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Abstract

Since its introduction in 2011 the variant call format (VCF) has been widely adopted for pro-

cessing DNA and RNA variants in practically all population studies—as well as in somatic

and germline mutation studies. The VCF format can represent single nucleotide variants,

multi-nucleotide variants, insertions and deletions, and simple structural variants called and

anchored against a reference genome.

Here we present a spectrum of over 125 useful, complimentary free and open source

software tools and libraries, we wrote and made available through the multiple vcflib,

bio-vcf, cyvcf2, hts-nim and slivar projects. These tools are applied for compari-

son, filtering, normalisation, smoothing and annotation of VCF, as well as output of statistics,

visualisation, and transformations of files variants. These tools run everyday in critical bio-

medical pipelines and countless shell scripts. Our tools are part of the wider bioinformatics

ecosystem and we highlight best practices.

We shortly discuss the design of VCF, lessons learnt, and how we can address more

complex variation through pangenome graph formats, variation that can not easily be repre-

sented by the VCF format.

Author summary

Most bioinformatics workflows deal with DNA/RNA variations that are typically repre-

sented in the variant call format (VCF)—a file format that describes mutations (SNP and

MNP), insertions and deletions (INDEL) against a reference genome. Here we present a

wide range of free and open source software tools that are used in biomedical sequencing

workflows around the world today.

This is a PLOS Computational Biology Software paper.
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1 Introduction

From its introduction in 2011 the VCF variant call format has become pervasive in bioinfor-

matics sequencing workflows [1, 2]. VCF is one of the important file formats in bioinformatics

workflows because of its critical role in describing DNA and RNA variants. VCF can describe

single- and multi- nucleotide polymorphisms (SNP & MNP), insertions and deletions

(INDEL), and simple structural variants (SV) against a reference genome [1]. Practically all

important variant callers, such as GATK [3] and freebayes [4], produce files in the VCF format.

The VCF file format is used in population studies as well as somatic mutation and germline

mutation studies. In this paper we discuss the tools we wrote to process VCF and we shortly

discuss strengths and shortcomings of the VCF format. We discuss how we can improve future

variant calling in its contribution to population genetics.

An important part of the success of VCF that it is a relatively simple and flexible standard

that is easy to read, understand and parse. This feature has resulted in wide adoption by bioin-

formatics software developers. VCF typically scales well in bioinformatics workflows because

files can be indexed [5], compressed [1, 6, 7] and trivially parallelized in workflows by splitting

files and processing them independently, e.g. [4].

Here we present and discuss a spectrum of important and complementary tools and librar-

ies we wrote for processing VCF in sequencing workflows, i.e., vcflib, bio-vcf, cyvcf2,

slivar and hts-nim. These tools were created by the authors for the demands of large

VCF file processing and data analysis following the Unix philosophy, as explained in the ‘small

tools manifesto’ [8]. Development of these tools was often driven by the need to transform

VCF into other formats, to digest information, to address quality control, and to compute sta-

tistics. The vcflib toolkit contains both a library and collection of executable programs for

transforming VCF files written in the C++ programming language for performance. bio-
vcf and slivar are domain-specific languages (DSL) for convenient querying and trans-

forming VCF. cyvcf2 is a python library [9]. hts-nim is written in the compiled Nim lan-

guage [10]. These are all useful tools and libraries for VCF processing that can pipe into each

other for advanced processing.

2 Design and implementation

2.1 vcflib C++ tools and libraries

The vcflib toolkit contains both a library and collection of executable programs for trans-

forming VCF files written in the C++ programming language for performance. vcflib
includes a toolkit for population genetics: the Genotype Phenotype Association Toolkit

(GPAT). These ransformations and statistical functions provided in the toolkit were written

for the requirements of projects such as the The 1,000 Genomes Project [11] and NIST’s

genome in a bottle [12].

At its core, vcflib provides C++ tools and a library application programmers interface

(API) to plain text and compressed VCF files. A collection of 83 command line utilities is pro-

vided, as well as 44 command line scripts (see Table 1). Most of these tools are designed to be

strung together: piping the output of one program into the next, thereby preventing the crea-

tion of intermediate files, parallelize processing, and reducing the number IO operations. For

example, the vcfjoincalls shell script includes the pipeline shown in Fig 1 (see Table 1

for a short description of the individual vcflib steps; vt is a variant normalization tool [13]):

2.2.1 The evolving VCF textual format. The VCF format is a textual file format: each line

line describes a variant, i.e., a single nucleotide variant (SNV), an insertion, a deletion or a

structural variant with rich annotation [1]. In a VCF line, fields are separated by the TAB char-

acter. Fields for chromosome, position, the reference sequence, the ALT alleles, and fields for
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quality, filter, INFO, FORMAT and calls for multiple samples are expected (see Fig 2). To split

fields, for example for ‘ALT T,CT’ another separator is used; in this case a comma. VCF makes

use of many separators by splitting fields into subfields, subsubfields and so on: effectively pro-

jecting a ‘tree’ datastructure onto a single line. The advantage is that it is easy to view a VCF

file and it is almost trivial to write a basic VCF parser and it is easy to add information to VCF,

sometimes leading to unwieldy nested annotations. The tree-structure is also the reason VCF

Table 1. A selection of VCF processing tools included with vcflib (a full list of over 125 tools with full descriptions and options can be found in the online

vcflib documentation [17]).

Name Description

Tools for filtering

vcfaddinfo add info fields from a second VCF file for records missing in the first file.

vcffixup insert AC and NS fields using sample genotypes

vcffilter filter on common fields, e.g. DP > 10

vcfuniq filter out duplicate entries

vcfuniqalleles filter unique alleles only

Tools for transformation

vcfintersect set operations—intersect, union, complement

vcfstreamsort sort

vcfoverlay merge files by overlaying

vcfcombine combine samples on identical sites

vcffixup update fields

vcfannotate annotate records from BED file

vcfflatten flatten multi-allelic sites with common ALT genotype

vcfgeno2haplo transform phased alleles into haplotypes

vcfsamplediff compare VCF files and add annotations to INFO

vcfprimers design primers

vcf2tsv convert to tab separated table

vcf2fasta convert to FASTA

vcf2bed convert to BED

vcf2sqlite convert to SQLite

smoother averages a set of scores over a sliding genomic window

Tools for metrics

vcfdistance compute distance between positions and add field

vcfentropy annotates and add field for sequence entropy for a window

Tools for genotyping

vcfallelicprimitives split records if multiple allelic primitives (gaps or mismatches) are specified in a single VCF record

genotypeSummmary summarizes genotype counts for bi-allelic SNVs and INDEL

hapLRT likelihood ratio test for haplotype lengths

Tools for statistics

iHS integrated ratio of haplotype decay between reference and non-reference allele

vFst compute vFst as a measure of CNV stratification

vcfroc compute a pseudo-ROC curve

meltEHH plot extended haplotype homozygosity (EHH) curves

plotHaps provide output for haplotype plots

popStat population genetic statistics for each SNP

vcfrandomsample random sampling

Tools for validation

vcfcheck check integrity and identity against reference genome

https://doi.org/10.1371/journal.pcbi.1009123.t001
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files do not easily fit into spreadsheets. An evolving VCF ‘standard’ is tracked by the samtools/

htslib project [14] and later amendments are particularly focused on more complex structural

arrangements of DNA/RNA with ALT fields taking somewhat ad hoc creative forms, such as

‘A[3:67656[’ combined with an INFO field containing ‘SVTYPE = BND’ meaning that starting

at reference position on a different chromosome, an ALT A nucleotide is followed by the

sequence starting at chromosome 3 and position 67656. These SV annotations do away with

some of the original simplicity of VCF. There are many such exensions introduced since the

first publication of the VCF ‘standard’ that are used by specific SV and liftover/multiref tools

(e.g. DVCF [15] and spVCF [16]) and largely ignored by most VCF processing tools, though

our generic DSLs bio-vcf and slivar should be able to parse them.

3 Results

3.1 vcflib application programming interface (API)

The vcflib API describes a class vcflib::VariantCallFile to manage the reading

of VCF files, and vcflib::Variant to describe the information contained in a single VCF

record. The API provides iterators that are used in every included tool. For every record the

tree-type hierarchy (Fig 2) of information can be navigated in the record through interfaces to

the fixed fields (CHROM, POS, ID, QUAL, FILTER, INFO) and sample-related fields (FOR-

MAT, and samples). vcflib implements functions for accessing and modifying data in these

fields; interpreting the alleles and genotypes in record; filtering sites, alleles, and genotypes via

a domain-specific filtering boolean language; and reading and writing VCF streams which are

shared and used by all included tools.

3.2 vcflib command line tools

Table 1 short lists some important vcflib tools. A full list of tools is documented on the

vcflib website [17]. Just to show the diversity of tools that can be explored we give a few

examples: vcflib includes a wide range of tools for transformations, e.g., vcf2dag con-

verts VCF to a partially ordered directed acyclic graph (DAG). vcfannotate intersects the

records in the VCF file with targets provided in a BED file and vcfannotategenotypes
annotates genotypes in the first file with genotypes in the second. vcfclassify generates a

new VCF where each variant is tagged by allele class: SNP, Ts/Tv, INDEL, and MNP.

vcfglxgt sets genotypes using the maximum genotype likelihood for each sample. vcfin-
fosummarize and vcfsample2info edit annotations given in the per-sample fields and

Fig 1.

https://doi.org/10.1371/journal.pcbi.1009123.g001

PLOS COMPUTATIONAL BIOLOGY vcflib and tools for processing the VCF variant call format

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009123 May 31, 2022 4 / 14

https://doi.org/10.1371/journal.pcbi.1009123.g001
https://doi.org/10.1371/journal.pcbi.1009123


Fig 2. Example of the VCF format and a VCF transformation to Javascript Object Notation (JSON) using bio-
vcf. (a) the line-based VCF record makes use of separators to split tab-delimited fields into subfields. Subfields are split

with characters, =:;/ and so on. This splitting effectively projects a ‘tree-like’ datastructure that can also be represented as

(b) a JSON record. JSON is used as a common data exchange format for databases and web-services. This example was

generated with (c) the bio-vcf tool using a template [24]. bio-vcf transform data to any textual format, including

RDF, HTML, XML etc. See also the bio-vcf section.

https://doi.org/10.1371/journal.pcbi.1009123.g002
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adds the mean, median, min, or max to the site-level INFO. vcfleftalign Left-align

INDELs and complex variants in the input using a pairwise REF/ALT alignment followed by a

heuristic, iterative left realignment process that shifts INDEL representations to their absolute

leftmost (5’) extent. vcflib includes tools for genotype detection. For example, the aptly

named abba-baba tool calculates the tree pattern for four individuals with one ancestral

reference.

3.3 vcflib tools for genome-wide association (GWA)

vcflib includes statistical GWA tools for phenotype association straight from VCF files. We

have developed a flexible genotype-phenotype software library designed specifically for large

and noisy NGS datasets. A mixture of traditional and novel population genetic methods have

been implemented in the Genotype Phenotype Association Toolkit (GPAT++) part of

vcflib. For example, permuteGPAT++, adds empirical p-values to a GPAT++ score. And

vcfld computes linkage disequilibrium (LD). GPAT++ includes basic population stats (Af,

Pi, eHH, oHet, genotypeCounts) and several flavors of Fst and tools for linkage, associ-

ation testing (genotypic and pooled data), haplotype methods (hapLrt), smoothing, permuta-

tion, and plotting.

For example, Wright’s F-statistics provide important insights into the evolutionary pro-

cesses that influence the structure of genetic variation within and among populations (Fig 3)

[18]. Fst is defined as the correlation between randomly sampled gametes relative to the total

drawn from the same subpopulation [19]. wcFst is Weir & Cockerham’s Fst for two popula-

tions [20]. pFst is a probabilistic approach for detecting differences in allele frequencies

between two populations and bFst is a Bayesian approach. bFst accounts for genotype

uncertainty in the model using genotype likelihoods [18]. With vcflib the likelihood func-

tion has been modified to use genotype likelihoods provided by variant callers. There are five

free parameters estimated in the model: each subpopulation’s allele frequency and Fis (fixa-

tion index, within each subpopulation), a free parameter for the total population’s allele fre-

quency, and Fst. pVst calculates Vst to test the difference in copy numbers at each SV

between two groups: Vst = (Vt − Vs)/Vt, where Vt is the overall variance of copy number and

Vs the average variance within populations. sequenceDiversity calculates two popular

metrics of haplotype diversity: Pi and extended haplotype homozygosity (eHH). Pi is calculated

using the Nei and Li formulation [21]. eHH is a convenient way to think about haplotype

diversity. When eHH = 0 all haplotypes in the window are unique and when eHH = 1 all

haplotypes in the window are identical. The vcfremap tool attempts to realign, for each

alternate allele, against the reference genome with a lowered gap open penalty and adjusts the

CIGAR and REF/ALT alleles accordingly.

Fig 3. Smoothed pFst (−log10) statistic with color coded number of variants in a window. As computed by vcflib’s pFst and smoother tools

[17].

https://doi.org/10.1371/journal.pcbi.1009123.g003
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vcflib includes tools for genotype statisics. vcfgenosummarize adds summary sta-

tistics to each record summarizing qualities reported in called genotypes. It uses RO (reference

observation count), QR (quality sum reference observations) AO (alternate observation

count), QA (quality sum alternate observations). The normalizeHS is used for iHS and

XP-EHH scores [22].

A full list of over 125 vcflib commands and functionality can be found on the website, as

well as documentation and examples of application [17].

3.4 Bio-vcf and Slivar flexible command-line DSL filters and transformers

3.4.1 bio-vcf. Compared to vcflib with its many individual dedicated command line

tools, bio-vcf takes a different approach by providing a single command line tool that uses a

domain specific language (DSL) for processing the VCF format. Thanks to a dynamic interpre-

tation of the VCF tree representation (see Fig 2) all data elements in a VCF header or record can

be reached using field names and their sub names. For example, Fig 4 is a valid select filter:

which selects all variants where the sample depth field s.db is larger than 20, where the FILTER
field of a record r does not start with the letters LowQD (note it uses a Perl/Ruby-style regular

expression or regex [23]), and where the tumor bcount of the ALT allele is larger than 4. The letter

‘r’ represents a record or line in a VCF file and the letter ‘s’ stands for each sample in a record.

The naming of variables, such as s.dp and r.tumor.bcount, is inferred from the VCF file

itself, so if a VCF has different naming conventions they are picked up automatically.

bio-vcf typically reads from the terminal STDIN and writes to STDOUT. The following

full command line invocation reads VCF files and filters for chromosomes 1–9 where the qual-

ity (r.qual) is larger than 50. It also checks for non-empty samples where the sample read

depth is larger than 20. For each selected record with --eval it outputs a BED record (the

default output is the VCF record itself, useful for filtering) (Fig 5):

For comparisons and for output, fields can be converted to integers, floats and strings with

to_i, to_f and to_s respectively. Note that these are Ruby functions and, in fact, all such Ruby

functionality is available in bio-vcf statements. For extreme flexibility bio-vcf even sup-

ports lambdas which makes for very powerful queries and transformations. For example, to out-

put the count of valid genotype fields in samples one could use the command shown in Fig 6,

Fig 4.

https://doi.org/10.1371/journal.pcbi.1009123.g004

Fig 5.

https://doi.org/10.1371/journal.pcbi.1009123.g005

Fig 6.

https://doi.org/10.1371/journal.pcbi.1009123.g006
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where count is a function that invokes the lambda s.gt!=“./.”, i.e., where the genotype

gt of sample s is not equal to “./.”. Sample ‘s’ is passed as a parameter.

Because of the flexibility of bio-vcf almost all imaginable data queries can be executed.

bio-vcf was implemented for processing large VCF files and is fast because it is designed

make use of multi-core processors (using Linux parallelized copy-on-write, i.e. a technique

where RAM is shared between processes). bio-vcf is also ‘lazy’ which means that it only

parses fields when they are used. For example, in the above query, only the sample GT field is

unpacked and parsed to get a result. All other data in the record is ignored by the query and

not evaluated. This contrasts largely with most VCF parsers in use today.

Finally, bio-vcf comes with a full parser and lexer that can tokenize the VCF file header

and transform that in some other format. For example, the command in Fig 7

will turn the metadata information passed by GATK [3] into a JSON document. To get a full

JSON document of the VCF file use a template that looks like Fig 8,

and run the command shown in Fig 9.

The high expressiveness and adaptable parsing makes bio-vcf a very powerful tool for

searching, filtering and rewriting VCF files. See the bio-vcf website for full information on

record and sample inclusion/exclusion filters, generators, multicore performance, field

Fig 7.

https://doi.org/10.1371/journal.pcbi.1009123.g007

Fig 8.

https://doi.org/10.1371/journal.pcbi.1009123.g008

Fig 9.

https://doi.org/10.1371/journal.pcbi.1009123.g009
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computations, statistics, genotype processing, set analysis and templates for user definable out-

put, including templates for output of VCF header information and records for RDF, JSON,

LaTeX, HTML and BED formats [24].

3.4.2 Slivar. Similar to bio-vcf, slivar allows users to specify simple expressions for

filtering and annotation [25]. Whereas bio-vcf uses Ruby to supply the DSL, slivar uses

Javascript. slivar has built-in pedigree support for the samples so that, for example, a single

expression can be applied to every trio (mother, father, child) to identify de novo variants, as

shown in Fig 10:

The expression above checks the genotype pattern along with genotype quality and limits to

rare variants by INFO.gnomad_af< 0.001.

Expressions on families (including multigenerational) and arbitrary groups are supported

so that, for example, expressions can be applied to tumor-normal pairs using tumor and

normal labels.

3.5 VCF programming libraries

VCF programming libraries are mainly useful when direct calls to vcflib and bio-vcf com-

mand line tools proves too limited. The Bio� libraries, e.g., biopython [26], bioperl [27], bioruby

[28] and R’s CRAN [29], contain VCF parsers that may be useful. But a first point of call may be

vcflib itself as it is also a C++ programming library and in addition to being an integral part

of the vcflib tools mentioned here is used by, for example, the freebayes variant caller [4].

Of particular interest is the fast cyvcf2 library that was started in 2016 with htslib [14]

bindings and is actively maintained by co-author Pedersen today [9]. Similar to bio-vcf it

presents a DSL-type language that can be used in Python programming. Meanwhile hts-nim

[10] contains bindings for the Nim programming language with similar syntax and functional-

ity. For example a nim bin counter (part of hts-nim-tools/vcf-check [10]) can be written as

shown in Fig 11:

Nim is a statically typed compiled language that looks very similar to Python and, because it

transpiles to C, Nim has a much faster runtime and can link without overheads against C

libraries such as vcflib and htslib.

Fig 10.

https://doi.org/10.1371/journal.pcbi.1009123.g010

Fig 11.

https://doi.org/10.1371/journal.pcbi.1009123.g011
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Finally, another tool of interest, by the same author, is vcfanno; written in the Go lan-

guage and allows annotations of a VCF with any number of INFO fields from any number of

VCFs or BED files. vcfanno uses a simple conf file to allow the user to specify the source

annotation files and fields and how they will be added to the info of the query VCF [30].

4 Discussion

Ten years is a long time in bioinformatics and the VCF file format is starting to show its age.

Not only is the VCF format redundant and bloated with duplication of data, a more important

concern is that the VCF format does not accommodate interesting complex genomic varia-

tions, such as complex and nested variants, such as superbubbles, ultrabubbles, and cacti [31–

33]. An even more important shortcoming of VCF is that it always depends on a single refer-

ence genome, resulting in variant calling bias and missing out on variation not represented in

the reference [33]. One solution is to work with multiple reference genomes, but comparing

VCF files from different reference genomes is challenging—even for different versions of one

reference genome.

To address such challenges the authors are actively working on pangenome approaches that

store variation in a pangenome graph format, e.g. [33–39]. Pangenomes can incorporate multi-

ple individuals and multiple reference genomes. Pangenomes can cater for very complex struc-

tural variation. Pangenomes are also efficient in storing information, including metadata,

without redundancy. In effect, pangenomes cater for a ‘lossless’ view of all data at the popula-

tion level. This largely differs from VCF-type data because, despite mentioned data size, a gen-

erated VCF implies a data reduction step—or data loss—that effectively disconnects variants

from each other and related features, such as quality metrics. This means that rebuilding the

original data from VCF files is virtually impossible. In contrast, with the newer pangenome

formats it is possible to rebuild sequences independent of the underlying complexity of fea-

tures. Having a full view of the data makes downstream analysis, such as population genotyp-

ing, more powerful with improved results, e.g. [33].

The VCF file format has become a crucial part of almost all sequencing workflows today.

The design and presentation of the VCF file format can set the norm for designing future file

formats [1, 2], but we can also learn from its mistakes. In this paper we wrote VCF ‘standard’

consistently between quotes because, even though there exists a standardization effort—now at

VCFv4.3 [2]—VCF is flexible by design, alternative VCF standards are introduced (e.g. [15,

16]) and most tools take liberties when it comes to producing VCF files. Therefore all VCF

parsers have to take a flexible approach towards digesting input data and ignore input data

that is not understood.

We recognise that the success of a file format requires a crucial focus on having an early

‘standard’ that is both easy to understand and flexible enough to grow, in line with the success

of other bioinformatics file formats, such as SAM/BAM [2] and GFF [40]. Biology is a fast

moving field and it is impossible to predict how a file format is going to be used in a (near)

future. The downside of such flexibility is that older software may not support features that

were added later. One of the weakest aspects of the VCF format is its metadata: next to ad hoc
metadata in records (see Fig 2), the header record requires specialized parsing and ignores

existing ontologies.

Also for the VCF records, robust validation, error checking and correctness checking is vir-

tually impossible. Great attention should therefore be paid to any amendments to an earlier

standard to keep backward compatibility when possible. VCF and many other formats in bio-

informatics use layered character separators as a grammar for defining a tree structure of data

(see Fig 2). This type of format requires specialized ad hoc parsers for every format. In the
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future, when designing new formats, we strongly suggest to base a new format on existing stan-

dards such as JSON, JSON-LD and RDF web formats for storing hierarchical data and graph

data respectively. Each of these formats has efficient storage implementations. A future format

should also benefit from reusing existing ontologies or create and champion a new ontology, if

one does not exist, so data becomes easily shareable, comparable and queryable and living

upto FAIR requirements [41]. Not only are JSON, JSON-LD and RDF natively and efficiently

supported by most computer languages, they are also more easily embedded in existing infra-

structure, such as NoSQL databases.

Software development and distribution practices

In this paper we present three types of tools that mirror three common approaches in bioinfor-

matics towards large data parsing. First are vcflib Unix style command line tools where

each tool does a small job [8]. Second are bio-vcf and slivar-style extremely flexible

command line DSLs. And third are programming against libraries that can be called from pro-

gramming languages, such as cyvcf2 and hts-nim, as well as vcflib and bio-vcf.

A wide range of solutions exist for VCF processing that make use of these three approaches

and functional overlap is found between vcflib, bio-vcf, cyvcf2, the original vcftools

[1], bcftools [6] and the existing Bio� programming libraries, such as biopython [26], bioruby

[28] and biojava [42]. vcftools and bcftools provide annotation, merging, normalization and

filtering capabilities that complement functionality and can be combined in workflows with

vcflib and bio-vcf. These solutions together provide a comprehensive and scalable way

of dealing with VCF data and every single tool represents a significant investment in research

and software development. Therefore, before writing a new parser from scratch, we strongly

suggest to first study the existing solutions. In the rare case a new tool is required it may be an

idea to merge that with existing projects so everyone can benefit.

Once software is written, it is important software development and maintenance continues.

In the biomedical sciences it is a clear risk for projects to get abandoned once the original

author moves on to another job or other interests; partly due to a lack of scientific recognition,

attribution and reward [43]. We note that with the pyvcf project, for example, this has hap-

pened twice and the github contribution tracker shows no more contributions by a project

owner. This means no one is merging changes back into the main code repository and the

code is essentially unmaintained. vcflib, bio-vcf and cyvcf2, in contrast, show a con-

tinuous adoption of code contributions thanks to the original authors encouraging others to

take ownership and even release versions of the software. We also recognise the importance of

creating small tools that can interact with each other following the Unix philosophy.

For overall adoption of software solutions it is important the tools and documentation get

packaged by software distributions, such as Bioconda [44], Debian [45] and GNU Guix [46,

47]. Bioconda downloads are a good estimation of relative popularity because they tend to rep-

resent actual installations. vcflib, for example, was installed over 70,000 times through Bio-

conda by December 2021 (30,000 in 2021 alone). Note that vcflib is also an integral part of

the freebayes variant caller with an additional 160,000 downloads through Bioconda (50,000 in

2021). Meanwhile bio-vcf was installed over 17,500 times through Bioconda by December

2021.

Future work

Software development never stands still. With new requirements tools get updated. With the

evolving VCF ‘standard’ and associated tooling for pangenomes and reference based

approaches we keep updating our tools and libraries. We intend to add more documentation
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and regression tests. One recent innovation in vcflib is the generation of Unix ‘man’ pages

from markdown pages and the --help output from every individual tool and script that also

doubles as regression tests. This documentation is always up to date because when it goes out

of sync the embedded tests fail. We think it will also be useful to add tool descriptions in the

common workflow language (CWL) format [47–49]. CWL definitions allow easy sharing of

tool components between sequencing workflows. The semantics of inputs and outputs are for-

mally represented in a CWL workflow (a tool is one definition, the connection of tools

another). The scenario will be to write a CWL tool definition that can be converted to docu-

mentation and running tests. One of the interesting features of CWL tool definitions is ‘type

checking’ of tool calls, e.g. an error is shown if wrong parameters are used. Likewise CWL run-

ners check return codes are more powerful than shell scripts.

Despite our criticism of VCF, VCF as a file format is likely to remain in use. To replace

VCF most existing tools and workflows used in sequencing would have to be rewritten. Pan-

genome tools, in principle, are capable of producing reference guided VCF files from GFA

graph structures. These tools guarantee compatibility with upstream and downstream analysis

workflows. We predict that pangenome approaches will play an increasingly important role in

sequence analysis and, at the same time, VCF processing tools will remain a crucial part of

sequencing workflows for the forseeable future.
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