A spectroscopic atlas of the HgMn star HD 175640 (B9 V)入入 3040-10 000 Å ${ }^{\star, \star \star, \star \star \star}$

F. Castelli ${ }^{1,2}$ and S. Hubrig ${ }^{3}$
${ }^{1}$ Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, via del Fosso del Cavaliere, 00133 Roma, Italy
${ }^{2}$ Osservatorio Astronomico di Trieste, via GB Tiepolo 11, Trieste, Italy
e-mail: castelli@ts.astro.it
${ }^{3}$ European Southern Observatory, Casilla 19001, Santiago 19, Chile
e-mail: shubrig@eso.org

Received 2 April 2004 / Accepted 27 May 2004

Abstract

We present a high resolution spectral atlas of the HgMn star HD 175640 covering the $3040-10000 \AA$ region. UVES spectra observed with $90000-110000$ resolving power and signal to noise ratio ranging from 200 to 400 are compared with a synthetic spectrum computed with the SYNTHE code (Kurucz 1993b). The model atmosphere is an ATLAS12 model (Kurucz 1997) with parameters $T_{\text {eff }}=12000 \mathrm{~K}, \log g=3.95, \xi=0 \mathrm{~km} \mathrm{~s}^{-1}$. The stellar individual abundances in ATLAS12 were derived from an iterative procedure. The starting atomic line lists downloaded from the Kurucz website have been improved and extended by examining different sources in the literature and by comparing the computed profiles with the observed spectrum. The high quality of the data allowed us to study the isotopic and hyperfine structure for several lines of $\mathrm{Mn}_{\text {II }}, \mathrm{Ga}_{\text {II }}, \mathrm{Ba}_{\text {II }}, \mathrm{Pt}_{\text {II }}$, $\mathrm{Hg}_{\text {I }}$, and $\mathrm{Hg}_{\text {II. }}$. Numerous weak emission lines from $\mathrm{Cr}_{\text {II }}$ and $\mathrm{Ti}_{\text {II }}$ have been identified in the red part of the spectrum, starting at $\approx \lambda 5847 \AA$. Two emission lines of $\mathrm{C}_{\text {i }}$ (mult. 10 , mult. 9) have been observed for the first time. All $\mathrm{Cr}_{\text {II }}$ and $\mathrm{Ti}_{\text {if }}$ emission lines originate from the high excitation states ($\chi_{\text {low }} \gtrsim 89000 \mathrm{~cm}^{-1}$ for $\mathrm{Cr}_{\text {II }}$ and $\chi_{\text {low }} \gtrsim 62000 \mathrm{~cm}^{-1}$ for $\mathrm{Ti}_{\text {iI }}$) with large transition probabilities $(\log g f>-1.00)$. The synthetic spectrum superimposed on the observed spectrum as well as the adopted improved atomic line lists are available at the CDS and http://wwwuser.oat.ts.astro.it/castelli/stars.html. An extended discussion on each identified ion and related atomic data is available both on the quoted website and in an electronic Appendix to the paper.

Key words. stars: abundances - line: identification - atomic data - stars: atmospheres - stars: chemically peculiar stars: individual: HD 175640 (B9V)

1. Introduction

HD 175640 (HR 7143) is to a large extent representative of the HgMn stars, which constitute a well defined subgroup of chemically peculiar (CP) stars of late B spectral types in the temperature range $10000-14000 \mathrm{~K}$. The most distinctive features are extreme atmospheric overabundances of Hg (up to 6 dex) and of Mn (up to 3 dex).

In the present study we undertook a detailed spectroscopic analysis of UVES spectra of HD 175640 in the whole region 3040-10000 A.. The high quality of the UV-Visual Echelle Spectrograph UVES at the 8 m UT2 telescope, its high resolution ($R=90000-110000$) and high signal-to-noise ratio (200-400), the large wavelength coverage, the low $v \sin i$ ($2.5 \mathrm{~km} \mathrm{~s}^{-1}$) of HD 175640 and its nature as a single star, led us

[^0]to compute a synthetic spectrum for the whole observed interval. We used Kurucz codes and Kurucz line lists that we modified and implemented as explained in Sect. 4. The final results, which are available at the CDS and in our website ${ }^{1}$, are the plots of the superimposed observed and synthetic spectra supplied with the line identifications as well as the modified Kurucz line lists that we adopted for the computations. An extended discussion of each ion analyzed during the preparation of the atlas is available in the electronic Appendix A of the paper.

The atlas of HD 175640 increases the number of those already published in a similar form. They are the o Peg atlas in the region $\lambda \lambda 3826-4882 \AA$ (Gulliver et al. 2004) and the Deneb atlas in the region $\lambda \lambda 3825-5212 \AA$ (Albayrak et al. 2003). In analogy with the two atlases quoted above the present one should also provide useful guidance for studies of other stars with similar spectral type. We wish to point out the much larger wavelength coverage ($3040-10000 \AA$) of our atlas.

Compiling the atlas has required an abundance analysis for the 48 ions listed in Table 1 to which 9 more ions with

[^1]Table 1. Abundances $\log \left(N_{\text {elem }} / N_{\text {tot }}\right)$ for HD 175640.

	HD 175640		Sun		
	measured	adopted		[Element]	λ region
H		-0.008163	-0.036023		
Hei	-1.73	-1.73	-1.11	[-0.62]	Vis
Beil	-10.64	-10.64	-10.64	[0.00]	UV
C i	-4.11 ± 0.23	-4.00	-3.52	[-0.59]	Vis
$\mathrm{C}_{\text {II }}$	-4.05 ± 0.16	-4.00	-3.52	[-0.53]	Vis
Ni	≤-5.78	-5.78	-4.12	<[-1.66]	Vis
Oi	-3.18 ± 0.11	-3.18	-3.21	[+0.03]	Vis
Nei	-4.35	-4.35	-3.96	[-0.39]	Vis
Na I	-5.47:	-5.47	-5.71	[+0.24]	Vis
Mg ${ }_{\text {I }}$	-4.64 ± 0.06	-4.69	-4.46	[-0.18]	Vis
$\mathrm{Mg}_{\text {II }}$	-4.71 ± 0.07	-4.69	-4.46	[-0.25]	Vis
Al_{I}	<-7.50	-7.50	-5.57	< [-1.93]	Vis
Si ${ }_{\text {II }}$	-4.72 ± 0.08	-4.71	-4.49	[-0.23]	Vis
Si IIII	-4.58 ± 0.04	-4.71	-4.49	[-0.09]	Vis
$\mathrm{P}_{\text {II }}$	-6.28 ± 0.08	-6.28	-6.59	[+0.31]	Vis
$\mathrm{S}_{\text {II }}$	-5.12 ± 0.03	-5.12	-4.71	[-0.41]	Vis
CaI	-5.26	-5.54	-5.68	[+0.42]	Vis
CaII	-5.67 ± 0.25	-5.54	-5.68	[+0.01]	$\mathrm{UV}(-5.83 \pm 0.06) ; \operatorname{Vis}(-5.62 \pm 0.26)$
Sc II	-9.08 ± 0.15	-9.08	-8.87	[-0.21]	$\mathrm{UV}(-8.89 \pm 0.03) ; \operatorname{Vis}(-9.21 \pm 0.08)$
Ti ${ }_{\text {II }}$	-5.67 ± 0.11	-5.67	-7.02	[+1.35]	$\mathrm{UV}(-5.59 \pm 0.09) ; \mathrm{Vis}(-5.72 \pm 0.08)$
V II	≤-9.04	-9.04	-8.04	$<[-1.00]$	UV
Cri	-5.22 ± 0.09	-5.36	-6.37	[+1.15]	UV(-5.18 $\pm 0.05) ; \operatorname{Vis}(-5.24 \pm 0.06)$
$\mathrm{Cr}_{\text {II }}$	-5.41 ± 0.07	-5.36	-6.37	[+0.96]	$\mathrm{UV}(-5.34 \pm 0.06) ; \operatorname{Vis}(-5.41 \pm 0.07)$
Mni	-4.20 ± 0.08	-4.20	-6.65	[+2.45]	$\mathrm{UV}(-4.22 \pm 0.08) ; \operatorname{Vis}(-4.19 \pm 0.08)$
Mn II	-4.25 ± 0.04	-4.20	-6.65	[+2.40]	UV
Fe_{I}	-4.78 ± 0.08	-4.83	-4.54	[-0.24]	$\mathrm{UV}(-4.90 \pm 0.06) ; \operatorname{Vis}(-4.75 \pm 0.05)$
$\mathrm{Fe}_{\text {II }}$	-4.84 ± 0.13	-4.83	-4.54	[-0.30]	Vis
CoiI	-8.08:	-8.08	-7.12	[-0.96]:	UV
Ni II	-6.09 ± 0.16	-6.09	-5.79	[-0.30]	$\mathrm{UV}(-6.01 \pm 0.13) ;$ Vis(-6.14 ± 0.16)
Cu	-6.52	-6.88	-7.83	[+0.95]	UV
Ga II	-5.43 ± 0.04	-5.43	-9.16	[+3.73]	Vis
BriI	-7.12 ± 0.04	-7.12	-9.41	[+2.29]	Vis
Sr ${ }_{\text {II }}$	-8.41	-8.41	-9.07	[+0.66]	Vis
$\mathrm{Y}_{\text {II }}$	-6.66 ± 0.20	-6.66	-9.80	[+3.14]	$\mathrm{UV}(-6.42 \pm 0.06) ; \operatorname{Vis}(-6.79 \pm 0.10)$
Zr II	-8.67 ± 0.17	-8.67	-9.44	[+0.77]	UV(-8.65 $\pm 0.18) ; \operatorname{Vis}(-8.78)$
Rh ${ }_{\text {II }}$	-8.50:	-8.50	-10.92	[+2.42]:	UV
Pdi	-6.41 ± 0.30	-6.41	-10.35	[+3.94]	UV
Xe ${ }_{\text {II }}$	-5.96 ± 0.20	-5.96	-9.83	[+3.87]	Vis
BaII	-9.27	-9.27	-9.91	[+0.64]	Vis
Pr ${ }_{\text {III }}$	-9.62:	-9.62	-11.33	[+1.71]:	Vis
Nd III	-9.57 ± 0.08 :	-9.60	-10.54	[+0.97]:	Vis
Yb ${ }_{\text {II }}$	-8.10 ± 0.19	-8.10	-10.96	[+2.86]	UV(-7.82); Vis(-8.20 $\pm 0.10)$
Yb III	-7.31 ± 0.01	-8.10	-10.96	[+3.66]	UV
Os II	-10.55:	-10.55	-10.55	[0.0]:	UV
$\mathrm{Ir}_{\text {II }}$	-10.65:	-10.65	-10.65	[0.0]:	UV
Pt ${ }_{\text {II }}$	-7.63	-7.63	-10.20	[+2.57]	Vis
$\mathrm{Au}_{\text {II }}$	-7.51 ± 0.06	-7.51	-11.03	[+3.52]	Vis
$\mathrm{Hg}_{\text {I }}$	-6.19 ± 0.18	-6.30	-10.91	[+4.72]	Vis
$\mathrm{Hg}_{\text {II }}$	-6.53 ± 0.23	-6.30	-10.91	[+4.38]	Vis

dubious identifications or with no measurable lines can be and Ce III. Previous abundance determinations based on a few added. They are $\mathrm{B}_{\text {II, }} \mathrm{O}_{\text {II, }} \mathrm{S}_{\mathrm{I}}, \mathrm{Zn}_{\mathrm{I}}, \mathrm{Zn}_{\text {II, }}, \mathrm{Ga}_{\mathrm{I}}, \mathrm{As}_{\text {II, }}$, Ce II, selected lines are those of Sadakane et al. (1985) for $\mathrm{Be}_{\text {II, }} \mathrm{B}_{\text {II; }}$;

Dworetsky \& Buday (2000) for Ne I; Smith (1993) for Mg, Al, Si; Smith \& Dworetsky (1993) and Jomaron et al. (1999) for Crii, Mnir, Fe if, Coin, Ni if; Sadakane et al. (1988) and Smith (1996) for $\mathrm{Cu}_{\text {II, }} \mathrm{Zn}$ II; Smith (1996) and Dworetsky et al. (1998) for Ga ir; Smith (1997) and Dolk et al. (2003) for Hg_{I}, $\mathrm{Hg}_{\text {II }}$. We therefore extended the abundance analysis to more elements than those previously examined for this star.

The presence of emission lines was discovered for the first time in this star by Wahlgren \& Hubrig (2000) in spectra observed in the intervals 6005-6095 \AA and $6105-6190 \AA$. While most of them were identified as $\mathrm{Ti}_{\text {II }}$ and $\mathrm{Cr}_{\text {II }}$ lines, others could not be classified. In this paper we extended the search for the presence of emission lines to a larger wavelength interval than that explored by Wahlgren \& Hubrig (2000). The nature of these emission lines remains unclear. A systematic investigation of the emission lines and the production of identification line lists in stars with different stellar parameters such as effective temperature, gravity, chemical composition, magnetic field strength, and rotational velocity would allow us to put tighter constraints on the modelling of the origin of emission lines in the $\mathrm{HgMn}, \mathrm{He}$-weak and PGa stars. Because the emission lines may be correlated with abundance stratification (Sigut 2001), UVES spectra also present an excellent opportunity to further investigate the vertical stratification of different chemical elements through the determination of the abundances from lines of the same ions formed on either side of the Balmer jump. For
 we compared abundances from lines lying shortward and longward of the Balmer discontinuity. Savanov \& Hubrig (2003) already discussed the presence of Cr stratification in HD 175640 by analyzing $\mathrm{Cr}_{\text {II }}$ lines on the wings of $\mathrm{H} \beta$.

2. Observations

The spectrum of HD 175640 was recorded on June 13, 2001 at ESO with the VLT UV-Visual Echelle Spectrograph UVES at UT2. We used the UVES DIC1 and DIC2 standard settings covering the spectral range from $3030 \AA$ to $10000 \AA$. The slit width was set to $0!3$ for the red arm, corresponding to a resolving power of $\lambda / \Delta \lambda \approx 1.1 \times 10^{5}$. For the blue arm, we used a slit width of 0.4 to achieve a resolving power of $\approx 0.9 \times 10^{5}$. The spectra were reduced by the UVES pipeline Data Reduction Software (version 1.4.0), which is an evolved version of the ECHELLE context of MIDAS. The manual for the UVES pipeline can be found on the ESO web page ${ }^{2}$. The signal-to-noise ratios of the resulting UVES spectra are very high, ranging from 200 in the near UV to 400 in the visual region.

There are two gaps in the observed range at $\lambda \lambda 5759-5835 \AA$ and $8519-8656 \AA$, which are caused by the physical gap between the two detector chips of the red CCD mosaic. Furthermore, the $\lambda \lambda$ 9074-9098 A range cannot be used, as the spectrum quality is poor in this interval. The observed spectrum was shifted in wavelength in order to be superimposed on the computed spectrum. The shift ranges

[^2]from $33.5 \mathrm{~km} \mathrm{~s}^{-1}$ in the ultraviolet to $34.5 \mathrm{~km} \mathrm{~s}^{-1}$ in the red, indicating an uncertainty of about $1.0 \mathrm{~km} \mathrm{~s}^{-1}$ in the wavelength calibration.

When the continuum was drawn in the spectrum reduced with the UVES pipeline, we noticed strong distortions, mostly in the ultraviolet, conspicuous jumps corresponding to the boundaries of the orders, and several spurious absorptions. Therefore we renormalised the unmerged spectra order by order from $3040 \AA$ to $7000 \AA$. For $\lambda>7000 \AA$, we adopted for the analysis the spectrum reduced with the UVES pipeline owing to the large undulations affecting the order by order spectra. As a consequence there are jumps in the red spectrum which modify the lines lying just where the jump occurs, as for instance $\mathrm{Mn}_{\text {II }}$ at $8784 \AA$. There are also jumps at $8776.5 \AA$ and $9316 \AA$, which could be confused with He I $8776.77 \AA$ and with an emission line, respectively. Another jump occurs at $9038.3 \AA$.

The continuum was subjectively drawn by connecting the highest points of the spectrum by a straight line. When needed, it was then adjusted in steps of $6 \AA$ intervals with the help of the synthetic spectrum. The continuous level just longward of the Balmer and Paschen discontinuities is highly uncertain. It was also very difficult to drawn it at the position of the Balmer and Paschen lines owing to the jumps and distortions of the échelle spectra. For this reason we did not use hydrogen lines for the analysis.

Equivalent widths were measured in the spectra by direct integration of the line profiles with the trapezium rule. A suitable number of points, which depends on the profile shape and intensity, was adopted for each measurament.

3. The synthetic spectrum

The synthetic spectrum was computed with the SYNTHE code (Kurucz 1993b) and with an opacity sampling ATLAS12 model (Kurucz 1997) computed for the individual abundances of the star.

Stellar parameters have been previously determined by Hubrig et al. (1999) from Strömgren photometry and high resolution spectra in the framework of a spectroscopic search for magnetic fields in HgMn stars. We adopted the same values for the present analysis, namely $T_{\text {eff }}=12000 \mathrm{~K}, \log g=$ 3.95 , microturbulent velocity $\xi=0 \mathrm{~km} \mathrm{~s}^{-1}$ and rotational velocity $v \sin i=2.5 \mathrm{~km} \mathrm{~s}^{-1}$. Although Hubrig \& Castelli (2001) suggested the possible presence of a weak variable magnetic field in this star, we did not consider any Zeeman effect in the computed spectrum. The spectrum was broadened for $v \sin i=$ $2.5 \mathrm{~km} \mathrm{~s}^{-1}$ and for a Gaussian instrumental profile with resolving power 90000 shortward of the Balmer discontinuity and 110000 longward of the Balmer discontinuity.

The final synthetic spectrum is the result of an iterative procedure. An opacity distribution function ATLAS9 (Kurucz 1993a) model atmosphere computed with solar abundances for all the elements was used in the SYNTHE code to generate a preliminary synthetic spectrum. The abundances in the synthetic spectrum were then modified to get agreement between observed and computed profiles of selected lines. The individual abundances estimated in that way were then used
for computing an ATLAS12 model. This model and the measured equivalent widths of unblended lines with critically evaluated $\log g f$ s were the input data of the WIDTH code (Kurucz 1993a) which yields abundances from equivalent widths. A final ATLAS12 model computed for the average abundances derived from equivalent widths or, in a few cases, from line profiles, was the final input model used for computing the final synthetic spectrum. The final adopted abundances are listed in Table 1, Col. 3. They are logarithmic abundances relative to the total number of atoms $N_{\text {tot }}$. The second column of Table 1 shows the average abundances derived from the measured equivalent widths or from comparison of observed and computed profiles. Column 4 shows the solar abundances from Grevesse \& Sauval (1998), where the scale $\log \left(N_{\text {elem }}\right)$ relative to $\log \left(N_{\mathrm{H}}\right)=12$ was changed to the scale $\log \left(N_{\text {elem }} / N_{\text {tot }}\right)$; Col. 5 gives the over- or underabundance of the ions in HD 175640 relative to the solar abundances. The last column indicates whether lines lying shortward (UV) or longward (Vis) of the Balmer discontinuity (placed at $\lambda=3647 \AA$) were used for the abundance determination. When both regions were used, the average abundance from each region is given in parentheses. The aim of this separation is to investigate the presence of vertical abundance stratifications. Each of the 57 ions considered for the analysis is extensively discussed in the Appendix A. Tables of the input and output line data for WIDTH can also be found in Appendix A (Tables A.1-A.3).

Figure 1 compares the $T-\log \tau_{\text {ross }}$ relation of the ATLAS9 and ATLAS12 models used for HD 175640. The He underabundance of HD 175640 is the main cause of the different temperature stratifications, in contrast with the statement of Norris (1971) that the helium abundance has little effect on the temperature structure. Abundances from the equivalent widths of Mni and $\mathrm{Mn}_{\text {II }}$ lines and of $\mathrm{Fe}_{\text {I }}$ and $\mathrm{Fe}_{\text {II }}$ lines did not indicate any need for a model parameter redetermination.

Starting from $\lambda=5500 \AA$ telluric absorptions were also approximately modelled by using telluric lines of the HITRAN database ${ }^{3}$ converted into the SYNTHE format by Kurucz (1998, private communication). The computed telluric spectrum was simply superimposed on the observed and computed spectra without performing any instrumental broadening and convolution with the synthetic spectrum. The atlas is made up of the superimposed plots of the observed spectrum, the computed stellar spectrum supplied with the line identifications, and the computed telluric spectrum.

4. Line data

Atomic line lists from the Kurucz database ${ }^{4}$ have provided the basis for the line data. They contain data mostly from the literature for light and heavy elements and computed by Kurucz (1992) for the iron group elements. In this case the critically evaluated transition probabilities from Martin et al. (1988) and Fuhr et al. (1988) were adopted for the lines in common. The

[^3]

Fig. 1. The $T-\log \tau_{\text {ross }}$ relation of an ATLAS9 model computed for solar abundances for all the elements (solid line) is compared with the $T-\log \tau_{\text {ross }}$ relation of an ATLAS12 model computed with the individual abundances of HD 175640 (dotted line). Model parameters are $T_{\text {eff }}=12000 \mathrm{~K}, \log g=3.95, \xi=0 \mathrm{~km} \mathrm{~s}^{-1}$.
files that we downloaded from the Kurucz website differ from those available in Kurucz \& Bell (1995) for the Fe I line data.

We implemented the files gf0400.100, gf0500.100, gf0600.100, gf0800.100 and gf1200.100, which cover the range 3040-10000 \AA, by replacing several $\log g f$ s with more up-to-date determinations and by adding missing lines, Stark broadening parameters, and hyperfine and isotopic components. In particular, we compared the line data of all the elements identified in HD 175640 on the basis of the Kurucz line lists with the line data from the NIST database ${ }^{5}$ and from Wiese et al. (1996) for CNO. Generally, we preferred for our analysis NIST and Wiese et al. (1996) $\log g f \mathrm{~s}$, although the differences with Kurucz's data are very small for most of the lines. We added several Oi lines from Wiese et al. (1996), and a few $\mathrm{Br}_{\text {II }}$ and several Xe ir lines from NIST. We also examined other sources for specific elements like Si iI (Lanz $^{\text {I }}$ \& Artru 1985), Ti ${ }_{\text {II }}$ (Pickering et al. 2002), Cr ${ }_{\text {II }}$ (Sigut \& Landstreet 1990), Ga II (Isberg \& Litzén 1985; Ryabchikova \& Smirnov 1994; Nielsen et al. 2000), Y iI (Nilsson et al. 1991), Хе ї (Hansen \& Persson 1987), Ce iII (Biémont et al. 1999), PriII (Biémont et al. 2001b), Nd III (Zhang et al. 2002), Ybiil (Biémont et al. 1998), YbiII (Biémont et al. 2001a), Pt iI (Dworetsky et al. 1984), Au II (Rosberg \& Wyart 1997), Hg_{I} (Benck et al. 1989) and Hg II (Sansonetti \& Reader 2001; Proffitt et al. 1999). Actually, for the Rare Earth Elements we examined the DREAM database ${ }^{6}$.

[^4]Because the Stark effect is an important line broadening mechanism in HD 175640 we also scrutinized the Stark line data. In the Kurucz line lists the damping constants $\gamma_{\mathrm{S}}=4 \pi \mathrm{cw} / \lambda^{2}$ are taken from the literature when available. The Griem (1974) tables are the source for the damping constants of a large number of light element lines, while for all the lines of the iron group elements the damping constants are due to Kurucz's (1992) computations. The γ_{S} value for $T=20000 \mathrm{~K}$ is that adopted in the line lists. We added Stark damping constants from Lanz et al. (1988) for some $\mathrm{Si}_{\text {II }}$ lines not considered by Griem (1974). Damping constants not available from the literature are computed inside the SYNTHE code with an approximate formula (Kurucz \& Avrett 1981).

Lines of He i are computed separately. Stark profiles are given in tabular form as function of temperature, electron density and ion density for the He i lines at $4026 \AA, 4387 \AA$, $4471 \AA$ and $4922 \AA$. The Stark profiles for the first two lines were taken from Shamey (1969), those for the last two lines from Barnard et al. (1974) and Barnard et al. (1975), respectively. The Stark profile for the given model atmosphere is computed by interpolating in the tables. For some other He I lines, Stark profiles are obtained by interpolating for temperature the Stark widths and shifts taken from the Griem (1974) tables. For a few He i lines not available in Griem (1974) we added Stark widths and shifts computed by Dimitrijević \& Sahal-Bréchot (1990) with a semiempirical approach. Figure 2 compares two synthetic profiles for He I at $4009.26 \AA$ predicted by the HD 175640 model atmosphere. They differ only in the Stark damping constant, which is computed according to the approximation made in the SYNTHE code in one case, and is derived from the Stark widths and shifts computed by Dimitijevic̀ \& Sahal-Brèchot (1990) in the other case. This last profile agrees with the observed spectrum which is also plotted in Fig. 2. The large influence of the Stark effect, in spite of the weakness of the line, is evident from the figure.

Thanks to the very high resolution of the UVES spectra, isotopic shifts and hyperfine splittings are well detectable in several profiles, in particular those of $\mathrm{Mn}_{\text {II }}, \mathrm{Ga}_{\text {II }}$ and $\mathrm{Hg}_{\text {II }}$. As a consequence, we may expect good agreement in their observed and computed profiles only when isotopic and hyperfine structures are taken into account in the computations. But these data are rather scarse in the literature, so that only few lines can be accurately computed. We included in the line list hyperfine components for some lines of $\mathrm{Mn}_{\text {II }}$ (Holt et al. 1999); isotopic and hyperfine components for some lines of $\mathrm{Ga}_{\text {II }}$ (Karlsson \& Litzén 2000), Pt iI (Engleman 1989), Hg i (Dolk et al. 2003), and $\mathrm{Hg}_{\text {II }}$ (Dolk et al. 2003); isotopic components for $\mathrm{Ba}_{\text {II }}$ at $4554.03 \AA$ (Becker \& Werth 1983; Becker et al. 1968). When the hyperfine components were not directly available in the literature, but only the A and B hyperfine constants were given, we used them in the HYPERFINE code (Kurucz \& Bell 1995) for computing the hyperfine wavelengths and the corresponding hyperfine $\log g f$ s. Figure 3 shows the extreme hyperfine broadening which affects the $\mathrm{Mn}_{\text {II }}$ lines at $7353.549 \AA$ and $7415.803 \AA$. In the figure each observed profile is compared with two synthetic profiles which differ in the hyperfine structure. One profile was computed by considering the hyperfine structure, the other profile was computed without it.

Fig. 2. Two synthetic profiles of $\mathrm{He}_{\text {I }} 400.9257 \mathrm{~nm}$ differing only in the Stark damping constants are compared with the observations (full thin line). The thick line shows the profile computed with the Stark widths and shifts from Dimitrijević \& Sahal-Bréchot (1990), the dotted line shows the profile computed with the approximate Stark damping constant yielded by the SYNTHE code (Kurucz \& Avrett 1981) when it is not available from the literature. We used the model for HD 175640 having parameters $T_{\text {eff }}=12000 \mathrm{~K}, \log g=3.95$, microturbulent velocity $\xi=0 \mathrm{~km} \mathrm{~s}^{-1}$. The synthetic profiles are also broadened for $v \sin i=2.5 \mathrm{~km} \mathrm{~s}^{-1}$ and for a Gaussian instrumental profile with 110000 resolving power.

Isotopic and hyperfine components for $\mathrm{Mn}_{\text {II, }} \mathrm{Ga}_{\text {II, }}, \mathrm{Ba}$ II, Hg_{I}, and $\mathrm{Hg}_{\text {II }}$ are discussed and listed in Appendix A (Tables A.6-A.9).

5. Discussion

The inspection of the atlas of HD 175640 shows a very large number of identified absorptions. The spectrum is crowded with $\mathrm{Mn}_{\text {II }}, \mathrm{Mn}_{\mathrm{I}}, \mathrm{Ti}_{\text {II }}$ and $\mathrm{Cr}_{\text {II }}$ lines. In addition to H_{I}, other identified species are Нei, Be i, Ci, Сif, Оı, О i, Nei, Nai, Mgi, Mgir, Siir, Si iir, Pir, Si, Sin, Cai, Cair, Scir, Tiif, Cri, Crif, Mni, Mnif, Fei, Feif, Coif(?), Niif, Cui, Gai, Gaif,

 the question marks indicate doubtful identifications. A previous identification work in the range $3050-6750 \AA$ based on the same spectrum studied by us was performed by Bord et al. $(2003)^{7}$ by using the wavelength coincidence statistics (WCS) method. They also identified Pd II which was missed by us (see Appendix A). The Bord et al. (2003) analysis as well as our atlas show that numerous features, in particular for $\lambda>5000 \AA$, could not be identified. A list of unidentified lines in the range $4700-5800 \AA$ is available in Appendix A (Table A.10). This region is approximately the same covered by the table of unanalyzed lines in HR 7775 in Wahlgren et al. (2000). The comparison of the two lists of unidentified lines has given a very small number of coincidences. In HD 175640, several unidentified absorptions coincide with lines of $\mathrm{Mn}_{\text {II }}$ and $\mathrm{Cr}_{\text {II }}$ having $\log g f$ values too low to yield a predicted profile of intensity similar to the observed one.

[^5]

Fig. 3. The observed profiles (thick full lines) of $\mathrm{Mn}_{\mathrm{II}}$ at $\lambda \lambda 735.3549$ and 741.5803 nm are compared with synthetic profiles computed once without any hyperfine structure (dotted lines) and once with hyperfine structure (thin full lines). The meaning of the line identification labels like 48625.0129889813 is: 486 , last 3 digits of wavelength in nm (735.3486); 25.01, element (25) and charge (01), i.e. Mn if; 29889, lower energy level in $\mathrm{cm}^{-1} ; 813$, per mil residual flux of the isolated line before rotation.

Numerous weak emission lines from $\mathrm{Cr}_{\text {II }}$ and $\mathrm{Ti}_{\text {II }}$ have been identified in the red part of the spectrum, starting at $\approx \lambda 5847 \AA$. They are all the $\mathrm{Ti}_{\text {II }}$ lines with the lower excitation potential $\gtrsim 62000 \mathrm{~cm}^{-1}$ and $\log g f>-1.0$ and all the $\mathrm{Cr}_{\text {II }}$ lines with the lower excitation potential $\gtrsim 89000 \mathrm{~cm}^{-1}$ and $\log g f>-0.8$. The observed emission lines of $\mathrm{Ti}_{\text {II }}$ and $\mathrm{Cr}_{\text {II }}$ are tabulated in Appendix A (Tables A. 4 and A.5) together with a few unidentified observed emission lines (Table A.11). Emission lines of C_{I} at $9335.148 \AA$ (mult. 10) and $9405.730 \AA$ (mult. 9) have been observed for the first time. No clear Mn II emission lines were observed in HD 175640.

Considering the observational material at our disposal we notice that it is possible to identify different subgroups of HgMn stars on the basis of which ions appear in emission. 46 Aql (HD 186122) was the first HgMn star where emission lines of $\mathrm{Mn}_{\text {II }}$ were detected (Sigut et al. 2000). Wahlgren \& Hubrig (2000) found additional emission lines originating from the ions $\mathrm{Fe}_{\text {II }}$ and $\mathrm{Cr}_{\text {II. }}$. Emission lines of $\mathrm{Mn}_{\text {II }}$ have further been found in HD 16727 and HD 41040. However, some other HgMn stars (e.g., HD 175640, HD 71066, HD 11073 or HD 178640) show exclusively $\mathrm{Cr}_{\text {II }}$ and $\mathrm{Ti}_{\text {II }}$ emission lines. The hypothesis has been made that the presence of emission lines of a particular element is correlated in some way with its abundance (Wahlgren \& Hubrig 2000). Sigut (2001) explains the emission lines as due to NLTE effects interlocked with vertical stratified abundances of particular elements. However, there is also a group of HgMn stars which does not exhibit emission lines at all (e.g. HD 49606, HD 77350 or HD 78316). At the moment, the very small sample of HgMn stars with observed emission lines cannot answer the question of what excitation
process leads to the weak emission lines. The proper identification and tabulation of emission lines in the spectrum of HD 175640 should help to advance and to test the theoretical explanation of their origin.

We can see in the atlas that unpredicted red components affect the K and H Ca ir profiles at $3933 \AA$ and $3968 \AA$ and the Na I profiles at $5890 \AA$ and $5896 \AA$. Their circumstellar or interstellar origin should be further investigated. An unexpected redshift of $0.2 \AA$ for the Ca ir profiles at $8498 \AA$ and $8662 \AA$ was explained by Castelli \& Hubrig (2004) by an anomalous isotopic composition of Ca in HD 175640. The only other element in HD 175640 with an anomalous isotopic composition is Hg (Dolk et al. 2003).

Abundances for 49 ions from 40 elements (Table 1) were determined from both equivalent width and line profile analyses. The analysis of each ion is extensively discussed in Appendix A. The abundances for a number of ions (He I, Ci-Cii, Oi, Nai, Pii, Sif, Cair-Ca it, Sc if, Ti if, Brif, Srif, Yif,
 are reported here for the first time. The main interest in carrying out the abundance study of HD 175640 comes from the fact that no convincing explanation of the origin of HgMn stars presently exists and that the physical mechanisms producing observed abundance anomalies are not fully understood (e.g., Hubrig \& Mathys 1995; Leckrone et al. 1999; Dolk et al. 2003). Abundance determinations from the analysis of stellar spectra play a critical and defining role for testing the several mechanisms that have been proposed to explain the development of the anomalies.

The examination of Table 1 shows that both excesses and deficiencies occur in the atmosphere. Compared to the solar abundance, Hg is the most overabundant element. It exceeds the solar abundance by a factor $>10^{4}$. It is followed by Ga, $\mathrm{Y}, \mathrm{Pd}, \mathrm{Xe}, \mathrm{Yb}_{\text {III, }}$, and Au , which have abundances larger than the solar ones by factors of the order of $10^{3} . \mathrm{Mn}, \mathrm{Br}, \mathrm{Yb}_{\mathrm{II}}$, and Pt are overabundant by factors larger than 10^{2}, while Cr and Ti are overabundant by factors of the order of 10 . Elements overabundant in a lesser degree are $\mathrm{Cu}([+0.95]), \mathrm{Sr}([+0.66)]$, $\mathrm{Zr}([0.77]), \mathrm{Ba}([+0.64])$, and $\mathrm{Nd}([+0.97])$. The most underabundant elements are N, Al and V , which could not be identified in the spectrum, so that their underabundances of [-1.7], [-1.9] and $[-1.0]$, respectively, are only upper limits. Other underabundant elements are $\mathrm{He}([-0.62])$, $\mathrm{C}([-0.55])$ and Co ([-0.96]). The abundances of the remaining elements lie within the limits of ± 0.5 dex.

Only a few observational studies have been carried out to test the vertical abundance stratification of certain elements in HgMn stars (Alecian 1982; Lanz et al. 1993; Savanov \& Hubrig 2003). Our study of HD 175640 revealed different abundances of singly ionized ions lying on either side of the Balmer jump. The differences are within the limits of the standard deviations for $\mathrm{Ca}_{\text {II, }}, \mathrm{Cr}_{\mathrm{I}}, \mathrm{Cr}$ II, $\mathrm{Mni}_{\mathrm{I}}, \mathrm{Ni}$ iI, $\mathrm{Zr}_{\text {II. }}$. They are larger than the standard deviations for $\mathrm{Sc}_{\text {II, }} \mathrm{Ti}_{\text {II, }}, \mathrm{Fe}_{\text {I }}, \mathrm{Y}_{\text {II, }}$ and $\mathrm{Yb}_{\text {II }}$. In the near UV, these elements give abundances larger than those derived from the visual lines, except for $\mathrm{Fe}_{\text {I }}$ for which the opposite is true.

Possible signs of an ionization anomaly have been found from the study of $\mathrm{Cr}_{\mathrm{I}}, \mathrm{Cr}_{\text {II }}$ and $\mathrm{Yb}_{\text {II, }}, \mathrm{Yb}_{\text {III }}$ lines. The average abundance obtained from lines of $\mathrm{Cr}_{\text {II }}$ is lower by 0.2 dex than from lines of Cri. For the REE Yb, we find that the average abundance from the $\mathrm{Yb}_{\text {III }}$ lines is 0.8 dex higher than that from the $\mathrm{Yb}_{\text {II }}$ lines. The 0.2 dex abundance difference from Cr_{I} and $\mathrm{Cr}_{\text {II }}$ lines seems to confirm the vertical Cr stratification inferred by Savanov \& Hubrig (2003) from Cr iI lines lying on the wings of H_{β} at different distances from the core, although they found the larger abundance difference of 0.6 dex. No sign of vertical Cr abundance stratification comes from the abundances of Cr_{I} and $\mathrm{Cr}_{\text {II }}$ lines lying on either side of the Balmer jump.

Finally, the synthetic spectrum analysis has shown some deficiencies of the UVES spectrum reduction procedures related to small uncertainties in the wavelength calibrations as well as to large jumps and undulations of the échelle spectra. All these shortcomings contribute to reducing the agreement of the computed spectra with the observed spectra in certain wavelength regions.

Acknowledgements. We would like to express our gratitude to M. Schöller for his help with the layout of the paper and the website.

References

Albayrak, B., Gulliver, A. F., Adelman, S. J., Aydin, C., \& Kocer, D. 2003, A\&A, 400, 1043
Alecian, G. 1982, A\&A, 107, 61
Anders, E., \& Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197

Barnard, A. J., Cooper, J., \& Smith, E. W. 1974, J. Quant. Spect. Rad. Transfer, 14, 1025
Barnard, A. J., Cooper, J., \& Smith, E. W. 1975, J. Quant. Spect. Rad. Transfer, 15, 429
Becker, W., \& Werth, G. 1983, Z. Physik A, 311, 41
Becker, W., Fisher, W., \& Huhnermann, H. 1968, Z. Phys., 216, 142
Benck, E. C., Lawler, J. E., \& Dakin, J. T. 1989, J. Opt. Soc. Am. B, 6, 11
Berry, H. G., Bromander, J., Curtis, L. J., \& Buchta, R. 1971, Phys. Scr., 3, 125
Biémont, E. 1977, A\&AS, 27, 489
Biémont, E., Dutrieux, J.-F., Martin, I., \& Quintet, P. 1998, J. Phys. B.: At. Mol. Opt. Phys., 31, 3321

Biémont, E., Garnir, H. P., Lokhnygin, V., et al. 2001a, J. Phys. B: At. Mol. Opt. Phys., 34, 1869
Biémont, E., Garnir, H. P., Palmieri, P., et al. 2001b, Phys. Rev. A, 64, 022503
Biémont, E., Grevesse, N., Kwiatkovski, M., \& Zimmermann, P. 1981, A\&A, 108, 127
Biémont, E., Palmieri, P., \& Quintet, P. 1999, Ap\&SS, 269, 635
Black, J. H., Wisheit, J. C., \& Laviana, E. 1972, ApJ, 177, 567
Bord, D. J., Cowley, C. C., \& Norquist, P. L. 1997, MNRAS, 284, 869
Bord, D. J., Cowley, C. R., Hubrig, S., \& Bidelman, W. P. 2003, AAS, 202, 3210B
Castelli, F., \& Hubrig, S. 2004, A\&A, 421, L1
Corliss, C. H., \& Bozman, W. R. 1962, NBS Monograph, 53
Cowley, C. R., \& Corliss, C. H. 1983, MNRAS, 203, 651
Cowley, C., Wiese, W. L., Fuhr, J., \& Kuznetsova, L. A. 2000, Allen's astrophysical quantities, ed. A. N. Cox, 53
Dimitrijević, M. S., \& Sahal-Bréchot, S. 1990, A\&AS, 82, 519
Dolk, L., Wahlgren, G. M., Lumdberg, H., et al. 2002, A\&A, 385, 111
Dolk, L., Wahlgren, G. M., \& Hubrig, S. 2003, A\&A, 402, 299
Dworetsky, M. M., \& Budaj, J. 2000, MNRAS, 318, 1264
Dworetsky, M. M., Storey, P. J., \& Jacobs, J. M. 1984, Phys. Scr., T8, 39
Dworetsky, Men. M., Jomaron, C. M., \& Smith, C. A. 1998, A\&A, 333, 665
Engleman, R., Jr. 1989, ApJ, 340, 1140
Fuhr, J. R., Martin, G. A., \& Wiese, W. L. 1988, J. Phys. Chem. Ref. Data, 17, Suppl. 4
Grevesse, N., \& Sauval, A. J. 1998, Space Sci. Rev., 85, 161
Griem, H. R. 1974, Spectral Line Broadening by Plasmas (Academic Press)
Gulliver, A. F., Adelman, S. J., \& Friesen, T. P. 2004, A\&A, 413, 285
Hannaford, P., Lowe, R. M., Grevesse, N., Biémont, E., \& Whaling, W. 1982, ApJ, 261, 736

Hansen, J. E., \& Persson, W. 1987, Phys. Scr., 36, 602
Heise, H. 1974, A\&A, 34, 275
Hempel, M., \& Holweger, H. 2003, A\&A, 408, 1065
Hibbert, A. 1988, Phys. Scr., 38, 37
Holt, R. A., Scholl, T. J., \& Rosner, S. D. 1999, MNRAS, 306, 107
Hubrig, S., \& Castelli, F. 2001, A\&A, 375, 963
Hubrig, S., Castelli, F., \& Wahlgren, G. M. 1999, A\&A, 346, 139
Hubrig, S., \& Mathys, G. 1995, Comments Astrophys., 18, 167
Isberg, B., \& Lizèn, U. 1985, Phys. Scr., 31, 533
Johansson, S., Wallerstein, G., Gilroy, K. K., \& Joueizadeh, A. 1995, A\&A, 300, 521
Jomaron, C. M., Dworetsky, M. M., \& Allen, C. S. 1999, MNRAS, 303, 555
Karlsson, H., \& Litzèn, U. 2000, J. Phys. B: At. Mol. Opt. Phys., 33, 2929
Kostyk, R. I., \& Orlova, T. V. 1983, Astrometrya Astrofiz., 49, 39
Kurucz, R. L. 1988, Trans. IAU, XXB, ed. M. McNally (Dordrecht: Kluwer), 168

Kurucz, R. L. 1992, Rev. Mex. Astron. Astrofis., 23, 45
Kurucz, R. L. 1993a, ATLAS9 Stellar Atmosphere Programs and $2 \mathrm{~km} \mathrm{~s}^{-1}$ grid, CD-ROM, No. 13
Kurucz, R. L. 1993b, SYNTHE Spectrum Synthesis Programs and Line Data, CD-ROM, No. 18
Kurucz, R. L. 1997, in The 3rd Conf. on Faint Blue Stars, ed. A. G. D. Philip, J. Liebert, \& R. A. Saffer (Schenectady: L. Davis Press), 33
Kurucz, R. L. 2003, private communication
Kurucz, R. L., \& Avrett, E. H. 1981, Solar Spectrum Synthesis. I. A sample atlas from 224 to 300 nm, SAO Spec. Rep., 391
Kurucz, R. L., \& Bell, B. 1995, Atomic Line List, CD-ROM, No. 23
Kurucz, R. L., \& Peytremann, E. 1975, SAO Special Report, 362
Lanz, T., \& Artru, M.-C. 1985, Phys. Scr., 32, 115
Lanz, T., Artru, M. C., Didelon, P., \& Mathys, G. 1993, A\&A, 272, 465
Lanz, T., Dimitrijević, \& Artru, M. C. 1988, A\&A, 192, 249
Leckrone, D. S., Proffitt, C. R., Wahlgren, G. M., et al. 1999, AJ, 117, 1454
Martin, G. A., Fuhr, J. R., \& Wiese, W. L. 1988, J. Phys. Chem. Ref. Data, 17, Suppl. 3
Miles, B. M., \& Wiese, W. L. 1969, NBS Technical Note, 474
Moore, C. E. 1965, Selected Tables of Atomic Spectra, NSRDS-NBS, 3
Moore, C. E. 1972, A Multiplet Table of Astrophysical Interest, NSRDS-NBS, 40
Nielsen, H., Karlsson, H., \& Wahlgren, G. M. 2000, A\&A, 363, 815
Nilsson, A. E., Johansson, S., \& Kurucz, R. L. 1991, Phys. Scr., 44, 226
Norris, J. 1971, ApJS, 23, 213
Pickering, J. C., Thorne, A. P., \& Perez, R. 2002, ApJS, 138, 247

Proffitt, C. R., Brage, T., Leckrone, D. S., et al. 1999, ApJ, 512, 942
Raassen, A. J. J., \& Uylings, P. H. M. 1998, A\&A, 340, 300 http://www.science.uva.nl/pub/orth/iron/FeII.E1 Rosberg, M., \& Wyart, J.-F. 1997, Phys. Scr., 55, 690
Ryabchikova, T. A., \& Smirnov, YU. M. 1994, Astron. Rep., 38, 70
Sadakane, K., Jugaku, J., \& Takada-Hidai, M. 1985, ApJ, 297, 240
Sadakane, K., Jugaku, J., \& Takada-Hidai, M. 1988, ApJ, 325, 776
Sadakane, K., Takada-Hidai, M., Takeda, Y., et al. 2001, PASJ, 53, 1223
Sansonetti, C. J., \& Reader, J. 2001, Phys. Scr., 63, 219
Savanov, I., \& Hubrig, S. 2003, A\&A, 410, 299
Shamey, L. J. 1969, unpublished Ph.D. Thesis, University of Colorado Schulz-Gulde, E. 1969, JQRST, 9, 13
Sigut, T. A. A. 2001, A\&A, 377, L27
Sigut, T. A. A., Landstreet, J. D., \& Shorlin, S. L. S. 2000, ApJ, 530, L89
Sigut, T. A. A., \& Landstreet, J. D. 1990, MNRAS, 247, 611
Smith, K. C. 1993, A\&A, 276, 393
Smith, K. C. 1994, A\&A, 291, 521
Smith, K. C. 1996, A\&A, 305, 902
Smith, K. C. 1997, A\&A, 319, 928
Smith, K. C., \& Dworetsky, M. M. 1993, A\&A, 274, 335
Wahlgren, G. M., \& Hubrig, S. 2000, A\&A, 362, L13
Wahlgren, G. M., Dolk, L., Kalus, G., et al. 2000, ApJ, 539, 908
Wiese, W. L., Fuhr, J. R., \& Deters, T. M. 1996, J. Phys. Chem. Ref. Data, Monograph, 7
Wiese, W. L., \& Martin, G. A. 1980, NSRDS-NBS, 68
Wiese, W. L., Smith, M. W., \& Glennon, B. M. 1966, NSRDS-NSB, 4
Wujec, T., \& Weniger, J. 1981, J. Quant. Spectrosc. Radiat. Transfer, 25, 167
Zhang, Z. G., Svanberg, S., Palmieri, P., Quintet, P., \& Biémont, E. 2002, A\&A, 385, 724

Online Material

Appendix A: The element by element analysis

All the elements which contribute to the spectrum of HD 175640 are individually considered here. Tables A.1-A. 3 list respectively the lines of the light elements, of the iron group elements and of the elements with atomic number $Z \geq 30$ which were analyzed for abundance purposes. In all three tables the lines of each element are arranged in increasing wavelength order. Multiplet numbers are mostly taken from Moore (1972), except for He I. In this case multiplet numbers from NIST and from Wiese et al. (1966) (the ones in parenthesis) are given. For each line, the $\log g f$ value, its reference, and the lower excitation potential are listed. In Table A. 1 the Stark damping constant $\log \left(\gamma_{\mathrm{S}} / N_{\mathrm{e}}\right)$ for $T=20000 \mathrm{~K}$ and its reference are added. There are no damping constants for He_{I} in Table A. 1 because they were obtained by interpolating for temperature and, for a few lines, also for electron and ion density, in tables of Stark broadening parameters or Stark profiles (Sect. 4), whose reference can be found in Col. 7. In Table A.3, the excitation potential of the upper level is added. In all the tables the last three columns show the measured equivalent width, the corresponding abundance, and the remarks, if any needed. When no equivalent width is given, the abundance was derived from the comparison of observed and computed profiles. This kind of determination was mostly performed when different transitions belonging to the same multiplet are observed as a single profile. The average abundance and its standard deviation (when more lines were measured) are given at the top of the subtable relative to the given ion.

Helium (2)-He $:$ By varying the He abundance in steps of 0.01 dex we obtained $\log \left(N(\mathrm{He}) / N_{\text {tot }}\right)=-1.73$ (i.e. $\left.[-0.62]\right)$ from the comparison of the computed and observed profiles of the lines listed in Table A.1. All the weak lines are fully consistent with the adopted abundance, while some differences between observations and computations occur for the strongest lines. Figure A. 1 shows that the blue wing of $\lambda 4026 \AA$ is not well reproduced, while the computed cores of $\lambda \lambda 4471$ and $6678 \AA$ are slightly too strong. We did not find any trace of the ${ }^{3} \mathrm{He}$ isotope for the line at $6678 \AA$, so that we assumed that the He isotopic ratio is the terrestrial one.

The weakness of all the He I lines observed in HD 175640 may justify the LTE assumption.

Beryllium (4)-Be ॥: The only unblended line observed in the spectrum is the $\mathrm{Be}_{\text {II }}$ resonance line at $3130.420 \AA$, mult. 1. The abundance $\log \left(N(\mathrm{Be}) / N_{\text {tot }}\right)=-10.64$ derived from the equivalent width is solar. Sadakane et al. (1985) found $\log (N(\mathrm{Be}) / N(\mathrm{H}))<-9.7$ from IUE spectra. The other Be ir line of mult. 1 at $3131.065 \AA$ is predicted weak for the above abundance and is heavy blended with Mn II. A weak unidentified absorption at $5270.3 \AA$ can hardly be due to $\mathrm{Be}_{\text {II }} 5270.28 \AA$ mult. 3 as the other, stronger line of the same multiplet at $5270.815 \AA$ is not observed.

The $\log g f$ values of the Kurucz line list, which were taken from Biémont et al. (1977), were used for the lines examined
here. They do not differ by more than 0.005 dex from those available in the NIST database.

Boron (5)-Not observed: There are no observed absorptions at the position of $\mathrm{B}_{\text {II }} 3451.287 \AA$ A, mult. 1. An absorption at $3451.32 \AA$ identified as $\mathrm{Fe}_{\text {II }} 3451.318 \AA$ is much stronger than predicted both when $\log g f=-1.519$ from the Kurucz database and $\log g f=-1.651$ from Raassen \& Uylings (1998) are used. We could speculate that boron contributes to the observed absorption, provided that its wavelength is $3451.320 \AA$ and that it is highly overabundant. However, Sadakane et al. (1985) derived from IUE spectra a boron underabundance of the order of $[-1.4]$. Therefore we assume that no boron lines are observable in our spectra.

Carbon (6)-C ı, $\mathrm{C}_{\text {॥: }}$: The most striking characteristic of carbon is the presence of the two strong emission lines of Cimult. 10 at $8335.148 \AA$ and C_{i} mult. 9 at $9405.730 \AA$. They are shown in Fig. A.2, where the observed spectrum, the computed spectrum and the telluric spectrum are superimposed.

There is no doubt that the carbon abundance is subsolar, but it is difficult to fix its exact value owing to the position of the strongest $\mathrm{C}_{\text {I }}$ and $\mathrm{C}_{\text {II }}$ lines in the red part of the spectrum where they are either embedded in strong telluric absorptions or heavily blended with them. Examples are Ci mult. 3 at $9061.431 \AA, 7231.33 \AA$ and $7236.42 \AA$ and C_{i} mult. 2 at $9620.777 \AA$ and $9658.430 \AA$. In addition, the spectrum is of bad quality in the 9074-9098 Å region, just where three C C lines of mult. 3 ($\lambda \lambda 9078.288,9088.513$ and $9094.830 \AA$) could have been measured.

The few $\mathrm{C}_{\text {I }}$ and $\mathrm{C}_{\text {II }}$ lines that have measurable equivalent widths are listed in Table A.1. We remark that $\mathrm{C}_{\text {II }}$ mult. 4 at $3918.968 \AA$ seems to blueshifted relatively to the wavelength taken from Wiese et al. (1996). If the shift is not real it could be blended with an unknown component. The average abundance from C_{I} is -4.11 ± 0.23 dex, that from $C_{\text {II }}$ is $-4.05 \pm$ 0.16 dex, while the average abundance from all C_{I} and $\mathrm{C}_{\text {ir }}$ lines is -4.08 ± 0.20 dex. After comparison of the synthetic spectrum with the observed spectrum we assumed $\log \left(N(\mathrm{C}) / N_{\text {tot }}\right)=$ -4.00.

According to Hempel \& Holweger (2003) no NLTE corrections are needed for the carbon lines examined in HD 175640 because no negligible NLTE effects are predicted in late B-type stars for lines with equivalent widths larger than $100 \mathrm{~m} \AA$.

Nitrogen (7)-Not observed: There are no nitrogen lines observed in the spectrum. The computed N_{I} lines of mult. 1 at $8680-8728 \AA$ disappear for $\log \left(N(N) / N_{\text {tot }}\right)=-5.78$. We adopted this value as upper limit for the nitrogen abundance. It corresponds to an underabundance of $[-1.66]$.

Oxygen (8)-O ।, O ॥: We identified a large number of O_{I} lines, and two O II lines of mult. 1 ($4641.82 \AA$ and $4649.14 \AA$) that were so weak that no measuraments of their equivalent widths were performed. All the Oi lines analyzed in the spectrum are listed in Table A.1.

F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 3

Table A.1. Abundances of the light elements.

Table A.1. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\log \left(\gamma_{\mathrm{S}} / N_{\mathrm{e}}\right)$	Ref. ${ }^{\text {b }}$	$W(\mathrm{~m}$)	$\log \left(N_{Z} / N_{\text {tot }}\right)$	Notes
$\mathrm{O}_{\text {I }} \quad \log N\left(\mathrm{O}\right.$ I) $/ N_{\text {tot }}=-3.18 \pm 0.11$									
3	3947.295	-2.096	CNO	73768.20	-4.70	G74	6.54	-3.40	
3	3947.481	-2.244	CNO	73768.20	-4.70	G74		-3.40	
3	3947.586	-2.467	CNO	73768.20	-4.70	G74		-3.40	
5	4368.190	-2.665	CNO	76794.98	-4.68	G74		-3.20	
5	4368.242	-1.964	CNO	76794.98	-4.68	G74		-3.20	
5	4368.258	-2.818	CNO	76794.98	-4.68	G74		-3.20	
14	4967.380	-2.086	CNO	86625.76	-	-			No fit
14	4967.380	-1.997	CNO	86625.76	-	-			No fit
14	4967.380	-2.329	CNO	86625.76	-	-			No fit
14	4967.880	-1.660	CNO	86627.78	-	-			No fit
14	4967.880	-1.865	CNO	86627.78	-	-			No fit
14	4967.880	-2.454	CNO	86627.78	-	-			No fit
14	4968.790	-1.375	CNO	86631.45	-	-			No fit
14	4968.790	-1.961	CNO	86631.45	-	-			No fit
14	4968.790	-2.087	CNO	86631.45	-	-			No fit
13	5020.218	-1.725	CNO	86631.45	-	-	2.87	-3.35	
12	5329.096	-1.938	CNO	86625.76	-3.43	G74		-3.27	
12	5329.099	-1.586	CNO	86625.76	-3.43	G74		-3.27	
12	5329.107	-1.695	CNO	86625.76	-3.43	G74		-3.27	
12	5329.673	-2.063	CNO	86627.78	-3.43	G74		≤-3.27	Blend with Mn ${ }_{\text {II }}$
12	5329.681	-1.473	CNO	86627.78	-3.43	G74		≤-3.27	Blend with $\mathrm{Mn}_{\text {II }}$
12	5329.690	-1.269	CNO	86627.78	-3.43	G74		≤-3.27	Blend with Mn ${ }_{\text {II }}$
12	5330.735	-1.570	CNO	86631.45	-3.43	G74		-3.27	
12	5330.741	-0.984	CNO	86631.45	-3.43	G74		-3.27	
11	5435.178	-1.766	CNO	86625.76	-3.82	G74	4.20	-3.20	
11	5435.775	-1.544	CNO	86627.78	-3.82	G74	5.99	-3.16	
11	5436.862	-1.398	CNO	86631.45	-3.82	G74	7.49	-3.20	
10	6155.961	-1.363	CNO	86625.76	-3.96	G74		-3.17	
10	6155.971	-1.011	CNO	86625.76	-3.96	G74		-3.17	
10	6155.989	-1.120	CNO	86625.76	-3.96	G74		-3.17	
10	6156.737	-1.488	CNO	86627.78	-3.96	G74		-3.17	
10	6156.755	-0.899	CNO	86627.78	-3.96	G74		-3.17	
10	6156.778	-0.694	CNO	86627.78	-3.96	G74		-3.17	
10	6158.149	-1.841	CNO	86631.45	-3.96	G74		-3.17	Blend with $\mathrm{Cr}_{\text {II, }}$, $\mathrm{Cr}_{\text {II }}$
10	6158.172	-0.996	CNO	86631.45	-3.96	G74		-3.17	Blend with $\mathrm{Cr}_{\text {II, }}$, $\mathrm{Cr}_{\text {II }}$
10	6158.187	-0.409	CNO	86631.45	-3.96	G74		-3.17	Blend with $\mathrm{CrII}_{\text {I, }} \mathrm{Cr}_{\text {II }}$
9	6453.602	-1.288	CNO	86625.76	-4.28	G74	7.34	-3.24	
9	6454.444	-1.066	CNO	86627.78	-4.28	G74	11.95	-3.23	
9	6455.977	-0.920	CNO	86631.45	-4.28	G74		(-3.27)	Blend with $\mathrm{Ga}_{\text {II }}$
21	7001.899	-1.489	CNO	88630.59	-3.93	G74		-3.27	Blend with Mn ${ }_{\text {II }}$
21	7001.922	-1.012	CNO	88630.59	-3.93	G74		-3.27	Blend with Mn ${ }_{\text {II }}$
21	7002.173	-2.644	CNO	88631.15	-3.93	G74		-3.22	
21	7002.196	-1.489	CNO	88631.15	-3.93	G74		-3.22	
21	7002.230	-0.741	CNO	88631.15	-3.93	G74		-3.22	
21	7002.250	-1.364	CNO	88631.30	-3.93	G74		-3.22	
38	7156.701	+0.288	CNO	102662.03	-5.35	G74	23.70	-3.11	
1	7771.944	+0.369	CNO	73768.20	-5.55	G74	190.78	-2.04	No fit
1	7774.166	+0.223	CNO	73768.20	-5.55	G74	174.48	-2.08	No fit
1	7775.388	+0.001	CNO	73768.20	-5.55	G74	148.12	-2.20	No fit
35	7947.548	+0.500	K, NBS	101135.41	-5.54	G74	32.22	-3.02	
35	7950.803	+0.340	K, NBS	101147.53	-5.54	G74	25.98	-3.09	
35	7952.159	+0.170	K, NBS	101155.42	-5.54	G74	21.46	-3.14	
34	8221.824	+0.313	CNO	101135.41	-5.40	G74		-3.10	
4	8446.247	-0.463	CNO	76794.98	-5.44	G74			No fit
4	8446.359	+0.236	CNO	76794.98	-5.44	G74			No fit
4	8446.758	+0.014	CNO	76794.98	-5.44	G74			No fit
37	8820.423	+0.379	CNO	102662.03	-5.51	G74	43.43	-3.04	
8	9260.806	-0.242	CNO	86625.76	-4.95	G74			No fit
8	9260.848	+0.110	CNO	86625.76	-4.95	G74			No fit
8	9260.848	+0.001	CNO	86625.76	-4.95	G74			No fit

Table A.1. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\log \left(\gamma_{\mathrm{S}} / N_{\mathrm{e}}\right)$	Ref. ${ }^{\text {b }}$	$W(\mathrm{~m}$)	$\log \left(N_{Z} / N_{\text {tot }}\right)$	Notes
OI cont.									
8	9262.582	-0.367	CNO	86627.78	-4.95	G74			No fit
8	9262.670	$+0.223$	CNO	86627.78	-4.95	G74			No fit
8	9262.776	+0.427	CNO	86627.78	-4.95	G74			No fit
8	9265.826	-0.719	CNO	86631.45	-4.95	G74			No fit
8	9265.932	+0.126	CNO	86631.45	-4.95	G74			No fit
8	9266.006	$+0.712$	CNO	86631.45	-4.95	G74			No fit
$\mathrm{Ne}_{\mathrm{I}} \quad \log N\left(\mathrm{Ne}_{\mathrm{I}}\right) / N_{\text {tot }}=-4.35$									
1	7032.413	-0.294	NIST	134041.840	-6.32	G74	2.23	-4.35	
NaI $\log N(\mathrm{Na} \mathrm{I}) / N_{\text {tot }}=-5.47$									
6	5688.205	-0.450	K, KP	16973.37	-5.68	G74		-5.47:	Blend with telluric lines
1	5889.950	+0.112	NIST	0.00	-5.64	G74		-5.47:	Blend interstell./circumstell. line
1	5895.924	-0.191	NIST	0.00	-5.64	G74		-5.47:	Blend interstell./ circumstell. line
4	8183.255	$+0.260$	NIST	16956.17	-5.52	G74		≥-5.47 :	Blend with telluric line
4	8194.790	-0.441	NIST	16973.37	-5.52	G74		-5.47	
4	8194.824	$+0.514$	NIST	16973.37	-5.52	G74		-5.47	
Mg I $\log N\left(\mathrm{Mg} \mathrm{I}_{\mathrm{I}} / N_{\text {tot }}=-4.64 \pm 0.06\right.$									
40	4702.991	-0.374	NIST	35051.26	-3.98	G74	2.09	-4.72	
2	5167.321	-0.856	NIST	21850.41	-5.27	G74	5.80	-4.57	
2	5172.684	-0.380	NIST	21870.46	-5.27	G74	13.74	-4.63	
2	5183.604	-0.158	NIST	21911.18	-5.27	G74		-4.58	Blend with $\mathrm{Fe}_{\text {II, }} \mathrm{Ti}_{\text {II }}$
$\mathrm{Mg}_{\text {II }} \log N\left(\mathrm{Mg}_{\text {II }} / N_{\text {tot }}=-4.71 \pm 0.07\right.$									
10	4384.637	-0.792	NIST	80619.50	-4.02	G74	24.11	-4.81	
10	4390.514	-1.706	NIST	80650.02	-4.02	G74	39.57	-4.76	
10	4390.572	-0.530	NIST	80650.02	-4.02	G74	39.57	-4.76	
9	4427.994	-1.201	NIST	80619.50	-4.40	G74	13.44	-4.70	
4	4481.126	+0.730	NIST	71490.19	-4.68	G74		-4.69	Bad fit for the core
4	4481.150	-0.570	NIST	71490.19	-4.68	G74		-4.69	Bad fit for the core
4	4481.325	+0.575	NIST	71490.06	-4.68	G74		-4.69	Bad fit for the core
8	7877.054	+0.390	NIST	80619.50	-4.54	G74	64.50	-4.68	
8	7896.042	-0.303	NIST	80650.02	-4.54	G74	28.14	-4.77	
8	7896.366	+0.647	NIST	80650.02	-4.54	G74	85.58	-4.56	Blend with telluric line
-	8213.987	-0.279	NIST	80619.50	-4.77	G74		-4.81	At the Paschen limit
-	8234.636	+0.024	NIST	80650.02	-4.77	G74		-4.81	Blend with telluric line
-	9631.891	+0.663	NIST	93310.59	-	-	57.42	-4.69	
-	9631.95	-0.639	NIST	93310.59	-	-		-4.69	
-	9632.430	+0.507	NIST	93311.11	-	-	47.05	-4.72	
Si $\mathrm{SI}^{\text {II }} \quad \log N\left(\mathrm{Si}_{\text {II }}\right) / N_{\text {tot }}=-4.72 \pm 0.08$									
1	3853.665	-1.517	K, BBCB	55309.35	-4.91	G74	60.94	-4.77	
1	3856.018	-0.557	K, BBCB	55325.18	-4.91	G74	108.86	-4.81	
1	3862.595	-0.817	K, BBCB	55309.35	-4.91	G74	98.75	-4.71	
3.01	4072.709	-2.367	K, SG	79338.50	-4.51	LDA	1.95	-4.75	
3.01	4075.452	-1.403	K, SG	79355.02	-4.51	LDA	15.18	-4.72	
7.26	4190.724	-0.351	LA	108820.60	-5.07	LDA	7.52	-4.66	
7.26	4198.133	-0.611	LA	108778.70	-5.07	LDA	4.99	-4.59	
5	5041.024	+0.174	NIST	81191.34	-4.70	G74	73.40	-4.65	
5	5055.984	$+0.441$	NIST	81251.32	-4.70	G74	90.48	-4.65	
5	5056.317	-0.535	NIST	81251.32	-4.70	G74	38.52	-4.63	
7.03	5466.432	-0.190	NIST	101023.05	-3.85	G74	11.11	-4.74	
7.33	5669.563	$+0.266$	LA	114529.14	-	-	5.68	-4.75	
7.33	5688.817	+0.106	LA	114414.58	-	-	3.22	-4.87	
4	5957.559	-0.349	NIST	81191.34	-4.91	G74	37.52	-4.65	
4	5978.930	-0.061	NIST	81251.32	-4.91	G74	49.34	-4.65	
7.02	7848.816	+0.335	NIST	101023.05	-4.25	G74	11.81	-4.81	
7.02	7849.722	+0.492	NIST	101024.35	-4.25	G74	13.41	-4.89	
Si ${ }_{\text {III }} \quad \log N\left(\mathrm{Si}_{\text {III }}\right) / N_{\text {tot }}=-4.58 \pm 0.04$									
2	4552.622	+0.292	NIST	153377.05	-	-	4.01	-4.62	
2	4567.840	+0.069	NIST	153377.05	-	-	3.15	-4.54	

Owing to the triplet and quintet nature of most of the transitions, the oxygen abundance was estimated both from
the profiles and from the equivalent widths. The adopted final value $\log \left(N(\mathrm{O}) / N_{\text {tot }}\right)=-3.18 \pm 0.11$ is the average abun-

Table A.1. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{1}\right)$	γ_{S}	Ref. ${ }^{\text {b }}$	$W(\mathrm{~mA})$	$\log \left(N_{Z} / N_{\text {tot }}\right)$	Notes
$\mathrm{P}_{\text {II }} \log N\left(\mathrm{P}_{\text {II }}\right) / N_{\text {tot }}=-6.28 \pm 0.08$									
7	5296.077	-0.134	K, HI	87124.60	-	-	2.20	-6.33	
6	5316.055	-0.341	K, HI	86743.96	-4.09	G74	1.66	-6.28	
6	5344.729	-0.329	K, HI	86597.55	-4.09	G74	1.88	-6.24	
6	5386.895	-0.305	K, HI	86743.96	-4.09	G74	1.72	-6.29	
6	5425.880	+0.241	K, HI	87124.60	-4.09	G74	4.20	-6.39	
5	6024.178	+0.137	K, HI	87124.60	-4.40	G74	1.37	-6.20	
5	6034.039	-0.209	K, HI	86597.55	-4.40	G74	2.15	-6.15	
5	6043.084	+0.384	K, HI	87124.60	-4.40	G74	4.09	-6.41	
5	6034.039	-0.209	K, HI	86597.55	-4.40	G74	2.15		
$\mathrm{S}_{\text {II }} \quad \log N\left(\mathrm{~S}_{\text {II }}\right) / N_{\text {tot }}=-5.12 \pm 0.03$									
44	4153.068	+0.617	NIST	128233.20	-	-	8.25	-5.09	
44	4162.665	+0.777	NIST	128599.16	-	-	9.53	-5.13	
1	5027.203	-0.705	NIST	105599.06	-	-	3.05	-5.08	
1	5142.322	-0.822	NIST	106044.24	-	-	1.92	-5.13	
39	5212.620	+0.318	NIST	121530.02	-	-	3.64	-5.17	
6	5453.855	+0.482	NIST	110268.60	-	-	11.70	-5.10	
Ca I $\log N(\mathrm{Ca} \mathrm{I}) / N_{\text {tot }}=-5.26$									
2	4226.728	+0.244	NIST	0.00	-5.74	G74	2.4	-5.26	
$\mathrm{Ca}_{\text {II }} \log N\left(\mathrm{Ca}_{\text {II }}\right) / N_{\text {tot }}=-5.67 \pm 0.25$									
4	3158.869	+0.252	K, BWL	25191.51	-5.07	G74	46.4	-5.90	
4	3179.331	+0.512	K, BWL	25414.40	-5.07	G74	57.4	-5.76	
4	3181.275	-0.448	K, BWL	25414.40	-5.07	G74	29.7	-5.83	
3	3706.024	-0.447	K, BWL	25191.51	-5.09	G74		-5.54	Wings of $\mathrm{H}_{15}, \mathrm{H}_{16}$
3	3736.902	-0.147	K, BWL	25414.40	-5.09	G74		-5.60	Red wing of H_{13}
1	3933.664	+0.134	K, BWL	0.00	-5.52	G74		-5.54	Bump on the red wing
1	3968.469	-0.179	K, BWL	0.00	-5.52	G74		-5.54	Blue wing of H_{ϵ}, red component
15	5001.479	-0.517	K, BWL	60533.53	-4.24	G74		-5.64	Blend with $\mathrm{Fe}_{\text {II }}$
15	5019.971	-0.257	K, BWL	60611.28	-4.24	G74		-5.64	Blend with $\mathrm{Fe}_{\text {II }}$
15	5021.138	-1.217	K, BWL	60611.28	-4.24	G74		-5.54:	Weak
14	5285.266	-1.153	K, BWL	60533.02	-4.30	G74		-5.54:	Weak
14	5307.224	-0.853	K, BWL	60611.28	-4.30	G74		-	Blend with an unknown component
13	8201.720	+0.315	K, BWL	60533.02	-4.62	G74		-	Telluric line
13	8248.796	$+0.572$	NIST	60611.28	-4.62	G74		-6.40	At the Paschen limit
13	8254.721	-0.388	NIST	60611.28	-4.62	G74		-5.8??	Weak, at the Paschen limit
2	8498.023	-1.312	K, BWL	13650.19	-5.55	G74		-5.54	Shifted by $+0.2 \AA$, blue wing of P_{15}
2	8542.091	-0.362	K, BWL	13710.88	-5.55	G74			No observations
2	8662.141	-0.623	K, BWL	13650.19	-5.55	G74		-5.20	Shifted by $+0.2 \AA$, blue wing of P_{13}
12	9854.759	-0.228	K, BWL	60533.02	-4.66	G74		≤-5.54	Bad spectrum, low S / N
12	9931.374	+0.072	K, BWL	60611.28	-4.66	G74		≤-5.54	Bad spectrum, low S/N

a "K" before another $\log g f$ source means that the $\log g f$ is from Kurucz files available at http://kurucz. harvard.edu/linelists/gf100 (BBCB) Berry et al. (1971); (BIE) Biémont (1977); (BWL) Black et al. (1972); (CNO) Wiese et al. (1996); (HI) Hibbert (1988); (KP) Kurucz \& Peytremann (1975); (LA) Lanz \& Artru (1985); (NBS) Wiese et al. (1966); (NIST) http://physics.nist.gov/cgi-bin/AtData/lines_ form; (SG) Schulz-Gulde (1969).
${ }^{b}$ (BCS1) Barnard et al. (1974); (BCS2) Barnard et al. (1975); (DS90) Dimitrijevic \& Sahal-Bréchot (1990); (G74) Griem (1974); (LDA) Lanz et al. (1988); (SM69) Shamey (1969).
dance derived only from the equivalent widths, provided that the lines of multiplets 1,4 and 8 and all the lines with Stark broadening parameter not available from the literature are excluded from the mean. In fact, lines computed with the approximate Stark profiles of the SYNTHE code are too strong, as are the lines of mult. 14 at 4967-4968 \AA. Furthermore, the comparison of the LTE computed spectrum with the ob-
served spectrum has shown the inadequacy of the LTE models for reproducing the infrared strong Oi lines, in particular those of mult. 1,4 and 8 at $7773.4 \AA, 8446.5 \AA$ and $9263.9 \AA$, respectively. Numerous papers deal with the NLTE corrections for these lines in B-type stars. The most recent one is Hempel \& Holweger (2003). We point out that the observed profiles of these lines cannot be reproduced in LTE even when

F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 7

Table A.2. Abundances of the iron group elements.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}$	W (mÅ)	$\left.\log \left(N_{Z}\right) / N_{\text {tot }}\right)$	Notes
$\mathrm{Sc}_{\text {II }} \log N\left(\mathrm{Sc}_{\text {II }}\right) / N_{\text {tot }}=-9.08 \pm 0.15$							
3	3580.925	-0.070	K, MFW	0.00	2.02	-8.89	
2	3613.829	+0.520	K, MFW	177.76	5.81	-8.96	
2	3630.742	+0.340	K, MFW	67.76	4.28	-8.94	
2	3642.784	+0.180	K, MFW	0.00	2.73	-8.99	
7	4246.822	+0.320	K, MFW	2540.95	4.44	-9.37	
15	4314.083	-0.100	K, MFW	4987.79	1.96	-9.17	
14	4374.457	-0.440	K, MFW	4987.79	1.07	-9.10	
31	5526.790	+0.130	K, MFW	14261.32	0.86	-9.19	
Ti III $\log N\left(\right.$ Ti $\left.{ }_{\text {II }}\right) / N_{\text {tot }}=-5.67 \pm 0.11$							
5	3072.107	-0.620	PTP	225.73	61.34	-5.43	
4	3121.598	-2.360	PTP	0.00	16.36	-5.51	
4	3130.798	-1.190	PTP	94.10	44.49	-5.54	
10	3145.396	-2.600	PTP	983.89	7.31	-5.69	
4	3157.393	-2.170	PTP	94.10	18.33	-5.61	
10	3161.201	-0.690	PTP	908.02	54.92	-5.57	
10	3161.769	-0.550	PTP	983.89	59.71	-5.52	
10	3162.566	-0.380	PTP	1087.32	60.63	-5.65	
10	3168.518	-0.200	PTP	1215.84	66.26	-5.61	
3	3214.767	-1.400	PTP	393.44	38.79	-5.53	
2	3222.841	-0.420	PTP	94.10	63.99	-5.55	
3	3226.769	-1.840	PTP	225.73	26.00	-5.61	
2	3234.514	+0.430	PTP	393.44	86.84	-5.67	
23	3236.119	-0.430	PTP	8710.44	48.44	-5.53	
2	3236.572	+0.240	PTP	225.73	79.21	-5.70	
2	3239.036	+0.070	PTP	94.10	76.96	-5.60	
23	3239.661	-0.200	PTP	8744.25	76.96	-5.53	
2	3241.983	-0.030	PTP	0.00	76.81	-5.51	
23	3249.366	-1.360	PTP	8710.44	24.74	-5.57	
2	3251.908	-0.590	PTP	94.10	59.53	-5.55	
2	3254.245	-0.560	PTP	393.44	58.86	-5.58	
7	3308.803	-1.140	PTP	1087.32	41.01	-5.64	
7	3318.023	-1.040	PTP	983.89	46.15	-5.55	
7	3343.761	-1.150	PTP	1215.84	40.92	-5.63	
7	3346.741	-1.060	PTP	1087.42	45.59	-5.54	
1	3361.212	+0.430	PTP	225.73	84.33	-5.69	
1	3372.793	+0.280	PTP	94.10	79.51	-5.69	
1	3380.279	-0.570	K, MFW	393.44	61.97	-5.44	
1	3383.759	+0.160	PTP	0.00	87.01	-5.36	
6	3477.180	-0.960	PTP	983.89	46.13	-5.61	
6	3489.736	-1.980	PTP	1087.32	17.60	-5.71	
6	3500.330	-2.100	PTP	983.89	18.55	-5.56	
15	3561.575	-1.940	PTP	4268.58	11.65	-5.81	
15	3573.731	-1.490	PTP	4628.58	24.62	-5.66	
15	3587.131	-1.590	PTP	4897.65	22.00	-5.65	
15	3596.047	-1.030	PTP	4897.65	37.79	-5.58	
34	3900.539	-0.200	PTP	9118.26	76.60	-5.96	
34	3913.461	-0.420	PTP	8997.71	77.23	-5.73	
11	4012.383	-1.840	PTP	4628.58	41.10	-5.67	
87	4053.821	-1.130	PTP	15265.62	40.03	-5.76	
21	4161.529	-2.360	K, MFW	8744.25	17.44	-5.55	
105	4163.644	-0.130	PTP	20891.66	62.40	-5.77	
20	4287.873	-1.790	PTP	8710.44	27.82	-5.82	
41	4290.215	-0.850	PTP	9395.71	65.27	-5.71	
20	4294.094	-0.930	PTP	8744.25	63.27	-5.72	
41	4300.042	-0.440	PTP	9518.06	78.06	-5.74	
41	4301.922	-1.150	PTP	9363.62	54.33	-5.73	
41	4312.860	-1.100	PTP	9518.05	57.56	-5.68	
41	4314.971	-1.100	PTP	9363.62	55.37	-5.75	
41	4320.950	-1.800	PTP	9395.71	24.78	-5.85	

Table A.2. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}$	$W(\mathrm{~m}$)	$\left.\log \left(N_{Z}\right) / N_{\text {tot }}\right)$	Notes
Ti II cont.							
104	4367.652	-0.860	PTP	20891.66	35.88	-5.80	
93	4374.816	-1.610	PTP	16625.11	21.38	-5.70	
104	4386.847	-0.960	PTP	20951.62	31.82	-5.80	
51	4394.059	-1.780	PTP	9850.90	30.58	-5.69	
19	4395.031	-0.540	PTP	8744.25	79.02	-5.64	
51	4399.765	-1.190	PTP	9975.92	54.35	-5.66	
115	4411.072	-0.670	PTP	24961.03	31.84	-5.84	
40	4417.714	-1.190	PTP	9395.71	55.39	-5.66	
51	4418.331	-1.970	PTP	9395.71	19.61	-5.80	
40	4441.729	-2.330	PTP	9518.06	11.70	-5.76	
19	4443.801	-0.720	PTP	8710.44	72.95	-5.65	
19	4450.482	-1.520	PTP	8744.25	42.66	-5.72	
40	4464.448	-1.810	PTP	9363.62	28.90	-5.74	
31	4468.492	-0.600	K, MFW	9118.26	75.93	-5.65	
115	4488.325	-0.510	PTP	25192.79	37.27	-5.84	
31	4501.270	-0.770	PTP	8997.71	71.44	-5.63	
50	4533.960	-0.530	PTP	9975.92	77.23	-5.64	
60	4544.016	-2.580	PTP	10024.73	6.49	-5.77	
50	4563.757	-0.690	PTP	9850.90	68.15	-5.76	
82	4571.971	-0.320	PTP	12676.97	81.77	-5.56	
59	4657.206	-2.240	PTP	10024.73	12.39	-5.79	
49	4708.662	-2.340	PTP	9975.92	10.08	-5.80	
92	4779.985	-1.370	K, MFW	16515.86	32.07	-5.65	
17	4798.532	-2.680	PTP	8710.44	7.48	-5.69	
92	4805.085	-1.100	K, MFW	16625.11	45.57	-5.57	
114	4911.195	-0.610	PTP	25192.79	36.40	-5.76	
113	5069.092	-1.820	PTP	25192.79	5.75	-5.66	
113	5072.287	-1.060	PTP	25192.79	20.15	-5.75	
-	5154.070	-1.750	PTP	12628.73	22.57	-5.77	
86	5185.902	-1.490	PTP	15265.62	32.05	-5.61	
-	5188.687	-1.050	PTP	12758.11	50.88	-5.72	
-	5226.538	-1.260	PTP	12628.73	44.34	-5.69	
103	5268.615	-1.620	K, MFW	20951.62	11.80	-5.76	
-	5336.786	-1.590	PTP	12758.11	29.32	-5.73	
-	5381.021	-1.920	PTP	12628.73	16.59	-5.78	
Cri $\log N\left(\mathrm{Cr} \mathrm{I} \mathrm{)} / N_{\text {tot }}=-5.22 \pm 0.09\right.$							
4	3578.686	+0.409	K, MFW	0.00	6.26	-5.17	
4	3593.485	+0.307	K, MFW	0.00	4.52	-5.24	
4	3605.329	+0.197	K, MFW	0.00	4.41	-5.14	
1	4254.336	-0.114	K, MFW	0.00	6.40	-5.27	
1	4274.797	-0.231	K, MFW	0.00	4.23	-5.35	
1	4289.717	-0.361	K, MFW	0.00	3.28	-5.34	
7	5204.511	-0.208	K, MFW	7593.15	2.54	-5.16	
7	5206.037	+0.019	K, MFW	7593.15	4.93	-5.08	
7	5208.425	+0.158	K, MFW	7593.15	4.62	-5.25	
$\mathrm{Cr}_{\text {II }} \log N\left(\mathrm{Cr}_{\text {II }}\right) / N_{\text {tot }}=-5.41 \pm 0.07$							
5	3118.646	-0.000	K, MFW	19528.25	74.61	-5.38	
5	3120.359	+0.120	K, MFW	19631.17	78.48	-5.38	
54	3122.596	-0.110	K, MFW	33694.15	49.42	-5.25	
39	4539.595	-2.280	SL	32603.40	13.96	-5.42	
44	4558.650	-0.410	SL	32854.31	79.21	-5.34	
39	4565.770	-1.860	SL	32603.40	27.00	-5.43	
-	4587.264	-1.648	K, MFW	52321.01	3.77	-5.53	
44	4588.199	-0.643	K, MFW	32836.68	71.39	-5.35	
44	4592.049	-1.217	K, MFW	32854.95	44.53	-5.58	
44	4616.629	-1.291	K, MFW	32844.76	44.28	-5.51	
44	4618.803	-0.860	SL	32854.95	64.13	-5.35	
44	4634.070	-0.990	SL	32844.76	57.91	-5.41	

F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 9

Table A.2. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}$	$W(\mathrm{~m}$)	$\left.\log \left(N_{Z}\right) / N_{\text {tot }}\right)$	Notes
$\mathrm{Cr}_{\text {II }}$ cont.							
-	4697.598	-1.882	K, MFW	45730.58	6.36	-5.44	
30	4812.337	-1.995	K, K88	31168.58	24.44	-5.44	
30	4824.127	-0.970	SL	31219.35	65.81	-5.28	
30	4836.229	-2.000	SL	31117.39	25.57	-5.38	
43	5237.329	-1.160	K, MFW	32854.31	53.12	-5.38	
23	5246.768	-2.450	K, MFW	29951.88	14.55	-5.39	
43	5279.880	-2.100	K, MFW	32854.31	21.07	-5.33	
24	5305.860	-2.080	K, MFW	30864.76	24.27	-5.38	
43	5308.440	-1.810	K, MFW	32836.68	24.04	-5.53	
43	5310.700	-2.280	K, MFW	32844.76	14.54	-5.38	
43	5313.590	-1.650	K, MFW	32854.95	34.42	-5.40	
23	5420.922	-2.360	K, MFW	30307.44	13.80	-5.48	
50	5502.067	-1.990	K, MFW	33618.94	20.73	-5.40	
50	5508.606	-2.110	K, MFW	33521.11	16.35	-5.43	
105	6053.466	-2.160	K, MFW	38269.59	8.21	-5.44	
Mn I $\log N(\mathrm{Mn} \mathrm{I}) / N_{\text {tot }}=-4.20 \pm 0.08$							
8	3577.868	+0.160	K, MFW	17052.29	6.54	-4.29	$\begin{aligned} & \left(\mathrm{W}, \log \left(N / N_{\mathrm{tot}}\right)_{\mathrm{JDA}}\right)=(41.0,-4.35)^{b} \\ & \left(\mathrm{~W}, \log \left(N / N_{\mathrm{tot}}\right)_{\mathrm{JDA}}\right)=(23.0,-4.50)^{b} \end{aligned}$
8	3595.107	-0.860	K, MFW	17451.52	0.75	-4.27	
8	3607.526	-0.440	K, MFW	17282.00	2.21	-4.21	
8	3608.481	-0.370	K, MFW	17451.52	3.18	-4.09	
5	4018.100	-0.309	K, MFW	17052.29	12.27	-4.18	
2	4030.753	-0.470	K, MFW	0.00	40.68	-4.18	
2	4034.483	-0.811	K, MFW	0.00	23.85	-4.32	
5	4041.355	+0.258	K, MFW	17052.29	36.24	-4.02	
5	4055.544	-0.070	K, MFW	17282.00	17.59	-4.20	
5	4070.278	-0.950	K, MFW	17637.15	2.81	-4.22	
5	4082.939	-0.354	K, MFW	17568.48	10.33	-4.20	
22	4453.012	-0.490	K, MFW	23719.52	3.39	-4.24	
28	4457.044	-0.555	K, MFW	24788.05	1.66	-4.43	
28	4458.254	+0.042	K, MFW	24788.05	7.42	-4.33	
28	4461.079	-0.380	K, MFW	24802.25	4.22	-4.18	
28	4462.031	+0.320	K, MFW	24802.25	14.74	-4.25	
22	4464.682	-0.104	K, MFW	23549.20	6.79	-4.31	
-	4479.393	+0.010	K, MFW	41230.30	1.74	-3.99	
22	4490.080	-0.522	K, MFW	23818.87	3.30	-4.21	
22	4502.213	-0.345	K, MFW	23549.20	4.60	-4.26	
-	4626.530	+0.210	K, MFW	38008.70	4.76	-3.92	
21	4727.461	-0.470	K, MFW	23549.20	3.96	-4.20	
21	4739.110	-0.490	K, MFW	23719.52	3.46	-4.23	
21	4762.367	+0.425	K, MFW	23296.67	20.45	-4.24	
21	4765.846	-0.080	K, MFW	23719.52	9.77	-4.14	
21	4766.418	+0.100	K, MFW	23549.20	13.73	-4.14	
16	4783.427	+0.042	K, MFW	18531.64	21.56	-4.12	
16	4823.524	+0.144	K, MFW	18705.37	23.71	-4.14	
27	6013.480	-0.251	K, MFW	25779.32	5.92	-4.13	
27	6021.790	+0.034	K, MFW	24802.25	9.24	-4.19	
Mn II $\log N(\mathrm{Mn} \mathrm{II}) / N_{\text {tot }}=-4.25 \pm 0.04$							
3	3441.988	-0.272	K, MFW	14325.86	176.9	-4.27	
3	3460.316	-0.542	K, MFW	14593.82	140.3	-4.25	
3	3482.905	-0.740	K, MFW	14781.19	117.2	-4.28	
3	3488.677	-0.864	K, MFW	14910.18	108.8	-4.26	
3	3495.833	-1.218	K, MFW	14959.84	92.87	-4.15	
3	3496.809	-1.687	K, MFW	14781.19	69.99	-4.27	
3	3497.526	-1.330	K, MFW	14901.18	82.89	-4.26	
The Mn II lines used by Jomaron et al. (1999) (JDA)							
-	3917.318	-1.147	K, K88	55759.27	39.59	-4.55	$\left(\mathrm{W}, \log \left(N / N_{\text {tot }}\right)_{\text {IDA }}\right)=(43.5,-4.52)^{b}$
-	4363.258	-1.909	K, K88	44899.82	39.35	-4.43	$\left(\mathrm{W}, \log \left(N / N_{\text {tot }}\right)_{\text {JDA }}\right)=(37.5,-4.54)^{b}$
-	4365.219	-1.350	K, K88	53017.16	40.60	-4.46	$\left(\mathrm{W}, \log \left(N / N_{\text {tot }}\right)_{\text {IDA }}\right)=(40.5,-4.59)^{b}$
-	4478.635	-0.950	K, K88	53597.13	54.37	-4.39	$\left(\mathrm{W}, \log \left(N / N_{\text {tot }}\right)_{\text {JDA }}\right)=(55.0,-4.66)^{b}$

Table A.2. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}$	$W(\mathrm{~m}$)	$\left.\log \left(N_{Z}\right) / N_{\text {tot }}\right)$	Notes
Fe I $\log N\left(\mathrm{Fe}_{\mathrm{I}}\right) / N_{\text {tot }}=-4.78 \pm 0.08$							
23	3581.193	+0.406	K, FMW	6928.27	6.90	-4.84	
23	3618.768	+0.000	K, FMW	7985.78	2.06	-4.97	
43	4005.242	-0.610	K, FMW	12560.93	1.96	-4.75	
43	4045.812	+0.280	K, FMW	11976.24	12.67	-4.78	
43	4071.738	-0.022	K, FMW	12698.55	6.26	-4.78	
42	4202.029	-0.708	K, FMW	11976.24	1.94	-4.70	
419	4219.360	+0.120	K, FMW	28819.95	1.02	-4.81	
152	4235.936	-0.341	K, FMW	19562.44	1.12	-4.86	
42	4271.760	-0.164	K, FMW	11976.24	6.74	-4.67	
41	4383.545	+0.200	K, FMW	11976.24	12.06	-4.74	
41	4404.750	-0.142	K, FMW	12560.93	6.09	-4.71	
41	4415.122	-0.615	K, FMW	12968.55	2.00	-4.72	
Fe ${ }_{\text {II }} \log N\left(\mathrm{Fe}_{\text {II }} / N_{\text {tot }}=-4.84 \pm 0.13\right.$							
173	3906.035	-1.830	K, FMW	44929.55	15.01	-4.80	
3	3914.503	-4.050	K, FMW	13473.41	4.38	-5.04	
173	3935.962	-1.860	K, FMW	44915.05	16.00	-4.73	
3	3938.290	-3.890	K, FMW	13471.41	8.55	-4.88	
3	3945.210	-4.250	K, FMW	13673.18	3.84	-4.89	
28	4122.668	-3.380	K, FMW	20830.58	10.98	-4.83	
27	4128.748	-3.770	K, FMW	20830.58	6.90	-4.67	
28	4178.862	-2.480	K, FMW	20830.58	34.36	-4.96	
28	4258.154	-3.400	K, FMW	21812.05	7.57	-4.94	
27	4273.326	-3.258	K, FMW	21812.05	10.74	-4.90	
28	4296.572	-3.010	K, FMW	21812.05	19.75	-4.80	
27	4303.176	-2.490	K, FMW	21812.05	34.78	-4.88	
28	4369.411	-3.670	K, FMW	22409.85	5.04	-4.83	
27	4385.387	-2.570	K, FMW	22409.85	24.50	-5.06	
32	4413.601	-3.870	K, FMW	21581.64	2.06	-5.09	
27	4416.830	-2.600	K, FMW	22409.85	30.13	-4.86	
37	4491.405	-2.700	K, FMW	23031.30	24.60	-4.88	
38	4508.288	-2.210	K, FMW	23031.30	37.25	-5.01	
37	4515.339	-2.480	K, FMW	23939.36	31.54	-4.85	
37	4520.224	-2.600	K, FMW	22637.21	29.09	-4.88	
38	4522.634	-2.030	K, FMW	22939.36	44.78	-4.98	
38	4541.524	-3.050	K, FMW	23031.30	17.41	-4.76	
186	4549.192	-1.870	K, FMW	47674.72	15.09	-4.57	
38	4549.474	-1.750	K, FMW	22810.36	53.65	-5.01	
37	4555.893	-2.290	K, FMW	22810.36	34.65	-5.02	
38	4576.340	-3.040	K, FMW	22939.36	18.15	-4.75	
37	4582.835	-3.100	K, FMW	22939.36	12.89	-4.89	
38	4583.837	-2.020	K, FMW	22637.21	55.43	-4.69	
38	4620.521	-3.280	K, FMW	22810.36	10.08	-4.85	
186	4635.316	-1.650	K, FMW	47674.72	18.70	-4.65	
43	4656.981	-3.630	K, FMW	23317.63	5.90	-4.74	
37	4666.758	-3.330	K, FMW	22810.36	9.50	-4.83	
25	4670.182	-4.100	K, FMW	20830.58	2.12	-4.89	
43	4731.453	-3.360	K, FMW	23317.63	13.19	-4.59	
42	4923.927	-1.320	K, FMW	23317.63	75.84	-4.73	
36	4993.358	-3.650	K, FMW	22637.20	4.71	-4.86	
42	5018.440	-1.220	K, FMW	23317.63	83.50	-4.64	
35	5132.669	-4.180	K, FMW	22637.20	2.35	-4.65	
42	5169.033	-0.870	K, FMW	23317.63	88.23	-4.86	
49	5197.577	-2.100	K, FMW	26055.42	36.50	-4.93	
49	5234.625	-2.050	K, FMW	25981.63	37.62	-4.95	
-	5247.952	+0.630	K, FMW	84938.18	11.82	-5.02	

Table A.2. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}$	$W(\mathrm{~m}$ ® $)$	$\left.\log \left(N_{Z}\right) / N_{\text {tot }}\right)$	Notes
Fe if cont.							
185	5272.397	-2.030	K, FMW	48039.09	9.61	-4.60	
49	5276.002	-1.940	K, FMW	25805.33	39.99	-5.00	
41	5284.109	-3.190	K, FMW	23317.63	13.28	-4.74	
49	5316.615	-1.850	K, FMW	25428.78	47.28	-4.90	
49	5425.257	-3.360	K, FMW	25805.33	3.74	-5.05	
-	5506.195	+0.950	K, FMW	84863.35	21.48	-4.90	
55	5534.847	-2.930	K, FMW	26170.18	16.85	-4.68	
-	5961.705	+0.699	K, FMW	86124.30	13.10	-4.88	
46	6084.110	-3.980	K, FMW	25805.33	1.95	-4.70	
74	6149.258	-2.724	K, K88	31368.45	10.38	-4.81	
-	6383.722	-2.271	K, FMW	44784.76	3.01	-5.05	
74	6416.919	-2.850	K, FMW	31387.95	8.55	-4.78	
74	6456.383	-2.300	K, FMW	31483.176	25.58	-4.64	
Ni ${ }_{\text {II }} \log N\left(\mathrm{Ni}_{\text {II }}\right) / N_{\text {tot }}=-6.09 \pm 0.16$							
1	3274.916	-2.805	K03	23108.28	2.20	-6.03	
5	3290.534	-2.755	K03	25036.38	1.67	-6.08	
1	3290.683	-3.016	K03	23796.18	2.28	-5.76	
1	3350.419	-2.355	K03	23796.18	5.77	-5.94	
1	3373.969	-2.006	K03	23108.28	10.27	-5.99	
4	3401.766	-2.682	K03	24788.20	1.58	-6.17	
4	3407.300	-1.855	K03	24835.93	9.51	-6.07	
1	3454.164	-2.146	K03	23796.18	6.73	-6.04	
4	3471.386	-1.902	K03	24835.93	8.71	-6.06	
1	3513.987	-1.507	K03	23108.28	19.35	-5.97	
4	3576.764	-1.676	K03	24788.20	11.65	-6.08	
12	4015.474	-2.410	K03	32523.54	3.79	-6.35	
11	4067.031	-1.834	K03	32499.53	10.74	-6.41	
10	4192.065	-3.270	K03	32523.54	1.12	-6.04	
9	4244.779	-3.095	K03	32523.54	0.89	-6.31	

a "K" before another $\log g f$ source means that the $\log g f$ is from Kurucz files available at http://kurucz. harvard. edu/linelists/gf100 (FMW) Fuhr et al. (1988); (K88) Kurucz (1988); (K03) Kurucz (2003); (MFW) Martin et al. (1988); (PTP) Pickering et al. (2002); (SL) Sigut \& Landstreet (1990).
${ }^{b}$ Equivalent widths W and abundances from Jomaron et al. (1999) (JDA).
the LTE overabundance derived from the measured equivalent widths is adopted. Figure A. 3 compares the observed profiles of the O I triplet at $7773.4 \AA$ with profiles computed with two different abundances, -3.18 dex and -2.10 dex. The first abundance is the one we adopted for oxygen in HD 175640 while the second abundance is the one we derived from the equivalent widths of the lines of O_{I} triplet mult. 1. In the first case the computed cores are much weaker than the observed ones, in the second case the increased abundance increases not only the cores but also the wings, so that the profiles become broader and broader and will never agree with the observed ones.

The -3.18 dex oxygen abundance is only +0.3 dex larger than the solar one (Grevesse \& Sauval 1998). However, a detailed NLTE analysis of Oi lines is required before drawing any conclusion on the oxygen abundance in HD 175640.

Neon (10)-NeI: Only very weak lines of $\mathrm{Ne}_{\text {I }}$ were identified. The equivalent width of Ne_{I} at $7032.4131 \AA$, mult. 1 gives $\log \left(N(\mathrm{Ne}) / N_{\text {tot }}\right)=-4.35$. All the weak observed lines
agree with the lines predicted by this abundance. An example is $\mathrm{Ne}_{\text {I }}$ at $6506.528 \AA$. Neon is therefore underabundant by about 0.4 dex with respect to the solar abundance. Dworetsky \& Buday (2000) assign an upper limit $\log (N(\mathrm{Ne}) / N(\mathrm{H})) \leq-4.9$ to the neon abundance obtained from an NLTE analysis.

Sodium (11)-Na I: All the Na lines observed in the spectrum (Table A.1) are either blended with telluric lines or are affected by a red component of interstellar or circumstellar origin, as are the lines of mult. 1 at $5889.95 \AA$ and $5895.92 \AA$. For this reason, the abundance $\log \left(N(\mathrm{Na}) / N_{\text {tot }}\right)=-5.47$, corresponding to an overabundance of +0.2 dex, is only a rough estimate.

Magnesium (12)-Mgı, $\mathrm{Mg}_{\|}$: Several Mg_{I} and $\mathrm{Mg}_{\text {II }}$ lines can be observed in the spectrum, but only a few of them are unblended. Almost all the lines in the red part of the spectrum are affected by telluric absorptions, as for instance the two strong lines of $\mathrm{Mg}_{\text {II }}$ mult. 1 at $9218.25 \AA$ and $9244.26 \AA$, so that they

F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 12

Table A.3. Abundances of elements with $Z \geq 31$.

Mult	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\chi_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	$W(\mathrm{~m}$ ® $)$	$\log N / N_{\text {tot }}$	Notes
$\mathrm{Ga}_{\text {II }} \log N\left(\mathrm{Ga}_{\text {II }}\right) / N_{\text {tot }}=-5.43 \pm 0.04$								
-	4251.149	+0.35	RS94	113815.92	137332.35		-5.20	
-	4254.075	-0.23	RS94	113842.19	137342.44		-5.20	
-	4255.722	+0.634	NKW, RS94	113842.19	137333.33		-5.45	Bad fit, missing components
-	4255.937	-0.32	NKW, RS94	113842.19	137332.35		-5.45:	Blend with (wrong?) Mn II
-	4262.014	+0.98	RS94	113883.19	137339.64		-5.45	Blend with $\mathrm{Cr}_{\text {II }}+\mathrm{Cr}_{\text {II }}$
-	5338.240	+0.43	RS94	118430.20	137157.48		-5.65:	Bad fit
-	5360.402	+0.42	RS94	118518.47	137168.47		-5.45	
-	5363.585	+0.06	NKW	118518.47	137157.48		-5.45	Blend with (wrong?) $\mathrm{Cr}_{\text {II }}$
-	5416.318	+0.64	RS94	118727.89	137185.30		-5.25	
-	5421.275	-0.05	NKW	118727.89	137168.47		-5.45	
-	6334.069	+1.00	RS94	102944.55	118727.89		-5.65	
-	6419.239	+0.57	RS94	102944.55	118518.47		-5.55	Blend with (wrong?) $\mathrm{Cr}_{\text {II }}$
-	6455.923	-0.08	RS94	102944.55	118430.02		-5.45	Blend with $\mathrm{O}_{\text {I }}$
guessed $\log g f$ s for $\mathrm{Ga}_{\text {II }}$								
-	4261.478	-1.10	GUESS	113883.19	137342.44			
-	4263.136	-0.50	GUESS	113883.19	137333.33			
-	5219.658	+0.35	GUESS	120550.27	139703.28			
-	7198.450	+0.25	GUESS	106662.21	120550.27			
-	7792.260	+0.00	GUESS	107720.56	120550.27			
$\mathrm{Br}_{\text {II }} \log N\left(\mathrm{Br}_{\text {II }}\right) / N_{\text {tot }}=-7.12 \pm 0.04$								
-	4704.850	+0.408	NIST	93921.34	115176.00	1.09	-7.16	
-	4785.500	+0.208	NIST	93921.54	114818.00	0.85	-7.07	
Sr ${ }_{\text {II }} \log N\left(\mathrm{Sr}_{\text {II }}\right) / N_{\text {tot }}=-8.41$								
1	4077.709	+0.151	NIST	0.00	24516.65	26.66	-8.41	
Y $\mathrm{Y}_{\text {II }} \log N\left(\mathrm{Y}_{\text {II }}\right) / N_{\text {tot }}=-6.66 \pm 0.20$								
10	3195.616	-0.420	K, HL	840.21	32124.04	28.64	-6.35	
10	3200.272	-0.430	K, HL	1045.08	32283.40	26.37	-6.45	
10	3203.322	-0.370	K, HL	840.21	32048.78	27.86	-6.44	
10	3216.682	-0.020	K, HL	1045.08	32124.04	35.67	-6.35	
10	3242.280	$+0.210$	K, HL	1449.81	32283.40	40.16	-6.32	
18	3327.878	$+0.130$	K, CC	3296.18	33336.72	32.32	-6.51	
3	3496.081	-0.720	K, HL	0.00	28595.27	20.64	-6.48	
9	3549.005	-0.280	K, HL	1045.08	29213.95	27.34	-6.48	
9	3584.514	-0.410	K, HL	840.21	28730.01	24.78	-6.49	
9	3600.741	$+0.280$	K, HL	1044.81	29213.95	42.41	-6.24	
9	3601.919	-0.180	K, HL	840.21	28595.27	32.75	-6.30	
9	3611.044	$+0.110$	K, HL	1045.08	28730.07	33.79	-6.52	
2	3633.122	-0.100	K, HL	1045.08	27516.69	30.44	-6.54	
7	3818.341	-0.980	K, HL	1045.08	27227.04	23.35	-6.90	
16	3930.660	-1.610	K, HL	3296.18	28730.01	8.63	-6.76	
6	3950.352	-0.490	K, HL	840.21	26147.25	39.01	-6.84	
16	3951.593	-1.980	K, HL	3296.18	28595.27	3.22	-6.88	
6	3982.594	-0.490	K, HL	1045.08	26147.25	36.23	-6.94	
5	4199.277	-2.150	K, HL	840.21	24647.13	3.55	-6.82	
1	4204.695	-1.760	K, HL	0.00	23776.24	7.89	-6.87	
5	4235.729	-1.500	K, HL	1045.08	24647.13	10.66	-6.91	
5	4309.631	-0.750	K, HL	1449.81	24647.13	30.09	-6.89	
5	4358.728	-1.329	K, HL	840.21	23776.24	14.58	-6.91	
22	4883.684	+0.070	K, HL	8743.32	29213.94	46.51	-6.64	
22	4900.120	-0.090	K, HL	8328.04	28730.01	42.70	-6.66	
20	4982.129	-1.290	K, HL	8328.04	28394.18	7.22	-6.88	
20	5087.416	-0.170	K, HL	8743.32	28394.18	38.33	-6.72	
20	5119.112	-1.360	K, HL	8003.12	27532.32	7.41	-6.82	

Table A.3. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\chi_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	$W(\mathrm{~m} \AA)$	$\left.\log \left(N_{Z}\right) / N_{\text {tot }}\right)$	Notes
Y iI cont.								
20	5200.406	-0.570	K, HL	8003.12	27227.04	25.20	-6.83	
20	5205.724	-0.342	K, HL	8328.04	27532.32	35.39	-6.68	
27	5473.388	-1.020	K, HL	14081.26	32283.40	7.68	-6.76	
27	5480.732	-0.990	K, HL	13833.38	32124.04	7.38	-6.82	
27	5497.408	-0.580	K, HL	14098.07	32283.40	18.31	-6.68	
27	5546.009	-1.100	K, HL	14098.07	32124.04	7.44	-6.69	
38	5662.925	+0.160	K, CC	15682.90	33336.72	40.07	-6.51	
34	5728.890	-1.120	K, HL	14832.85	32283.40	5.61	-6.76	
32	7881.881	-0.572	K, HL	14832.85	27516.69	11.95	-6.82	
$\mathrm{Zr}_{\text {II }} \log N\left(\mathrm{Zr}_{\text {II }}\right) / N_{\text {tot }}=-8.67 \pm 0.17$								
3	3279.266	-0.230	K, CC'	736.44	31249.28	2.47	-8.35	
1	3391.982	+0.463	K, CC'	1322.91	30795.74	5.15	-8.63	
46	3479.383	+0.170	K, BG	5752.92	34485.42	1.00	-8.83	
10	3496.192	+0.189	K, CC	314.67	28909.04	2.60	-8.78	
41	4149.217	-0.030	K, CC	6467.61	30561.75	2.34	-8.78	
Rh ${ }_{\text {II }} \log N\left(\mathrm{Rh}_{\text {II }}\right) / N_{\text {tot }}=-8.50$:								
1	3162.284	+0.000	K, GUESS	28834.60	60448.40			
5	3187.875	+0.000	K, GUESS	27801.40	59161.50			
1	3207.285	+0.000	K, GUESS	25376.90	56547.30			
2	3233.314	+0.000	K, GUESS	27439.40	58358.50			
6	3267.480	+0.000	K, GUESS	31730.50	62326.10			
5	3307.348	+0.000	K, GUESS	28131.40	58358.50			
4	3477.823?	+0.000	K, GUESS	27801.40	56547.30			
Pd I $\log N\left(\mathrm{Pd} \mathrm{I}^{\text {) }} / N_{\text {tot }}=-6.41 \pm 0.30\right.$								
3	3242.700	-0.070	K, BG	6564.11	37393.71	3.63	-5.96	
2	3404.579	+0.320	K, BG	6564.11	35927.89	2.67	-6.47	
9	3553.080	$+0.540$	K, CB	11721.77	39858.33	0.82	-6.89	
2	3609.547	+0.050	K, BG	7754.40	35451.40	1.39	-6.40	
1	3634.690	+0.090	K, CB	6564.11	34068.93	2.02	-6.33	
$\mathrm{Xe}_{\text {II }} \log N\left(\mathrm{Xe}_{\text {II }}\right) / N_{\text {tot }}=-5.96 \pm 0.20$								
-	4603.01	0.018	WM80	95064.00	116783.00	3.62	-6.32	
-	4844.33	0.491	WM80	93068.00	113705.00	11.33	-6.04	
-	5292.22	0.351	WM80	93068.00	111959.00	10.80	-5.81	
-	5372.39	-0.211	WM80	95064.00	113673.00	3.12	-5.96	
-	5419.15	0.215	WM80	95064.00	113512.00	7.75	-5.80	
-	5719.60	-0.746	WM80	96033.00	113512.00	1.79	-5.58	
-	5976.46	-0.222	WM80	95054.00	111782.00	1.60	-6.12	
-	6051.15	-0.252	WM80	95438.00	111959.00	1.46	-6.12	
-	6097.59	-0.237	WM80	95397.00	111792.00	1.94	-5.99	
-	6990.88	+0.200	WM80	99405.00	113705.00	2.52	-5.86	$\lambda_{\text {obs }}=6990.82 \AA$

Other identified weak Xe II lines						
-	5260.44	-0.437	WM80	104250.00	123255.00	
-	5261.95	+0.150	WM80	112925.00	131924.00	
-	5438.96	-0.183	WM80	102799.00	121180.00	Blend $\mathrm{Cr}_{\text {II }}$
-	5472.61	-0.449	WM80	95437.00	113705.00	
-	6036.20	-0.609	WM80	95397.00	111959.00	

can not be used for any abundance determination. Furthermore, there are some lines for which the Stark broadening parameters are lacking, like $\mathrm{Mg}_{\text {II }}$ at $5401.52 \AA$ and at $5401.56 \AA$, so that their computed profiles are very different from the observed ones.

The average abundance from $\mathrm{Mg}_{\text {I }}$ lines with measurable equivalent widths is -4.64 ± 0.06 dex, that from $\mathrm{Mg}_{\text {II }}$ is -4.71 ± 0.07 dex, while the average abundance from all the $\mathrm{Mg}_{\text {I }}$ and $\mathrm{Mg}_{\text {II }}$ lines is $\log \left(N(\mathrm{Mg}) / N_{\text {tot }}\right)=-4.69 \pm 0.07$, corresponding to an underabundance of $[-0.23]$. The average

Table A.3. continued.

Mult.	$\lambda(\AA)$	$\log g f$	Ref. ${ }^{\text {a }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\chi_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	$W(\mathrm{~m} ̊)$	$\left.\log \left(N_{Z}\right) / N_{\text {tot }}\right)$	Notes
identified $\mathrm{Xe}_{\text {II }}$ lines with no available $\log g f$								
-	4448.13	0.00	GUESS	123112.54	145587.61			
-	4921.48	0.00	GUESS	102799.07	123112.54			
-	5339.33	0.00	GUESS	93068.44	111792.17			
-	5368.07	0.00	GUESS	105947.55	124571.09			
-	5525.53	0.00	GUESS	124289.45	142382.13			
-	5667.56	0.00	GUESS	96033.48	113679.89			
$\mathrm{Ba}_{\text {II }} \log N\left(\mathrm{Ba}\right.$ II) $/ N_{\text {tot }}=-9.27$								
-	4554.029	+0.163	K, NBS	0.00	21952.42		-9.27	
-	4934.076	-0.150	K, NBS	0.00	20261.56	1.041	-9.35	
Pr ${ }_{\text {III }} \log N\left(\operatorname{Pr}_{\text {III }}\right) / N_{\text {tot }}=-9.62$								
-	5299.969	-0.530	DREAM	2893.14	21755.84		-9.62	
$\mathrm{Nd}_{\text {III }} \log N\left(\mathrm{Nd}_{\text {III }}\right) / N_{\text {tot }}=-9.57 \pm 0.08$								
-	5127.044	-1.080	DREAM	2388.00	21887.00	1.08	-9.50	
-	5203.924	-1.190	DREAM	0.00	19211.00	0.82	-9.65	
$\mathrm{Yb}_{\text {II }} \log N\left(\mathrm{Yb}_{\text {II }}\right) / N_{\text {tot }}=-8.10 \pm 0.19$								
-	3478.834	+0.460	DREAM	30224.33	58961.37	3.457	-7.82	
-	4180.810	-0.290	DREAM	30392.23	54304.30	1.064	-8.33	
-	5335.159	-0.260	DREAM	30562.79	49301.16	1.865	-8.08	
-	5352.954	-0.340	DREAM	30224.33	48900.41	1.280	-8.19	
$\mathrm{Yb}_{\text {III }} \log N\left(\mathrm{Yb}_{\text {III }}\right) / N_{\text {tot }}=-7.31 \pm 0.01$								
-	3325.514	-1.35	DREAM	42425.00	72487.00	3.24	-7.31	
-	3384.013	-0.58	DREAM	53365.00	82907.00	3.63	-7.32	
Pt II $\log N\left(\mathrm{Pt}_{\text {II }}\right) / N_{\text {tot }}=-7.63$								
-	4514.124	-1.48	DSJ	29261.97	51408.37		-7.63	
$\mathrm{Au}_{\text {II }} \log N\left(\mathrm{Au}_{\text {II }}\right) / N_{\text {tot }}=-7.51 \pm 0.06$								
-	4016.672	-1.88	RW	48510.89	73403.84	1.06	-7.58	
-	4052.790	-1.69	RW	48510.89	73178.29	2.09	-7.45	
$\mathrm{Hg}_{\mathrm{I}} \log N\left(\mathrm{Hg}_{\mathrm{I}}\right) / N_{\text {tot }}=-6.19 \pm 0.18$								
-	4046.599	-0.818	BLD	37645.08	62350.46	0.89	-6.37	
-	5460.731	-0.185	BLD	44042.98	62350.46	3.05	-6.01	
$\mathrm{Hg}_{\text {II }} \log N\left(\mathrm{Hg}_{\text {II }}\right) / N_{\text {tot }}=-6.53 \pm 0.23$								
-	3983.890	-1.520	PS,SR	35514.00	60608.00		-6.30	
-	6149.470	+0.150	SR	95714.41	111971.46	1.95	-6.58	

a "K" before another $\log g f$ source means that the $\log g f$ is from Kurucz files available at http://kurucz .harvard. edu/linelists/gf100 (BLD) Benck et al. (1989); (BG) Biémont et al. (1981); (CB) Corliss \& Bozman (1962); (CC) Cowley \& Corliss (1983); (CC') Cowley \& Corliss (1983), out the fitting range; (DJS) Dworetsky et al. (1984); (DREAM) Biémont et al. (1999), http://www.umh.ac.be/ astro/dream.shtml; (GUESS) guessed values; (HL) Hannaford et al. (1982); (NBS) Miles \& Wiese (1969); (NIST) http://physics.nist.gov/cgi-bin/AtData/lines_form; (NKW) Nielsen et al. (2000); (PS) Proffitt et al. (1999); (SR) Sansonetti \& Reader (2001); (RS94) Ryabchikova \& Smirnov (1994); (RW) Rosberg \& Wyart (1997); (WM80) Wiese \& Martin (1980).

Mg abundance gives an excellent agreement between the observed and computed wings of the $\mathrm{Mg}_{\text {II }}$ lines at $4481 \AA$, but the computed cores are less deep than the observed ones.

Smith (1993) derived $\log (N(\mathrm{Mg}) / N(\mathrm{H}))=-5.00 \pm 0.18$ from IUE spectra.

Aluminium (13)-Not observed: There are no aluminium lines observed in the spectrum, except for a feature at $4663.05 \AA$, which could be identified as $\mathrm{Al}_{\text {II }}$ mult. 2 at $4663.046 \AA$. However, the abundance $\log \left(N(\mathrm{Al}) / N_{\text {tot }}\right)=-6.75$ from the measured equivalent width 4.51 mA is too high when used to predict all the other unobserved Al_{I} and $\mathrm{Al}_{\text {II }}$ lines. We there-
fore assumed that this line is due to some other unidentified element. The computed lines of Al_{I} mult. 1 at $3944.009 \AA$ and $3961.523 \AA$ disappear for the abundance -7.50 dex, which corresponds to an underabundance [-1.93]. We adopted this value as upper limit for the aluminium abundance.

From IUE spectra Smith (1993) derived $\log (N(\mathrm{Al}) / N(\mathrm{H}))=$ -7.02 ± 0.31.

Silicon (14)-Si॥, Si II: Numerous $\mathrm{Si}_{\text {II }}$ lines and two weak Si iII lines of mult. 2 at $4552.6 \AA$ and $4567.8 \AA$ were observed in the spectrum. The intense Si_{I} line of mult. 3 at $3905.52 \AA$ is
F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 15

Fig. A.1. Comparison of observed (thick line) and computed (thin line) profiles of $\mathrm{He}_{\mathrm{I}} 402.6,438.7,447.1$ and 667.8 nm . The meaning of the line identification labels like 54726.0136252769 is: 547 , last 3 digits of wavelength in $\mathrm{nm}(402.4547) ; 26.01$, element (26) and charge (01), i.e. $\mathrm{Fe}_{\text {II }} ; 36252$, lower energy level in $\mathrm{cm}^{-1} ; 769$, per mil residual flux of isolated line before rotation.

Fig. A.2. Observed emissions at the position of $C_{I} 833.5148 \mathrm{~nm}$ and $C_{I} 940.5730 \mathrm{~nm}$. Observed spectrum (thick line), stellar synthetic spectrum (thin line), and telluric synthetic spectrum (dotted line) are superimposed. The meaning of the identification labels is the same as that given in the caption of Fig. A.1.
F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 16

Fig. A.3. Synthetic LTE profiles of $\mathrm{O}_{\text {I }}$ triplet mult. 1 at $777.2-777.5 \mathrm{~nm}$ computed with two different oxygen abundances, -3.18 dex (thin line) and -2.10 dex (dotted line), are compared with the observed profiles (thick line). The first abundance is the average abundance from selected equivalent widths (see text) the second abundance is that derived from the equivalent widths of the O_{I} triplet mult. 1 lines. Increasing the O i abundance does not reduce the disgreement between the observed and computed profiles. The meaning of the identification labels is the same as that given in the caption of Fig. A.1.
heavily blended with a strong unidentified component, which is very probably a too weak predicted $\mathrm{Mn}_{\text {II }}$ line at $3905.452 \AA$.

It was not easy to fix the Si abundance from the Si II lines on the basis of the Kurucz line lists only. In fact, they include all the Si iI lines of the Moore (1965) multiplet tables, but missing Stark broadening parameters for some lines and the use of guessed oscillator strengths in several cases produced discordant abundances from the different lines. We implemented the silicon atomic data in the Kurucz line lists by replacing numerous guessed $\log g f$ s with those we derived from the multiplet oscillator strengths available in Lanz \& Artru (1985) (LA) and by adding the radiative and Stark broadening parameters from Lanz et al. (1988) for a few lines.

We compared a few $\mathrm{Si}_{\text {i }}$ oscillator strengths of the Kurucz line lists taken from Kurucz \& Peytremann (1975)(KP) with $\log g f \mathrm{~s}$ from LA. They agree for almost all the lines. However, the KP $\log g f s$ of a few lines not studied by LA produced profiles much stronger than the observed ones. These lines are $\mathrm{Si}_{\text {II }}$ mult. 20 at $3997.926 \AA$ and $\mathrm{Si}_{\text {II }}$ at $4002.592 \AA$, $4028.465 \AA$ and $4035.278 \AA$ due to the $3 \mathrm{p}^{22} \mathrm{P}-3 \mathrm{~d}^{\prime 2} \mathrm{D}$ transition. The KP $\log g f \mathrm{~s}$ of the last three lines, $-0.610,-0.360$ and -1.300 were replaced by $-2.75,-3.10$ and -2.60 derived from the comparison of observed and computed profiles when the Si II average abundance -4.72 dex from Table A. 1 is adopted. Also the guessed $\log g f$ s of the Si i lines at $3991.780 \AA$ and $4016.188 \AA$ produce profiles which do not fit the observed spectrum.

We measured the equivalent widths of the $\mathrm{Si}_{\text {II }}$ and Si III lines listed in Table A.1. The average abundances are -4.72 ± 0.08 dex and -4.58 ± 0.04 dex, respectively. The aver-
age abundance from all Si II and Si III lines is $-4.71 \pm 0.09 \mathrm{dex}$, which was adopted as final silicon abundance.

The LTE synthetic spectrum does not correctly predict the strong $\mathrm{Si}_{\text {II }}$ lines of mult. 2 at $6347.11 \AA$ and $6371.37 \AA$. The behaviour is analogous to that we showed in Fig. A. 3 for the Oi lines of mult. 1. The cores of the observed profiles are stronger than those computed for the average abundance -4.71 dex, while the observed wings are narrower than the computed ones. An increase of the abundance increases both the cores and the wings of the computed profiles, so that their shape is always different from that observed in the spectrum.

From IUE spectra Smith (1993) derived $\log (N(\mathrm{Si}) / N(\mathrm{H}))=$ -4.60 ± 0.10.

Phosphorus (15)-P II: Only weak $\mathrm{P}_{\text {II }}$ lines can be observed in the spectrum. We did not any change in the Kurucz line lists, except for the $\log g f$ of the lines at $3505.995 \AA, 3786.581 \AA$ and $6301.933 \AA$ which yield computed lines which are not observed. In spite of Hibbert (1988) being the source quoted by Kurucz for these lines, a check of the $\log g f s$ derived from the transition probabilities A_{l} listed by Hibbert (1988) has shown that they are different from those of the Kurucz line lists. We derived $-4.540,-2.719$ and -2.455 , respectively. The measured equivalent widths of the lines listed in Table A. 1 give $\log \left(N(\mathrm{P}) / N_{\text {tot }}\right)=-6.28 \pm 0.08$, corresponding to an overabundance of [+0.3].

Sulfur (16)- $\mathrm{S}_{\mathrm{I}}, \mathrm{S}_{\text {II: }}$ Several weak $\mathrm{S}_{\text {II }}$ lines can be observed in the spectrum. The average abundance from the measured equivalent widths (Table A.1) is -5.12 ± 0.3 dex, corresponding to the underabundance $[-0.41]$.

Fig. A.4. Comparison of the observed $\mathrm{Ca}_{\text {II }} \mathrm{K}$ and H profiles (thick line) with the computed ones (thin line). A bump can be observed on the red side of $\mathrm{Ca}_{\text {II }} \mathrm{K}$ while an unidentified red component is well detectable on the red wing of $\mathrm{Ca}_{\text {II }} \mathrm{H}$. The meaning of the identification labels is the same as that given in the caption of Fig. A.1.

For this abundance, the lines of S I mult. 1 at $9212.863 \AA$ and $9237.538 \AA$ are predicted to be much weaker than what is observed. Possibly, NLTE computations could explain the discrepancy. We did not use them for the abundance determination.

Calcium (20)-Caı,Ca॥: There is a large scatter in the abundances derived from Са $\mathrm{Ca}_{\text {a }}$ and $\mathrm{Ca}_{\text {II }}$ and also from the different Ca it lines.

Only Ca i mult. 2 at $4226.728 \AA$ is observed. The abundance from the equivalent width is $\log \left(N(\mathrm{Ca}) / N_{\text {tot }}\right)=-5.26$.

Most of the relevant $\mathrm{Ca}_{\text {II }}$ lines lie on the wings of hydrogen profiles, except Ca ${ }_{\text {II }}$ mult. 4 at $3158.8 \AA, 3179.3 \AA$ and $3181.2 \AA$. The average abundance from the equivalent widths of the three lines is $\log \left(N(\mathrm{Ca}) / N_{\text {tot }}\right)=-5.83 \pm 0.06$. Abundances from other lines were derived by comparing observed and computed profiles. Both lines of Ca II mult. 1 at $3933.663 \AA$ (K-line) and $3968.469 \AA$ (H-line) are affected by a red component of unknown origin (Fig. A.4). While a small bump is detectable on the red side of the K-line core, a component is well detectable on the red wing of the H -line. If the red components are neglected, the abundance from the H and K profiles is $\log \left(N(\mathrm{Ca}) / N_{\text {tot }}\right)=-5.54$, in agreement with the abundances from other $\mathrm{Ca}_{\text {II }}$ lines observed in the 3700-6000 \AA region, which range from -5.54 to -5.64 dex.

There are only two lines of the infrared Ca ${ }_{\text {II }}$ triplet that can be observed in the spectrum. They are $\lambda \lambda 8498.023 \AA$ and $8662.141 \AA$; the third line at $8542.091 \AA$ is lost in the gap between the UVES èchelle orders. The two Ca ir lines are redshifted by $0.2 \AA$ from the expected position of the laboratory wavelength. This shift was explained by Castelli \& Hubrig (2004) as due to an anomalous Ca isotopic mixture, in which the heaviest stable isotope ${ }^{48} \mathrm{Ca}$ is more abundant than the isotope ${ }^{40} \mathrm{Ca}$, which is instead the predominant one
in the terrestrial mixture. While the abundance from the first profile is -5.54 dex in agreement with the determinations from most $\mathrm{Ca}_{\text {II }}$ lines, the abundance from the second profile is more than 0.3 dex larger, indicating possible NLTE effects.

Also the Ca II doublet at $8912.07 \AA$ and $8927.36 \AA$ is observable, but the lines predicted by the abundance of -5.54 dex are much stronger than what is observed. We did not use them for the average abundance determination owing to the unknown accuracy of their $\log g f s$ taken from Kurucz \& Peytremann (1975). No other $\log g f$ sources for these lines were found. Both profiles are redshifted by about $0.03 \AA$, but this value is close to the uncertainties in the wavelength scale.

The line at $8248.796 \AA$, Ca in mult. 13 , is a weak observed feature reproduced by an abundance of -6.40 dex.

We adopted as final abundance for computing the synthetic spectrum $\log \left(N(\mathrm{Ca}) / N_{\text {tot }}\right)=-5.54$.

Scandium (21)-Scı: The abundance from the near-ultraviolet Sc iI lines is solar and is 0.3 dex higher than that from the visual lines. We adopted as final value the average abundance from all the Sc II $\operatorname{lines}, \log \left(N(\mathrm{Sc}) / N_{\mathrm{tot}}\right)=-9.08 \pm 0.15$ dex.

Titanium (22)-Ti ॥: We identified numerous Ti in lines. All the lines with high excitation potential ($\chi_{\text {low }} \geqq 62000 \mathrm{~cm}^{-1}$, i.e. 7.7 eV) and large transition probabilities ($\log g f>-1.00$) are in emission. They can be observed starting from Ti iI at $5846.579 \AA$. All the identified Ti II emission lines are listed in Table A.4. The columns R_{c} (obs) and R_{c} (calc) give the flux normalised to the continuum at the center of the line in the observed and synthetic spectra, respectively. $R_{\mathrm{c}}(\mathrm{obs})$ is a measure of the intensity of the observed emission. We assumed that some lines listed in Table A.4, although observed as absorptions, are affected by an emission reducing their intensity. They are all the lines with $R_{\mathrm{c}}(\mathrm{obs}) \leq 1.0$. Owing to the uncertainties

Table A.4. The Ti ${ }_{\text {II }}$ emission lines. The line data are from Kurucz \& Bell (1995).

$\lambda_{\text {calc }}(\AA)$	Elem.	$\log g f$	$E_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	Conf.	$E_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	Conf.	$R_{\text {c }}$ (obs)	$R_{\text {c }}$ (calc)	Notes ${ }^{\text {a }}$
5846.579	Ti II	-0.689	64979.150	(3F)4d e4G	82078.430	(3F) 4 f 4 G	1.006	0.993	
5921.937	Ti II	-0.024	64979.150	(3F)4d e4G	81860.840	(3F) 4 f 4 G	1.013	0.971	
5928.521	Ti II	-0.045	64979.150	(3F)4d e4G	81842.090	(3F) 4 f 2 G	1.005	0.973	
5929.696	Ti II	+0.376	65243.460	(3F) 4 d e4G	82103.060	(3F) 4 f 4 G	1.006	0.936	
5937.320	Ti II	-0.061	65446.270	(3F) 4 d e4H	82284.220	(3F) 4 f 2 I	1.000	0.975	
5937.412	Ti II	+0.152	64886.480	(3F)4d e4G	81724.170	(3F) 4 f 4 G	1.008	0.958	
5940.344	Ti II	+0.464	65243.460	(3F)4d e4G	82072.840	(3F) 4 f 4 H	1.007	0.924	
5940.764	Ti ${ }_{\text {II }}$	-0.004	65095.800	(3F)4d e4G	81923.990	(3F) 4 f 2 H	1.011	0.971	
5944.674	Ti ${ }_{\text {II }}$	-0.591	65095.800	(3F)4d e4G	81912.920	(3F) 4 f 4 F	1.006	0.992	
5961.332	Ti II	-0.317	65308.300	(3F) 4 d e4H	82086.430	(3F) 4 f 4 G	1.009	0.986	
5965.298	Ti II	-0.220	64979.150	(3F)4d e4G	81738.130	(3F) 4 f 4 I	1.009	0.982	
5969.800	Ti II	-0.529	65274.600	(3F) 4 d 4 D	82020.940	(3F) 4 f 4 D	1.005	0.991	
5969.818	Ti II	-0.534	65095.800	(3F)4d e4G	81842.090	(3F) 4 f 2 G	1.005	0.991	
5971.648	Ti ${ }_{\text {II }}$	+0.634	64866.480	(3F)4d e4G	81627.640	(3F) 4 f 4 H	1.037	0.893	
5979.141	Ti II	-0.326	65598.730	(3F) 4 d 4 D	82318.910	(3F) 4 f 2D	1.016	0.987	?
5983.979	Ti II	-0.182	64979.150	(3F) 4 de e4G	81685.810	(3F) 4 f 2G	1.000	0.979	
5987.388	Ti II	+0.673	64979.150	(3F)4d e4G	81676.300	(3F) 4 f 4 H	1.046	0.886	
5988.980	Ti II	+0.012	65308.300	(3F)4d e4H	82001.010	(3F) 4 f 2 I	1.016	0.971	
5989.486	Ti II	-0.205	65460.010	(3F) 4 d f 2 F	82151.310	(3F) 4 f 2 F	1.004	0.982	
5990.839	Ti II	-0.105	65460.010	(3F) 4 d f 2 F	82147.540	(3F) 4 f 4 F	1.002	0.978	
5994.938	Ti ${ }_{\text {II }}$	+0.808	65243.460	(3F) 4 de e4G	81919.580	(3F) 4 f 4 I	1.013	0.861	
5995.668	Ti ${ }_{\text {II }}$	-0.348	65186.750	(3F) 4 d e4H	81860.840	(3F) 4 f 4 G	1.000	0.987	
5995.708	Ti II	+0.184	65460.010	(3F) 4 d f 2 F	82133.990	(3F) 4 f 4 D	1.000	0.959	
6001.395	Ti II	+0.751	65095.800	(3F)4d e4G	81753.980	(3F) 4 f 4 H	1.051	0.872	
6001.895	Ti II	+0.193	65446.270	(3F) 4 d e 4 H	82103.060	(3F) 4 f 4 G	1.004	0.959	
6002.418	Ti II	+0.280	65186.750	(3F)4d e4H	81842.090	(3F) 4 f 2 G	1.022	0.948	
6005.194	Ti II	-0.202	65598.730	(3F) 4 d 4 D	82246.370	(3F) 4 f 4 D	1.000	0.983	
6005.786	Ti II	-0.217	65243.460	(3F)4d e4G	81889.460	(3F) 4 f 4 I	1.000	0.983	
6012.750	Ti ${ }_{\text {II }}$	+1.103	65590.190	(3F) 4 de e4H	82216.910	(3F) 4 f 4 I	0.995	0.792	
6012.804	Ti II	+0.743	65446.270	(3F) 4 d e 4 H	82072.840	(3F) 4 f 4 H	0.993	0.879	
6015.753	Ti II	-0.040	65460.010	(3F) 4 d f 2 F	82078.430	(3F) 4 f 4 G	1.000	0.975	
6022.697	Ti II	-0.367	65397.570	(3F)4d 4D	81966.830	(3F) 4 f 4 P	1.000	0.988	
6024.933	Ti II *	-0.091	65274.600	(3F)4d 4D	81867.700	(3F) 4 f 4 P	1.015	0.977	
6024.940	Ti II*	$+0.152$	65213.800	(3F) 4 d 4 D	81806.880	(3F) 4 f 4 F	1.015	0.961	
6029.271	Ti II	$+0.670$	65308.300	(3F)4d e4H	81889.460	(3F) 4 f 4 I	1.053	0.892	
6039.682	Ti II	+0.264	65598.730	(3F) 4 d 4 D	82151.310	(3F) 4 f 2 F	1.012	0.953	
6040.120	Ti II	+0.650	65186.750	(3F)4d e4H	81738.130	(3F) 4 f 4 I	1.036	0.896	
6041.058	Ti II	+0.288	65598.730	(3F) 4 d 4 D	82147.540	(3F) 4 f 4 F	1.000	0.951	
6042.201	Ti II	+0.169	65397.570	(3F) 4 d 4 D	81943.250	(3F) 4 f 2 F	1.035	0.961	
6046.008	Ti II	-0.278	65598.730	(3F) 4 d 4 D	82133.990	(3F) 4 f 4 D	1.021	0.986	
6046.546	Ti II	+0.126	65308.300	(3F) 4 d e4H	81842.090	(3F) 4 f 2 G	1.000	0.964	
6053.297	Ti ${ }_{\text {II }}$	+0.169	65397.570	(3F) 4 d 4 D	81912.920	(3F) 4 f 4 F	1.014	0.961	
6059.156	Ti II	+0.143	65274.600	(3F) 4 d 4 D	81773.980	(3F) 4 f 4 F	1.024	0.963	
6065.306	Ti II	+0.379	65590.190	(3F) 4 d e4H	82072.840	(3F) 4 f 4 H	1.000	0.941	
6066.392	Ti II	+0.121	65598.730	(3F) 4 d 4 D	82078.430	(3F) 4 f 4 G	1.024	0.966	
6068.745	Ti II	+0.558	65446.270	(3F) 4 d e4H	81919.580	(3F) 4 f 4 I	1.000	0.915	
6072.446	Ti II	+0.141	65397.570	(3F) 4 d 4 D	81860.840	(3F) 4 f 4 G	1.009	0.963	
6073.760	Ti II	-0.139	65314.270	(3F) 4 d f 2 F	81773.980	(3F) 4 f 4 F	1.022	0.980	
6076.270	Ti II	-0.037	65460.010	(3F) 4 d 4 D	81724.170	(3F) 4 f 4 G	1.008	0.975	
6078.941	Ti ${ }_{\text {II }}$	+0.206	65308.300	(3F) 4 de e4H	81753.980	(3F) 4 f 4 H	1.011	0.958	
6079.862	Ti II	-0.009	65446.270	(3F) 4 d e 4 H	81889.460	(3F) 4 f 4 I	1.007	0.974	
6080.712	Ti II	+0.003	65186.750	(3F) 4 d e 4 H	81627.640	(3F) 4 f 4 H	1.000	0.972	
6102.542	Ti II	+0.178	65460.010	(3F) 4 d f 2 F	81842.090	(3F) 4 f 2 G	1.011	0.961	
6106.471	Ti II	+0.416	65314.270	(3F) 4 d f 2 F	81685.810	(3F) 4 f 2 G	1.042	0.936	
6107.791	Ti ${ }_{\text {II }}$	-0.371	65308.300	(3F) 4 d e4H	81676.300	(3F) 4 f 4 H	1.004	0.988	
6123.782	Ti II	-0.325	65598.730	(3F) 4 d 4 D	81923.990	(3F) 4 f 2 H	1.006	0.987	
6128.245	Ti II	-0.629	65314.270	(3F) 4 d f 2 F	81627.640	(3F) 4 f 4 H	1.008	0.993	

Table A.4. continued.

$\lambda_{\text {calc }}(\AA)$	Elem.	$\log g f$	$E_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	Conf.	$E_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	Conf.	$R_{\text {c }}$ (obs)	$R_{\text {c }}$ (calc)	Notes ${ }^{\text {a }}$
6141.516	Ti II	-0.325	65460.010	(3F) 4 d f 2 F	81738.130	(3F)4f 4I	1.000	0.987	
6418.376	Ti II	+0.001	66794.010	(3F) 4 d 2 P	82369.970	(3F) 4 f 2 P	1.007	0.980	
6431.383	Ti II	-0.366	66521.010	(3F) 4 d 2 P	82043.850	(3F) 4 f 4 P	1.009	0.991	
6439.486	Ti II	-0.071	66794.010	(3F) 4 d 2 P	82318.910	(3F) 4 f 2 D	1.008	0.983	
6445.572	Ti II	-0.947	66794.010	(3F) 4 d 2 P	82304.250	(3F) 4 f 4 S	1.023	0.998	Broad
6961.471	Ti II	+0.716	67822.490	(3F) 4 d e2G	82183.310	(3F) 4 f 2 H	1.064	0.934	
6982.314	Ti II	+0.454	67606.640	(3F)4d e2G	81923.990	(3F) 4 f 2 H	1.015	0.960	
7012.686	Ti II	+0.244	67822.490	(3F)4d e2G	82078.430	(3F) 4 f 4 G	1.025	0.979	
7050.978	Ti II	+0.118	67822.490	(3F) 4 d e2G	82001.010	(3F) 4 f 2 I	1.018	0.984	
7074.144	Ti II	+0.075	67606.040	(3F)4d e2G	81738.130	(3F) 4 f 4 I	1.017	0.986	
7100.431	Ti II	-0.040	67606.040	(3F)4d e2G	81685.810	(3F) 4 f 2 G	1.013	0.989	
7105.230	Ti II	-0.099	67606.040	(3F) 4 d e2G	81676.300	(3F) 4 f 4 H	1.010	0.990	
7225.270	Ti II	+0.335	68482.410	(3F)4d 2D	82318.910	(3F) 4 f 2 D	1.025	0.978	
7296.684	Ti II	-0.401	68364.390	(3F)4d 2D	82065.470	(3F) 4 f 2 D	1.025	0.996	
7297.291	Ti II	+1.006	68584.280	(3F) 4 d e2H	82284.220	(3F) 4 f 2 I	1.039	0.918	
7313.279	Ti II	+0.793	68331.020	(3F) 4 d e2H	82001.010	(3F) 4 f 2 I	1.051	0.944	
7351.440	Ti II	+0.237	68331.020	(3F) 4 d e2H	82183.310	(3F) 4 f 2 H	1.026	0.983	
7426.911	Ti II	-0.902	68482.410	(3F)4d 2D	81943.250	(3F) 4 f 2 F	1.008	0.999	?
7443.684	Ti II	-0.580	68482.410	(3F)4d 2D	81912.920	(3F) 4 f 4 F	1.005	0.997	?
7447.870	Ti II	+0.122	68331.020	(3F) 4 d e2H	81753.980	(3F) 4 f 4 H	1.006	0.987	?
7574.057	Ti II	-0.703	68951.980	(3F) 4 d f 4 F	82151.310	(3F) 4 f 2 F	1.012	0.998	
7653.044	Ti II	+0.606	69084.440	(3F) 4 d f 4 F	82147.540	(3F) 4 f 4 F	1.016	0.969	
7679.192	Ti II	+0.661	69084.440	(3F) 4 d f 4 F	82103.060	(3F) 4 f 4 G	1.013	0.965	
7681.729	Ti II	+0.194	68846.520	(3F) 4 d f 4 F	81860.840	(3F) 4 f 4 G	1.012	0.987	
7706.784	Ti II	+0.346	68951.980	(3F) 4 d f 4 F	81923.990	(3F) 4 f 2 H	1.020	0.982	
7713.367	Ti II	+0.273	68951.980	(3F) 4 d f 4 F	81912.920	(3F) 4 f 4 F	1.011	0.985	
7716.915	Ti II	+0.429	68769.190	(3F) 4 d f 4 F	81724.170	(3F) 4 f 4 G	1.010	0.978	
7733.343	Ti II	+0.035	68846.520	(3F) 4 d f 4 F	81773.980	(3F) 4 f 4 F	1.013	0.991	
7786.450	Ti II	$+0.251$	68846.520	(3F) 4 d f 4 F	81685.810	(3F) 4 f 2 G	1.011	0.986	
7805.972	Ti II	+0.128	71461.590	(3F)5p 4G	84268.770	(3F) 5 d 4 G	1.006	0.991	?
7820.346	Ti II	+0.296	71586.060	(3F) 5 p 4 G	84369.700	(3F)5d 4G	1.011	0.987	
7824.913	Ti II	+0.984	71945.900	(3F) 5 p 4 G	84722.080	(3F) 5 d 4 H	1.024	0.946	
7831.699	Ti II	+0.423	71747.460	(3F)5p 4G	84512.570	(3F) 5 d 4 G	1.016	0.983	
7845.102	Ti II	+0.821	71747.460	(3F)5p 4G	84490.760	(3F) 5 d 4 H	1.007	0.960	
7856.805	Ti II	+0.003	68951.980	(3F) 4 d f 4 F	81676.300	(3F) 4 f 4 H	1.003	0.990	?
7869.297	Ti II	+0.616	71461.590	(3F)5p 4G	84165.710	(3F) 5 d 4 H	1.000	0.973	?
7880.457	Ti II	+0.506	71945.900	(3F) 5 p 4 G	84632.030	(3F)5d 4G	1.005	0.980	?
7994.391	Ti II	+0.566	72126.700	(3F) 5 p 4 F	84632.030	(3F) 5 d 4 G	1.017	0.979	
8838.415	Ti ${ }_{\text {II }}$	+0.517	71945.900	(3F)5p 4G	83257.040	(3F)6s 4F	1.016	0.973	?
8926.578	Ti II	+0.349	63445.880	(3F) 5 s e 2 F	74645.080	(3F) 5 p 2 D	1.023	0.946	
9654.718	Ti ${ }_{\text {II }}$	+0.418	63445.880	(3F) 5 s e 2 F	73800.670	(2D)sp 2F	1.053	0.946	
9907.939	Ti II	-0.003	62180.160	(3F) 5 s e 4 F	72270.310	(3F) 5 p 4 D	1.023	0.969	
9931.897	Ti II	+0.209	62272.160	(3F) 5 s e 4 F	72337.970	(3F) 5 p 4 D	1.059	0.953	Bad spectrum
9956.695	Ti II	+0.397	62410.780	(3F) 5 s e 4 F	72451.520	(3F) 5 p 4 D	1.012	0.934	Bad spectrum
9983.462	Ti II	+0.557	62595.030	(3F) 5 s e 4 F	72608.850	(3F)5p 4D	1.058	0.915	

${ }^{a}$ The symbol "*" indicates blended lines. The symbol "?" indicates doubtful emissions.
in the position of the continuum and in the $\log g f$ data, the only unquestionable emissions are those with $R_{\mathrm{c}}(\mathrm{obs}) \geq 1.01$. Figure A. 5 shows the $\mathrm{Ti}_{\text {II }}$ emission at 6029.27 A .

We adopted wavelengths and experimental $\log g f s$ from Pickering et al. (2002) for most of the Ti II lines with $\lambda<$ $5500 \AA$ instead of the data from the Kurucz files, although sev-
eral of them are from the Martin et al. (1988) critical compilation. We found that the Pickering et al. (2002) data improve the agreement between the observed and computed spectra considerably.

Abundances from equivalent widths are given in Table A.2. The average abundance is -5.67 ± 0.11 dex, so that Ti is over-

Fig. A.5. Observed emission lines at the position of Ti iI 602.9271 nm (left panel, thick line) and of $\mathrm{Cr}_{\text {II }} 658.5241 \mathrm{~nm}$ and $\mathrm{Cr}_{\text {II }} 658.7020 \mathrm{~nm}$ (right panel, thick line). The thin line is the synthetic spectrum. The meaning of the identification labels is the same as that given in the caption of Fig. A.1.
abundant by 1.35 ± 0.11 dex. However, there is a small difference of 0.13 dex between the average abundance from lines shortward and longward of the Balmer discontinuity. The values are -5.59 ± 0.09 dex and -5.72 ± 0.08 dex, respectively.

Vanadium (23)-Not observed: No lines of vanadium were observed in the spectrum. We fixed an upper limit of -9.04 dex for the vanadium abundance from $V_{\text {II }}$ mult. 1 at $3100 \AA$. It corresponds to an underabundance $[\mathrm{V} / \mathrm{H}]=-1.0$,

Chromium (24)-Crı,Crı: We identified several Cr ı and numerous $\mathrm{Cr}_{\text {II }}$ lines. All the $\mathrm{Cr}_{\text {II }}$ lines with high excitation potential ($\chi_{\text {low }}$ larger than $89000 \mathrm{~cm}^{-1}$, i.e. 11 eV) and large transition probabilities $(\log g f>-0.8)$ are in emission. They can be observed starting from $\mathrm{Cr}_{\text {II }}$ at $6121.434 \AA$. All the identified Cr II emission lines are listed in Table A.5. The meaning of the columns is the same as in Table A.4. Figure A. 5 shows the $\mathrm{Cr}_{\text {II }}$ emissions at $6285.241 \AA$ and $6587.020 \AA$.

Sigut \& Landstreet (1990) pointed out the large uncertainty affecting the $\mathrm{Cr}_{\text {II }} \log g f$ s. For the $4050-4650 \AA$ interval, they reduced the discrepancies related to different sources by renormalising the $\mathrm{Cr}_{\text {II }}$ oscillator strengths from Wujec \& Weniger (1981) on a scale different from that adopted by Martin et al. (1988)(MFW). We adopted $\log g f$ s from MFW when the source is Kostyk \& Orlova (1983) and from Sigut \& Landstreet (1990) when the source is Wujec \& Weniger (1981), except for $\mathrm{Cr}_{\text {II }} \lambda \lambda 4587.30,4697.61$ and $4715.12 \AA$. We kept $\log g f$ s from MFW for the three lines on the basis of the comparison of the observed and computed spectra. For $\mathrm{Cr}_{\text {II }}$ at $4812.34 \AA$ we adopted $\log g f=-1.995$ from the Kurucz line lists in accordance with the discussion of Sigut \& Landstreet (1990). For all the Cr in lines not considered by MFW we used $\log g f s$ from the Kurucz line lists without any renormalisation.

There are small wavelength differences in MFW and in the Kurucz line lists for a few $\mathrm{Cr}_{\text {II }}$ lines. The wavelengths from Kurucz agree better with the observations. In several cases both the wavelengths from MFW and from the Kurucz line lists do not agree with the position of the observed lines. Examples are the $\mathrm{Cr}_{\text {II }}$ lines at $\lambda \lambda 5308.46 \AA, 5310.73 \AA$ and $5313.61 \AA$, where the wavelengths are from MFW.

The average Cr_{I} abundance is 0.2 dex larger than that from $\mathrm{Cr}_{\text {II. }}$. The abundances are -5.22 ± 0.09 dex and $-5.41 \pm$ 0.07 dex, respectively. The average abundances from $\mathrm{Cr}_{\text {II }}$ lines lying shortward and longward of the Balmer discontinuity are within the error limits. The average abundance from all the Cr_{I} and $\mathrm{Cr}_{\text {II }}$ lines is -5.36 ± 0.11 dex, corresponding to an overabundance of [+1.01].

Smith \& Dworetsky (1993) obtained $\log (N(\mathrm{Cr}) / N(\mathrm{H}))=$ -5.5 ± 0.1 from an IUE spectra analysis.

Manganese (25)-Mnı, Mnı: The spectrum is so rich in Mn I and $\mathrm{Mn}_{\text {II }}$ lines that HD 175640 could be used as an ideal laboratory for studying the manganese spectrum.

The bulk of $\log g f$ data for $\mathrm{Mn}_{\text {II }}$ lines comes from Kurucz (1992) computations, so that no spectral analyses of HgMn stars would be possible without the Kurucz data for this ion. Unfortunately, critical evaluations are unavailable for many of the $\mathrm{Mn}_{\text {II }}$ lines, especially in the visible region.

There are numerous exceptionally broadened $\mathrm{Mn}_{\text {II }}$ lines in the spectrum. This characteristic, which seems to be common to all HgMn stars, was first shown up by Jomaron et al. (1999), who explained it as due to hyperfine splitting. They were not fully able to reproduce the exceptionally broadened profiles owing to the lack of $\mathrm{Mn}_{\text {II }}$ hyperfine structure experimental data. These measurements were made later on by Holt et al. (1999), who confirmed the findings of Jamaron et al. (1999).

Isotope 25 is the only isotope of manganese. We added in the line lists the hyperfine components of several Mn it lines

Table A.5. The $\mathrm{Cr}_{\text {II }}$ emission lines. The line data are from Kurucz \& Bell (1995).

$\lambda_{\text {calc }}(\AA)$	Elem.	$\log g f$	$E_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	Conf.	$E_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	Conf.	$R_{\text {c }}$ (obs)	$R_{\text {c }}$ (calc)	Notes ${ }^{\text {a }}$
6121.434	$\mathrm{Cr}_{\text {II }}$	-0.280	89277.950	(5D) 4 d e4P	105609.470	(5D) 4 f 6 G	1.000	0.992	?
6128.189	$\mathrm{Cr}_{\text {II }}$	-0.492	89325.320	(5D) 4 d e 4 G	105638.840	(5D) 4 f 6 F	1.007	0.995	
6158.621	$\mathrm{Cr}_{\text {II }}$	+0.718	89174.080	(5D) 4 d e 4 G	105406.990	(5D) 4 f 4 H	0.990	0.928	
6161.031	$\mathrm{Cr}_{\text {II }}$	$+0.573$	89056.020	(5D) 4 d e 4 G	105282.580	(5D) 4 f 4 H	1.002	0.945	
6172.927	$\mathrm{Cr}_{\text {II }}$	-0.239	89336.890	(5D) 4 d e4P	105532.180	(5D) 4 f 4 D	1.012	0.991	
6179.226	$\mathrm{Cr}_{\text {II }}$	-0.055	89724.270	(5D) 4 d f4D	105903.050	(5D) 4 f 4 F	1.007	0.987	
6181.354	$\mathrm{Cr}_{\text {II }}$	+0.189	89812.420	(5D) 4 d f4D	105985.630	(5D) 4 f 4 F	1.017	0.978	
6182.340	$\mathrm{Cr}_{\text {II }}$	+0.452	89336.890	(5D) 4 d e4P	105507.520	(5D) 4 f 4 D	1.023	0.960	
6186.315	Crif	+0.336	89885.080	(5D) 4 d f4D	106045.320	(5D) 4 f 4 G	1.009	0.971	
6193.551	$\mathrm{Cr}_{\text {II }}$	+0.012	89056.020	(5D) 4 d e 4 G	105197.380	(5D) 4 f 6 H	1.000	0.984	
6209.250	$\mathrm{Cr}_{\text {II }}$	-0.169	89885.080	(5D) 4 d f4D	105985.630	(5D) 4 f 4 F	1.009	0.990	
6213.078	$\mathrm{Cr}_{\text {II }}$	+0.037	89812.420	(5D) 4 d f4D	105903.050	(5D) 4 f 4 F	1.008	0.985	
6213.538	Crif	+0.143	89174.080	(5D) 4 d e 4 G	105263.520	(5D) 4 f 6 H	1.000	0.979	
6231.676	$\mathrm{Cr}_{\text {II }}$	+0.061	89325.320	(5D) 4 d e 4 G	105367.930	(5D) 4 f 6 H	1.000	0.983	
6237.002	Crif	-0.104	89254.560	(5D) 4 d e 4 P	105283.470	(5D) 4 f 4 P	1.003	0.988	
6285.601	$\mathrm{Cr}_{\text {II }}$	-0.229	89885.080	(5D) 4 d f4D	105790.060	(5D) 4 f 4 F	1.028	0.992	
6299.534	Crif	-0.679	89336.890	(5D) 4 d e 4 P	105206.690	(4F)sp p4D	1.015	1.000	
6301.413	$\mathrm{Cr}_{\text {II }}$	-0.162	89812.420	(5D) 4 d f4D	105677.490	(5D) 4 f 4 G	1.009	0.990	
6309.669	Crif	-0.013	89277.950	(5D) 4 d e4P	105122.260	(5D) 4 f 4 P	1.013	0.986	
6311.509	$\mathrm{Cr}_{\text {II }}$	-0.190	89885.080	(5D) 4 d f4D	105724.770	(5D) 4 f 4 G	1.008	0.991	
6324.198	CriI	-0.121	89724.270	(5D) 4 d f4D	105532.180	(5D) 4 f 4 D	1.015	0.990	
6369.654	$\mathrm{Cr}_{\text {II }}$	-0.692	89812.420	(5D) 4 d f4D	105507.520	(5D) 4 f 4 D	1.008	0.997	
6399.280	$\mathrm{Cr}_{\text {II }}$	+0.004	89885.080	(5D) 4 d f4D	105507.520	(5D) 4 f 4 D	1.004	0.987	
6501.575	$\mathrm{Cr}_{\text {II }}$	-0.310	90608.990	(5D) 4 d e4F	105985.630	(5D) 4 f 4 F	1.011	0.994	
6526.302	$\mathrm{Cr}_{\text {II }}$	+0.173	89885.080	(5D) 4 d f4D	105203.460	(4F)sp r4F	1.003	0.982	
6536.680	$\mathrm{Cr}_{\text {II }}$	+0.026	90680.990	(5D) 4 d e4F	105903.050	(5D) 4 f 4 F	1.016	0.988	
6551.373	$\mathrm{Cr}_{\text {II }}$	+0.229	90725.870	(5D) 4 d e4F	105985.630	(5D) 4 f 4 F	1.025	0.982	
6579.572	$\mathrm{Cr}_{\text {II }}$	+0.215	90850.960	(5D) 4 d e4F	106045.320	(5D) 4 f 4 G	1.019	0.983	
6585.241	$\mathrm{Cr}_{\text {II }}$	+0.829	90850.960	(5D) 4 d e4F	106032.240	(5D) 4 f 4 G	1.030	0.939	
6592.341	$\mathrm{Cr}_{\text {II }}$	+0.217	90512.560	(5D) 4 d e4F	105677.490	(5D) 4 f 4 G	1.021	0.982	
6613.776	$\mathrm{Cr}_{\text {II }}$	+0.485	90608.990	(5D) 4 d e4F	105724.770	(5D) 4 f 4 G	1.007	0.968	
6636.427	$\mathrm{Cr}_{\text {II }}$	$+0.573$	90725.870	(5D) 4 d e4F	105790.060	(5D) 4 f 4 F	1.029	0.963	
6656.120	$\mathrm{Cr}_{\text {II }}$	+0.066	90512.560	(5D) 4 d e4F	105532.180	(5D) 4 f 4 D	1.005	0.987	
7211.765	$\mathrm{Cr}_{\text {II }}$	+0.656	93143.880	(5D) 5 p 6 F	107006.290	(5D) 5 d 6 G	1.000	0.963	
7226.064	$\mathrm{Cr}_{\text {II }}$	+0.791	93276.860	(5D) 5 p 6 F	107111.840	(5D) 5 d 6G	1.011	0.953	
7242.963	$\mathrm{Cr}_{\text {II }}$	+0.904	93444.170	(5D) 5 p 6 F	107246.870	(5D) 5 d 6G	1.000	0.943	
7394.889	$\mathrm{Cr}_{\text {II }}$	+0.451	94177.180	(5D) 5 p 6 D	107696.310	(5D) 5 d 6 D	1.000	0.980	
9448.293	CriI	+0.179	84495.700	(5D) 5 s e4D	95076.720	(5D) 5 p 4 D	1.048	0.956	
9951.294	$\mathrm{Cr}_{\text {II }}$	+0.126	84209.880	(5D) 5 s e4D	94256.070	(5D) 5 p 4 F	1.042	0.971	
9952.493	$\mathrm{Cr}_{\text {II }}$	+0.318	84320.210	(5D) 5 s e4D	94365.190	(5D) 5 p 4 F	1.024	0.957	
9970.727	$\mathrm{Cr}_{\text {II }}$	+0.477	84495.700	(5D) 5 s e4D	94522.310	(5D) 5 p 4 F	1.048	0.943	
9974.826	CriI	+0.535	84726.710	(5D)6s e4D	94749.200	(5D) 5 p 4 F	1.024	0.938	

[^6]showing a large broadening in the spectrum. We adopted either the hyperfine $\log g f$ s taken from Holt et al. (1999) or we used the HYPERFINE code (Kurucz \& Bell 1995) to compute hyperfine wavelengths and $\log g f$ s from the A and B hyperfine constants measured by Holt et al. (1999). Unfortunately, they cover only part of the Mn II levels.

The comparison of the wavelengths measured by Holt et al. (1999) with those from the Kurucz line lists has yielded nonnegligible differences in some cases. The comparison of the observations with spectra computed with the two sets of wavelengths has favoured the Holt et al. (1999) data so that they were adopted in the line lists. Finally, in the Kurucz line lists the wavelengths of the lines of mult. 13 at 6122-6132 Å were replaced by the wavelengths measured by Johansson et al. (1995).

Table A. 6 lists line data and (total or partial) hyperfine splitting for a large sample of $\mathrm{Mn}_{\text {II }}$ lines. The multiplet number when available, the adopted wavelength, the adopted $\log g f$, its source, the lower and upper excitation potentials in cm^{-1} and the total (or partial) hyperfine splitting $\mathrm{hfs}_{\text {tot }}$ are listed in successive columns. Here $\mathrm{hfs}_{\text {tot }}$ indicates the separation of the outermost components. Wavelengths marked with an asterisk were taken from Holt et al. (1999), while the others are from the Kurucz line lists. "hfs" just after the wavelength indicates that we added the hyperfine components of that line in the line lists. The hyperfine splitting $\mathrm{hfs}_{\text {tot }}$ listed in Col. 7 is total or partial according to whether the A and B constants are known for both levels or for only one of the levels involved in the transition. Some lines showing a large broadening in the observed spectrum, but lacking hyperfine data for computing the synthetic spectrum, are also listed in the table. Figure 3 in the main paper shows the extreme hyperfine broadening which affects the $\mathrm{Mn}_{\text {II }}$ lines at $7353.549 \AA$ and $7415.803 \AA$. Other lines much broader than the computed ones are those at $9407.0 \AA$ (Fig. A.2), $9408.7 \AA$ and $9446.8 \AA$, in spite of the hyperfine splitting of the upper level being considered in the computations. The hyperfine splitting of their lower level is unknown and this is probably the reason for the disagreement.

No Mn II emission lines are observed in the spectrum but there are some lines in the red part of the spectrum which are much weaker than the predicted ones. This disagreement could be explained either with an superimposed emission or with wrong line data. The most remarkable features are those predicted at $\lambda \lambda$ 9867.0, 9903.836, 9904.464, 9905.269, 9906.221 and $9907.212 \AA$.

The Mn abundance $\log \left(N(\mathrm{Mn}) / N_{\text {tot }}\right)=-4.20$, corresponding to $[\mathrm{Mn} / \mathrm{H}]=+2.4$, was derived from the measured equivalent widths (Table A.2) of both Mni and Mn ir lines having critically evaluated $\log g f s$ available in Martin et al. (1988). Therefore, for Mn II, only the lines of Mn II mult. 3 at $3464.0 \AA$ were used. Hyperfine structure has negligible effects on these lines.

We have added in Table A. 2 the abundances from the Mn II lines at $\lambda \lambda 3917.318,4363.25,4365.220$ and $4478.637 \AA$, which were used by Jomaron et al. (1999) to study the Mn abundance in a given sample of HgMn stars. We excluded them from the averaged abundance determination. The average abundance from the four lines is -4.46 ± 0.06 dex. The dis-
crepancy with the average abundance from the other examined lines amounts to -0.26 dex, which could be interpreted as an indication of manganese stratification. However, the $\log g f$ uncertainties prevent us from drawing any firm conclusion about manganese stratification insomuch that the average abundances from $\mathrm{Mn}_{\mathrm{I}}(-4.19 \pm 0.10 \mathrm{dex})$ and $\mathrm{Mn}_{\text {II }}(-4.25 \pm 0.04 \mathrm{dex})$ are within the error limits. Also the differences between the average abundances from Mn lines lying shortward and longward of the Balmer discontinuity are well within the error limits.

For comparison, we recall that the average abundances $\log (N(\mathrm{Mn}) / N(\mathrm{H}))$ from Jomaron et al. (1999) are -4.44 ± 0.05 for Mn I and -4.54 ± 0.05 for Mn II. Smith et al. (1993) derived $\log (N(\mathrm{Mn}) / N(\mathrm{H}))=-4.35 \pm 0.05$ from the Mn II resonance lines at $2576 \AA, 2593 \AA$, and $2605 \AA$ measured in IUE spectra.

Iron (26)-Fe ı,Fe ॥: The average Fe abundance from the equivalent widths of all the examined Fe_{I} and $\mathrm{Fe}_{\text {II }}$ lines (Table A.2) is $\log \left(N(\mathrm{Fe}) / N_{\text {tot }}\right)=-4.83 \pm 0.13$, corresponding to an underabundance of $[-0.3]$. The average abundance from Fe_{I} lines, -4.78 ± 0.08 dex, agrees within the error limits with the average abundance from $\mathrm{Fe}_{\text {II }}$ lines, -4.84 ± 0.13 dex, while the abundances from the Fe_{I} lines shortward and longward of the Balmer discontinuity differ by 0.15 dex, which is more than the error limits. Lines lying in the near UV give the lower abundance value. The $\mathrm{Fe}_{\text {II }}$ abundance from this study is the same as that derived by Hubrig \& Castelli (2001) using only the equivalent width of the $\mathrm{Fe}_{\text {II }}$ line at $6149.258 \AA$ measured in a spectrum observed at CFHT.

Smith \& Dworetsky (1993) found $\log (N(\mathrm{Fe}) / N(\mathrm{H}))=$ -5.05 ± 0.05 from the analysis of IUE spectra.

Cobalt (27)-Co॥ (Not observed?): No cobalt lines were observed in the UVES spectra, except for Co II mult. 2 at $3501.717 \AA$, which could also be noise as well. The computed profile reproduces the observed spectrum for an abundance $\log \left(N(\mathrm{Co}) / N_{\text {tot }}\right)=-8.08$, which is about ten times lower than the solar abundance. We adopted the above value.

Smith \& Dworetsky (1993) derived an upper limit $\log (N(\mathrm{Co}) / N(\mathrm{H})) \leq-9.0 \pm 0.5$ from an IUE spectra analysis.

Nickel (28)-Ni II: The equivalent widths of the measured Ni iI lines (Table A.2) give an underabundance [-0.3] if $\log g f \mathrm{~s}$ recomputed by Kurucz (2003) are used for all the lines examined (Table A.2). Instead, if $\log g f s$ from Heise (1974) are used, the nickel underabundance changes from [-0.3] to [-0.8]. There are no Ni iI critically evaluated $\log g f \mathrm{~s}$ in the NIST database for the whole wavelength region studied by us. We adopted the abundance $\log \left(N(\mathrm{Ni}) / N_{\text {tot }}\right)=-6.09 \pm 0.16$, which is that based on the Kurucz (2003) $\log g f \mathrm{~s}$. Smith \& Dworetsky (1993) found $\log (N(\mathrm{Ni}) / N(\mathrm{H}))=-6.2 \pm 0.3$ from their analysis of IUE spectra.

Copper (29)-CuI: While no $\mathrm{Cu}_{\text {II }}$ lines were observed, the Cu I line at $3247.540 \AA$ was measured. It is probably blended with some unknown component, as it is asymmetric, with a more extended red wing. In fact, the abundance -6.52 dex from

Table A.6. Line data and total hyperfine splitting in a sample of $\mathrm{Mn}_{\text {II }}$ lines.

Mult.	$\lambda^{a}(\AA)$	$\log g f$	Ref. ${ }^{\text {b }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\chi_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{hfs}_{\text {tot }}(\AA)$	Notes ${ }^{\text {c }}$
-	3159.302,hfs	-1.720	K, K88	62587.50	94230.90	0.077	No fit, TWC
-	3330.778,hfs	-0.659	K, K88	37851.47	67865.85	0.031	
-	3364.213	-1.956	K, K88	52383.72	82099.82	no data	hfs
-	3366.028,hfs	-2.880	K, K88	43696.19	73396.26	0.045	No fit, TWC
-	3366.121,hfs	-2.181	K, K88	43696.19	73395.44	0.052	No fit, TWC
-	3418.232,hfs	-2.024	K, K88	44138.96	73385.46	0.031	
1	3438.974	-2.293	K, MFW	9472.97	38543.08	no data	hfs
3	3441.988,hfs	-0.272	K, MFW	14325.86	43370.51	0.011	
-	3457.801,hfs	-2.338	K, K88	43395.38	72307.21	0.061	No fit, TWC
1	3460.030,hfs	-2.561	K, K88	9472.97	38543.08	0.026	
3	3460.316,hfs	-0.542	K, MFW	14593.82	43484.64	0.015	
-	3461.458,hfs	-1.614	K, K88	44899.82	73781.11	0.044	
-	3462.341,hfs	-2.099	K, K88	44521.52	73395.44	0.013	No fit
3	3474.040,hfs	-0.999	K, MFW	14593.82	43370.51	0.011	
3	3474.129,hfs	-1.089	K, MFW	14781.19	43557.14	0.018	
3	3482.905,hfs	-0.740	K, MFW	14781.19	43484.64	0.014	
3	3488.677,hfs	-0.864	K, MFW	14901.18	43557.14	0.018	
3	3495.833,hfs	-1.218	K, MFW	14959.84	43557.14	0.018	
3	3496.809,hfs	-1.687	K, MFW	14781.19	43370.51	0.009	
3	3497.526,hfs	-1.330	K, MFW	14901.18	43484.64	0.014	
-	3509.939,hfs	-1.324	K, K88	43528.64	72011.02	0.096	
-	3685.051,hfs	-1.299	K, K88	43528.64	70657.58	0.106	Blend with Mn ıi 3685.042 £
-	3695.917,hfs	-1.966	K, K88	43696.19	70745.38	0.072	
-	3763.730	-1.360	K, K88	41182.53	67744.37	no data	hfs
-	3812.239	-1.897	K, K88	44521.52	70745.38	no data	hfs
-	3844.161	-1.379	K, K88	44521.52	70527.62	no data	hfs
-	3848.574	-3.333	K, K88	44521.52	70497.80	no data	hfs
-	3897.604,hfs	-1.697	K, K88	43395.38	69044.90	0.078	No fit, TSC
-	3917.318,hfs	-1.147	K, K88	55759.27	81279.71	0.046	
-	3943.858,hfs	-2.464	K, K88	43696.19	69044.90	0.082	No fit, TWC
-	3995.317,hfs	-2.441	K, K88	43395.38	68417.61	0.096	No fit, TSC
-	4000.033,hfs	-1.212	K, K88	62587.50	87580.23	0.123	No fit, TSC
-	4039.681,hfs	-3.357	K, K88	43537.18	68284.62	0.097	
-	4136.902	-1.290	K, K88	49517.58	73683.44	no data	hfs
2	4174.318	-3.548	K, K88	14593.820	38543.08	0.001	
2	4205.375*	-3.376	K, K88	14593.820	38366.18	0.039	
7	4206.368*, hfs	-1.566	K, K88	43528.64	67295.43	0.129	
2	4207.234	-4.470	K, K88	14781.190	38543.08	0.002	No fit, TSC
-	4237.861*	-2.959	K, K88	43311.30	66901.44	0.002	
2	4238.785*	-3.626	K, K88	14781.190	38366.18	0.038	
-	4239.184* , hfs	-2.250	K, K88	43311.30	66894.09	0.050	
-	4240.385*	-2.066	K, K88	49820.16	73396.26	0.071	
-	4242.329*	-1.262	K, K88	49820.16	73385.46	0.057	Blend with $\mathrm{Cr}_{\text {II }}$
-	4242.920*	-2.992	K, K88	43339.42	66901.44	0.035	
7	4244.246*	-2.396	K, K88	43339.42	66894.09	0.038	
-	4247.954*	-3.379	K, K88	43395.38	66929.52	0.087	TWC, large disagreement
-	4251.727*	-1.058	K, K88	49882.15	73395.44	0.012	
-	4252.961*	-1.138	K, K88	49889.86	73396.26	0.018	Blend with Mn II
7	4253.018*	-2.403	K, K88	43395.38	66901.44	0.08	Blend with Mn II
-	4253.124*	-2.092	K, K88	49889.86	73395.44	0.018	Blend with Mn II
7	4259.191*, hfs	-1.589	K, K88	43537.18	67009.16	0.094	
2	4260.462*	-4.246	K, K88	14901.180	38366.180	0.038	TSC
-	4281.948*	-2.554	K, K88	43339.42	66686.70	0.029	Blend with $\mathrm{Mn}_{\text {II }}$
-	4282.490,hfs	-1.679	K, K88	44521.52	67865.85	0.052	
6	4283.766 ${ }^{*}$, hfs	-2.204	K, K88	43339.42	66676.78	0.028	
6	4284.429	-2.265	K, K88	43311.30	66645.07	0.025	

Table A.6. continued.

Mult.	$\lambda^{a}(\AA)$	$\log g f$	Ref. ${ }^{\text {b }}$	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\chi_{\text {up }}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{hfs}_{\text {tot }}(\AA)$	Notes ${ }^{\text {c }}$
-	4288.067*	-1.890	K, K88	33906.57	77220.56	0.013	
-	4289.595*	-3.306	K, K88	43339.42	66645.07	0.027	TWC
6	4292.233*, hfs	-2.226	K, K88	43395.38	66686.70	0.077	No fit, TWC
6	4300.254* ${ }^{\text {, hfs }}$	-2.880	K, K88	43395.38	66643.31	0.079	No fit, TWC
-	4302.957*	-6.136	K, K88	43696.19	66929.52	0.093	Observed, not predicted
-	4308.153*	-1.723	K, K88	43696.19	66901.44	0.092	
-	4317.720*	-1.917	K, K88	55759.27	78913.17	0.032	
6	4325.047* ${ }^{\text {, hfs }}$	-2.299	K, K88	43528.64	66643.31	0.119	
6	4326.643*, hfs	-1.254	K, K88	43537.18	66643.31	0.091	
-	4336.959*	-2.551	K, K88	43850.42	66901.44	0.020	
-	4338.345*	-2.090	K, K88	43850.42	66894.09	0.039	
-	4382.579*	-1.977	K, K88	44745.46	67766.76	0.041	
6	4343.983*, hfs	-1.095	K, K88	43528.64	66542.53	0.118	
6	4345.593*	-2.164	K, K88	43537.18	66542.53	0.090	
-	4346.406*	-1.544	K, K88	52718.80	75719.93	0.004	
-	4348.396*, hfs	-1.500	K, K88	43696.19	66686.70	0.082	
-	4356.628*	-2.026	K, K88	43696.19	66643.31	0.084	
-	4363.254*	-1.909	K, K88	44899.82	67812.05	0.041	
-	4365.220*	-1.350	K, K88	53017.16	75919.09	0.006	
-	4377.744*, hfs	-2.144	K, K88	43850.42	66686.70	0.017	
-	4379.644*, hfs	-1.850	K, K88	43850.42	66676.78	0.018	
-	4385.738*	-3.029	K, K88	43850.42	66645.07	0.016	
-	4403.513*	-1.804	K, K88	53017.16	75719.93	0.004	
-	4434.062*	-1.514	K, K88	53017.16	75563.49	0.000	Blend with $\mathrm{Mg}_{\text {II }}$
-	4441.996*	-2.355	K, K88	44138.96	66645.07	0.026	
-	4478.635*	-0.950	K, K88	53597.13	75919.09	0.007	
-	4518.953*	-1.329	K, K88	53597.13	75719.93	0.007	
5	4727.841,hfs	-2.017	K, K88	43311.30	64456.69	0.015	No fit
5	4730.395,hfs	-2.147	K, K88	43339.42	64473.39	0.047	
5	4738.290,hfs	-2.244	K, K88	43395.38	64494.14	0.115	No fit
5	4755.727,hfs	-1.242	K, K88	43528.64	64550.04	0.176	Large disagreement
5	4764.728,hfs	-1.351	K, K88	43537.18	64518.87	0.136	Large disagreement
-	5102.517	-1.934	K, K88	48317.85	67910.56	no data	hfs
-	5177.648	-1.772	K, K88	48435.96	67744.37	no data	hfs
-	5294.315	-0.037	K, K88	79540.87	98423.80	no data	hfs
-	5295.384	$+0.360$	K, K88	79544.68	98423.80	no data	hfs
-	5295.412	$+0.360$	K, K88	79544.68	98423.70	no data	hfs
-	6008.190	-1.271	K, K88	83255.79	99895.13	no data	hfs
-	6009.205	-1.050	K, K88	83255.79	99892.32	no data	hfs
-	6009.858	-1.096	K, K88	83255.79	99890.51	no data	hfs
-	6411.004,hfs	-1.487	K, K88	66452.53	82136.40	0.105	
-	7083.538*	-3.089	K, K88	53698.70	67812.05	0.103	
-	7098.194*	-3.083	K, K88	53781.71	67865.85	0.076	
-	7106.329*	-2.171	K, K88	53698.70	67766.76	0.108	
-	7110.354*	-1.923	K, K88	53805.80	67865.85	0.077	
-	7125.441*	-2.059	K, K88	53781.71	67812.05	0.077	
-	7137.694*	-2.976	K, K88	53805.80	67812.05	0.073	
-	7148.506*	-3.016	K, K88	53781.71	67766.76	0.105	Blend with telluric lines
-	7323.762*	-3.210	K, K88	54846.24	68496.61	0.055	
-	7330.577* ${ }^{*}$, hfs	-2.713	K, K88	29919.43	43557.14	0.359	
-	7347.813*, hfs	-3.814	K, K88	29951.42	43557.14	0.253	
-	7353.549* ${ }^{\text {, hfs }}$	-2.726	K, K88	29889.52	43484.64	0.385	
-	7369.763*, hfs	-3.174	K, K88	29919.43	43484.64	0.350	
-	7373.426*	-2.806	K, K88	54938.19	68496.61	0.068	
-	7387.184* ${ }^{*}$ hfs	-2.553	K, K88	29951.42	43484.64	0.242	
-	7415.803*, hfs	-2.202	K, K88	29889.52	43370.51	0.373	

Table A.6. continued.

Mult.	$\lambda^{a}(\AA)$	$\log g f$	Ref. b	$\chi_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\chi_{\mathrm{up}}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{hfs}_{\text {tot }}(\AA)$	Notes c
-	7416.637^{*}	-3.703	K, K88	54938.19	68417.61	0.061	
-	7432.294^{*}, hfs	-2.498	K, K88	29919.43	43370.51	0.337	
-	7471.581^{*}	-2.877	K, K88	55166.31	68496.61	0.094	
-	7490.309^{*}	-3.019	K, K88	62572.20	75919.09	0.196	
-	7490.752^{*}	-2.779	K, K88	65567.07	78913.17	0.081	
-	7498.931^{*}	-2.282	K, K88	62587.50	75919.09	0.416	Not observed
-	7515.955^{*}	-2.917	K, K88	55116.31	68417.61	0.087	Blend with Fe II
-	7942.111^{*}	-2.456	K, K88	55696.99	68284.62	0.148	
-	9407.015, hfs	-2.554	K, K88	32857.19	43484.64	0.109	TWC
-	9408.696, hfs	-2.951	K, K88	32859.09	43484.64	0.109	TWC
-	9446.846, hfs	-2.389	K, K88	32787.87	43370.51	0.079	TWC

${ }^{a}(\mathrm{hfs})$ the hyperfine components are included in the adopted line lists; $(*)$ the wavelength is from Holt et al. (1999).
b "K" before another $\log g f$ source means that the $\log g f$ is from Kurucz files available at http://kurucz. harvard. edu/linelists/gf100 K88: Kurucz (1988); MFW: Martin et al. (1988).
${ }^{c}$ (TWC) the computed profile is weaker than the observed one; (TSC) the computed profile is stronger than the observed one; (hfs) observed hyperfine broadening.
the equivalent width 5.96 mA gives a too strong computed profile. On the basis of the synthetic spectrum we adopted $\log \left(N(\mathrm{Cu}) / N_{\text {tot }}\right)=-6.88$, corresponding to an overabundance of $[+0.95]$. This value well reproduces also Cu I $3273.954 \AA$ which is blended with $\mathrm{Mn}_{\text {II }} 3274.044 \AA$.

Smith (1994) derived $\log (N(\mathrm{Cu}) / N(\mathrm{H}))=-6.85 \pm 0.15$ from $\mathrm{Cu}_{\text {II }}$ lines observed in IUE spectra.

Zinc (30)-Not observed: No zinc lines were observed. Smith (1994) found $\log (N(\mathrm{Zn}) / N(\mathrm{H}))=-9.22 \pm 0.30$ from $\mathrm{Zn}_{\text {II }}$ lines observed in IUE spectra. This corresponds to an underabundance [-1.8].

Gallium (31)-Gaı,Gaı: There are only two Ga lines in the studied range with available $\log g f \mathrm{~s}$ in the NIST database. They are Ga i mult. 1 at $4032.990 \AA$ and $4172.039 \AA$. Both lines were observed in the spectrum, but they were not measured owing to their blending with other lines. Other Ga I lines can be found in the Kurucz line lists with guessed $\log g f$ values. The line at $6396.560 \AA$, if present, is heavily blended with Mn II $6396.565 \AA$ A.

There are no Ga ir lines in the Kurucz line lists and there are no $\mathrm{Ga}_{\text {II }} \log g f \mathrm{~s}$ in the NIST database for the studied region. We used the Isberg \& Litzén (1985) Ga ir line list to identify $\mathrm{Ga}_{\text {II }}$ lines in the spectrum and we searched the literature for Ga ir oscillator strengths. The most complete set of $\log g f s$ in the optical region is that from Ryabchikova \& Smirnov (1994) who consider 12 Ga ir lines. However, the $\log g f$ uncertainty can be estimated when different determinations are compared. For instance, for the line at $6334 \AA$ A there is the choice between $\log g f=+1.00$ from Ryabchikova \& Smirnov (1994) and $\log g f=+0.36$ from Lanz et al. (1993), while for the line at $5421.275 \AA$ the $\log g f$ value is +0.55
according to Ryabchikova \& Smirnov (1994) and $-0.05 \mathrm{ac}-$ cording to Nielsen et al. (2000). The comparison of the observed and computed profiles has led us to adopt +1.00 in the first case and -0.05 in the second case. In general, we adopted the Nielsen et al. (2000) $\log g f \mathrm{~s}$, which are the same as those given by Ryabchikova \& Smirnov (1994) for almost all the analyzed lines. For the transitions at $4255 \AA$ we separated the $4255.722 \AA$ and $4255.937 \AA$ contributions. We replaced the global $\log g f=+0.68$ with $\log g f=+0.634$ and $\log g f=$ -0.320 , respectively (Nielsen et al. 2000).

Several Ga ir profiles are affected by isotopic and hyperfine broadening. Ga it in HgMn stars was discussed by Nielsen et al. (2000) and by Dworetsky et al. (1998). Gallium has two stable isotopes Ga^{69} and Ga^{71} with relative terrestrial abundances 0.60108 and 0.39892 (Anders \& Grevesse 1989). Lines from each isotope are affected by hyperfine splitting of the levels. Karlsson \& Litzèn (2000) measured the isotopic and the hyperfine structure of 18 Ga II lines by means of Fourier transform spectroscopy. They obtained hyperfine A constants for 8 levels. The B constants were found to be close to zero. We used the A constants in the HYPERFINE code (Kurucz \& Bell 1995) to compute hyperfine $\log g f s$ for 8 lines with $\lambda>5000 \AA$. Their hyperfine and isotopic wavelengths were taken from Karlsson \& Litzèn (2000). For $7 \mathrm{Ga}_{\text {II }}$ lines at 4251-4263 Å, arising from the $4 \mathrm{~d}-4 \mathrm{f}$ transition, Karlsson \& Litzèn (2000) measured the wavelengths and the relative intensities of numerous components. We estimated the $\log g f$ of each component from the ratio of the intensity of the component to the total intensity of the components. We did not use the standard formulae of the LS coupling (Cowley et al. 2000) owing to the lack in Table 3 of Karlsson \& Litzén (2000) of the F total angular momentum for the lower and upper level of the transitions.

The $\mathrm{Ga}_{\text {II }}$ isotopic and hyperfine components that we derived from Karlsson \& Litzèn (2000) for 15 Ga if lines are

F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 26

Table A.7. The Ga II lines analysed. When the two isotopes Ga^{69} and Ga^{71} are considered separately, the oscillator strengths are $\log g f\left(\mathrm{Ga}^{69}\right)=$ -0.222 and $\log g f\left(\mathrm{Ga}^{71}\right)=-0.398$.

Isot.	$\lambda(\AA)$	$\log g f_{\text {iso }}$	$\log g \mathrm{ffifs}$	$\log g f_{\text {comp }}$
	4251.149	$\log g f_{\text {tot }}=+0.35$		
69+71	4251.112	0.0	-2.049	-1.699
69+71	4251.130	0.0	-0.766	-0.416
69+71	4251.167	0.0	-0.086	+0.264
	4254.075	$\log g f_{\text {tot }}=-0.23$		
69+71	4254.047	0.0	-0.338	-0.568
69+71	4250.070	0.0	-0.599	-0.829
$69+71$	4254.092	0.0	-0.741	-0.971
69+71	4254.111	0.0	-0.970	-1.200
	4255.722	$\log g f_{\text {tot }}=+0.634$		
69+71	4255.622	0.0	-1.385	-0.751
69+71	4255.642	0.0	-1.406	-0.772
69+71	4255.657	0.0	-1.534	-0.900
69+71	4255.672	0.0	-1.148	-0.514
69+71	4255.688	0.0	-1.746	-1.112
69+71	4255.716	0.0	-0.453	+0.181
69+71	4255.742	0.0	-1.200	-0.566
69+71	4255.774	0.0	-0.597	+0.037
69+71	4255.791	0.0	-0.876	-0.242
	4255.937	$\log g f_{\text {tot }}=-0.32$		
69+71	4255.818	0.0	-1.631	-1.951
69+71	4255.839	0.0	-1.915	-2.235
$69+71$	4255.857	0.0	-1.330	-1.650
69+71	4255.904	0.0	-0.677	-0.997
69+71	4255.924	0.0	-0.839	-1.159
69+71	4255.949	0.0	-1.251	-1.571
69+71	4255.971	0.0	-1.100	-1.420
69+71	4255.994	0.0	-0.718	-1.038
69+71	4256.013	0.0	-0.899	-1.219
	4261.4780	$\log g f_{\text {tot }}=-1.10$		
69+71	4261.432	0.0	-0.757	-1.857
69+71	4261.448	0.0	-0.699	-1.799
69+71	4261.477	0.0	-1.000	-2.100
69+71	4261.509	0.0	-0.280	-1.380
	4262.014	$\log g f_{\text {tot }}=+0.98$		
69+71	4262.010	0.0	-0.016	+0.964
69+71	4262.051	0.0	-1.525	-0.545
69+71	4262.067	0.0	-2.228	-1.248
	4263.1361	$\log g f_{\text {tot }}=-0.50$		
69+71	4262.983	0.0	-1.204	-1.704
69+71	4263.018	0.0	-1.169	-1.669
69+71	4263.050	0.0	-1.204	-1.704
69+71	4263.070	0.0	-1.137	-1.637
69+71	4263.097	0.0	-1.505	-2.005
69+71	4263.113	0.0	-1.584	-2.084
69+71	4263.144	0.0	-0.593	-1.093
69+71	4263.176	0.0	-1.505	-2.005
69+71	4263.239	0.0	-0.621	-1.121
69+71	4263.266	0.0	-0.821	-1.321
	5338.240	$\log g f_{\text {tot }}=+0.43$		
71	5338.137	-0.398	-0.778	-0.746
69	5338.159	-0.222	-0.783	-0.575
71	5338.199	-0.398	-0.477	-0.445
69	5338.208	-0.222	-0.475	-0.267
69	5338.289	-0.222	-0.301	-0.093
71	5338.302	-0.398	-0.301	-0.269

Isot.	$\lambda(\AA)$	$\log g f_{\text {iso }}$	$\log g f_{\text {hifs }}$	$\log g f_{\text {comp }}$
	5360.4022	$\log g f_{\text {tot }}=+0.42$		
71	5360.314	-0.398	-1.079	-1.057
69	5360.334	-0.222	-1.079	-0.881
71	5360.335	-0.398	-1.079	-1.057
69	5360.350	-0.222	-1.079	-0.881
71	5360.357	-0.398	-0.678	-0.656
69	5360.368	-0.222	-0.678	-0.480
71	5360.391	-0.398	-0.972	-0.950
71	5360.394	-0.222	-0.972	-0.774
69	5360.411	-0.222	-1.778	-1.580
71	5360.412	-0.398	-1.778	-1.756
69	5360.432	-0.222	-0.398	-0.200
71	5360.438	-0.398	-0.398	-0.376
69	5360.469	-0.222	-1.046	-0.848
71	5360.486	-0.398	-1.044	-1.022
69	5360.496	-0.222	-2.000	-1.802
71	5360.521	-0.398	-2.000	-1.978
	5363.5854	$\log g f_{\text {tot }}=+0.06$		
71	5363.353	-0.398	-1.556	-1.894
69	5363.402	-0.222	-1.556	-1.718
71	5363.416	-0.398	-0.857	-1.195
71	5363.430	-0.398	-0.857	-1.195
69	5363.451	-0.222	-0.857	-1.019
69	5363.463	-0.222	-0.857	-1.019
71	5363.493	-0.398	-1.352	-1.690
69	5363.512	-0.222	-1.352	-1.514
69	5363.594	-0.222	-0.824	-0.986
71	5363.597	-0.398	-0.824	-1.162
69	5363.613	-0.222	-0.824	-0.986
71	5363.621	-0.398	-0.824	-1.162
69	5363.695	-0.222	-0.456	-0.618
71	5363.725	-0.398	-0.456	-0.794
	5416.3179	$\log g f_{\text {tot }}=+0.64$		
71	5416.287	-0.398	-0.796	-0.554
71	5416.292	-0.398	-1.000	-0.758
69	5416.295	-0.222	-0.796	-0.378
71	5416.296	-0.398	-0.611	-0.369
69	5416.299	-0.222	-1.000	-0.582
69	5416.302	-0.222	-0.611	-0.193
71	5416.320	-0.398	-0.447	-0.205
69	5416.321	-0.222	-0.447	-0.029
69	5416.350	-0.222	-1.398	-0.980
71	5416.356	-0.398	-1.398	-1.156
69	5416.378	-0.222	-1.282	-0.864
71	5416.393	-0.398	-1.282	-1.040
69	5416.419	-0.222	-1.389	-0.971
69	5416.433	-0.222	-2.544	-2.126
71	5416.444	-0.398	-1.389	-1.147
71	5416.462	-0.398	-2.544	-2.302
69	5416.495	-0.222	-2.690	-2.272
71	5416.541	-0.398	-2.690	-2.448

Table A.7. continued.

Isot.	$\lambda(\AA)$	$\log g f_{\text {iso }}$	$\log g f_{\text {hfs }}$	$\log g f_{\text {comp }}$
	5421.2746	$\log g f_{\text {tot }}=-0.05$		
71	5421.122	-0.398	-1.301	-1.749
71	5421.143	-0.398	-1.301	-1.749
71	5421.152	-0.398	-1.155	-1.603
69	5421.156	-0.222	-1.301	-1.573
69	5421.172	-0.222	-1.301	-1.573
69	5421.179	-0.222	-1.155	-1.427
71	5421.186	-0.398	-1.097	-1.545
69	5421.206	-0.222	-1.097	-1.369
71	5421.207	-0.398	-1.301	-1.749
71	5421.211	-0.398	-1.243	-1.691
69	5421.223	-0.222	-1.301	-1.573
69	5421.226	-0.222	-1.243	-1.515
71	5421.259	-0.398	-0.762	-1.210
69	5421.264	-0.222	-0.762	-1.034
69	5421.291	-0.222	-1.155	-1.427
71	5421.294	-0.398	-1.155	-1.603
69	5421.344	-0.222	-0.465	-0.737
71	5421.361	-0.398	-0.465	-0.913
69	5421.382	-0.222	-1.243	-1.515
71	5421.409	-0.398	-1.243	-1.691
	6419.2391	$\log g f_{\text {to }}$	$=+0.57$	
71	6418.970	-0.398	-0.859	-0.687
71	6418.991	-0.398	-0.824	-0.652
69	6419.030	-0.222	-0.857	-0.509
69	6419.047	-0.222	-0.824	-0.476
71	6419.080	-0.398	-1.556	-1.384
69	6419.117	-0.222	-1.556	-1.208
71	6419.175	-0.398	-1.352	-1.180
69	6419.191	-0.222	-1.352	-1.004
69	6419.278	-0.222	-0.857	-0.509
71	6419.284	-0.398	-0.857	-0.685
69	6419.315	-0.222	-0.456	-0.108
71	6419.332	-0.398	-0.456	-0.284
69	6419.459	-0.222	-0.824	-0.476
71	6419.516	-0.398	-0.824	-0.652

listed in Table A.7. We included them in the Kurucz line lists. Table A. 7 is formed by subtables, one for each line investigated. The wavelength and the $\log g f$ of the examined transition are given in italics at the top of each subtable. The wavelengths of the isotopic and hyperfine components follow. They are listed in Col. 2 in increasing wavelength order. Columns 3 and 4 show the oscillator strengths of the isotopic and hyperfine components, $\log g f_{\text {iso }}$ and $\log g f_{\text {hfs }}$, respectively. The total oscillator strength of each component, $\log g f_{\text {comp }}$, is given in the last column. It was obtained by summing the $\log g f$ of the whole transition with $\log g f_{\text {iso }}$ and $\log g f_{\text {hfs }}$.

The Ga II lines analyzed in HD 175640, their $\log g f$, the source, and the abundances derived from the line pro-

Isot.	$\lambda(\AA \AA)$	$\log g f_{\text {iso }}$	$\log g f_{\text {hfs }}$	$\log g f_{\text {comp }}$
6334.0688				
71	6333.911	-0.398	-1.079	-0.477
69	6333.948	-0.222	-1.079	-0.301
71	6333.964	-0.398	-0.678	+0.076
69	6333.989	-0.222	-0.678	+0.100
71	6333.998	-0.398	-1.079	-0.477
69	6334.017	-0.222	-1.079	-0.301
69	6334.089	-0.222	-0.398	+0.380
71	6334.091	-0.398	-0.398	+0.204
69	6334.104	-0.222	-0.972	-0.194
71	6334.110	-0.398	-0.972	-0.370
69	6334.173	-0.222	-1.778	-1.000
71	6334.198	-0.398	-1.778	-1.176
69	6334.250	-0.222	-1.046	-0.268
71	6334.295	-0.398	-1.046	-0.444
69	6334.365	-0.222	-2.000	-1.222
71	6334.442	-0.398	-2.000	-1.398
6455.9231				
71	6455.578	-0.398	-0.778	-1.256
69	6455.653	-0.222	-0.778	-1.080
71	6455.784	-0.398	-0.477	-0.955
69	6455.816	-0.222	-0.477	-0.779
69	6456.087	-0.222	-0.301	-0.603
71	6456.123	-0.398	-0.301	-0.779

files are shown in Table A.3. The average abundance is $\log \left(N(\mathrm{Ga}) / N_{\text {tot }}\right)=-5.43 \pm 0.04$, corresponding to an overabundance $[+3.73]$. A few other $\mathrm{Ga}_{\text {II }}$ lines not used for abundance purposes have been added to Table A.3. Their $\log g f$ is that which gives the best agreement between the observed and computed profiles for the adopted abundance.

The analysis of the individual $\mathrm{Ga}_{\text {II }}$ lines shows that the observed Ga II profile at $\lambda 4251 \AA$ is slightly broader and stronger than that computed for the adopted -5.43 dex abundance. A similar behaviour was pointed out by Nielsen et al. (2000) in κ Cnc and in HR 7775. The line could be blended with an unknown blue absorption line. The observed Ga II profile at $\lambda 4255.7-4255.9$ would be better reproduced if the predicted

Fig. A.6. The observed profiles (thick full lines) of $\mathrm{Ga}_{\text {II }}$ at $\lambda \lambda 536.03,541.63,641.89,641.93$, and $645.65-645.68 \mathrm{~nm}$ are compared with synthetic profiles computed once without any hyperfine structure (dotted lines) and once with hyperfine structure included in the computations (thin full lines) The meaning of the identification labels is the same as that given in the caption of Fig. A.1.
$\mathrm{Mn}_{\text {II }}$ at $5256.014 \AA$ is dropped. The observed and computed profiles of the blend $\mathrm{Cr}_{\text {II }} 4261.9 \AA$, Ga II $4262.0 \AA$ agree rather well. Although hfs and isotopic structures are not well evident in the Ga II lines observed at $5338.24 \AA, 5360.40 \AA, 5363.58 \AA$, $5416.31 \AA$ and $5421.27 \AA$, the synthetic profiles reproduce well the observed ones only when the fine structures are considered in the computations. Large structures due to the isotopic and hyperfine splittings can be observed in the lines at $6334 \AA$, $6419 \AA$ and $6456 \AA$. Figure A. 6 compares each of the profiles observed at $5360.4 \AA, 5421.3 \AA, 6419.0 \AA$ and $6456.0 \AA$ with two synthetic profiles, one computed with isotopic and hyperfine structures, the other without them.

Dworetsky et al. (1998) obtained $\log (N(\mathrm{Ga}) / N(\mathrm{H}))=$ -5.36 ± 0.14 for this star.

Arsenic (33)-As॥ (Not observed?): Sadakane et al. (2001) identified in the $5100-6400 \AA$ region of the HgMn stars 46 Aquilae eight absorption features at $5105.58 \AA, 5107.55 \AA$, $5231.38 \AA, 5331.23 \AA, 5497.73 \AA, 5558.09 \AA, 5651.32 \AA$ and
at $6110.07 \AA$ as As II. We observed weak unidentified features in HD 175640 only at $5331.23 \AA, 5497.73 \AA, 5558.09 \AA$ and $5651.32 \AA$. Other As if lines listed in the NIST database, even with stronger intensities, are not detectable in the spectrum. This suggests that other elements than As if may produce the four weak unidentified lines. We did not find in the literature any $\log g f$ for As in in the visible region.

Bromine (35)-Bril: Only the three $\mathrm{Br}_{\text {II }}$ lines at $4704.85 \AA$, $4785.50 \AA$ and $4816.70 \AA$ have $\log g f$ values in the NIST database. We measured the equivalent widths of the first two lines, which yielded a Br overabundance of [+2.3].

Strontium (38)-Sr il: Only few Sr II lines were identified in the spectrum. The equivalent width of the unique $\mathrm{Sr}_{\text {II }}$ unblended line at $4077.71 \AA$ yields $\log \left(N(\mathrm{Sr}) / N_{\text {tot }}\right)=-8.41$, corresponding to an overabundance of [+0.7]. This value correctly reproduces the other observed $\mathrm{Sr}_{\text {II }}$ blended lines, in particular the blend at $4215.5 \AA$ having Sr II $\lambda 4215.52 \AA$ as main component.

Yttrium (39)- $\mathrm{Y}_{\text {II: }}$: Although numerous $\mathrm{Y}_{\text {II }}$ unblended lines were identified in the spectrum on the basis of the Kurucz line lists, only half of them could be used for abundance purposes, owing to the lack of $\log g f$ values for a large number of $\mathrm{Y}_{\text {II }}$ transitions. Lines with unknown $\log g f$ s have guessed values in the Kurucz line lists so that the predicted lines in the synthetic spectrum have fictitious intensities.

The most reliable $\log g f$ source is Hannaford et al. (1982), who provided experimental values. Some other $\log g f \mathrm{~s}$ in the Kurucz line lists were obtained from a fitting procedure from Cowley \& Corliss (1983). However, log $g f s$ of lines with energy levels lying outside the validity range of the fitting procedure predict lines so much stronger than the observed ones that they should be considered unreliable values.

Nilsson et al. (1991) have measured $\mathrm{Y}_{\text {II }}$ wavelengths in the region 1000-48 $800 \AA$. We added a few lines from Nilsson et al. (1991) in the Kurucz line lists and assigned guessed $\log g f$ s to them. We also replaced a few wavelengths in the Kurucz database with wavelengths measured by Nilsson et al. (1991) as they agree better with the position of the observed lines.

The average abundance from the equivalent widths of the lines listed in Table A. 3 is $\log \left(N\left(\mathrm{Y}_{\text {II }}\right) / N_{\text {tot }}\right)=-6.66 \pm 0.20$, corresponding to $[\mathrm{Y} / \mathrm{H}]=+3.14$. However, there is a difference of 0.4 dex between the average abundances derived from lines lying shortward or longward of the Balmer discontinuity. These abundances are -6.42 ± 0.06 dex and -6.79 ± 0.10 dex, respectively.

Zirconium (40)-Zr II: Only a few weak $\mathrm{Zr}_{\text {II }}$ lines were identified. From the equivalent widths listed in Table A. 3 we derived an overabundance $[\mathrm{Zr} / \mathrm{H}]=+0.77$.

Rhodium (45)-Rh ॥: We identified all the $\mathrm{Rh}_{\text {II }}$ lines listed in Table A.3. Owing to the lack of $\log g f \mathrm{~s}$ for them, we used the guessed oscillator strengths from the Kurucz line lists. Assuming $\log g f=0.00$ for Rh if at $\lambda 3233.314 \AA$ the abundance is -8.50 dex, viz. Rh if should be overabundant by about $[+2.4]$. The wavelengths in the Kurucz line lists are slightly different from those given in the Moore (1972) tables. The observed wavelengths correspond better with the Moore than to the Kurucz data. When needed, we modified the wavelengths in the Kurucz line lists to match the position of the observed lines. For the lines embedded in blends the wavelengths from Moore (1972) were adopted.

Palladium (46)-Pdı, Pdı: Several very weak Pdı lines included in the Kurucz line lists were identified in the spectrum. The measured equivalent widths (Table A.3) give an average overabundance $[+3.94]$.

The $\log g f$ sources in the Kurucz database are Biémont et al. (1981) and Corliss \& Bozman (1962).

We did not identify $\mathrm{Pd}_{\text {II }}$ owing to the lack of these lines in our line lists. However, as pointed out by the referee Dr. C.R. Cowley, they were identified in HD 175640 by Bord et al.

Table A.8. Isotopic and hyperfine structure of $\mathrm{Ba}_{\text {II }} 4554 \AA$.

Isot.	$\lambda(\AA)$	$\log g f_{\text {iso }}$	$\log g f_{\text {frs }}$	$\log g f_{\text {comp }}$
	4554.029	$\log g f_{\text {tot }}=+0.163$		
137	4553.995	-0.950	-0.806	-1.573
137	4553.997	-0.950	-0.806	-1.573
137	4553.998	-0.950	-1.204	-1.991
135	4553.999	-1.181	-0.806	-1.824
135	4554.001	-1.181	-0.806	-1.824
135	4554.001	-1.181	-1.204	-2.222
138	4554.029	-0.144	0.000	+0.019
134	4554.029	-1.617	0.000	-1.454
136	4554.029	-1.105	0.000	-0.942
135	4554.046	-1.181	-0.359	-1.377
135	4554.049	-1.181	-0.806	-1.824
137	4554.049	-0.950	-0.359	-1.146
135	4554.050	-1.181	-1.505	-2.523
137	4554.051	-0.950	-0.806	-1.573
137	4554.052	-0.950	-1.505	-2.291

(2003) ${ }^{8}$. Two $\mathrm{Pd}_{\text {II }}$ lines can be seen as unidentified features in our synthetic spectrum at $3243.1 \AA$ and $3267.4 \AA$.

Xenon (54)-Xe ॥: Numerous Xe II lines were identified in the spectrum. Because no $\mathrm{Xe}_{\text {II }}$ lines are included in the Kurucz line lists, we added all the $\mathrm{Xe}_{\text {II }}$ lines available in Wiese \& Martin (1980). From lines with measurable equivalent widths (Table A.3) we obtained $\log \left(N(\mathrm{Xe}) / N_{\text {tot }}\right)=-5.96 \pm 0.20$, corresponding to an overabundance $[\mathrm{Xe} / \mathrm{H}]=+3.87$ dex. We added in Table A. 3 some other weak $\mathrm{Xe}_{\text {II }}$ lines with no measurable equivalent widths, but which are well reproduced in the synthetic spectrum by the above abundance. We also added in Table A. 3 a few other $\mathrm{Xe}_{\text {II }}$ lines observed in the spectrum. Their wavelengths and energy levels were taken from Hansen \& Persson (1987). We assigned a fictitious $\log g f=0.00$ to them to be able to compute an approximate profile in the synthetic spectrum.

Barium (56)-Ba il: Only two very weak Ba in lines at $4554.03 \AA$ and $4934.08 \AA$ were identified in the spectrum.

Barium has seven isotopes, $\mathrm{Ba}^{130}, \mathrm{Ba}^{132}, \mathrm{Ba}^{134}, \mathrm{Ba}^{135}$, $\mathrm{Ba}^{136}, \mathrm{Ba}^{137}$ and Ba^{138}. The stable ones are those with mass numbers 134 to 138 . The lines of odd isotopes of Ba are affected by hyperfine structure. We considered all the isotopic and hyperfine components for computing the Ba II profile at $4554.03 \AA$. They are listed in Table A.8. The hfs components were computed with the HYPERFINE code (Kurucz \& Bell 1995) using the hyperfine constants A and B taken from Becker \& Werth (1983) and Becker et al. (1968). The isotopic intensi-

[^7]ties are from Anders \& Grevesse (1989). The wavelength and the $\log g f$ of the whole transition were taken from Miles \& Wiese (1969). However, the line at $\lambda 4554.03 \AA$ is so weak in HD 175640 that hyperfine and isotopic broadenings do not contribute to the profile in a significant way. The abundance from this profile is $\log \left(N(\mathrm{Ba}) / N_{\text {tot }}\right)=-9.27$, which corresponds to an overabundance $[+0.64]$.

Cerium (58)-Not observed?: Numerous Ce it lines are considered in the Kurucz line lists, but no $\mathrm{Ce}_{\text {III }}$ lines. We added to the Kurucz line lists only those Ce ${ }_{\text {III }}$ lines which were studied by Bord et al. (1997), but we adopted the $\log g f$ values available in the DREAM database.

No $\mathrm{Ce}_{\text {III }}$ lines can be identified in the spectrum, although some weak $\mathrm{Ce}_{\text {II }}$ lines could be present (i.e. λ 5079.682). The abundance $\log \left(N(\mathrm{Ce}) / N_{\text {tot }}\right)=-7.8$ derived from $\mathrm{Ce}_{\text {II }}$ predicts very strong unobserved $\mathrm{Ce}_{\text {III }}$ lines. We assumed Ce solar abundance for computing the synthetic spectrum although a large overabundance of $\mathrm{Ce}_{\text {II }}$ compared to that of $\mathrm{Ce}_{\text {III }}$ cannot be excluded.

Praseodymium (59)-Prill: There are numerous Prif lines in the Kurucz line lists, but none of PriII. We added only those Pr III lines which were studied by Dolk et al. (2002), but we adopted the $\log g f$ values from Biémont et al. (2001b) for them.

No lines of Pr II were observed, but lines of Pr III may be present. With the aid of the synthetic spectrum we identified Pr III lines at $5264.433 \AA, 5299.969 \AA$ and $7781.985 \AA$. The abundance which fits the profile of the second unblended line is $\log \left(N(\operatorname{Pr}) / N_{\text {tot }}\right)=-9.62$, corresponding to an overabundance $[\mathrm{Pr} / \mathrm{H}]=+1.7$. This is not in conflict with the predicted intensity of the first line which is blended with $\mathrm{Mg}_{\text {II }}$ and with that of the last line, which is at the level of the noise. However, other weak Pr III lines with no observed counterparts are predicted for this abundance.

Neodymium (60)-Nd III: There are numerous $\mathrm{Nd}_{\text {II }}$ lines in the Kurucz line lists, but none of Nd III. We added only those $\mathrm{Nd}_{\text {III }}$ lines which were studied by Dolk et al. (2002), but we adopted the $\log g f$ values from Zhang et al. (2002), available in the DREAM database.

We identified weak lines of $\mathrm{Nd}_{\text {III }}$ at $\lambda \lambda$ 5102.455, 5127.044, 5203.902 and $5203.924 \AA$. They are rather well reproduced by the abundance $\log \left(N(\mathrm{Nd}) / N_{\text {tot }}\right)=-9.60$, corresponding to an overabundance $[\mathrm{Nd} / \mathrm{H}]=+0.94$. Weak Nd III absorption features not in conflict with the observations are predicted for this abundance at $4903.241 \AA$ and 4927.488 \AA.

Ytterbium (70)-Yb ॥, Yb ill: Among the REE, only $\mathrm{Yb}_{\text {II }}$ and $\mathrm{Yb}_{\text {III }}$ have been identified without any doubt in this star (Bord et al. 2003).

There are numerous $\mathrm{Yb}_{\text {II }}$ lines in the Kurucz line lists, but none of $\mathrm{Yb}_{\text {IIII }}$. We added $\mathrm{Yb}_{\text {III }}$ lines from Biémont et al. (2001a) and replaced the $\mathrm{Yb}_{\text {II }} \log g f \mathrm{~s}$ of the Kurucz line lists
with those from Biémont et al. (1998). All the Biémont et al. (2001a; 1998) $\log g f$ s were taken from the DREAM database.

The average abundance from the $\mathrm{Yb}_{\text {II }}$ equivalent widths is $\log \left(N(\mathrm{Y}) / N_{\text {tot }}\right)=-8.10 \pm 0.19$ (Table A.3). If $\log g f \mathrm{~s}$ from the Kurucz database are used, the abundance is $-8.31 \pm$ 0.16 . The average abundance from the $\mathrm{Yb}_{\text {III }}$ equivalent widths is $\log \left(N(\mathrm{Yb}) / N_{\text {tot }}\right)=-7.3$, namely 0.7 dex higher than that from $\mathrm{Yb}_{\text {II }}$ (Table A.3). The synthetic spectrum was computed with $\log \left(N(\mathrm{Yb}) / N_{\text {tot }}\right)=-8.10$.

Osmium (76)-Os ı: Only four Os if lines are available in the Kurucz line lists for the studied region. They lie shortward of the Balmer discontinuity. The line at $3173.931 \AA$ is predicted in the synthetic spectrum for solar abundance. It is a very weak line not in conflict with the observed spectrum.

Iridium (77)-Ir il: Only the line of Ir II $^{\text {II }} 3042.553 \AA$ is available in the Kurucz line lists for the studied region. The line profile computed for a solar iridium abundance agrees well with the observed spectrum.

Platinum (78)-Ptı We investigated the presence in the spectrum of the $\mathrm{Pt}_{\text {II }}$ lines listed by Engleman (1989). Two lines were identified, $\lambda 4061.644 \AA$ and $\lambda 4514.124 \AA$. The first produces an asymmetric profile centered at the position of $\mathrm{Fe}_{\text {II }} \lambda 4061.782 \AA$, the second can be unambigously observed.

There are no Pt II lines in the Kurucz line lists. We added the seven Pt II lines for which astrophysical $\log g f s$ from Dworetsky et al. (1984) are available. For the lines at $4046.443 \AA, 4288.371 \AA$, and $4514.124 \AA$ we also considered the isotopic and hyperfine wavelengths from Engleman (1989) together with the isotopic composition from Anders \& Grevesse (1989). From the line profile at $4514.124 \AA$ we obtained a Pt in abundance of -7.63 dex, corresponding to an overabundance [+2.57].

The line at $\lambda 4061.644 \AA$ computed for the above abundance contributes to the observed blend, but the line predicted at $\lambda 4046.443 \AA$ is not observed. There are also very weak predicted Pt ir lines with no observable counterparts at $\lambda \lambda 4288.371 \AA$ and $4034.181 \AA$.

Unfortunately, we did not find neither experimental nor theoretical $\log g f s$ for $\mathrm{Pt}_{\text {II }}$ lines lying shortward of the Balmer discontinuity.

Gold (79)-Au II: There are no Au II lines in the Kurucz line lists. We added the $\mathrm{Au}_{\text {II }}$ lines from Rosberg \& Wyart (1997) for the range 3040-10000 \AA.

We identified and measured the equivalent widths of two lines at 4016.672 and $4052.790 \AA$, respectively. The average abundance is $\log \left(N(\mathrm{Au}) / N_{\text {tot }}\right)=-7.51 \pm 0.06$, corresponding to an overabundance $[\mathrm{Au} / \mathrm{H}]=+3.52$.

Mercury (80)-Hgı,Hg ॥: For $\lambda>4000 \AA$ we replaced $\log g f \mathrm{~s}$ of the Kurucz line lists with the $\log g f$ s from Benck et al. (1989) for Hg_{I}. We took wavelengths and $\log g f \mathrm{~s}$ from

Table A.9. Isotopic and hyperfine structure of H_{I} at $4358 \AA$ and $\mathrm{Hg}_{\text {II }}$ at 3984 and $6149 \AA$.

Isot.	$\lambda(\AA)$	$\log g f_{\text {iso }}$	$\log g f_{\text {hfs }}$	$\log g f_{\text {comp }}$
Hg I	4358.3 Å	$\log g f_{\text {tot }}=-0.323$		
199a	4358.175	-1.301	-0.959	-2.583
201a	4358.228	-1.301	-0.832	-2.456
201b	4358.341	-1.301	-0.862	-2.486
201c	4358.288	-1.301	-1.552	-3.176
199b	4358.314	-1.301	-0.259	-1.883
201d	4358.316	-1.301	-1.352	-2.976
204	4358.320	-1.523	0.000	-1.846
202	4358.326	-0.432	0.000	-0.755
200	4358.332	-0.456	0.000	-0.779
198	4358.337	-0.886	0.000	-1.209
196	4358.341	-50.000	0.000	-50.323
201e	4358.352	-1.301	-0.462	-2.086
201f	4358.362	-1.301	-0.862	-2.486
199c	4358.379	-1.301	-0.649	-2.273
201g	4358.442	-1.301	-0.832	-2.456
199d	4358.520	-1.301	-0.959	-2.583
$\mathrm{Hg}_{\text {II }}$	3983.89 A	$\log g f_{\text {tot }}$	-1.520	
196	3983.771	0.000	-50.000	-51.520
198	3983.839	-0.886	0.000	-2.406
199a	3983.844	-1.301	-0.373	-3.194
199b	3983.853	-1.301	-0.240	-3.061
200	3983.912	-0.456	0.000	-1.976
201a	3983.932	-1.301	-0.438	-3.259
201b	3983.941	-1.301	-0.201	-3.022
202	3983.993	-0.432	0.000	-1.952
204	3984.072	-1.523	0.000	-3.043
$\mathrm{Hg}_{\text {II }}$	6149.47 A	$\log g f_{\text {tot }}$	+0.150	
199a	6149.419	-1.301	-0.436	-1.587
201a	6149.451	-1.301	-0.239	-1.390
204	6149.461	-1.523	0.000	-1.373
202	6149.469	-0.432	0.000	-0.282
200	6149.477	-0.456	0.000	-0.306
198	6149.483	-0.886	0.000	-0.736
199b	6149.504	-1.301	-0.198	-1.349
201b	6149.513	-1.301	-0.373	-1.524

Sansonetti \& Reader (2001) for $\mathrm{Hg}_{\text {II. }}$. Only for the $\mathrm{Hg}_{\text {II }}$ line at $3984 \AA$ did we adopt $\log g f=-1.520$, which is the mean value of -1.529 dex from Proffitt et al. (1999) and -1.510 dex from Sansonetti \& Reader (2001).

Mercury has seven isotopes: 196, 198, 199, 200, 201, 202 and 204. The isotopes 199 and 201 are affected by hyperfine splitting. We considered all the isotopic and hyperfine components for computing $\mathrm{Hg}_{\text {I }}$ at $4358 \AA$ and $\mathrm{Hg}_{\text {II }}$ at $3984 \AA$ and 6149 A. They are listed in Table A. 9 The hyperfine oscilla-
tor strengths were taken from Dolk et al. (2003). The mercury isotopic composition of HD 175640 was derived from $\mathrm{Hg}_{\text {II }}$ at $3984 \AA$ by assuming $\log \left(N(\mathrm{Hg}) / N_{\text {tot }}\right)=-6.30$. It is very different from the terrestrial one and very close to that found by Dolk et al. (2003). We recall that the terrestrial $\log g f_{\text {iso }}$ values of the isotopes 196, 198, 199, 200, 201, 202 and 204 are $-2.814,-1.001,-0.773,-0.636,-0.880,-0.525$ and -1.163 , respectively (Anders \& Grevesse 1989).

The abundance -6.30 dex that we derived from $\mathrm{Hg}_{\text {II }}$ at $\lambda 3984 \AA$ was used to compute the synthetic spectrum. Four Hg_{I} lines at $3125.665 \AA, 4046.56 \AA, 4358.3 \AA$, and $5460.73 \AA$ and five $\mathrm{Hg}_{\text {II }}$ lines at $3984 \AA, 5425.253 \AA 5677.105 \AA, 6149 \AA$, and $7944.555 \AA$ are predicted for this abundance. The computed profiles of the first three Hg_{I} lines are slightly stronger than the observed ones, while $\mathrm{Hg}_{\text {I }}$ at $5460.731 \AA$ is predicted weaker than observed. The line of $\mathrm{Hg}_{\text {II }}$ at $5425.253 \AA$ is heavy blended with $\mathrm{Fe}_{\text {II }} \lambda 5425.257 \AA$. The whole predicted blend is stronger than the observed one. $\mathrm{Hg}_{\text {II }}$ at $5677.105 \AA$ and $7944.555 \AA$ are not observed but they are predicted in the synthetic spectrum. Finally, the computed line of $\mathrm{Hg}_{\text {II }}$ at $6149.475 \AA$ is slightly stronger than the observed one.

We could conclude that, except for Hg_{I} at $5460.731 \AA$, the abundance derived from $\mathrm{Hg}_{\text {II }} \lambda 3984 \AA$ is too large in spite of its agreement with that found by Dolk et al. (2003), which is $\log \left(N(\mathrm{Hg}) / N_{\text {tot }}\right)=-6.35 \pm 0.15$ Furthermore, this abundance is lower than that. derived by Smith (1997) from $\mathrm{Hg}_{\text {II }}$ at $1942 \AA$, which was estimated to lie between -6.25 and -6.15 dex.

Table A.10. Unidentified absorption lines.

$\lambda_{\text {calc }}(\AA)$	Notes ${ }^{\text {a }}$
4735.55	Mn I 4635.542?
4753.20	Mn I 4753.226, Mn ${ }_{\text {II }} 4753.179$
4783.15	
4927.12	
4942.10	bl Fe ${ }_{\text {II }} 4942.177$
4977.53	
4991.60	
5031.28	
5036.30	
5037.87	
5038.30	
5038.87	Cri 5038.87?
5040.12	
5043.65	
5044.55	
5057.00	Hf if 5057.03?
5058.15	Hf II 5058.15?
5073.45	
5084.30	
5090.60	
5091.60	Mn if 5091.608, strong
5098.28	Strong
5101.83	
5104.75	
5105.85	Mn if 5105.889, As ir? strong
5121.87	
5122.05	
5126.00	
5126.20	
5126.83	
5127.20	
5127.33	
5128.48	
5128.60	
5130.00	
5130.17	
5130.63	
5131.70	
5132.00	
5134.06	
5134.16	
5135.27	
5136.15	
5136.30	
5138.60	
5139.07	
5139.25	Fe I 5139.251
5140.20	
5145.50	
5148.55	
5149.25	
5152.70	
5152.98	
5153.78	
5156.45	
5157.50	
5158.07	
5163.00	
5163.58	
5164.92	
5165.70	

$\lambda_{\text {calc }}(\AA)$ Notes a
5166.20
5167.125
5167.7
5167.82
5170.125
5171.30
5176.725
5177.40
5179.15
5179.55
5181.65
5186.10
5190.00
5190.45
5192.75
5193.725
5194.40
5195.10
5195.225
5195.95
5210.55
5215.20
5221.05
5222.175
5225.25
5225.35
5226.05
5228.625
5234.30
5236.00
5236.35
5236.45
5237.675
5238.475
5239.35
5240.325
5240.575
5241.20
5244.975
5245.075
5246.55
5247.70
5248.35
5257.35
5258.675
5260.100
5261.20
5261.60
5270.30
5272.05
5274.20
5277.80
5281.35
5282.225
5282.50
5288.075
5290.825
5300.10

$\lambda_{\text {calc }}(\AA)$	Notes ${ }^{\text {a }}$
5304.65	
5305.15	
5305.40	
5306.35	
5308.80	
5311.075	
5321.825	
5327.15	
5327.75	
5329.35	
5330.55	Brif
5331.23	As in?
5332.975	
5336.20	
5340.25	
5341.7	
5342.05	
5348.35	
5350.70	
5354.40	
5355.90	
5357.1	
5359.75	
5383.5	
5390.60	
5410.35	
5451.75	
5482.7	
5497.7	As in?
5505.75	
5506.35	
5513.425	
5515.20	
5516.00	
5518.075	
5518.20	
5518.525	
5521.875	
5533.1	
5533.4	
5536.575	
5537.075	
5537.45	
5558.075	As if
5620.00	
5651.3	As II?
5660.5	
5706.35	Si if 5706.37?
5734.3	
5753.85	

${ }^{a}$ The symbol "?" indicates possible identifications.
F. Castelli and S. Hubrig: The spectrum of HD 175640, Online Material p 33

Table A.11. Unidentified emission lines.

$\lambda_{\text {obs }}(\AA)$	$R_{\text {c }}$ (obs)	Notes ${ }^{\text {a }}$	$\lambda_{\text {obs }}(\AA)$	$R_{\text {c }}(\mathrm{obs})$	Notes ${ }^{\text {a }}$	$\lambda_{\text {obs }}(\AA)$	$R_{\text {c }}$ (obs)	Notes ${ }^{\text {a }}$
6000.15	1.018		6745.32	1.013	Cril 6745.239 ?	8732.65	1.016	
6037.93	1.020		6814.40	1.031		8761.60	1.022	Mn ${ }_{\text {II }} 8761.644$?
6146.07	1.013		6845.15	1.037		9032.95	1.035	
6177.50	1.027		6849.80	1.010		9036.12	1.086	
6255.37	1.018		7453.67	1.013		9208.45	1.041	Mn ${ }_{\text {II }} 9208.604$?
6312.25	1.021		7662.90	1.042		9242.65	1.033	Mn ${ }_{\text {II }} 9242.744$?
6344.80	1.019		8493.12	1.022		9394.00	1.055	
6447.10	1.018		8676.70	1.020		9497.465	1.021	$\mathrm{Fe}_{\text {II }}$?
6534.15	1.025		8706.30	1.007		9573.25	1.051	
6618.50	1.016		8721.55	1.013				

${ }^{a}$ The symbol "?" indicates possible identifications.

[^0]: * Based on observations obtained at the European Southern Observatory, Paranal, Chile (ESO program No. 67.D-0579).
 ** Appendices is only available in electronic form at http://www.edpsciences.org
 *** Atlas is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/425/263

[^1]: ${ }^{1}$ http://wwwuser.oat.ts.astro.it/castelli/stars.html

[^2]: ${ }^{2}$ http://www.eso.org/observing/dfo/quality/UVES/ pipeline/pipe_gen.html

[^3]: ${ }^{3}$ http://cfa-www.harvard.edu/HITRAN
 ${ }^{4}$ http://kurucz.harvard.edu/linelists/gf100

[^4]: 5 http://physics.nist.gov/cgi-bin/AtData/lines_form
 ${ }^{6}$ http://www.umh.ac.be/astro/dream.shtml

[^5]: ${ }^{7}$ http://www.astro.lsa.umich.edu/users/cowley/ AAS0503Don/P7143.htm

[^6]: ${ }^{a}$ The symbol "?" indicates doubtful emissions.

[^7]: ${ }^{8}$ http://www.astro.lsa.umich.edu/users/cowley/ AAS0503Don/P7143.htm

