the CC (which would make the model very appealing especially for cosmology)

and allow for β1 and β2 to be non-vanishing. We then find β0 = β3 = 0 together with

α3 = α4 = 2 ⇔ β1 = 1 = −β2, (2.8)

which results in the action

S = M2
P

∫
d4x
√
−g
[
R+ 2m2

(
β1 [X] +

1

2
β2

(
[X]2 −

[
X2
]))]

(2.9)

= M2
P

∫
d4x
√
−g
[
R+ 2m2

([√
g−1f

]
− 1

2

([√
g−1f

]2
−
[
g−1f

]))]
. (2.10)

Note that this choice, like all other combinations that satisfy α3 +α4 > 0, does not lead to

a Higuchi ghost, at least around an FLRW background for large H2 [27]. This is important

because we will use this theory as a ghost-free limit which should ensure not only the

absence of the BD ghost but also the presence of five healthy graviton degrees of freedom.

We now modify the theory to introduce a ghost. The simplest way would be to modify

the prefactor in one of the interaction terms which in the linear theory corresponds to a

violation of the Fierz-Pauli (FP) tuning. However, we do not expect this modification to

enable dynamical FLRW solutions for a flat reference metric since the combination of the

Bianchi identities and the conservation of energy-momentum tensor will still be a constraint

for the scale factor, as it has been shown for dRGT in ref. [28]. One way out could be to
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introduce a metric-dependent (and, thus, lapse-dependent) prefactor like α
[
g−1f

]
, with

α ∈ R, and study the action

S = M2
P

∫
d4x
√
−g
[
R+ 2m2

([√
g−1f

]
+

1

2

(
α
[
g−1f

]
− 1
)([√

g−1f
]2
−
[
g−1f

]))]
.

(2.11)

Although this theory would certainly allow for dynamical FLRW backgrounds, we found

only unviable solutions for which the scale factor would become imaginary or the lapse

would cross zero, indicating an instability. Therefore, we consider a slightly more compli-

cated theory in which both interaction terms are modified, and dub this theory haunted

massive gravity (HMG):

SHMG = M2
P

∫
d4x
√
−g
[
R+ 2m2

(
(1− α1 (g, f))

[√
g−1f

]
− 1

2
(1− α2 (g, f))

([√
g−1f

]2
−
[
g−1f

]))]
, (2.12)

with

α1 (g, f) ≡ ᾱ1X
2 = ᾱ1g

αβfβα, (2.13)

α2 (g, f) ≡ ᾱ2X
2 = ᾱ2g

αβfβα, (2.14)

where ᾱi are two dimensionless parameters.

This theory has some interesting properties. Firstly, the limit ᾱi → 0 corresponds to

the ghost-free dRGT theory, whereas any other values should introduce a new ghost degree

of freedom as it does not coincide with dRGT, the unique non-linear ghost-free theory

of a massive graviton. Secondly, the additional dynamical factors will enable us to have

dynamical FLRW solutions by modifying the Bianchi constraint, and, finally, we expect the

vacuum to decay more slowly at late times since
[
g−1f

]
∝ a−2 for FLRW backgrounds.1

3 Background cosmology

From now on, let us fix the reference metric to a flat Minkowski background, i.e., fµν = ηµν .

Since massive gravity with fµν = ηµν breaks diffeomorphism invariance, the lapse of gµν
must not be chosen arbitrarily. For an FLRW background we therefore choose

ds2 = −N2
g dt2 + a2d~x2, (3.1)

with Ng and a denoting the lapse and the scale factor, respectively, and t being cosmic

time. Varying the action (2.12) with respect to gµν yields

−2m2M2
Pδ
(√
−gU1 (X)

)
= −
√
−gβ1m

2M2
Pg

µαY ν
(1)α

(√
g−1f

)
δgµν , (3.2)

−2m2M2
Pδ
(√
−gU2 (X)

)
=
√
−gβ2m

2M2
Pg

µαY ν
(2)α

(√
g−1f

)
δgµν , (3.3)

1This could have an interesting impact on the phenomenology at early times and might lead to an

enhanced creation of particles. The relevant time period would, however, presumably lie above the cutoff

scale of the theory.
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with

Y(1) (X) ≡ X− 1 [X] , (3.4)

Y(2) (X) ≡ X2 − X [X] +
1

2
1
(

[X]2 −
[
X2
])
. (3.5)

Furthermore, we need the variation of αi:

δαi (g) = −ᾱigαµgνβηβαδgµν . (3.6)

With this, the variation of the mass term yields

√
−gM2

PV
µν ≡ −m2√−gM2

P

[
(α1 (g)− 1) gµαY ν

(1)α + (α2 (g)− 1) gµαY ν
(2)α

− 2U1 (X)
δα1 (g)

δgµν
− 2U2 (X)

δα2 (g)

δgµν

]
. (3.7)

Combining the Bianchi identities with the assumption of a conserved energy-momentum

tensor leads to the Bianchi constraint

∇µV µν = 0, (3.8)

which implies(
1 + 3a−2N2

g

) [
N ′g (a (aᾱ1 + 6ᾱ2) + 2Ng (2aᾱ1 + ᾱ2))

+HNg

(
−6aᾱ2 +N2

g (4ᾱ1 − (a− 2)a)− 2Ng (aᾱ1 + ᾱ2) + 9ᾱ1a
−1N3

g

)]
= 0. (3.9)

Here, H ≡ a′/a is the Hubble rate, and a prime denotes a derivative with respect to t. In

the limit ᾱi → 0, eq. (3.9) fixes the scale factor confirming the no-go theorem for FLRW

solutions in dRGT massive gravity. In our case, however, we are able to switch on the

dynamics since the Bianchi constraint now depends on both the scale factor and the lapse.

This constraint together with the Friedmann equation

3H2 = ρ+ V00 (3.10)

= ρ+
m2

a4Ng

[
a3 (− (aᾱ1+6ᾱ2))−3a2Ng (2aᾱ1+ᾱ2)+3N3

g (a ((a−1)a−3ᾱ1)+3ᾱ2)
]

(3.11)

and assuming a universe filled with dark matter only,

ρ ≡ ρ0a
−3, (3.12)

can be solved numerically. In the limit a � 1, the combination of the Bianchi constraint

and the Friedmann equation provides

Ng = ±1

3

√
ᾱ2

ᾱ1
a, (3.13)

– 6 –
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Figure 1. Numerical solution of the FLRW background evolution in HMG, corresponding to the

model with ᾱ1 = 0.9 and ᾱ2 ' 0.1025. The plots show the scale factor (upper left), the expansion

rate (upper right), the lapse (lower left), and the effective equation of state (lower right). All the

quantities are plotted versus the cosmic time, t, scaled in such a way that a(t = 1) = 1.

and implies H2 ∝ a−3. Therefore, we find a singularity for a → 0. The time at which it

occurs will be denoted by tc, i.e., Ng(tc) = 0.

Interestingly, for a given ᾱ1 one can find a value for the parameter ᾱ2 that maximizes

the timescale of the background evolution by reaching tc → 0. One example for such a

model is

ᾱ1 = 0.9 ⇒ ᾱ2 ' 0.1025. (3.14)

By solving the background equations numerically, we can search for the parameter

region that leads to tc = 0 and find that it can be fitted very well linearly with

ᾱ2 '
1

6
ᾱ1 −

2

45
. (3.15)

If we promote the maximization of the classical timescale to a constraint, then this

model will effectively lose one free parameter. Furthermore, eq. (3.15) indicates that both

ᾱ1 and ᾱ2 can be of O (1).

Surprisingly, after solving the background equations for the model (3.14) numerically,

we find that at late times the effective equation of state parameter weff < −1/3 indicates

a period of self-acceleration and we thus have found a candidate for a model that could be

able to provide a solution to the dark energy problem. See figure 1 for a numerical solution

of the background evolution, corresponding to model (3.14).
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4 Second order action for HMG around Minkowski

In order to compute the vacuum decay, we have to first identify the ghost mode. For this,

we perturb the background, expand the action to second order, and finally integrate out2

all auxiliary fields.

4.1 Gravity sector

We now choose to work with perturbations around a Minkowski background. Note that

we expect a generalization to an FLRW background to merely modify the decay rate

insignificantly. In fact, corrections from an FLRW background are proportional to H/k and

become negligible in the high-momentum limit, on which we will focus later. Furthermore,

ignoring the cosmological expansion and, therefore, a smaller volume at early times, should

then correspond to maximizing the decay rate and computing an upper bound for a more

realistic scenario.

In this case, the Bianchi constraint (3.9) enforces the lapse to be a constant; here we

set Ng = 1. Furthermore, in order to excite the scalar BD ghost we consider the following

scalar perturbations δg around the background ḡ ≡ η:

ds2
δg = 2

[
−Ψdt2 +B,idx

idt+ (Φδij + E,ij) dxidxj
]
. (4.1)

The Einstein-Hilbert action at second order therefore reads

S
(2)
EH = 4M2

P

∫
d4x

(
Φ2
i + 2ΦiΨi − 2Φ′∆E′ − 3Φ′2 − 2BiΦ

′
i

)
, (4.2)

where we have used the notation

XiYi ≡
∑
j

X,jY,j , ∆X ≡
∑
j

X,jj . (4.3)

We now expand the mass term of action (2.12) to second order and use√
g−1η '

√
ḡ−1η

[
1− 1

2
ḡ−1 (δg) +

3

8
ḡ−1 (δg) ḡ−1 (δg)

]
(4.4)

= 1− 1

2
η (δg) +

3

8
η (δg) η (δg) , (4.5)

to obtain(
1− ᾱ1

[
g−1η

]) [√
g−1η

]
'
[
1− 1

2
η (δg) +

3

8
η (δg) η (δg)

]
− ᾱ1 ([1]− [(δg) η] + [η (δg) η (δg)])

(
[1]−

[
1

2
η (δg)

]
+

[
3

8
η (δg) η (δg)

])
(4.6)

' 4 (1− 4ᾱ1)−
(

1

2
− 6ᾱ1

)
[η (δg)]− 1

2
ᾱ1 [η (δg)]2 +

(
3

8
− 11

2
ᾱ1

)
[η (δg) η (δg)] (4.7)

2Since we are interested in computing only tree-level diagrams in order to discuss the quantum behavior

of the theory, the elimination of all auxiliary fields in the action by using their EoM is equivalent to properly

integrating out these fields.
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and (
1− ᾱ2

[
g−1η

])([√
g−1η

]2
−
[
g−1η

])
' (1− ᾱ2 (4− [(δg) η] + [η (δg) η (δg)]))×

×

([
1− 1

2
η (δg) +

3

8
η (δg) η (δg)

]2

− 4 + [(δg) η]− [η (δg) η (δg)]

)
(4.8)

' 12 (1− 4ᾱ2)− 3 (1− 8ᾱ2) [(δg) η] +

(
1

4
− 4ᾱ2

)
[η (δg)]2

+ 2 (1− 10ᾱ2) [η (δg) η (δg)] . (4.9)

Finally, with

√
−g ' 1

4

√
−ḡ
(

4 + 2 (δg)µµ − (δg)µν (δg)µν +
1

2

(
(δg)µµ

)2
)

(4.10)

=
1

4

(
4 + 2 [η (δg)]− [η (δg) η (δg)] +

1

2
[η (δg)]2

)
(4.11)

we find the second order action of the mass term as

S(2)
mass = M2

Pm
2

∫
d4x

(
1

4
+ᾱ1−2ᾱ2

)
[η (δg)]2−

(
1

4
+3ᾱ1−8ᾱ2

)
[η (δg) η (δg)] . (4.12)

For the ansatz (4.1), this becomes

S(2)
mass =

1

2
M2

Pm
2

∫
d4x
[
−c1B∆B+c2

(
Ψ2+(∆E)2

)
+8c3Φ∆E+12c3Φ2+4c4Ψ (∆E+3Φ)

]
,

(4.13)

where we have defined the parameters ci as

c1 ≡ 1 + 12ᾱ1 − 32ᾱ2, (4.14)

c2 ≡ −16ᾱ1 + 12ᾱ2, (4.15)

c3 ≡ 1 + 4ᾱ2, (4.16)

c4 ≡ 1 + 4ᾱ1 − 8ᾱ2. (4.17)

Therefore, the (minimal) ghost-free massive gravity corresponds to the limit c1, c3, c4 → 1

and c2 → 0. Note that we should not necessarily expect a smooth limit due to the change

in the number of degrees of freedom in HMG compared to dRGT.

4.2 Full action including matter

For simplicity, we assume the matter sector to contain only a single, minimally-coupled,

scalar field ϕ with mass mϕ, i.e.,

Smatter = −
∫

d4x
√
−g
(
∂µϕ∂µϕ+m2

ϕϕ
2
)
, (4.18)

and consider the weak-field limit where only the gravitational sector is expanded to second

order and matter is kept unperturbed. The kinetic and mass terms of ϕ are then given by

its coupling to the background metric.
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By combining the actions (4.2), (4.13), and (4.18), we obtain the final leading order

action of HMG, containing a Boulware-Deser ghost and a matter field, around Minkowski

(modulo total derivatives),

S
(2)
HMG =

∫
d4x

[
4M2

P

(
Φ2
i − 2∆ΦΨ− 2Φ′∆E′ − 3Φ′2 − 2BiΦ

′
i

)
+

1

2
m2M2

P

(
c1B

2
i +c2

(
Ψ2+(∆E)2

)
+8c3Φ∆E+12c3Φ2+4c4Ψ (∆E+3Φ)

)
−
(

1 +B2
i − (∆E)2 + 3Φ2 + 6ΦΨ−Ψ2 + 2∆E (Φ + Ψ)

)
Xϕ

]
, (4.19)

where we have defined

Xϕ ≡ −ϕ′2 + ϕ2
i +m2

ϕϕ
2. (4.20)

In total, all the scalar potentials Φ, Ψ, B, E, and the matter field ϕ should describe

at most three propagating scalar degrees of freedom: one helicity-0 mode of the graviton,

one scalar field from the matter sector, and one additional Boulware-Deser ghost. All these

scalar degrees of freedom are, however, not always excited around all backgrounds. Since

we are interested in the interaction of the ghost with the matter field, we need to ensure

that the BD ghost is indeed a propagating mode in eq. (4.19). To see this, we first integrate

out all the auxiliary fields by using their EoM

∂L
∂X
− ∂t

(
∂L
∂X ′

)
− ∂i

(
∂L
∂Xi

)
+ ∂2

t

(
∂L
∂X ′′

)
+ ∂2

i

(
∂L

∂
(
∂2
iX
)) = 0. (4.21)

For X ∈ {Ψ, B, ∆E} this leads to

Ψ =
8M2

P∆Φ− (∆E + 3Φ)
(
2c4m

2M2
P +Xϕ

)
c2m2M2

P −Xϕ
, (4.22)

Bi =
8M2

PΦ′i
c1m2M2

P +Xϕ
, (4.23)

∆E = −
Φ
(
4c3m

2M2
P +Xϕ

)
+ Ψ

(
2c4m

2M2
P +Xϕ

)
+ 8M2

PΦ′′

c2m2M2
P −Xϕ

. (4.24)

Solving this set of equations for Ψ, B, and ∆E as functions of Φ, Xϕ, and their derivatives,

yields

Ψ =
8M2

P∆Φ
(
c2m

2M2
P−Xϕ

)
−
(
2c4m

2M2
P+Xϕ

) [
Φ
(
(3c2−4c3)m2M2

P−4Xϕ

)
−8M2

PΦ′′]
(c2

2−4c2
4)m4M4

P−2 (c2+2c4)m2M2
PXϕ

, (4.25)

Bi =
8M2

PΦ′
i

c1m2M2
P + Xϕ

, (4.26)

∆E =

8∆Φ
(
2c4m

2M2
P+Xϕ

)
+Φ

[
4
(
c2c3−3c2

4

)
m4M4

P+(c2−4c3−12c4)m2M2
PXϕ−4X2

ϕ

]
+8M2

PΦ′′(c2m
2M2

P−Xϕ

)
− (c2

2 − 4c2
4)m4M4

P + 2 (c2 + 2c4)m2M2
PXϕ

.

(4.27)

Note that the determinant of the mixing matrix for Ψ and ∆E in eqs. (4.22) and (4.24)

is proportional to the factors m2 and c2 + 2c4 = 2 − 8ᾱ1 + 32ᾱ2. If one of these terms

vanishes, the mixing matrix becomes singular, which is equivalent to it having a zero
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eigenvalue. These eigenvalues correspond to the kinetic terms of the diagonalized degrees

of freedom (given by the eigenvectors). Therefore, the singular situation corresponds to a

combination of the auxiliary fields losing its kinetic term, and leads to a strong coupling

and a breakdown of perturbativity.

Finally, the full second order HMG action

S
(2)
HMG = S

(2)
EH + S(2)

mass + Smatter (4.28)

can be written as

S
(2)
HMG [Φ, ϕ] = S(2)

m [Φ, ϕ] + S
(2)
kin [Φ, ϕ] + S

(2)
int [Φ, ϕ] . (4.29)

The action now depends only on two remaining interacting massive scalar fields ϕ and Φ

described by the mass term

S(2)
m = −

∫
d4x

(
−6c3m

2M2
PΦ2 +m2

ϕϕ
2
)
, (4.30)

and rather complicated kinetic and interaction terms, S
(2)
kin and S

(2)
int , respectively. Because

the action (4.19) contains a term that is proportional to Φ′∆E′, we find, after integrating

out ∆E, terms that include (Φ′′)2. The occurrence of fourth-order derivatives in Φ signals

that the theory is inevitably plagued by an Ostrogradsky ghost. In total, we expect a

composition of three scalar degrees of freedom consisting of a helicity-0 mode from the

graviton, a matter field, and a ghost. In order to analyze the interactions between the

ghost and the other degrees of freedom, we need to decouple all of them.

4.3 Decoupling of the ghost

4.3.1 Decoupling in vacuum

Before analyzing the UV limit, i.e., Xϕ � m2M2
P, we study the simpler case first in which

the matter field is absent, i.e., Xϕ = 0. The action can then be written as

S
(2)
HMG =

∫
d4x

[
C1 (∆Φ)2+C2Φ∆Φ+C3Φ′′∆Φ+C4ΦΦ′′+C5

(
Φ′′
)2

+C6Φ2
]
, (4.31)

where

C1 ≡ −
32c2M

2
P

m2
(
c2

2 − 4c2
4

) , C2 ≡ −
4M2

P

(
c2

2 − 12c2c4 + 4c4(4c3 − c4)
)

c2
2 − 4c2

4

, (4.32)

C3 ≡ −
32M2

P

(
4c4(c1 − c4) + c2

2

)
c1m2

(
c2

2 − 4c2
4

) , C4 ≡
4M2

P

(
3c2

2 − 8c2c3 + 12c2
4

)
c2

2 − 4c2
4

, (4.33)

C5 ≡ −
32c2M

2
P

m2
(
c2

2 − 4c2
4

) , C6 ≡
2m2M2

P(3c2 − 4c3)
(
c2c3 − 3c2

4

)
c2

2 − 4c2
4

. (4.34)

In order to make the additional scalar degree of freedom manifest we can try to find

an equivalent action that descibes two fields with at most second derivatives instead of

one field having fourth order derivatives. A special case where the interaction term is just

(�Φ)2 has already been presented in ref. [18].
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For this, we introduce an auxiliary field χ together with seven unknown constants Di,

and consider a general action of two scalars Φ and χ that contains at most second-order

derivatives,

S′ =

∫
d4x

[
D1ΦΦ′′ +D2Φ∆Φ +D3χΦ′′ +D4χ∆Φ +D5χ

2 +D6χΦ +D7Φ2
]
. (4.35)

The coupling to χ is constructed such that this auxiliary field can easily be integrated

out by using its equation of motion,

χ = − 1

2D5

(
D6Φ +D3Φ′′ +D4∆Φ

)
. (4.36)

We would then obtain an action that looks similar to the action (4.31) with which we

started, except for the coefficients that will now depend on the constants Di. Since we

are interested in finding an equivalent action with two degrees of freedom, we equate these

coefficients and solve for the unknown constants Di. Interestingly, a solution does exist

only if

C1 =
C2

3

4C5
⇔ C1 (∆Φ)2 + C3Φ′′∆Φ + C5

(
Φ′′
)2

=
(√

C1∆Φ +
√
C5Φ′′

)2
, (4.37)

which, as one can easily check, is also satisfied for HMG.3 After fixing the redundancy due

to a free rescaling of the actions by choosing D5 = −m2M2
P,4 we find

D1 = C4 ±
√
C5D6, D2 = C2 ±

C3D6

2
√
C5

, D3 = ∓2
√
C5, (4.38)

D4 = ∓ C3√
C5

, D7 = C6 −
1

4
D2

6. (4.39)

We can now introduce two scalar fields π and Φ (to be pronounced “phi spectre”),

described by a superposition of Φ and χ, which can finally be decoupled with the transfor-

mations

Φ −→ A1π −A2Φ and χ −→ Φ , (4.40)

where A1 and A2 are free coefficients. They can be used to diagonalize the mass terms,

S′m =

∫
d4x

[
D5Φ2 +D6Φ (A1π −A2Φ ) +D7 (A1π −A2Φ )2

]
, (4.41)

to obtain the physical degrees of freedom which can be achieved by setting

A1D6 = 2A1A2D7. (4.42)

3This condition enforces the theory to be covariant. Since we have started with a covariant theory and

then performed a time-space splitting, it is indeed expected that this condition is satisfied. For theories

that violate this constraint due to terms that break covariance, this does, however, not imply that there is

no ghost but rather that our ansatz is not sufficient. This could indicate that the theory does not propagate

only one but more degrees of freedom.
4This choice does also ensure real coefficients for parameter values that we will focus on later. Otherwise,

if c2
2 − 4c2

4 is negative, the coefficient D5 should be positive such that
√
C5 is real.
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For the choice A1 = 1 and D6 = m2M2
P, and using the solution corresponding to the

upper signs in eqs. (4.38) and (4.39), we see that if c2
2 − 4c2

4 > 0 (the parameter region

that we are interested in) then the prefactor in the kinetic terms for Φ is negative and,

therefore, describes a (BD) ghost, whereas the one for π is positive and, thus, corresponds

to the healthy helicity-0 mode. From eq. (4.41) we can read off the diagonalized mass terms

for both scalars and find

m2
Φ M2

P =
4D5D7 −D2

6

4D7
=
−4m2M2

PD7 −m4M4
P

4D7
, (4.43)

m2
πM

2
P = D7. (4.44)

Since D7 is positive if eq. (3.15) is satisfied, this indicates that the ghost is indeed a tachyon.

4.3.2 Decoupling in the presence of matter

So far, we have been able to decouple the ghost and the helicity-0 in the absence of an

additional matter field. Due to integrating out all auxiliary fields in the full action (4.19),

the coupling between matter and both the ghost and the helicity-0 mode is, however, not

trivial and requires a proper decoupling of all present degrees of freedom. Fortunately, the

procedure is conceptually similar to what has been done in the vacuum case. Furthermore,

we can simplify the calculations by considering the small scale limit Xϕ � m2M2
P. Because

the analysis nevertheless becomes a bit lenghtier, we present some itermediate steps in

appendix A.

In the presence of a matter field ϕ and assuming small scales, the action can be

decomposed as

S
(2)
HMG =

∫
d4x

[(
Φ′′
)2 (

C1Φ2ϕ2 + C2Φϕ+ C3

)
+
(
ϕ′′
)2 (

C4Φ2ϕ2 + C5Φϕ+ C6

)
(4.45)

+ (∆Φ)2 (C7Φ2ϕ2+C8Φϕ+C9

)
+(∆ϕ)2 (C10Φ2ϕ2+C11Φϕ+C12

)
+C13∆Φ∆ϕΦϕ

+Φ′′
(
C14∆ϕΦϕ+ C15ϕ

′′Φϕ+ C16∆Φϕ2Φ2 + C17∆ΦϕΦ

+C18∆Φ + C19∆ϕϕ2Φ2 + C20∆ΦϕΦ2
)

+Φ′′
(
C21∆ϕϕ2Φ2 + C22∆ϕ+ C23ϕ

′′ϕ2Φ2 + C24ϕ
′′)

+∆Φ
(
C25ϕ

′′ϕ2Φ2 + C26ϕ
′′ + C27∆ϕϕ2Φ2 + C28∆ϕ

)
+ C29∆ϕϕ′′Φϕ+ C30∆ϕϕ′′

+Φ′′
(
C31Φϕ2 + C32Φ

)
+ ϕ′′

(
C33Φ2ϕ3 + C34Φ2ϕ+C35ϕ

)
+ϕΦ

(
C36Φϕ2 + C37Φ

)
+∆ϕ

(
C38Φ2ϕ3 + C39Φ2ϕ+ C40ϕ

)
+ C41Φ2ϕ4 + C42Φ2ϕ2 + C43ϕ

2 + C44Φ2
]
.

Note that for HMG, some of the constants Ci do indeed vanish. All of them are

explicitly listed in eq. (A.1). Again, we start with an ansatz for an action that explicitly

describes three degrees of freedom with at most second-order derivatives,

S
′(2)
HMG =

∫
d4x

[
Φ′′
(
D1Φϕ2 +D2Φ

)
+ ϕ′′

(
D3ϕ

3Φ2 +D4ϕΦ2 +D5ϕ
)

(4.46)

+∆Φ
(
D6Φϕ2 +D7Φ

)
+ ∆ϕ

(
D8ϕ

3Φ2 +D9ϕΦ2 +D10ϕ
)

+D11Φ2ϕ4 +D12Φ2ϕ2 +D13ϕ
2 +D14Φ2

+χ
(
D15Φ′′ +D16Φ′′ϕΦ +D17∆Φ +D18∆ΦϕΦ +D19ϕ

′′

+ D20ϕ
′′ϕΦ +D21∆ϕ+D22∆ϕϕΦ

)
+D23χ

2
]
.
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After solving for all coefficients Di, applying the field transformations

Φ −→ A1π + Φ +M−1
P ξ, (4.47)

ϕ −→MPπ −MPΦ +A2ξ, (4.48)

χ −→ A3π − Φ +M−1
P ξ, (4.49)

and setting D23 = −m2M2
P, we find by checking the relative signs of all kinetic terms that

Φ is the ghost mode with the mass

m2
Φ M2

P = C44 −m2
ϕM

2
P −m2M2

P, (4.50)

and π and ξ describe the helicity-0 mode and the matter field, respectively, with masses

m2
πM

2
P = C43M

2
P +

(
M2

P

(
m2 − C43

)
+ C44

)2
4C44

−
(
M2

P

(
C43 +m2

)
+ C44

)2
4m2M2

P

(4.51)

= m2
Φ M2

P

(
−1 +

1

4
m2

Φ

(
C−1

44 M
2
P −m−2

))
, (4.52)

m2
ξ = M−2

P

(
C44 −m2M2

P

)
+

1

C43M4
P

(
C44 +m2M2

P

)2
(4.53)

=
m2

Φ m2M2
P − C44

(
m2

Φ + 4m2
)

C44 −
(
m2

Φ +m2
)
M2

P

. (4.54)

We observe that all masses are mainly determined by the coefficient C44. In our favored

parameter region that satisfies eq. (3.15) and α1 = O(1) we find C44 � m2M2
P. Hence, if

m2
ϕ is small (which we will also assume later for the analysis of the vacuum decay) then

eq. (4.50) indicates a positive m2
Φ but tachyonic scalars π and ξ. This is not surprising as

we have already seen the existence of a tachyon in the vacuum case. With an additional

coupling to a new, even non-tachyonic, scalar field the tachyonic instability can leak into

all other mass terms. However, this does not render the theory more dangerous and rather

tells us that the decay processes in our theory of massive gravity with an additional scalar

field can be described by the equivalent setting of one ghost and two tachyonic fields.

4.4 Strong coupling scale of the theory

The constraint that removes the BD ghost in a non-linear theory of a massive graviton

automatically removes all interactions that are suppressed by scales Λ < Λ3 with

Λλ ≡
(
MPm

λ−1
)1/λ

. (4.55)

All other non-linear theories that reduce to FP at the linear level contain terms suppressed

by Λ5. However, this does not necessarily hold for theories that do not reduce to the FP

theory at the linear level.

We can find the cutoff scale of HMG by using the expansion of the mass term (4.12)

and introducing the Stückelberg fields

δgµν −→ hµν + ∂µAν + ∂νAµ, (4.56)
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and, subsequently,

Aµ −→ Aµ + ∂µφ. (4.57)

This decomposition into the three helicity modes allows us to read off the energy scales

with which all single interactions are suppressed (see, e.g., refs. [29, 30]). For this we need

to canonically normalize all the modes through the rescaling

hµν −→
2

MP
hµν , (4.58)

Aµ −→
2

mMP
Aµ, (4.59)

φ −→ 2

m2MP
φ. (4.60)

One now finds that the interactions in HMG that are suppressed by the smallest scale are

of the type

∝ ᾱi
MPm4

(∂∂φ)3 =
ᾱi
Λ5

5

(∂∂φ)3 , (4.61)

and correspond to the cutoff scale Λ5.

5 Quantum instability

5.1 Most dominant interaction terms

The quantum stability depends on the scattering between the ghost Φ and the matter field

ξ. In order to compute the scattering amplitude we move to Fourier space and introduce

kΦ and kξ for the momenta of Φ and ξ, respectively. The final action of the interaction

between these two fields is rather complicated. In general, the interaction terms contain

derivatives of both fields that describe the so-called derivative interactions, which, thus,

have momentum-dependent vertices. It is exactly this type of interaction that might be

dangerous since the scattering amplitude requires an integration over the entire phase space

of the initial and final states of the fields. Therefore, all derivative interactions lead to UV

divergent terms ∝ kα with α ∈ R+. Even though such derivative interactions exist in the

Standard Model (SM), this problem is usually solved by introducing counter terms which

regularize the divergent parts. In our case, we require a Lorentz violation to cut the integral

over the phase space.

If the integral of the phase space is cut at some energy level due to some new Lorentz

breaking operators, then the decay rate might not necessarily be dominated by the UV

behavior anymore. As seen in section 4.4, the cutoff of the EFT is much below the Planck

scale. Depending on the mass of the graviton, terms with a lower number of derivatives

could then become dominant. At the end of this section we will, however, find that these

types of interactions are indeed less important.

From now on, we will need to only focus on the interactions with the highest number

of derivatives where we are allowed to assume that both kΦ and kξ are of the same order

since the cutoff scales above which Lorentz invariance is broken are equivalent for both

momenta. Even though one can directly see from the action (4.46) that there are many
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different types of derivative interations, most of them are suppressed by powers of M−1
P or

mϕ. We find the Lagrangian corresponding to the most dangerous process to be

Ldom '
(
c2

2+4c2(4c3+3c4+1)−8
(
2c2

3+2c3c4+c4(2c4−1)
))4

m6

32m6
ϕM

2
P(c2+2c4)5

Φ2 ξ3 ∂µ∂
µξ. (5.1)

For the analysis of the vacuum decay it will be useful to apply the transformation Φ −→
M−1

P Φ to obtain the same dimensions for both Φ and ξ. Finally, the interaction in

Fourier-space becomes

Ldom '
(
c2

2 + 4c2(4c3 + 3c4 + 1)− 8
(
2c2

3 + 2c3c4 + c4(2c4 − 1)
))4

m6

32m6
ϕM

4
P(c2 + 2c4)5

k2
ξ Φ2 ξ4. (5.2)

Note that this interaction arises from a matter sector, which, as in many other theories

of modified gravity, couples minimally to gravity. Thus, this type of derivative interaction

is not only a property of HMG but rather occurs in a much broader class of theories, even

beyond massive gravity. Since we are studying the Lagrangian on-shell, the exact term

describing the most dominant interaction is, of course, still model-dependent. Especially

the occurrence of derivatives in the potential term of the theory might lead to different

results. However, we expect that the qualitative results for HMG will still be valid for a

huge class of theories of modified gravity that introduce a ghost and have a matter sector

minimally coupled to gravity.

5.2 Ghost decay

The total decay rate of the ghost particle is the sum of the decay rates from all possible

decay channels.5 As already discussed, the dominant contribution to the total decay rate

comes from the process shown in figure 2 (left) and, therefore, the rate can be very well

approximated by

ΓΦ =
1

2mΦ

∫ ∏
f

d3pf

(2π)3 2Ef
|M|2 (2π)4 δ(4)

pΦ −
∑
f

pf

 . (5.3)

Here, M is the scattering amplitude, mΦ and pΦ are the mass and four-momentum of

the ghost particle, respectively,6 and Ef is the energy of a particle appearing in a final

decay product. The dominance of high momenta in the decay rate further justifies the

high energy limit leading to eq. (5.1).

It is important to note that we have different dispersion relations for a ghost and a

standard field. While for a ghost we have EΦ = −
√
m2

Φ + ~p2
Φ , the dispersion relation for

standard matter fields is Esm =
√
m2

sm + ~p2
sm. Here ~pΦ and ~psm are the spatial momenta

for the ghost and matter fields, respectively.

5Since the ghost is a boson, due to spin-statistics its production rate will be enhanced by a factor 1 + n~p

depending on the occupation number of the final state. However, we are interested in the case in which the

phase-space density of ghosts is negligible.
6Even though a (non-tachyonic) ghost is usually recognized as a field with negative kinetic energy, its

mass term does also carry an additional minus sign [11].
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Figure 2. Left: Feynman diagram for the most dominant decay of a Boulware-Deser ghost particle

(left dashed leg) into another ghost and four minimally coupled matter particles (solid legs). Right:

Feynman diagram for the most dominant vacuum decay into ghost and matter paricles.

Since eq. (5.3) contains an integral over the entire phase space of all decay products, the

decay rate is usually expected to be infinitely large. As mentioned earlier, a LB allows us to

cut the integral at ΛLB, which is, in fact, the energy scale that determines the decay time.

We now need to find the M matrix that corresponds to the derivative interaction

between Φ and ξ as described by eq. (5.1). The derivatives yield two powers from the

vertex of the interaction. Furthermore, we multiply the vertex by a factor of 3! as we

can freely swap all lines that correspond to ξ. Thus, the scattering amplitude from the

Feynman diagram shown in figure 2 (left) becomes

M = 3!A (ip3) (ip3) = −3!Aηµν (p3)µ (p3)ν , (5.4)

where we have introduced

A ≡
(
c2

2 + 4c2(4c3 + 3c4 + 1)− 8
(
2c2

3 + 2c3c4 + c4(2c4 − 1)
))4

m6

32m6
ϕM

4
P(c2 + 2c4)5

. (5.5)

In order to find an upper bound on the decay rate or, equivalently, a lower bound on

the decay time, we consider the worst-case scenario in which the matter field is almost

massless. Even though this will generally lead to higher decay rates, it is still a good

approximation as the decay will be dominant at energies near the LI-violating cutoff scale.

Assuming isotropy in the decay process, i.e., d3pf = 4πp2
fdpf , fixing the angles between

different vectors, and using the momentum conservation, we finally obtain the differential

decay rate,

dΓΦ ' −
18A2p2p3p4p5p6m

4
ξ(2π)4δ(4)

(
pΦ −

∑5
f=1 pf

)
(2π)10mΦ

. (5.6)

We are now able to perform the phase-space integral in eq. (5.3) up to the cutoff scale ΛLB,

at which Lorentz breaking occurs, and obtain

ΓΦ '
3A2m4

ξΛ
6
LB

2 (2π)10mΦ

+O
(
Λ5

LB

)
. (5.7)
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Note that A contains the scale with which the tree-level interaction term (5.2) is suppressed.

If one would consider contributions from loops then their vertices that are suppressed by

Λ5 might lower the scale with which the decay rate is suppressed down to Λ5.7

As mentioned before, the decay rate (5.7) corresponds only to the scattering process

that dominates in the UV. The validity of this assumption is not obvious for low cutoff

scales. From eqs. (4.25) and (4.26) we find that interactions with less derivatives of ϕ

introduce additional factors of m2M2
P in A. From a power counting we find that the

corresponding decay rate Γ̃Φ behaves like

Γ̃Φ ∝ m4M4
PΛ−8

LBΓΦ . (5.8)

Therefore, for all cutoff scales that satisfy ΛLB ?
√
mMP ' 10−2 eV (for m = O (H0))

we do not expect higher decay rates. As we will see in the next section, this condition is

always satisfied for cutoff scales Λ
(max)
LB with which the decay would happen on a timescale

of the Hubble time.

5.3 Vacuum decay

Besides the decay of a ghost, the vacuum itself can also decay into two ghosts and additional

matter particles. The Feynman diagram for the most dominant vacuum decay is shown in

figure 2 (right). The main contribution to the decay rate of the vacuum comes from the

same vertex that we found for the ghost decay and, thus, we find

Γvac =

∫ ∏
fΦ

d3pfΦ

(2π)3 2EfΦ

∏
f

d3pf

(2π)3 2Ef
|M|2 (2π)4 δ(4)

∑
fΦ

pfΦ
+
∑
f

pf

 . (5.9)

After choosing the rest-frame of the ghost particle f1, the M matrix is, up to a sym-

metry factor 2!, similar to eq. (5.4) and, thus, eq. (5.9) reduces to

Γvac = 2ΓΦ . (5.10)

The total decay rate of the interaction described by eq. (5.2) is, however, not simply the

sum of all decay rates Γi. The vacuum |0〉 is defined as the state without any excitations,

which is not a stable state if the theory contains ghost fields. The particle production rate

from the vacuum decay is, therefore, only a good approximation for an initial vacuum state

and might become less trustable as the vacuum decays. For this reason and since the decay

of the vacuum is not more dangerous than the decay of the ghost, we now focus on the

ghost decay only.

5.4 Numerical calculations

The decay rate possesses some model dependencies. A priori the graviton mass scale m is

a free parameter. However, if HMG is to be regarded as a theory of modified gravity that

is supposed to solve the dark energy problem by providing self-accelerating solutions, then

7We thank Claudia de Rham for discussions on this aspect.
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Figure 3. Left: constraints on the parameter space of HMG. The blue solid line indicates the

region in which eq. (3.15) is satisfied, i.e., the timescale of the instability at the classical level to

develop is maximized. Models on the red dashed line satisfy c2 + 2c4 = 0, indicating the strong

coupling regime. Right: numerical results for the upper bound on the Lorentz-breaking cutoff scale,

Λ
(max)
LB (red dashed line) corresponding to a decay time of the order of the Hubble time H−1

0 . As

indicated by the lowest and second-lowest dashed lines, denoting Λ5 and Λ3, respectively, the LB

cutoff scale can be much larger than the strong coupling scale of the EFT.

m should not be chosen arbitrarily. The mass parameter m determines the scale at which

modifications to GR become important and is therefore expected to be ∼ H0.

There is however an additional model dependency. By using the fit (3.15), we get

A ∝ 1/ (c2 + 2c4)5 '
(

45

26− 120ᾱ1

)5

, (5.11)

which, by tuning ᾱ1, might diverge, leading to an infinite decay rate. As discussed previ-

ously, this limit corresponds to a strong coupling of the matter and ghost mode, and thus,

the perturbative approach breaks down.

Since the classical background should also be unstable if the vacuum decays at tree

level, we do not expect to find stable classical backgrounds for ᾱ1 ' 13/60. For a cross-

check, we determine the parameter region that maximizes the timescale of the classical

instability to develop. As shown in figure 3 (left panel), we find that the results of the

background analysis indeed agree with this constraint.

The viability of the theory depends on the decay time of the most dominant scattering

process, and requires Γ−1 ? H−1
0 , which sets an upper bound on the scale ΛLB. For a

graviton mass m = O (H0) and ᾱ1 = O (1), where we approximately find mξ ' mΦ ' m,

we can estimate the order of magnitude for the upper bound Λ
(max)
LB ,

ΛLB . Λ
(max)
LB ≡

(
2 (2π)10mmΦ

3A2m4
ξ

)1/6

= O

(m12
ϕ M

8
P

m14

)1/6
 . (5.12)

This gives us an upper limit that is much above the cutoff scale of the theory. For more

accurate numerical results see figure 3 (right panel). In the limit mϕ → 0, the amplitude A

diverges and indicates an infinitely large decay rate. However, in this limit the Lagrangian

– 19 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
8

of the interaction (5.2) would enter a strongly coupled regime and our perturbative ansatz

would not be trustable anymore. Nevertheless, even considering extremely small masses

mϕ ' m = O(H0) would lead to Λ
(max)
LB > MP.

Even though this LB cutoff scale Λ
(max)
LB is much above the strong coupling scale that

was found in section 4.4, all of our results are still trustable and should be taken seriously.

In fact, the decay products can reach energies near Λ
(max)
LB . In addition, we should expect

the decay processes to occur even above ΛEFT (which is Λ5 for our massive gravity theory).

We should however note that it could indeed be possible that energies above ΛEFT would

lead to new interactions that dominate and result in much larger decay rates, depending

on the underlying new physics at energies above the EFT cutoff scale.

5.5 Comparison to observations

To date, no high-energy physics experiments have found any signals for the violation of

Lorentz invariance, which may seem to indicate that Lorentz-violating operators, if exist,

play a role only at very high energies, perhaps even above the Planck scale. Even though

our results are compatible with this conclusion, a LB at much smaller energy scales but

above Λ3 would nevertheless be allowed.

Even though the arguments above require some speculation about the UV-completed

physics, there is a more profound reason why it is not surprising to find no LV at higher

energies. As recently pointed out in ref. [31], most of the operators that break LI lead

to a strong coupling already above energies of O (meV). It has been conjectured that the

strongly coupled degree of freedom (in our case the one that leads to a LV) effectively

decouples from the high-energy theory and can therefore not be observed yet [31]. Similar

problems appear in QCD (confinement) and massive gravity (Vainshtein screening).

Fortunately, there are possibilities to indirectly detect a breaking of LI that stabilizes

the vacuum decay. For the decay products it is most likely to have energies of order ΛLB,

even if ΛLB � ΛEFT. As long as they do not scatter at these energy levels, they can still

consistently be described by our EFT. A direct observation of these decay products could

then hint towards a breaking of LI. If one assumes a LB above ∼ 1MeV then one could

search for observable effects such as peaks in the gamma-ray background, along the lines

of the studies in ref. [25]. However, the background flux is not well constrained yet for all

(especially higher) energies.

6 Summary and conclusions

In this work, we have discussed the influence of a ghost on the viability of an EFT by

considering the violation of Lorentz invariance above certain energy scales in a particular

theory of modified gravity describing a massive graviton with an additional Boulware-Deser

ghost, which we called haunted massive gravity (HMG). Even though we do not believe

that our HMG model is able to play a major role in the class of theories of modified gravity

attempting to explain, e.g., the late-time acceleration of our Universe, we do expect that

its quantum properties can be mapped onto a huge class of other theories of gravity that

also introduce an Ostrogradski ghost.
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In contrast to simple toy models with a canonical scalar field interacting with a ghost,

we have found a decay rate that does not scale as Λ2
LB, where ΛLB denotes the energy scale

above which Lorentz invariance is broken, or Λ8
LB if one assumes the simplest interaction

with a graviton; the decay rate scales, instead, as Λ6
LB. The origin of this difference lies in

the different dominating scattering processes involved. If the ghost mass is of the order of

the Hubble parameter H0, which is expected for theories of modified gravity that provide

solutions to the dark energy problem, then the upper bound on the cutoff scale at which

LB has to occur is allowed to be extremely high and could even be above the Planck scale.

Finally, with HMG we have found an example of a massive gravity theory which allows

for dynamical, and even self-accelerating, FLRW solutions with a flat reference metric,

contrary to the ghost-free dRGT theory. Furthermore, we obtained a parameter region

in which both free parameters of the theory are of O (1) and maximizes the timescale on

which the classical instability is suppressed to obtain a viable cosmological solution. This

is indeed surprising as one might expect that a ghost that is present at the background

level (which is required in order to obtain dynamical FLRW solutions) will automatically

destabilize the theory. We have however studied only the background solutions, and one

should therefore note that it is very likely that the cosmological perturbations would be

classically unstable, although it is not obvious with which timescale this instability is

suppressed. Furthermore, it might also be possible that quantum loops would render the

theory unviable due to interactions that could theoretically be much more dangerous than

the tree-level interactions which we have studied in this work; we leave the investigation of

these questions for future work.

In general, ghosts are potentially dangerous and can rule out a theory if the quantum

behavior is not under control. However, if one accepts the possibility of Lorentz-violating

physics above the cutoff of the theory, then all these theories should be studied carefully

and might be acceptable and well behaved.
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A Detailed expressions for decoupling of the helicity-0 mode, the ghost

and the matter field

The coefficients Ci corresponding to the action (4.45) read

C1 = 0, C2 = 0, C3 = − 16M2
P

(c2+2c4)m2
, (A.1)

C4 = − 4

(c2 + 2c4)m2M2
P

, C5 = 0, C6 = 0,

C7 = 0, C8 = 0, C9 = − 16M2
P

(c2 + 2c4)m2
,

C10 = − 4

(c2 + 2c4)m2M2
P

, C11 = 0, C12 = 0,

C13 = − 16

(c2 + 2c4)m2
, C14 =

16

(c2 + 2c4)m2
, C15 = − 16

(c2 + 2c4)m2
,

C16 = 0, C17 = 0, C18 =
32M2

P

(c2 + 2c4)m2
,

C19 =
8

(c2 + 2c4)m2M2
P

, C20 =
16

(c2 + 2c4)m2
, C21 = 0,

C22 = 0, C23 = 0, C24 = 0,

C25 = 0, C26 = 0, C27 = 0,

C28 = 0, C29 = 0, C30 = 0,

C31 = −
16m2

ϕ

(c2 + 2c4)m2
, C32 =

8M2
P (c2 − 2c3 − c4)

c2 + 2c4
, C33 = −

8m2
ϕ

(c2 + 2c4)
2
M2

P

,

C34 =
2 (c2 − 4c3 − 4c4)

c2 + 2c4
, C35 = −1, C36 =

16m2
ϕ

(c2 + 2c4)m2
,

C37 = −8 (c2 − 2c3 − c4)

c2 + 2c4
, C38 =

8m2
ϕ

(c2 + 2c4)m2M2
P

, C39 = −2 (c2 − 4c3 − 4c4)

c2 + 2c4
,

C40 = 1, C41 = −
4m4

ϕ

(c2 + 2c4)m2M2
P

, C42 =
2 (c2 − 4c3 − 4c4)m2

ϕ

c2 + 2c4
,

C43 = −m2
ϕ, C44 =

(
c22+4c2 (4c3+3c4)−16

(
c23+c3c4+c24

))
m2M2

P

4 (c2 + 2c4)
.

After integrating out the auxiliary field χ in eq. (4.46), the comparison of the resulting

action with the original one (4.45) provides a set of equations that can be solved with

Di = Ci for 1 ≤ i ≤ 14, (A.2)

D15 = ∓2
√
−C3D23, (A.3)

D16 = D18 = D19 = D21 = 0, (A.4)

D17 = ∓2C13

√
−C3D23

C14
, (A.5)

D20 = ∓C15

√
D23

C3
, (A.6)

D22 = ∓C14

√
D23

C3
, (A.7)
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if the following contraints are fulfilled:

C2
15 = 4C3C4, (A.8)

C2
13C3 = D2

14C9, (A.9)

4C3C10 = C2
14, (A.10)

C14C18 = 2C3C13, (A.11)

2C3C19 = C14C15, (A.12)

C13C15 = C14C20. (A.13)

All of them are indeed satisfied for HMG.

For the transformations given in eq. (4.47) and the choice D23 = −m2M2
P we find that

the mass matrix is diagonalized if

2A1C44 + 2A3m
2M2

P − 2C43M
2
P = 0, (A.14)

−2A2C43MP +
2C44

MP
+ 2m2MP = 0, (A.15)

2A1C44

MP
+ 2A2C43MP − 2A3m

2MP = 0. (A.16)
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