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Abstract. Speech technology has been playing a central role in enhancing human-machine interactions, especially

for small devices for which graphical user interface has obvious limitations. The speech-centric perspective for

human-computer interface advanced in this paper derives from the view that speech is the only natural and expressive

modality to enable people to access information from and to interact with any device. In this paper, we describe

some recent work conducted at Microsoft Research, aimed at the development of enabling technologies for speech-

centric multimodal human-computer interaction. In particular, we present a case study of a prototype system,

called MapPointS, which is a speech-centric multimodal map-query application for North America. This prototype

navigation system provides rich functionalities that allow users to obtain map-related information through speech,

text, and pointing devices. Users can verbally query for state maps, city maps, directions, places, nearby businesses

and other useful information within North America. They can also verbally control applications such as changing

the map size and panning the map moving interactively through speech. In the current system, the results of the

queries are presented back to users through graphical user interface. An overview and major components of the

MapPointS system will be presented in detail first. This will be followed by software design engineering principles

and considerations adopted in developing the MapPointS system, and by a description of some key robust speech

processing technologies underlying general speech-centric human-computer interaction systems.
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1. Introduction24

Speech recognition technology enables a computer25

to automatically convert an acoustic signal uttered by26

users into textual words, freeing them from the con-27

straints of the standard desktop-style interface (such28

as mouse pointer, menu, icon, and window etc.). The29

technology has been playing a key role in enabling30

and enhancing human-machine communications.31

In combination with multimedia and multimodal32

processing technologies, speech processing will in33

the future also contribute, in a significant way, to34

facilitating human-human interactions. In applications35

such as distributed meetings, audio-visual browsing, 36

and multimedia annotations, automatic processing 37

of natural, spontaneous speech will collaborate with 38

automatic audio-visual object tracking and other 39

multimedia processing techniques to complete full 40

end-to-end systems. In addition to the multimedia 41

applications, the most important role that speech can 42

play is in a full range of the devices that demand 43

efficient human inputs. Since speech is the only 44

natural and expressive modality for information access 45

from and interaction with any device, we highlight 46

the speech-centric view of human-machine interface 47

(HCI). 48
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Speaking is the most natural form of human-to-49

human communication. We learn how to speak in the50

childhood, and we all exercise our speaking communi-51

cation skills on a daily basis. The possibility to translate52

this naturalness of communication into the capability53

of a computer is our natural expectation, since a com-54

puter is indeed equipped with huge computing and55

storage capacities. However, the expectation that com-56

puters should be good at speech has not been a reality,57

at least not yet. One important reason for this is that58

speech input is prone to error due to imperfection of59

the technology in dealing with variabilities from the60

speaker, speaking style, and the acoustic environment.61

The imperfection, in addition to a number of social and62

other reasons, raises the issue that speech alone is not63

sufficient as the most desirable input to computers. Use64

of multimodal inputs in an HCI system, which fuses65

two or more input modalities (speech, pen, mouse, etc.)66

to overcome imperfection of speech technology in its67

robustness as well as to complement speech input in68

other ways, is becoming an increasingly more impor-69

tant research direction in HCI.70

Major HCI modalities in addition to speech are71

related to graphic user interface (GUI). GUI is based72

primarily on the exploitation of visual information,73

and has significantly improved HCI by using intuitive74

real-world metaphors. However, it is far from the ulti-75

mate goal of allowing users to interact with computers76

without training. In particular, GUI relies heavily77

on a sizeable screen, keyboard, and pointing device,78

which are not always available. In addition, with more79

and more computers designed for mobile usages and80

hence subject to the physical size and hands-busy or81

eyes-busy constraints, the traditional GUI faces an82

even greater challenge. Multimodal interface enabled83

by speech is widely believed to be capable of dramat-84

ically enhancing the usability of computers because85

GUI and speech have complementary strengths.86

While speech has the potential to provide a natural87

interaction model, the ambiguity of speech and the88

memory burden of using speech as output modality89

on the user have so far prevented it from becoming the90

choice of mainstream interface. Multimodal Intelligent91

Personal Assistant Device, or MiPad, was one of our92

earlier attempts in overcoming such difficulties by93

developing enabling technologies for speech-centric94

multimodal interface. MiPad is a prototype of wireless95

Personal Digital Assistant (PDA) that enables users to96

accomplish many common tasks using a multimodal97

spoken language interface (speech + pen + display). 98

MiPad, as a case study for speech-centric multimodal 99

HCI application, has been described in detail in our 100

recent publication [2]. In this paper, we will present a 101

second case study based on a new system built within 102

our research group more recently, called MapPointS. 103

During past several years, many different methods 104

of integrating multiple modalities (voice, visual, and 105

others) in HCI have been proposed and implemented, 106

and some key issues have been discussed [10–13, 16]. 107

Many prototype systems have also been built based on 108

the use of multiple modalities [1, 2, 7, 9, 14], most 109

of which have focused on the special advantage of 110

the speech input for mobile or wireless computing as 111

in multimodal PDA’s. Both of our prototype systems, 112

MiPad and MapPointS, have such mobile computing 113

in the special design consideration. Their design also 114

takes the speech-centric perspective — fully exploiting 115

the efficiency of the speech input where other modali- 116

ties have special difficulties. 117

The focus of this paper, the prototype MapPointS, is 118

a speech-centric, multimodal, location-related, map- 119

query application for North America. The unique 120

advantage of the system is its full and direct ex- 121

ploitation of the frequently updated backend database 122

provided by the existing Microsoft product, Map- 123

Point (http://mappoint.msn.com). MapPointS essen- 124

tially adds the “Speech” modality and its interface into 125

MapPoint, and hence MapPointS. MapPointS provides 126

rich functionalities to allow the users to obtain map- 127

related information through speech, text, and pointing 128

devices. (MapPoint provides the same functionalities 129

with the inputs of text and pointing devices only). 130

With MapPointS, the users can verbally query for 131

state maps, city maps, directions, places (e.g., school 132

names), nearby businesses, and many other useful in- 133

formation. They can also verbally control applications 134

such as changing the map size and panning the map 135

moving interactively through speech. In the current 136

system, the results of the queries are presented back to 137

users through GUI. An overview and the major com- 138

ponents of the MapPointS system will be presented 139

in detail in this paper first. Following this presen- 140

tation, we will describe several key software design 141

engineering principles and considerations in devel- 142

oping MapPointS. Finally we will present some key 143

speech processing technologies underlying the gen- 144

eral speech-centric HCI systems including MiPad and 145

MapPointS. 146
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2. System Overview and Functionality147

of Mappoints148

MapPointS is a map query application that supports149

a large set of map query commands through speech,150

text, and pointing devices. These commands can be151

classified into the following five categories:152

1. Application Control: Application control com-153

mands are used to control MapPointS applications.154

For example, a user can use speech (as well as other155

modalities) to quit the application, to pan the map156

towards eight directions, to zoom the maps, or to157

open and save the map.158

2. Location Query: Location queries are used to search159

for the map of a specific location. For example, a160

user can query for a map with city names, state161

names, joint city and state names, place names (e.g.,162

Seattle University), or referenced locations (e.g.,163

here; this place; and this area, etc., which are indi-164

cated by the mouse click rather than by the speech165

input.166

3. Route Query: Route queries are used to obtain167

directions from one location to another. There168

are two types of such queries. The first type169

contains both “from” and “to” information. For170

example, a user can say “How do I get from171

<startlocation> to <endlocation>” to obtain direc-172

tions from <startlocation> to <endlocation>. The173

<startlocation> and <endlocation> can be any lo-174

cation type specified in location query. The second175

type of queries contains information about “to lo-176

cation” only. “How may I go to <location>” is an177

example of such queries. When a query with “to178

location” only is submitted by a user, the system179

will infer the most probable from location based on180

the user’s dialog context.181

4. Nearest Query: “Nearest” queries are used to find182

the closest or the nearest instance of a specific type183

of places to the current location. MapPointS sup-184

ports about 50 types of locations including bank,185

gas station, airport, ATM machine, restaurant, and186

school. For instance, a user can query for the near-187

est school, Chinese restaurant, etc. When such a188

query is made, MapPointS will infer the most prob-189

able current reference location based on the dialog190

context.191

5. Nearby Query: “Nearby” queries are similar to the192

“nearest” queries above. The difference is that all193

nearby instances of a type of places, instead of only194

one, are displayed in the nearby queries. For ex- 195

ample, a user can query for all nearby gas stations. 196

Similar to the situation of the nearest query, Map- 197

PointS needs to infer the most probable reference 198

location before executing the query. 199

Examples of the above five types of queries are pro- 200

vided now. Figure 1 is a screen shot where a map of 201

Seattle is displayed as a result of speech command used 202

in the location query: “show me a map of Seattle”. A 203

typical map of Seattle with its surroundings is imme- 204

diately displayed. All cities in the U.S. can be queries 205

in the same manner. 206

Figure 2 gives a multimodal interaction example 207

where the user makes a location query by selecting 208

an area with mouse and zooming the picture to just 209

that part of the map while using the following simul- 210

taneous speech command: “show me this area”. The 211

portion of the map selected by the user is displayed in 212

response to such a multimodal query. 213

In Fig. 3 is another multimodal interaction example 214

for the nearest location query. In this case, the user 215

clicks on a location, and more or less simultaneously 216

issues the command: “Show me the nearest school” 217

with speech. MapPointS displays “Seattle University” 218

as the result based on the location that the user just 219

clicked on. 220

In Fig. 4 we show an example of the route query to 221

find the direction from Seattle to Boston, with a speech 222

utterance such as “Show me directions from Seattle to 223

Boston”, or “How may I go from Seattle to Boston”, 224

etc. If the immediately previous location is Seattle, 225

then saying just “How may I go to Boson” will give 226

the identical display as the response to the query. 227

We provide a further example in Fig. 5 of query- 228

ing nearby restaurants by speaking to MapPointS with 229

“show me all nearby restaurants”. The system assumes 230

the current location of the user based on the previous 231

interactions, and is hence able to display all nearby 232

restaurants without the need for the user to specify 233

where he currently is. 234

For the system functionalities illustrated in the above 235

description and examples, MapPointS demonstrates 236

the following four specific features: 237

1. Multi-Modal Human-Computer Interaction: As we 238

discussed in Introduction section, one of the trends 239

of HCI is the integration of multi-modal inputs, 240

through which speech recognition is integrated with 241

various other modalities such as keyboard and 242
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Figure 1. Navigation using voice command: “show me a map of Seattle”.

mouse inputs. MapPointS is a good show case for243

this capability since it includes both location search244

(via the name) and location pointing/selection. The245

former is most naturally accomplished using voice246

command because it is difficult to use a mouse or247

a pen to search for one of a very large number of248

items (cities, etc). The latter, location pointing and249

selection, on the other hand, is relatively easy to250

be fulfilled with mouse clicks. For example, a user251

may ask the system to “show me a map of Seattle”.252

The user can then use the mouse to click on a spe-253

cific location or to select a specific area. He/she can254

then or simultaneously issue the command “Show255

me the nearest school around here” with speech as256

the input.257

2. Integrated Interface for Speech and Text: In the258

MapPointS, a user not only can use speech to query259

the application but also can use a natural text input260

to ask for the same thing. For example, the user261

can say “Where is the University of Washington”262

to have the University of Washington be identified263

in the map. Alternatively, the user can just type 264

in “Where is the University of Washington” in the 265

command bar and obtain the same result. 266

3. Recognition of a Large Quantity of Names: As 267

we have mentioned, MapPointS allows its users to 268

query for all cities and places in the US. Accurate 269

recognition of all these names is difficult since there 270

are too many names to be potential candidates. For 271

example, there are more than 30,000 distinct city 272

names in the US, and the total number of valid 273

combinations of “city, state” alone is already larger 274

than 100,000, not to mention all the school names, 275

airport names, etc. in all cities. 276

4. Inference of Missing Information: When a user 277

queries information, he/she may not specify full 278

information. For example, when a user submits a 279

query “How may I get to Seattle University”, Map- 280

PointS needs to infer the most probable location that 281

the user is currently at. This inference is automati- 282

cally performed based on the previous interactions 283

between the user and MapPointS. 284



Journal of VLSI Signal Processing SJNW437-04-4150 October 1, 2005 3:23

U
N
C
O

R
R
E
C
T
E
D

P
R
O

O
F

Speech-Centric Perspective for Human-Computer Interface

Figure 2. User’s mouse selection is seamlessly integrated into the speech command: “Show me this area”.

3. System Architecture and Components285

of Mappoints286

The major system components of MapPointS are287

depicted in Fig. 6. The raw signals generated by the288

user are first processed by a semantic parser into the289

“surface semantics” representation. For the speech290

input, the speech recognizer first converts the raw291

signal into a text sequence, with the help from the292

Language Model component, before semantic parsing.293

Each possible modality, speech or otherwise, has its294

separate corresponding semantic parser. However, the295

resulting surface semantics are represented in common296

Semantic Markup Language (SML) format and is thus297

independent of the modality. With this approach, the298

input methods become separated from the rest of the299

system. The surface semantics from all the input media300

are then merged by the Discourse Manager component301

into the “discourse semantics” representation. When302

generating the discourse semantics, the discourse man- 303

ager integrates the environment information (provided 304

by the Environment Manager and Semantic Model 305

components) which includes: (1) dialog context; (2) 306

domain knowledge; (3) user’s information, and (4) 307

user’s usage history. Such important environment 308

information is used to adapt the Language Model, 309

which improves the speech recognition accuracy and 310

enhance the Semantic Parsers for either the speech 311

or text input. (Semantic Model is the component 312

that provides rules to convert the surface semantics 313

into actionable commands and to resolve possible 314

confusibility.) The discourse semantics is then fed into 315

the Response Manager component to communicate 316

back to the user. The Response Manager synthesizes 317

the proper responses, based on the discourse semantics 318

and the capabilities of the user interface, and plays the 319

response back to the user. In this process, Behavior 320

model provides rules to carry out the required actions. 321
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Figure 3. User’s latest mouse click input is referenced by voice command: “Show me the nearest school”.

We have already introduced some components of the322

above main architecture in some of our earlier publi-323

cations (e.g., [2]). In this paper, we focus on two novel324

components of the architecture: Language Model (LM)325

and Environment Manager. The design of these two326

components has been specific to the MapPointS sys-327

tem.328

As we pointed out in the previous section, one of329

the major difficulties of the task is the recognition of330

the very large quantity of names. Including all names331

in the grammar is infeasible because the total number332

of names is so large that the confusability between333

these names is extremely high and the computation for334

speech recognition search is very expensive.335

The speech recognition task is conducted as an336

optimization problem to maximize the posterior337

probability:338

ŵ = arg max
w

P(A | w)P(w),

where w is a candidate word sequence, and P(w) is 339

the prior probability for the word sequence (or LM 340

probability). This suggests that we can reduce the 341

search effort through controlling the language model 342

so that only the most probable names are kept in the 343

search space. One of the approaches used to better 344

estimate P(w) is to exploit the user information, 345

especially the user’s home address, usage history, 346

and current location. In other words, we can simplify 347

the speech recognition search task by optimizing the 348

following posterior probability: 349

ŵ = arg max
w

P(A | w)P(w | E),

where the general LM P(w) is now refined (i.e., 350

adapted) to the Environment-specific LM P(w | E), 351

which has a much lower perplexity than the otherwise 352

generic LM. (This environment-specific LM is 353

closely related to topic-dependent LM or user-adapted 354

LM in the literature.) How to exploit the user 355
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Figure 4. Route query to find direction from Seattle to Boston by speaking to MapPointS: “How may I go from Seattle to Boston”, or just

“How may I go to Boston” if the current location is Seattle.

“environment” information to adapt the LM is the job356

of the “Environment Manager” component in Fig. 1,357

which we describe in detail in the remainder of this358

section.359

In the current MapPointS system, the PCFG (Prob-360

abilistic Context Free Grammar) is used as the361

LM. Some examples of the CFG rules are shown362

below:

363

In order to build the environment-adapted LM based364

on the PCFG grammar, the LM probability P(w | E) is365

decomposed into the product of the words that make366

up the word sequence w and that follow the grammar367

at the same time. The majority of the words which368

are relevant to LM in our MapPointS system are the 369

names or name phrases such as “New York City” in 370

the above CRG rules. (Many non-name words in the 371

grammar are provided with uniform LM probabilities 372

and hence they become irrelevant in speech recognition 373

and semantic parsing.) 374

We now describe how the conditional probability of 375

a name or name phrase given the environment (user) 376

information is computed by the Environment Manager 377

component of MapPointS. Several related conditional 378

probabilities are computed in advance based on well 379

motivated heuristics pertaining to the MapPointS task. 380

First, it is noted that users tend to move to a city before 381

querying for small and less-known locations inside 382

that city. On the other hand, they often move between 383

cities and well-known places at any time. In other 384

words, small places (such as restaurants) in a city, 385

except for the city that the user is looking at currently, 386

have very small prior probabilities. Cities, well-known 387

places, and small places in the currently visited city, in 388

contrast, have much higher prior probabilities. For this 389

reason, we organize all names into two categories: the 390

global level and the local level. The global-level name 391

list contains state names, city names, City+State, 392

and well-known places such as Yellowstone National 393
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Figure 5. Display of MapPointS in response to the “Nearby Restaurants” query.

park. This global-level name list is included in the394

recognition grammar at all times. The local-level395

name list, on the other hand, contains detailed location396

information about a city or a well-known place. When397

the current city is changed, the local-level name list is398

changed accordingly.399

To speed up the loading of the local-level name list,400

we pre-built the local list for each of the 2000 major401

cities. This is needed because there are usually many402

place names in large cities and these lists are slow to403

build. For local-name lists of small cities, we build404

them when the city is firstly visited and cache the lists405

in the hard drive in order to speed up the process when406

it is visited again.407

Even after adopting this approach, the number of408

names is still large. The majority of the names in the409

global-level name list are for cite and state combination410

(City+State). The simplest way to include these names411

in the grammar would be to list them all one by one.412

This, however, requires more than 100,000 distinct413

entries in the grammar. Typical recognition engines 414

can not handle the grammars of such a size efficiently 415

and effectively. We thus take a further approach to 416

arrange the cities and states in separate lists and allow 417

for combinations of them. This approach greatly 418

reduces the grammar size since we only need 30,000 419

cities and 50 states. Unfortunately, this will provide 420

invalid combinations such as “Seattle, California”. 421

It also increases the name confusability since now 422

there are more than 30,000∗50 = 1,500,000 possible 423

combinations. To overcome this difficulty, we choose 424

to list only valid City+State combinations. To accom- 425

plish this, we prefix the grammar so that all names 426

are organized based on the city names, and each city 427

name can only follow the valid subset of the 50 state 428

names. The prefixed grammar can be processed by 429

recognition engines rather efficiently. For some slow 430

systems where the speed and accuracy may still be in- 431

adequate, we further pruned the number of City+State 432

combinations. 433
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Figure 6. Major system architecture and components in Map-

PointS.

The second heuristic adopted by the MapPointS sys-434

tem is motivated by the intuition that if a user queries435

restaurants a lot, the probability that he/she will query436

new restaurants should be high even though they have437

not been queried before. With this heuristic, we or-438

ganize all names into about 40 classes including gas439

stations, schools, restaurants, airports, etc. A complete440

list of the classes can be found in Table 1.441

We denote the probability that a class of names is442

queried as P([Class]|History) or P([C]|H). The esti-443

mate for this probability is provided as in the Map-444

PointS system:445

P([Ci ] | H ) =

∑
k exp (−λh(T − tik))∑

j

∑
k exp (−λh(T − t jk))

where tik is the time the names in class Ci was queried446

the k-th time (as the “History” information), T is the447

current time, and λh is the forgetting factor. We further448

assume that [Ci ] is independent of other factors in the449

environment. This particular form of the probability450

we have adopted says that the further away a past class451

query is, the less it will contribute to the probability of452

the current class query.453

The third heuristic we have adopted is motivated454

by the intuition that even though names in the global-455

level name list are likely to be queried by users, the456

probabilities that each name would be queried will be457

Table 1. Full list of location classes in MapPointS.

Class ID Class Type

1 State

2 City

3 Well-known Places

4 Galleries

5 ATMs and banks

6 Gas stations

7 Hospitals

8 Hotels and motels

9 Landmarks

10 Libraries

11 Marinas

12 Museums

13 Nightclubs and taverns

14 Park and rides

15 Police stations

16 Post offices

17 Rental car agencies

18 Rest areas

19 Restaurants—Asian

20 Restaurants—Chinese

21 Restaurants—delis

22 Restaurants—French

23 Restaurants—Greek

24 Restaurants—Indian

25 Restaurants—Italian

26 Restaurants—Japanese

27 Restaurants—Mexican

28 Restaurants—pizza

29 Restaurants—pizza

30 Restaurants—seafood

31 Restaurants—Thai

32 Schools

33 Shopping

34 Casinos

35 Stadiums and arenas

36 Subway stations

37 Theaters

38 Airports

39 Zoos

different. For example, large cities such as San 458

Francisco and Boston are more likely to be queried 459

than small cities such as Renton. For this reason, 460

we estimated the prior probabilities of all cities and 461
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well-known places in advance. The estimation is based462

on the MapPoint.NET (http://mappoint.msn.com/)463

IIS (Internet Information Server) log data. The IIS464

log records raw queries users of the MapPoint.NET465

submitted (The log, however, does not contain any466

user identification information).467

We processed more than 40GB of the log data468

to obtain statistics of states, cities, and well-known469

places that users have queried. We found that for the470

cities, the probability computed by the log data is quite471

similar to that estimated based on the city population.472

We denote the probability for each name in the473

class given the class label as P(N|[C]; examples are474

P(Name|[Class]=‘City’) and P(Name|[Class]=‘Well-475

KnownPlace’). For local-level names, we assume a476

uniform distribution for P(N|[C]). Tables 2 and 3477

show the most frequently queried 10 States and cities478

respectively:479

The fourth heuristic implemented in the MapPointS480

system uses the intuition that location names related481

to the user are more likely to be queried than other482

names. For example, if a user lives in the Seattle, he/she483

is more likely to query locations in or close to the484

Seattle. We calculate this probability class by class.485

We denote this probability as P(Name|[Class],User) or486

simply P(N|[C],U) and estimate it according to:487

P(Ni | [Ck], U ) =
S(Ni | [Ck], U )∑

j :N j ∈[Ck ] S(N j | [Ck], U )

where488

S(Ni | [Ck], U ) = exp (−λudiU )P(Ni | [Ck]),

Table 2. Top 10 States queried by users of MapPoint.NET and

their estimated probabilities.

Top no. Name Occurrence in IIS log Relative frequency

1 California 2950295 0.127832

2 Texas 1791478 0.009605

3 Florida 1512045 0.065515

4 New York City 1117964 0.048440

5 Pennsylvania 1074052 0.046537

6 Illinois 1024543 0.044392

7 Ohio 1006874 0.043626

8 New Jersey 782871 0.033920

9 Michigan 776841 0.033660

10 Georgia 738660 0.032005

Table 3. Top 10 cities queried by users of MapPoint.NET and

their estimated probabilities.

Top # Name

Occurrence

in IIS log

Relative

Frequency

1 Houston, Texas 309246 0.014637

2 Chicago, Illinois 202948 0.009605

3 Dallas, Texas 169710 0.008032

4 Los Angeles, California 166005 0.007857

5 San Diego, California 141622 0.006656

6 Atlanta, Georgia 140637 0.006656

7 Orlando, Florida 135911 0.006433

8 San Antonio, Texas 122723 0.005809

9 Seattle, Washington 115550 0.005469

10 Las Vegas, Nevada 113927 0.005392

and diU is the distance between Ni ∈ Ck and 489

the user’s home. λu is the corresponding decaying 490

parameter. 491

The fifth heuristic uses the intuition that locations 492

close to the currently visited city are more likely to 493

be queried than other locations. Following the same 494

example, if the user lives in Seattle, not only is he/she 495

more likely to query Bellevue than Springfield, but 496

he/she is also more likely to query for “Everett, Wash- 497

ington” than “Everett, Massachusetts”. We denote this 498

probability as P(Name|[C],CurrentLocation) or simply 499

P(N|[C], L) and estimate it as:
500

P(Ni | [Ck], L) =
S(Ni | [Ck], L)∑

j :N j ∈Ck
S(N j | [Ck], L)

where 501

S(Ni | [Ck], L) = exp(−λldi L )P(Ni | [Ck]),

and di L is the distance between Ni ∈ Ck and the 502

current location. λl is the corresponding decaying 503

factor. 504

The final, sixth heuristic we adopted is based on the 505

intuition that if a user queries a location often recently, 506

he/she is likely to query the same location again in the 507

near future. For example, if the user lives in Seattle, 508

but he/she queried for “Everett, Massachusetts” 509

several times recently, we would expect that he will 510

more likely to query for “Everett, Massachusetts” 511

than “Everett, Washington” even though Everett, 512

Washington” is more close to his home. We denote 513
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this probability as P(Name|[C],History) or simply514

P(N|[C],H) and estimate it as:
515

P (Ni | [Cn] , H ) =
S (Ni | [Cn] , H )∑

j :N j ∈Cn
S (Ni | [Cn] , H )

where516

S(Ni | [Cn], H ) =
∑

k

exp(−λh(T − tik))P(Ni | [Cn])

and tik is the time when the name Ni ∈ Cn was queried517

the k-th time. T is the current time, and λh is the518

forgetting factor.519

With the above assumptions and heuristics based520

on well founded intuitions, we obtain the conditional521

probability P(Name | Environment) as:522

P(Ni | E) =
∑

Cn

P(Ni | [Cn], E)P([Cn] | E)

=
∑

Cn

P(Ni | [Cn], U, L , H )P([Cn] | H )

=
∑

Cni

P(Ni , U, L , H | [Cn])

P(U, L , H | [Cn])
P([Cn] | H )

=
∑

Cni

P(U, L , H | Ni , [Cn])P(Ni | [Cn])

P(U, L , H | [Cn])

× P([Cn] | H )

We further assume that U, L, and H are independent523

of each other. This leads to the approximation of
524

P(Ni | E) ≈
∑

Cni

P (U | Ni , [Cn]) P (L | Ni , [Cn]) P (H | Ni , [Cn]) P (Ni | [Cn])

P (U | [Cn]) P (L | [Cn]) P (H | [Cn])
P ([Cn] | H )

=
∑

Cni

P (Ni | U, [Cn]) P (Ni | L , [Cn]) P (Ni | H, [Cn])

P2 (Ni | [Cn])
P ([Cn] | H )

We can further simplify the above equation by as-525

suming that each name belongs to one class. This is526

accomplished by using the location in the map—the527

semantic meaning of the name as the unique identi-528

fier of the name. For example, Everett can mean “Ev-529

erett, Washington”, “Everett, Massachusetts”, “Everett530

Cinema”, and somewhere else. In our MapPointS sys-531

tem’s grammar, we allow for several different kinds of532

Everett’s; each of them, however, is mapped to a dif-533

ferent location in the semantic model with a different534

probability. This treatment removes the class summa-535

tion in the above and we have the final expression of536

the environment-specific name probability of: 537

P(Ni | E)

=
P(Ni | U, [Cn])P(Ni | L , [Cn])P(Ni | H, [Cn])

P2(Ni | [Cn])

×P([Cn] | H ),

where Ni ∈ Cn and where all the probabilities at the 538

right hand side of the equation have been made avail- 539

able using the several heuristics described above. 540

In the previous discussion, we normalize probabil- 541

ities for each individual conditional probability in the 542

above equations. However, the normalization can be 543

done at the last step. We also noted that the system 544

is not sensitive to small changes of the probabilities. 545

With this in mind, in the MapPointS implementation, 546

we only updated the probabilities when the probability 547

change becomes large. For example, when the current 548

location is 10 miles away to the previous location, or 549

there are 20 new queries in the history. For the same rea- 550

son, the decaying parameters and forgetting parameters 551

are determined heuristically based on the observations 552

from the IIS log. 553

Another important issue in the MapPointS system’s 554

LM computation is smoothing of the probabilities since 555

the training data is sparse. In the current system im- 556

plementation, the probabilities are simply backed up 557

to the uniform distribution when no sufficient amounts 558

of training data are available. 559

With all the above environment or user-specific 560

LM implementation techniques provided by the 561
562

563

564

Environment Manager component in the MapPointS 565

system, most ambiguities encountered by the sys- 566

tem can be resolved. For example, when a user asks: 567

“Where is Everett”, the system will infer the most prob- 568

able Everett based on the different LM probabilities for 569

the different Everett’s. In most cases, the most probable 570

Everett is either the closest Everett or the frequently 571

visited Everett. In case the system’s guess is incorrect, 572

the user can submit a new query which contains more 573

detailed information in the query. For example, he/she 574

can say “Where is Everett, Washington”. 575
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Table 4. Four conditions under which the LM of the MapPointS

system is constructed and the LM perplexity associated with each

condition.

Conditions LM perplexity

Uniform probability for all city/place names 5748528

Two-level structure for cities and places, but

using uniform probabilities for city names

98810

Same as above but using prior probabilities

of city names

5426

Same as above but including user-specific

information

241

Further, in addition to providing useful environmen-576

tal or user information to infer the probabilities of577

queries in LM, the Environment Manager component578

of MapPointS also permits the inference of missing ele-579

ments in users’ queries to obtain the complete discourse580

semantic information. This aspect has been discussed581

in [17] in detail and will not be described here.582

We now present some quantitative results to show583

how the user modeling strategy discussed so far in this584

section has contributed to the drastic improvement of585

the LM. In Table 4, we list the perplexity numbers of586

the LM with and without the use of the user-specific587

information. These perplexity numbers are based on588

four ways of constructing the MapPointS system with589

and without using the probabilities and using user590

modeling. A lower perplexity of the LM indicates591

a higher quality of the LM, which leads to a lower592

ambiguity and higher accuracy for speech recognition.593

We observe from here that the system utilizing594

the user-specific information gives a much lower595

perplexity and better LM quality than that otherwise.596

4. Software Engineering Considerations597

in Mappoints System Design598

MapPointS involves its input from multiple modalities,599

its output in map presentation, and a large set of data600

for training the various system components we have601

just described. Without carefully architecting the sys-602

tem, the application would be inefficient and difficult603

to develop. In designing the MapPointS system, we604

have followed several design principles and software605

engineering considerations. In this section, we briefly606

describe these principles and considerations.607

The first principle and consideration is separation608

of interface and implementation. Following this princi-609

ple, we isolated components by hiding implementation 610

details. Different components interact with each other 611

through interfaces that have been well defined in ad- 612

vance. This allowed us to develop and test the system 613

by refining components one by one. It also allowed us 614

to hook MapPointS to different ASR engines without 615

substantially changing the system. 616

The second principle and consideration is separa- 617

tion of data and code. MapPointS can be considered as 618

a system whose design is driven by data and grammar. 619

In the system design, we separated data from code and 620

stored the data in the file system. The size of the data 621

stored is huge since we need to maintain all the city 622

names, place names, and their associated prior proba- 623

bilities. By isolating the data from the code, we freely 624

converted the system from one language to another by 625

a mere change of the grammar, the place names, and 626

the ASR engine for a new language. 627

The third principle and consideration is separation 628

of modalities. We separated modalities of the speech 629

input, text input, and the mouse input by representing 630

their underlying semantic information in a common 631

SML format. This allowed us to debug modalities one 632

by one, and also allowed us to integrate more modal- 633

ities in the future for possible system expansion by 634

simply hooking the existing system to a new semantic 635

parser. 636

The fourth principle and consideration is full ex- 637

ploitation of detailed user feedback. MapPointS pro- 638

vides detailed feedback to users in all steps that are 639

carried out in processing the users’ requests. In doing 640

so, the users become able to know whether the sys- 641

tem is listening to them and whether the ASR engine 642

recognizes their requests correctly. 643

The final principle and consideration is efficient de- 644

sign of the application grammar. One of the signif- 645

icant problems of a large system like MapPointS is 646

the creation of the specific application grammar, or 647

grammar authoring. A good structured grammar can 648

significantly reduce the effort in interpreting the re- 649

sults of speech recognition. In our implementation, we 650

organized the grammar so that the semantic representa- 651

tion of the speech recognition results can be interpreted 652

recursively. 653

5. Robust Processing Techniques 654

for Speech-Centric HCI Systems 655

Robustness to acoustic environment, which allows 656

speech recognition to achieve immunity to noise and 657
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channel distortion, is one key aspect of any speech-658

centric HCI system design considerations. For exam-659

ple, for the MiPad and MapPointS systems to be ac-660

ceptable to the general public, it is desirable to remove661

the need for a close-talking microphone in capturing662

speech. The potential mobile application of MapPointS663

for navigation while traveling presents an even greater664

challenge to noise robustness. Although close-talking665

microphones pick up relatively little background noise666

and allow speech recognizers to achieve high accuracy667

for the MiPad-domain or MapPointS-domain tasks, it668

is found that users much prefer built-in microphones669

even if there is minor accuracy degradation. With the670

convenience of using built-in microphones, noise ro-671

bustness becomes a key challenge to maintaining de-672

sirable speech recognition and understanding perfor-673

mance. Our recent work on speech processing aspects674

of speech-centric HCI systems has focused on this675

noise-robustness challenge in the framework of dis-676

tributed speech recognition (DSR).677

There has recently been a great deal of interest678

in standardizing DSR applications for a plain phone,679

PDA, or a smart phone where speech recognition is680

carried out at a remote server. To overcome bandwidth681

and infrastructure cost limitations, one possibility is682

to use a standard codec on the device to transmit the683

speech to the server where it is subsequently decom-684

pressed and recognized. However, since speech rec-685

ognizers only need some features of the speech sig-686

nal (e.g., Mel-cepstrum), the bandwidth can be further687

saved by transmitting only these features. Our recent688

work on noise robustness has been concentrated on the689

Aurora2 and 3 tasks [8, 15], an effort to standardize690

a DSR front-end that addresses the issues surrounding691

robustness to noise.692

In DSR applications, it is easier to update software693

on the server because one cannot assume that the client694

is always running the latest version of the algorithm.695

With this consideration in mind, while designing noise-696

robust algorithms, we strive to make the algorithms697

front-end agnostic. That is, the algorithms should make698

no assumptions on the structure and processing of the699

front end and merely try to undo whatever acoustic700

corruption that has been shown during training. This701

consideration also favors noise-robust approaches in702

the feature rather than in the model domain.703

We have developed several high-performance704

speech feature enhancement algorithms on the Au-705

rora2 and 3 tasks and on other Microsoft internal tasks706

with much larger vocabularies. One most effective707

algorithm is called SPLICE, short for Stereo-based 708

Piecewise Linear Compensation for Environments 709

[3–5]. In a DSR system, the SPLICE may be applied 710

either within the front end on the client device, or on 711

the server, or on both with collaboration. Certainly a 712

server side implementation has some advantages as 713

computational complexity and memory requirements 714

become less of an issue and continuing improvements 715

can be made to benefit even devices already deployed 716

in the field. Another useful property of SPLICE in 717

the serve implementation is that new noise conditions 718

can be added as they are identified by the server. This 719

can make SPLICE quickly adapt to any new acoustic 720

environment with minimum additional resource. 721

6. Summary and Discussion 722

Recent progress in signal processing and speech recog- 723

nition technologies has created a promising direction 724

for speech-centric multimodal HCI research. These 725

HCI modalities include speech, vision (e.g., gesture), 726

pen, mouse, keyboard, screen display, and other GUI 727

elements. The speech-centric perspective for HCI ad- 728

vocated in this paper is based on the recognition that 729

speech is a necessary modality to enable a pervasive 730

and consistent user interaction with computers across 731

a full range of devices—large or small, fixed or mo- 732

bile, and that speech has the potential to provide a 733

natural user interaction model. However, the ambigu- 734

ity of spoken language, the memory burden of using 735

speech as output modality on the user, and the lim- 736

itations of current speech technology have prevented 737

speech from becoming the choice of mainstream inter- 738

face. Multimodality is capable of dramatically enhanc- 739

ing the usability of speech interface because GUI and 740

speech have complementary strengths. Multimodal ac- 741

cess will enable users to interact with an application in 742

a variety of ways—including input with speech, key- 743

board, mouse and/or pen, and output with graphical 744

display, plain text, motion video, audio, and/or synthe- 745

sized speech. 746

Two prototype systems, MiPad and MapPointS, de- 747

veloped at Microsoft Research take the speech-centric 748

perspective in their design. They fully exploit the effi- 749

ciency of the speech input, while using other modalities 750

to enhance the interaction and to overcome imperfec- 751

tion of the speech recognition technology. This paper 752

provides a detailed account for the design of the Map- 753

PointS system. The system adds the “Speech” modality 754
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into the existing Microsoft product of MapPoint, which755

provides a comprehensive location-based database756

such as maps, routes, driving directions, and proxim-757

ity searches. MapPoint also provides an extensive set758

of mapping-related content, such as business listings,759

points-of-interest, and other types of data that can be760

used within applications. In particular, it is equipped761

with highly accurate address finding and geo-coding762

capabilities in North America, and contains finely763

tuned driving direction algorithms using blended in-764

formation from best-in-class data sources covering 6.7765

million miles of roads in the United States. Loaded with766

the speech functionality, the value of MapPointS to the767

users is the quick, convenient, and accurate location-768

based information when they plan a long-distance trip,769

want to find their way around an unfamiliar town or try770

to find the closest post office, bank, gas station, or ATM771

in any town in North American. The MapPointS system772

has implemented a subset of the desired functionalities773

provided by MapPoint, limited mainly by the com-774

plexity of the grammar (used for semantic parsing),775

which defines what kind of queries the users can make776

verbally, possibly in conjunction with the other input777

modalities such as the mouse click and keyboard input.778

We in this paper provided an overview of the Map-779

PointS system architecture and its major functional780

components. We also presented several key software781

design engineering principles and considerations in de-782

veloping MapPointS. One useful lesson we learned in783

developing MapPointS is the importance of user or784

environmental modeling, where the user-specific in-785

formation and the user’s interaction history with the786

system are exploited to beneficially adapt the LM. The787

drastically reduced perplexity of the LM not only im-788

proves speech recognition performance, but more sig-789

nificantly enhances semantic parsing (understanding)790

which acts on all types of input modalities, speech or791

otherwise. Some quantitative results we presented in792

Table 4 substantiated this conclusion.793

Our current work is to apply the lessons learned794

from the MapPointS case study, user modeling in795

particular, as presented in detail in this paper to796

other speech-centric HCI tasks. For the extension of797

the prototype MapPointS system, we perceive the798

following future work:799

• Port the system into mobile devices such as Pocket800

PC.801

• Incorporate GPS information into the existing Map-802

PointS functionality.803

• Include new system functionalities such as direct 804

address searching through speech. 805

• Improve the dialog system component in order to 806

provide the speech response (instead of only the 807

GUI response as is now), and to resolve confusability 808

using speech interaction. 809
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