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Abstract—Signals captured by a set of microphones in a speech
communication system are mixtures of desired and undesired
signals and ambient noise. Existing beamformers can be divided
into those that preserve or distort the desired signal. Beam-
formers that preserve the desired signal are, for example, the
linearly constrained minimum variance (LCMV) beamformer
that is supposed, ideally, to reject the undesired signal and
reduce the ambient noise power, and the minimum variance
distortionless response (MVDR) beamformer that reduces the
interference-plus-noise power. The multichannel Wiener filter, on
the other hand, reduces the interference-plus-noise power without
preserving the desired signal. In this paper, a speech distortion
and interference rejection constraint (SDIRC) beamformer is
derived that minimizes the ambient noise power subject to specific
constraints that allow a tradeoff between speech distortion and
interference-plus-noise reduction on the one hand, and undesired
signal and ambient noise reductions on the other hand. Closed-
form expressions for the performance measures of the SDIRC
beamformer are derived and the relations to the aforemen-
tioned beamformers are derived. The performance evaluation
demonstrates the tradeoffs that can be made using the SDIRC
beamformer.

Index Terms—Beamforming, frequency domain, linearly con-
strained minimum variance (LCMV), minimum variance dis-
tortionless response (MVDR), noise reduction, parameterized
multichannel Wiener filter, speech enhancement.

I. INTRODUCTION

D ISTANT or hands-free speech acquisition is required in

many applications such as hearing aids and teleconfer-

encing. Microphone arrays are often used for the acquisition

and consist of sets of microphones that are arranged in

specific geometries. The received microphone signals usually

consist of a mixture of desired source signals, undesired

source signals, and ambient noise. As the acoustic interference

degrades the quality and intelligibility of the desired sources,

the received signals are processed (i.e., filtered and summed)

in order to extract the desired signals or in other words, reduce

the interference.
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In the last four decades, numerous spatio-temporal filters

have been proposed to process the received microphone signals

(see [1] and [2] and the references therein). The process of

filtering the received microphone signals and summing up

all filtered output signals is widely known as beamform-

ing and the filter-and-sum system is called a beamformer.

Many filters were originally developed for, and used in,

wireless communication systems. More recently filters were

developed specifically for speech communication systems.

Existing beamformers can be divided into those that pre-

serve or distort the desired signal. Beamformers that preserve

the desired signal are, for example, the minimum variance

distortionless response (MVDR) beamformer (also known as

Capon’s beamformer) [3] that reduces the interference-plus-

noise power, and the linearly constrained minimum variance

(LCMV) beamformer [4] that is supposed, ideally, to reject

the undesired signal and reduce the ambient noise power. The

LCMV is a generalization of the MVDR and commonly aims

at minimizing the beamformer’s output power while satis-

fying multiple constraints such as rejecting the interference

and passing the desired signal through undistorted. Another

beamformer that consists of a weighted sum of the LCMV and

a matched filter (i.e., an MVDR that reduces ambient noise

only) has been recently proposed by Souden et al. [5]. The

proposed beamformer allows a tradeoff between the undesired

signal and ambient noise reductions. The multichannel Wiener

filter (MWF), on the other hand, reduces the interference-plus-

noise power without exactly preserving the desired signal. In

order to control the amount of distortion, the parameterized

multichannel Wiener filter (also know as speech-distortion

weighted multichannel Wiener filter) has been proposed [6],

[7].

In addition to closed-form beamformers, adaptive beam-

formers have been proposed. In [8], Frost proposed an adaptive

scheme of the MVDR beamformer, which is based on a

constrained least-mean-square-type adaptation. To avoid the

constrained adaptation of the MVDR beamformer, Griffiths

and Jim [9] proposed the generalized sidelobe canceller (GSC)

structure that separates the output power minimization and the

application of the constraint. While Griffiths and Jim only con-

sidered one constraint, it was later shown in [10] that the GSC

structure can also be used in the case of multiple constraints.

The original GSC structure is based on the assumption that the

different microphones receive a delayed version of the desired

signal. The GSC structure was later re-derived in the frequency

domain, and extended to deal with general acoustic transfer

functions (ATFs) [11].

Besides the great endeavors to develop reliable beamformers

to reduce interference, many contributions have been made
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to understand their functioning and accurately quantify their

gains and losses in terms of speech distortion and noise

reduction. In this context, it is worthwhile noting that the

choice of the desired signal can have a significant impact on

the information required to compute the beamformer and on

the performance of the beamformer. In [12], the authors anal-

ysed the performance of the MVDR in different noise fields

(coherent and non-coherent) and studied the effectiveness of

the MVDR when designed to remove both additive noise and

reverberation. The study showed that a tradeoff between noise

reduction and dereverberation has to be made. In [13], Bitzer et

al. investigated the theoretical performance limits of the GSC

in the case of a spatially diffuse noise. The tradeoff between

noise reduction and speech distortion in the parameterized

multichannel Wiener filtering was established in [7]. Another

notable effort to understand the functioning of the TF ratios-

based GSC beamformer was published by Gannot and Cohen

in [2]. They found that it is theoretically possible to achieve

infinite noise reduction when only a coherent interference is

added to the desired source. In the presence of ambient noise,

the latter can also be achieved by the LCMV beamformer.

Unfortunately, rejecting the coherent interference comes at a

price as the noise reduction of the LCMV is always smaller

than that of the MVDR [14].

In this paper, we assume that both an undesired source

and an ambient noise coexist with the desired source. This

assumption is very plausible in the context of hearing aids and

hands-free communication devices that are installed within a

teleconferencing room. In the latter situation for instance, the

desired sound can originate from a speaker while the undesired

sound originates from a loudspeaker or devices such as an

air conditioner or a computer located within the same room.

In addition, ambient noise as well as sensor noise is always

present and should therefore be taken into account. To design

an effective speech acquisition system, a clear understanding

of the functioning of noise reduction filters as well as the

ability to control various tradeoffs is paramount. In this con-

tribution, a novel speech distortion and interference rejection

constraint (SDIRC) beamformer is derived that minimizes

the ambient noise power subject to specific constraints that

allow a tradeoff between speech distortion and interference-

plus-noise reduction on the one hand, and undesired signal

and ambient noise reductions on the other hand. Closed-

form expressions for the performance measures of the SDIRC

beamformer are derived and the relations to some of the

aforementioned beamformers are deduced. The performance

evaluation demonstrates the tradeoffs that can be made using

the SDIRC beamformer.

This paper is organized as follows. Section II describes the

signal model, definitions, and fundamental assumptions made

in this paper. The proposed SDIRC beamformer is derived in

Section III. In Section IV, the relationship between the SDIRC

beamformer and the MVDR, LCMV, and parameterized MWF

are established. In Section V performance measures are de-

fined and closed-form expressions for the aforementioned

beamformers are deduced. Section VI investigates the perfor-

mance of the new SDIRC beamformer with a special focus

on the tradeoff between speech distortion and interference-

plus-noise reduction on the one hand, and undesired signal

and ambient noise reductions on the other hand. Finally,

Section VII provides some concluding remarks.

II. SIGNAL MODEL

Consider the signal model in which an M -element micro-

phone array captures one desired and one undesired coherent

source signal in some ambient noise field. We assume that

all signals are broadband, and that all source signals and

ambient noise are mutually independent and zero mean. The

desired and undesired source signals as received by the mth

microphone can be expressed as

dm(t) = gd,m(t) ⇤ sd(t) (1)

and

um(t) = gu,m(t) ⇤ su(t), (2)

where ⇤ is the convolution operation, and gd,m(t) and gu,m(t)
are the acoustic impulse responses between the desired source

signal sd(t) and undesired source signal su(t), respectively.

The microphone signals are given by

ym(t) = dm(t) + um(t) + vm(t), m = 1, 2, . . . ,M, (3)

where vm(t) denotes the ambient noise received by the mth

microphone.

In the discrete-time Fourier transform (DTFT) domain the

received signals are expressed as

Ym(ω) = Gd,m(ω)Sd(ω) +Gu,m(ω)Su(ω) + Vm(ω) (4)

= Dm(ω) + Um(ω) + Vm(ω), m = 1, 2, . . . ,M,

where Ym(ω), Gd,m(ω), Gu,m(ω), Sd(ω), Su(ω), Dm(ω),
Um(ω), and Vm(ω) are the DTFTs of ym(t), gd,m(t), gu,m(t),
sd(t), su(t), dm(t), um(t), and vm(t), at angular frequency ω

(�π < ω  π).

We now express the M microphone signals in the frequency

domain as a function of the desired and undesired signals as

received by the first microphone1 in a vector notation as

y(ω) = ad(ω)D1(ω) + au(ω)U1(ω) + v(ω) (5)

= d(ω) + u(ω) + v(ω),

where

y(ω) =
⇥

Y1(ω) Y2(ω) · · · YM (ω)
⇤T

,

ad(ω) =
h

1
Gd,2(ω)
Gd,1(ω) · · ·

Gd,M (ω)
Gd,1(ω)

iT

, (6)

au(ω) =
h

1
Gu,2(ω)
Gu,1(ω) · · ·

Gu,M (ω)
Gu,1(ω)

iT

, (7)

d(ω) =
⇥

D1(ω) D2(ω) · · · DM (ω)
⇤T

,

u(ω) =
⇥

U1(ω) U2(ω) · · · UM (ω)
⇤T

,

v(ω) =
⇥

V1(ω) V2(ω) · · · VM (ω)
⇤T

,

and superscript T denotes transpose of a vector or a matrix.

It is important to note that ad(ω) and au(ω) contain the

relative transfer functions (RTFs) from the M microphones to

1Here the first microphone was chosen as a reference. In principle, any
other microphone can be used as a reference.
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the reference microphone (in this case the first microphone) for

the desired source and undesired source, respectively. These

RTFs can be estimated online using for example the methods

described in [11], [15].

The beamforming is then performed by applying a complex

weight to each microphone and summing across all micro-

phones:

Z(ω) = hH(ω)y(ω) (8)

= hH(ω) [ad(ω)D1(ω) + au(ω)U1(ω) + v(ω)] , (9)

where Z(ω) is the beamformer output, h(ω) =
[H1(ω)H2(ω) . . . HM (ω)]

T
is the beamforming weight

vector which is suitable for performing spatial filtering at

frequency ω, and superscript H denotes transpose conjugation

of a vector or a matrix.

Let us define the power spectral density (PSD) of a random

variable B(ω) and the PSD matrix of a column vector b(ω)
of length M as

φb(ω) = E
h

|B(ω)|
2
i

(10)

and

Φb(ω) = E
⇥

b(ω)bH(ω)
⇤

, (11)

with E(·) denoting mathematical expectation. The PSD of the

received signal at the mth microphone can be expressed as

φym
(ω) = φdm

(ω) + φum
(ω) + φvm

(ω), (12)

where φym
(ω), φdm

(ω), φum
(ω), and φvm(ω) are the PSDs

of the mth microphone signal, the desired signal at the mth

microphone, the undesired signal at the mth microphone and

the ambient noise signal at the mth microphone, respectively.

The PSD of the beamformer output is given by

φz(ω) = hH(ω)Φd(ω)h(ω)

+ hH(ω)Φu(ω)h(ω) + hH(ω)Φv(ω)h(ω), (13)

where

Φd(ω) = φd1
(ω)ad(ω)a

H
d (ω), (14)

Φu(ω) = φu1
(ω)au(ω)a

H
u (ω), (15)

and

Φv(ω) = E
⇥

v(ω)vH(ω)
⇤

(16)

is the PSD matrix of the noise field. In the rest of this paper, we

assume that Φv(ω) is a full-rank matrix such that its inverse

exists.

In this paper, we assume that the ambient noise is suffi-

ciently stationary and that we can identify periods where only

the noise is active, other periods where either the desired or

the undesired source is active (in addition to the noise), and

other periods where all sources are active (in addition to the

noise). Based on these assumptions, one can take advantage of

the fact that the signals are mutually independent to calculate

Φd(ω), Φu(ω), and Φv(ω) separately. These PSD matrices

are required in the sequel to compute the beamformers.

III. SPEECH-DISTORTION AND INTERFERENCE-REJECTION

CONSTRAINT BEAMFORMER

In this section, we derive a speech-distortion and

interference-rejection constraint beamformer that is able to

tradeoff between speech distortion and interference-plus-noise

reduction on the one hand, and undesired signal and ambient

noise reductions on the other hand.

In general, the aforementioned tradeoffs can be realized

by modifying the optimization problem. In earlier work the

speech distortion was controlled by augmenting the classical

mean-square error (MSE) cost function [6] or by imposing a

linear inequality constraint [7], [16], [17]. It should be noted

that the inequality constraint on the PSD of the desired signal

at the beamformer’s output (as used in [7], [17]) is binding.

Consequently, the same solution is obtained if the inequality

constraint is replaced by an equality constraint. Therefore, we

propose to control the distortion of the desired speech signal as

received by the first microphone using the following equality

constraint:

hH(ω)ad(ω) = α(ω), (17)

where α(ω) is a complex number. The closer is the value

of |α(ω)|2 to one, the less the amplitude response of desired

signal is distorted; for α(ω) = 1, there is no distortion. When

the phase response of α(ω) is linear the desired signal at

the beamformer’s output is a delayed version of the desired

signal as received by the reference microphone. For other

phase responses of α(ω) (unequal to zero) the desired signal

might contain audible distortions. The parameter α(ω) in (17)

can be varied with respect to the frequency depending on, for

example, the PSDs of the desired signal and ambient noise.

It it worthwhile noting that multiplying α(ω) by a frequency

independent scale factor controls the gain of the desired signal

at the output of the beamformer.

The same idea can be applied in order to tradeoff between

reduction of the undesired signal and ambient noise. Thus, we

have

hH(ω)au(ω) = β(ω), (18)

where β(ω) is a complex number. The closer the value of

|β(ω)|2 is to zero, the more the undesired signal is reduced;

for β(ω) = 0, the undesired signal is completely removed.

Putting these constraints together we obtain

AH(ω)h(ω) = q(ω), (19)

where

A(ω) =
⇥

ad(ω) au(ω)
⇤

,

q(ω) =
⇥

α(ω) β(ω)
⇤H

.

The SDIRC beamformer is obtained by minimizing the

power at the beamformer output subject to (19), i.e.,

hSDIRC(ω) = argmin
h(ω)

hH(ω)Φy(ω)h(ω)

subject to AH(ω)h(ω) = q(ω), (20)
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for which the solution is given by2

hSDIRC(ω)

= Φ
�1
y (ω)A(ω)

⇥

AH(ω)Φ�1
y (ω)A(ω)

⇤�1
q(ω). (21)

Alternatively, one can minimize the power of the ambient

noise at the beamformer output subject to (19) yielding

hSDIRC(ω)

= Φ
�1
v (ω)A(ω)

⇥

AH(ω)Φ�1
v (ω)A(ω)

⇤�1
q(ω). (22)

Using the Woodbury’s matrix identity, it can be shown that

(21) and (22) are mathematically equivalent.

The SDIRC beamformer can be interpreted as a two stage

spatial processor that first computes two signals given by

AH(ω)Φ�1
v (ω)y(ω). Finally, these signals are combined us-

ing qH(ω)
⇥

AH(ω)Φ�1
v (ω)A(ω)

⇤

�1
to compute the output

of the SDIRC beamformer Z(ω).

IV. RELATION TO LCMV, MVDR, AND PMWF

In this section, we show how the proposed SDIRC beam-

former is related to the well known LCMV, MVDR, and

parameterized multichannel Wiener filter (PMWF).

For convenience, we first rewrite (22) as

hSDIRC(ω) = α⇤(ω)h1(ω) + β⇤(ω)h2(ω), (23)

where

⇥

h1(ω) h2(ω)
⇤

= Φ
�1
v (ω)A(ω)

⇥

AH(ω)Φ�1
v (ω)A(ω)

⇤�1
. (24)

A. LCMV

The LCMV beamformer completely rejects the undesired

signal while preserving the desired signal. This can be

achieved using

αLCMV(ω) = 1, (25)

βLCMV(ω) = 0. (26)

Using (23) we directly obtain the well-known solution of the

LCMV beamformer [1], [18]:

hLCMV(ω) = h1(ω). (27)

B. MVDR

The MVDR beamformer can be obtained by jointly preserv-

ing the desired signal (i.e., by setting α(ω) = 1) and minimiz-

ing either the total signal output power of beamformer or the

interference-plus-noise power at the output of the beamformer.

Therefore, the MVDR beamformer can be expressed as

hMVDR(ω) = h1(ω) + β⇤

MVDR(ω)h2(ω). (28)

Since aHd (ω)hMVDR(ω) = 1 and aHd (ω)hLCMV(ω) =
aHd (ω)h1(ω) = 1, we deduce that aHd (ω)h2(ω) = 0 and

2Strictly speaking the SDIRC is also an LCMV beamformer. Similar to
other works [1], [4], we follow the protocol of referring to the LCMV when
we aim at completely suppressing the interference [i.e., β(ω) = 0 ∀ω].

therefore βMVDR(ω) cannot be found from (28). However,

since the output signal-to-interference-plus-noise ratio (SINR)

is upper bounded and its maximum is obtained with the

MVDR beamformer [1], we can derive βMVDR(ω) using the

output SINR of the SDIRC beamformer which is given by3

oSINR [hSDIRC]

=
hH
SDIRCΦdhSDIRC

hH
SDIRC[Φu +Φv]hSDIRC

=
φd1

|α|2

φu1
|β|2 + hH

SDIRCΦvhSDIRC

=
φd1

|α|2

m1|α|2 + [φu1
+m2] |β|2 + 2Re{m12αβ}

, (29)

where

m1(ω) = hH
1 (ω)Φv(ω)h1(ω), (30)

m2(ω) = hH
2 (ω)Φv(ω)h2(ω), (31)

m12(ω) = hH
1 (ω)Φv(ω)h2(ω) (32)

and Re{·} provides the real part of the argument.

Now we can find βMVDR(ω) by taking α(ω) = 1 and

maximizing oSINR [hSDIRC(ω)] with respect to β(ω). It is

important to note that the narrowband output SINR is a real

function with complex variables. Following Brandwood [19]

the derivative with respect to β(ω) or β⇤(ω) (where the

subscript ⇤ denotes complex conjugation)can be used to find a

stationary point of a real function. Subsequently, equating the

derivate with respect to either β(ω) or β⇤(ω) to 0 and solving

β(ω) yields

βMVDR(ω) = �
m12(ω)

φu1
(ω) +m2(ω)

. (33)

As a result, another way to write the MVDR is

hMVDR(ω) = h1(ω)�
m⇤

12(ω)

φu1
(ω) +m2(ω)

h2(ω). (34)

The latter expression shows that βMVDR(ω) depends on

h1(ω), h2(ω), Φv(ω), and the PSD of the undesired source

as received by the first microphone, denoted by φu1
(ω). It

is worthwhile to note that in this form the MVDR uses the

RTFs au(ω) and φu1
(ω) separately while the classic MVDR

beamformer uses Φu(ω) = φu1
(ω)au(ω)a

H
u (ω).

C. PMWF

Finally, we show the relation between the SDIRC beam-

former and the the PMWF that is given by [7]:

hPMWF(ω; γ) = (Φd(ω) + γ[Φu(ω) +Φv(ω)])
�1

Φd(ω)i1

=
[Φu(ω) +Φv(ω)]

�1
Φd(ω)

γ + tr
n

[Φu(ω) +Φv(ω)]
�1

Φd(ω)
o i1,

(35)

where γ (γ � 0) controls the amount of speech distortion and

i1 =
⇥

1 0 · · · 0
⇤T

.

3Where ω has been omitted for conciseness.
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To show the relation between the parameterized MWF filter

and the SCIRC beamformer we use the following relation

between the MVDR and PMWF:

hPMWF(ω; γ) = HPW(ω; γ)hMVDR(ω). (36)

The gain HPW(ω; γ) can be seen as a parameterized single-

channel Wiener gain that is given by

HPW(ω; γ) =
tr
n

[Φu(ω) +Φv(ω)]
�1

Φd(ω)
o

γ + tr
n

[Φu(ω) +Φv(ω)]
�1

Φd(ω)
o , (37)

where tr{·} denotes the trace of a square matrix. When γ = 0
we obtain HPW(ω; 0) = 1, 8ω such that hPMWF(ω; 0) =
hMVDR(ω).

Using (36) and (34), we can also deduce another form for

the PMWF:

hPMWF(ω; γ) = HPW(ω; γ)h1(ω)

�HPW(ω; γ)
m⇤

12(ω)

φu1
(ω) +m2(ω)

h2(ω). (38)

Hence,

αPMWF(ω; γ) = HPW(ω; γ), (39)

βPMWF(ω; γ) = �HPW(ω; γ)
m12(ω)

φu1
(ω) +m2(ω)

. (40)

To obtain results with the SDIRC beamformer equal to those

obtained by the parameterized MWF we require Φu(ω) in

addition to Φv(ω) and the RTFs ad(ω) and au(ω).

V. PERFORMANCE MEASURES AND ANALYSES

We define and use different performance measure to analyze

how the SDIRC beamforming operates in an acoustic envi-

ronment. The performance measures will also be used for the

performance evaluation in Section VI. In addition, we deduce

the performance measures of existing beamformer using the

relations derived in Section IV. The SDIRC beamformer

and the aforementioned relations provide significantly simpler

derivations of the important performance measures, some of

which have been presented elsewhere [1], [2].

Since the signal we want to recover is the clean (but

convolved) signal received at microphone 1, i.e., d1(t), mi-

crophone 1 is serving as the reference microphone.

A. Input and Output Signal-to-Interference-plus-Noise Ratios

We define the narrowband input signal-to-noise ratio (SNR),

signal-to-interference ratio (SIR), and signal-to-interference-

plus-noise ratio (SINR) as

iSNR(ω) =
φd1

(ω)

φv1
(ω)

, (41)

iSIR(ω) =
φd1

(ω)

φu1
(ω)

, (42)

and

iSINR(ω) =
φd1

(ω)

φu1
(ω) + φv1

(ω)
(43)

=
iSIR(ω) iSNR(ω)

iSIR(ω) + iSNR(ω)
,

respectively.

Fullband performance measures can be obtained by integrat-

ing the numerator and denominator across ω, e.g., the fullband

iSINR is given by

iSINR =

R +π

�π
φd1

(ω) dω
R +π

�π
[φu1

(ω) + φv1(ω)] dω
. (44)

To quantify the level of noise remaining in the output signal

of the beamformer, Z(ω), we define the narrowband output

SNR, SIR, and SINR as the ratio of the power of the filtered

desired signal over the power of the residual noises, i.e.,

oSNR [h(ω)] =
hH(ω)Φd(ω)h(ω)

hH(ω)Φv(ω)h(ω)

=
φd1

(ω)
�

�hH(ω)ad(ω)
�

�

2

hH(ω)Φv(ω)h(ω)
, (45)

oSIR [h(ω)] =
hH(ω)Φd(ω)h(ω)

hH(ω)Φu(ω)h(ω)

=
φd1

(ω)
�

�hH(ω)ad(ω)
�

�

2

φu1
(ω) |hH(ω)au(ω)|

2 , (46)

and

oSINR [h(ω)]

=
hH(ω)Φd(ω)h(ω)

hH(ω)[Φu(ω) +Φv(ω)]h(ω)

=
φd1

(ω)
�

�hH(ω)ad(ω)
�

�

2

φu1
(ω) |hH(ω)au(ω)|

2
+ hH(ω)Φv(ω)h(ω)

. (47)

Because the oSINR depends on both the speech distortion and

the interference-plus-noise, it will be used later to demonstrate

the tradeoff between these two quantities. The oSINR is related

to the oSNR and oSIR in a similar way the iSINR is related

to the iSNR and iSIR, i.e.,

oSINR [h(ω)] =
oSIR [h(ω)] oSNR [h(ω)]

oSIR [h(ω)] + oSNR [h(ω)]
. (48)

Let us consider a scenario with one undesired source

and spatially white ambient noise such that Φu(ω) =
φu1

(ω)au(ω)a
H
u (ω) and Φv(ω) = φv1(ω) I. We can now

write h1(ω) and h2(ω) explicitly as:

h1(ω) =
ad(ω)kau(ω)k

2 � au(ω)a
H
u (ω)ad(ω)

λ(ω)
, (49)

h2(ω) =
au(ω)kad(ω)k

2 � ad(ω)a
H
d (ω)au(ω)

λ(ω)
, (50)

with

λ(ω) = kad(ω)k
2kau(ω)k

2 � |aHd (ω)au(ω)|
2. (51)
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Furthermore, we obtain for m1(ω), m2(ω) and m12(ω):

m1(ω) =
φv1

(ω)kau(ω)k
2

λ(ω)
, (52)

m2(ω) =
φv1

(ω)kad(ω)k
2

λ(ω)
, (53)

m12(ω) = �
φv1

(ω)aHd (ω)au(ω)

λ(ω)
. (54)

Using (29) and (52)-(54) we can now deduce the output

SINR for the SDIRC beamformer:3

oSINR [hSDIRC]

=
φd1

|α|2

φu1
|β|2 + hH

SDIRCΦvhSDIRC

=
φd1

|α|2

m1|α|2 + [φu1
+m2] |β|2 + 2Re{m12αβ}

=
φd1

|α|2

φu1
|β|2 + φv1

λ�1κ
, (55)

where

κ(ω) = |α(ω)|2kau(ω)k
2 + |β(ω)|2kad(ω)k

2

� 2Re
�

aHd (ω)au(ω)α(ω)β(ω)
 

. (56)

Using the previous definitions for α(ω) and β(ω) given in

Section IV, we find the output SINR for the MVDR, LCMV,

and PMWF given by

oSINR [hLCMV(ω)]

=
φd1

(ω)

hH
LCMV(ω)Φv(ω)hLCMV(ω)

=
φd1

(ω)

hH
1 (ω)Φv(ω)h1

=
φd1

(ω)λ(ω)

φv1
(ω)kau(ω)k2

= iSNR(ω)

✓

kad(ω)k
2 �

|aHd (ω)au(ω)|
2

kau(ω)k2

◆

, (57)

oSINR [hMVDR(ω)]

=
φd1

(ω)

hH
MVDR(ω)[Φu(ω) +Φv(ω)]hMVDR(ω)

= φd1
(ω)aHd (ω) [Φu(ω) +Φv(ω)]

�1
ad(ω)

= iSNR(ω)

0

@kad(ω)k
2 �

|aHd (ω)au(ω)|
2

φv1
(ω)

φu1
(ω) + kau(ω)k2

1

A , (58)

oSINR [hPMWF(ω; γ)]

=
H2

PW(ω)φd1
(ω)

hH
PMWF(ω) [Φu(ω) +Φv(ω)]hPMWF(ω)

=
H2

PW(ω)φd1
(ω)

H2
PW(ω)hH

MVDR(ω) [Φu(ω) +Φv(ω)]hMVDR(ω)

= oSINR [hMVDR(ω)] . (59)

where for oSINR [hMVDR(ω)] we have used the fact that

[Φu(ω) +Φv(ω)]
�1 =

1

φv1(ω)

0

@I�
au(ω)a

H
u (ω)

φv1
(ω)

φu1
(ω) + kau(ω)k2

1

A .

(60)

Hence, for the considered scenario, the narrowband output

SINRs of the MVDR and PMWF are equal. In addition, their

value is always larger than or equal to the output SINR of the

LCMV as the ratio φv1
(ω)/φu1

(ω) is always positive, i.e.,

oSINR [hPMWF(ω; γ)] = oSINR [hMVDR(ω)]

� oSINR [hLCMV(ω)] . (61)

To demonstrate the tradeoff between undesired signal and

ambient noise reductions we define the input and output noise-

to-interference ratios (NIRs) as

iNIR(ω) =
φv1(ω)

φu1
(ω)

(62)

and

oNIR [h(ω)] =
hH(ω)Φv(ω)h(ω)

hH(ω)Φu(ω)h(ω)
. (63)

B. Noise Reduction

The narrowband noise-reduction factor [20], or narrowband

noise-rejection factor [21] quantifies the amount of noise being

rejected by the beamformer. This quantity is defined as the

ratio of the power of the noise at the reference microphone

over the power of the noise remaining at the beamformer

output, i.e.,

ξnr [h(ω)]

=
φu1

(ω) + φv1
(ω)

hH(ω)[Φu(ω) +Φv(ω)]h(ω)

=
φu1

(ω) + φv1(ω)

φu1
(ω) |hH(ω)au(ω)|

2
+ hH(ω)Φv(ω)h(ω)

. (64)

The noise-rejection factor is expected to be lower bounded

by 1. Otherwise, the beamformer amplifies the noise received

at the microphones. It should be noted however that in some

scenarios the noise-reduction factor can become lower than 1.

The higher the value of the noise-rejection factor, the more

the noise is rejected.

For the SDIRC beamformer we have3

ξnr [hSDIRC]

=
φu1

+ φv1

m1|α|2 + [φu1
+m2] |β|2 + 2Re{m12 αβ}

. (65)

Hence, the narrowband noise-reduction factor of the SDIRC

beamformer depends on α(ω) and β(ω) and approaches infin-

ity when α(ω) and β(ω) approach zero.

Let us again investigate the previously discussed scenario

when Φu(ω) = φu1
(ω)au(ω)a

H
u (ω) and Φv(ω) = φv1

(ω) I.
For the LCMV beamformer we then obtain

ξnr [hLCMV(ω)] =

✓

φu1
(ω)

φv1
(ω)

+ 1

◆

✓

kad(ω)k
2
2 �

|aHd (ω)au(ω)|
2

kau(ω)k22

◆

. (66)
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The narrowband noise reduction for the MVDR beamformer

is given by

ξnr [hMVDR(ω)] =

✓

φu1
(ω)

φv1
(ω)

+ 1

◆

0

@kad(ω)k
2
2 �

|aHd (ω)au(ω)|
2

φv1
(ω)

φu1
(ω) + kau(ω)k22

1

A . (67)

When |aHd (ω)au(ω)|
2 6= 0 the narrowband noise-reduction

factor of the MVDR and LCMV differ depending on the ratio

φv1(ω)/φu1
(ω). From these expressions we also see that the

noise-reduction factor of the MVDR and LCMV are similar

when φu1
(ω) is much larger than φv1

(ω).
Finally, the narrowband noise reduction for the PMWF is

given by [7]

ξnr [hPMWF(ω; γ)] =
1

iSINR(ω)
·
[γ + ρ(ω)]

2

ρ(ω)
, (68)

with

ρ(ω) = tr
n

[Φu(ω) +Φv(ω)]
�1

Φd(ω)
o

. (69)

Using the matrix inversion lemma it can be shown that for the

considered scenario

ρ(ω) =
φd1

(ω)

φv1(ω)

0

@kad(ω)k
2
2 �

|aHd (ω)au(ω)|
2

φv1
(ω)

φu1
(ω) + kau(ω)k22

1

A . (70)

Analyzing (68) we find that for a given situation and hence

ρ(ω) (ρ(ω) > 0) and iSINR(ω), the noise reduction of the

PMWF increases monotonically with γ.

Because the ratio φv1
(ω)/φu1

(ω) is always positive the

following holds:

ξnr [hPMWF(ω)] � ξnr [hMVDR(ω)] � ξnr [hLCMV(ω)] .
(71)

Hence, for the considered scenario the narrowband noise-

reduction factor of the parameterized MWF is always larger

or equal than the narrowband noise-reduction factor of the

MVDR, which is always larger or equal to the narrowband

noise reduction of the LCMV.

C. Speech Distortion

Many beamforming algorithms distort the desired signal.

Even when the beamformer is designed to preserve the desired

signal, distortions might be introduced due to estimation

errors. In order to quantify the level of this distortion, we

define the narrowband desired-signal-reduction factor [22]

or narrowband desired-signal-cancellation factor [21] as the

ratio of the variance of the desired signal at the reference

microphone over the variance of the filtered desired signal at

the beamformer output, i.e.,

ξdsc [h(ω)] =
φd1

(ω)

hH(ω)Φd(ω)h(ω)

=
1

|hH(ω)ad(ω)|
2 . (72)

Broadband beamformers that do not cancel the broadband de-

sired signal require that the desired-signal-cancellation factor

is equal to 1. When ξdsc [h(ω)] is greater than 1 the desired

signal is distorted.

Another useful performance measure is the speech-

distortion index [20], [23] defined as

υsd [h(ω)] =
E
h

�

�hH(ω)ad(ω)D1(ω)�D1(ω)
�

�

2
i

φd1
(ω)

=
�

�hH(ω)ad(ω)� 1
�

�

2
. (73)

The speech-distortion index is always greater than or equal

to 0 and should be upper bounded by 1; so the higher is the

value of υsd [h(ω)], the more the desired signal is distorted.

By substituting (17) in (72) and (73), we obtain the distor-

tion measures for the SDIRC beamformer

ξdsc [hSDIRC(ω)] =
1

|α(ω)|2
, (74)

υsd [hSDIRC(ω)] = [α(ω)� 1]
2
. (75)

Hence, the distortion of the desired signal depends only on

α(ω).
For the LCMV and MVDR beamformer, we obtain

ξdsc [hLCMV(ω)] = ξdsc [hMVDR(ω)] = 1, (76)

υsd [hMVDR(ω)] = υsd [hSDIRC(ω)] = 0. (77)

Now using the fact that α(ω) = HPW(ω; γ), we directly

find

ξdsc [hPMWF(ω; γ)] =
[γ + ρ(ω)]

2

ρ2(ω)
. (78)

υsd [hPMWF(ω; γ)] =
γ2

[γ + ρ(ω)]
2 . (79)

For a given situation and hence ρ(ω), we find using (79) and

(70) that the speech-distortion index increases monotonically

with increasing γ.

D. Array Gain

The role of the beamformer is to produce a signal whose

SINR is higher than that which was received at the reference

microphone. To that end, the array gain is defined as the ratio

of the output SINR (after beamforming) over the input SINR

(at the reference microphone) [24]. It is therefore equal to the

SINR improvement that is often presented. This leads to the

following definition:

A [h(ω)] =
oSINR [h(ω)]

iSINR(ω)
(80)

=

�

�hH(ω)ad(ω)
�

�

2
[φu1

(ω) + φv1
(ω)]

φu1
(ω) |hH(ω)au(ω)|

2
+ hH(ω)Φv(ω)h(ω)

=

�

�hH(ω)ad(ω)
�

�

2
[1 + iNIR(ω)]

|hH(ω)au(ω)|
2
+ φ�1

u1
(ω)hH(ω)Φv(ω)h(ω)

.

By making the appropriate substitutions, one can derive the

following relationship between the array gain, noise-rejection

factor, and desired-signal-cancellation factor:

A [h(ω)] =
ξnr [h(ω)]

ξdsc [h(ω)]
. (81)
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Hence, when no distortion occurs (i.e., ξdsc [h(ω)] = 1), the

array gain coincides with the noise-reduction factor.

By substituting (43) and (29) in (80), we obtain the array

gain of the SDIRC beamformer:3

A [hSDIRC] =

(φu1
+ φv1

)|α|2

m1|α|2 + [φu1
+m2] |β|2 + 2Re{m12αβ}

. (82)

Clearly, the array gain depends on α(ω) and β(ω).

VI. PERFORMANCE EVALUATION

The performance of the SDIRC beamformer in two environ-

ments, viz., anechoic and reverberant, is evaluated in this sec-

tion. The tradeoff between speech distortion and interference-

plus-noise reduction on the one hand, and undesired signal and

ambient reductions on the other hand will be demonstrated.

For comparison, we will show the performance obtained by

the LCMV, MVDR, and PMWF.

The results of our simulations are presented in terms of the

performance measures described in Section V. Most results are

presented in terms of the fullband version of these performance

measures, which are defined in a similar way the fullband input

SINR is defined in (44). Because the filters are applied on a

frame-by-frame basis, as will be explained shortly, the per-

formance measures are evaluated per frame and subsequently

averaged over all frames. The SNRs, SIRs, SINRs, and NIRs

are averaged in the logarithm domain while other performance

measures are averaged in the linear domain. In reverberant

environments, the performance depends on the absolute spatial

location of the sources and microphones in the enclosed space.

To alleviate this spatial dependency, Monte Carlo simulations

were conduced by rotating and translating the source-array

geometry inside the room. The final results were obtained by

averaging the results of 50 Monte Carlo trials.

It is important to note that the expressions of the frequency-

domain filters involve divisions by some quantities that might

approach zero due to speech absence or common-zeros be-

tween the channels. Therefore, all quantities in the denomina-

tors are kept above a certain threshold that was experimentally

set to 10�6.

A. Experimental Setup and Implementation

A uniform linear array (ULA) was used with 4 microphones

and an inter-microphone distance of 2.5 cm. The distance

between the floor and the microphone array is 1.6 m.

In the first scenario, it is assumed that the desired and unde-

sired sources are located in the far-field with no reverberation.

The corresponding steering vectors are given by gd(ω) =
h

1 e�jωδc−1 cos(θd) · · · e�jω(M�1)δc−1 cos(θd)
iT

and gu(ω) =
h

1 e�jωδc−1 cos(θu) · · · e�jω(M�1)δc−1 cos(θu)
iT

, where δ =

0.025 is equal to the distance between the microphones of

the ULA, c = 343 ms�1 is the speed of sound, and θd and θu
determine the azimuth of the desired and undesired sources

as shown in Fig. 1. Here the attenuation of the propagating

sounds, which depends on the source-receiver distance, is

Desired

Undesired

rd ru

θu

θd

Fig. 1. Schematic drawing showing the array configuration and the location
of the desired and undesired sources.

taken into account in the power of the sources rather than the

steering vector. From (6) and (7) it follows that ad(ω) = gd(ω)
and au(ω) = gu(ω), respectively.

In the second scenario, we consider a reverberant environ-

ment. The acoustic impulse responses (each with a duration

of 500 ms) were generated using an efficient implementation

[25] of the image-method [26] with some necessary modifi-

cations that ensure correct inter-microphone phase delays by

using fractional decays [27]. The room size is 5 ⇥ 4 ⇥ 6 m

(length⇥width⇥height) and the reflection coefficients of the

walls, ceiling, and floor are set to achieve a reverberation

time T60 = 400 ms measured using the backward integration

method [28]. The distance between the first microphone and

the desired and undesired sources are denoted respectively by

rd and ru as shown in Fig. 1. The vectors ad(ω) and au(ω)
are computed per frequency using

ad(ω) =
E{d(ω)D⇤

1(ω)}

φd1
(ω)

(83)

and

au(ω) =
E{u(ω)U⇤

1 (ω)}

φu1
(ω)

, (84)

respectively.

The desired source consists of 10 minutes of male and

female speech composed of data from the APLAWD speech

database [29] sampled at 8 kHz and is located at (θd =
50 degrees, rd = 1 m). The undesired source, located at

(θu = 130 degrees, ru = 1.5 m), consists of an USASI

noise sequence that exhibits the same spectral properties as

speech. The ambient noise consists of spatially homogeneous

and spatially and temporally white Gaussian noise with a long-

term input SNR of 20 dB, evaluated at the first microphone.

The microphone signals are generated using (1), (2), and (3).

The microphone signals are processed in the discrete Fourier

transform domain using the overlap-save [30] method. Specif-

ically, the signals are divided into 50% overlapping frames

of duration 512 ms. Once the microphone signals are filtered

in the frequency domain, they are transformed into the time

domain and only those samples are kept that correspond to

a linear convolution [30]. Finally, a finite-impulse-response
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(FIR) constraint was applied to the filter in the time domain

[11], [31]. Because small estimation errors can result in pre-

echoes (i.e., echoes that arrive before the arrival of the direct

sound), an asymmetric FIR constraint was applied that was

determined experimentally. Specifically, the length of the anti-

causal part was set to 64 ms and the length of the causal part

was set to 128 ms.

In this study, we put aside the problem of estimating the

statistics of the sources and ambient noise because we are

interested in assessing the performance of various beamform-

ers and the different tradeoffs. The PSD of the source signals

Φd(k) and Φu(k), where k denotes the discrete frequency

bin, are estimated recursively using the signal vectors d(k)
and u(k) with a forgetting factor of 0.98. The ambient noise

PSD matrix Φv(k) is estimated from the signal vector v(k)
using the Welch’s modified periodogram [32].

For the SDIRC beamformer we have two design parameters,

viz., α(ω) and β(ω). These parameters can be chosen in many

ways, some of which perceptually motivated. Rather than

evaluating the beamformer over the entire parameter space,

we propose to investigate another parameter space such that

it includes the MVDR, LCMV, and PMWF. Specifically, we

investigate the influence of γ and therefore define α(ω) as

follows:

α(ω; γ) = HPW(ω; γ). (85)

Furthermore, we define β(ω) as follows:

β(ω;β0) = �β0
m12(ω)

φu1
(ω) +m2(ω)

, (86)

such that we can investigate the behavior of the SDIRC

beamformer as a function of β0. For (γ = 0,β0 = 0),
we then obtain the LCMV and for (γ = 0,β0 = 1), we

then obtain the MVDR. For (γ � 0,β0 = 1), we obtain

solutions of the PMWF. Previously unexplored solutions that

allow a tradeoff between speech distortion and interference-

plus-noise reduction on the one hand, and undesired signal

and ambient noise reductions on the other hand are given by

(γ � 0, 0 < β0 < 1).

B. Anechoic Environment

Let us first investigate the beamformer’s performance in

terms of the SINR improvement (i.e., array gain), NIR im-

provement and speech-distortion index as a function of γ and

β0 in an anechoic environment with a SIR of 10 dB and �5 dB.

The results obtained with an SIR of 10 dB are shown in

Fig. 2. The SINR improvement shown in Fig. 2(a) demon-

strates that the SINR increases monotonically with increasing

β0 and/or γ. As mentioned in Section V, the SINR of the

LCMV (γ = 0,β0 = 0) is smaller than that of the MVDR

(γ = 0,β0 = 1). The effect of β0 becomes evident when

analyzing the NIR shown in Fig. 2(b) (note that the axes

have been changed to improve the visualization). While γ has

almost no influence on the NIR, the NIR decreases mono-

tonically with increasing β0. When β0 = 0, the beamformer

is designed to cancel the undesired source completely and

in theory the NIR is infinity. The speech-distortion index

is shown in Fig. 2(c) and demonstrates that only γ has an

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10
14

14.5

15

15.5

16

16.5

17

β′γ

S
IN

R
 I

m
p

ro
v
e

m
e

n
t 

(d
B

)

(a) SINR improvement.

0

0.2

0.4

0.6

0.8

1 0
2

4
6

8
10

25

30

35

40

45

50

55

γ
β′

N
IR

 I
m

p
ro

v
e

m
e

n
t 

(d
B

)

(b) NIR improvement.

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10

−70

−60

−50

−40

−30

β′γ

S
p
e
e
c
h
 d

is
to

rt
io

n
 i
n
d
e
x
 (

d
B

)

(c) Speech-distortion index.

Fig. 2. Performance measures as a function of β0 and γ for M = 4, T60 = 0
(i.e., anechoic), SNR = 20 dB and SIR = 10 dB.

influence on the speech distortion. As discussed in Section V

the speech distortion increases monotonically with increasing
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Fig. 3. Performance measures as a function of β0 and γ for M = 4, T60 = 0
(i.e., anechoic), SNR = 20 dB and SIR = −5 dB.

γ. These results demonstrate that we can control independently

the undesired signal and ambient noise reductions and the

speech distortion and interference-plus-noise reduction.

The results obtained with an SIR of �5 dB are shown in

Fig. 3. In this scenario, the power of the undesired signal is

much larger than the power of the ambient noise. While the

results for the SINR improvement and the speech-distortion

index have not changed much, we see that the influence of β0

on the NIR improvement changed. While the trend remains

the same, we observe that the range in which the NIR varies

as a function of β0 has reduced. As mentioned in Section V,

the MVDR (γ = 0,β0 = 1) maximizes the output SINR, and

in case the power of the undesired source is much larger than

the power of ambient noise the performance of the LCMV

(γ = 0,β0 = 0) and MVDR (γ = 0,β0 = 1) are comparable.

C. Simulated Reverberant Environment

Now we investigate the beamformer’s performance in terms

of the SINR improvement, NIR improvement and speech-

distortion index as a function of γ and β0 in a simulated

reverberant environment with T60 = 400 ms and a SIR

of 10 dB. The obtained results are shown in Fig. 4. The

behavior of the SINR improvement, NIR improvement and

speech-distortion index is very similar to the beamformer’s

behavior observed in the anechoic environment discussed in

the previous subsection. For the considered scenario the range

in which we can vary the NIR using β0 is about 8 dB.

In general, we found that the amount of speech distortion

obtained in the reverberant environment is higher than that

obtained in an anechoic environment. This effect can be

attributed to the finite filter length used in our simulations.

D. Real Reverberant Environment

Finally, we studied the performance of the SDIRC beam-

former in a real reverberant environment. The room impulse

responses were measured in the varechoic chamber at Bell

Labs [33]. The chamber is a rectangular room (6.7 m⇥6.1 m⇥
2.9 m) with 368 electronically controlled panels that vary

the acoustic absorption of the walls, floor, and ceiling [34].

Therefore, the level of room reverberation is well controlled

by the percentage of open panels. In this experiment, 89%

of the panels are open, which leads to a reverberation time

of approximately 130 ms. We consider a scenario with one

desired source that consists of a female speaker and one

undesired source (SIR = 5 dB) that consists of a male speaker

– both source signals are taken from the APLAWD speech

database [29]. The desired source is active between 0 and 2 s

and between 3.5 and 5 s, and the undesired source is active

between 2 and 5 s. Therefore, both the desired and undesired

sources are active between 3.5 and 5 s. The ambient noise

is spatially homogeneous and spatially and temporally white

Gaussian (SNR = 15 dB). The source and interference were

position at approximately the same location with respect to

the array as in our previous experiments and correspond to

locations v12 and v14 in [33].

The spectrograms and waveforms of the desired source

signal and the first microphone signal are depicted in Fig. 5(a)

and (b), respectively. The results obtained after processing the
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(c) Speech-distortion index.

Fig. 4. Performance measures as a function of β0 and γ for M = 4, T60 = 400 ms, SNR = 20 dB and SIR = 10 dB.

received signals using the proposed SDIRC beamformer with

γ = 0 and β0 2 {0, 0.5, 1} are shown in Fig. 5(c)-(e) and the

result obtained with γ = 1 and β0 = 1 is shown in Fig. 5(f).

The output signal shown in Fig. 5(c) corresponds to the

output of an LCMV beamformer. While the undesired speech

signal (between 2 and 3.25 s) is almost canceled we can see

that the ambient noise in the low frequencies has increased

significantly. Results of an informal listening test, conducted

using 5 subjects and a Sennheiser HD650 headphone, showed

that undesired signal was inaudible. The residual noise at the

output of the LCMV beamformer is very stationary (as it

mainly consists of residual ambient noise that is stationary)

but the power at low frequencies is significant. Reducing

the residual noise power to an acceptable level using α(ω)
would cause significant speech distortion. The output signal

shown in Fig. 5(d) corresponds to the output of the proposed

SDIRC beamformer with (γ = 0,β0 = 0.5). We notice that

the ambient noise has not been amplified as much compared

to the LCMV, and we notice a small amount of residual

undesired signal which was hardly audible. In Fig. 5(e), the

output signal is shown that corresponds to the output of an

MVDR beamformer. While this signal has the largest output

SINR with low speech distortion we can clearly see the

residual undesired signal. The results of the informal listening

test showed that the undesired signal was clearly audible.

Further reducing the interference-plus-noise power is possible

at the cost of increased speech distortion. Unfortunately, the

residual interference-plus-noise is highly nonstationary and

further reducing it using α(ω) might be difficult as we need to

estimate the PSD of the residual noise first. The interference-

plus-noise obtained using (γ = 0,β0 = 0.5) is fairly stationary

and less strong compared to that observed at the output of

the LCMV. Using α(ω) we can further reduce the residual

interference-plus-noise power to an acceptable level without

introducing too much speech distortion. As an example the

output signal for γ = 1,β0 = 0.5 is shown in Fig. 5(f).

We observe that the ambient noise at very low and very

high frequencies is significantly reduced compared to all other

beamformers. Compared to the result obtained for γ = 0 and

β0 = 0.5, we observe that the interference-plus-noise power
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(a) Desired signal at the first microphone.
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(b) First microphone signal.
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(c) Processed signal with (γ = 0,β0 = 0).
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(d) Processed signal with (γ = 0,β0 = 0.5).
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(e) Processed signal with (γ = 0,β0 = 1).
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(f) Processed signal with (γ = 1,β0 = 0.5).

Fig. 5. Spectrogram and waveform of the signal received by the first microphone, the SDIRC beamformer with β0 ∈ {0, 0.5, 1} and γ = {0, 1} for M = 4,
T60 = 130 ms, SNR = 15 dB and SIR = 5 dB.

is also reduced between 0.1 and 3.75 kHz. The results of

the informal listening test confirms that the ambient noise

is significantly reduced and the undesired source remains

inaudible.

We now analyze the speech-distortion index when both the

desired and undesired source are active (i.e., between 3.5 and

5 s). In Fig. 6(a), the speech-distortion index is depicted as

a function of time (top figure) and frequency (bottom figure).

Across time and frequency we see that the speech-distortion

index is almost independent of β0 (only a slight increase in

the the speech-distortion index is observed when β0 decreases

from one to zero). Finally, we analyze the NIR improvement

when both the undesired source and the ambient noise are

present (i.e., between 2 and 5 s). In Fig. 6(b), the NIR

improvement is depicted as a function of time (top figure)

and frequency (bottom figure). In general we observe that NIR
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(a) Speech-distortion index as a function of time (top) and frequency
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Fig. 6. NIR and speech-distortion index as a function of time and frequency for the SDIRC beamformer with β0 ∈ {0, 0.5, 1} and γ = 0 for M = 4,
T60 = 130 ms, SNR = 15 dB and SIR = 5 dB.

improvement increases when β0 decreases. Hence, using β0 we

can control the undesired signal and ambient noise reductions

without significantly affecting the speech distortion.

VII. CONCLUSIONS

A speech distortion and interference rejection constraint

beamformer was proposed that generalizes existing beam-

formers and allows a tradeoff between speech distortion and

interference-plus-noise reduction on the one hand, and unde-

sired signal and ambient noise reductions on the other hand.

The conducted performance evaluation has demonstrated that

this tradeoff can be achieved. Furthermore, relations between

the proposed SDIRC beamformer and existing beamformers

have been derived and frequently used performance measures

were deduced and analyzed. In addition, it was shown that

these relations provide an alternative way to compute per-

formance measures of existing beamformers. The tradeoffs

facilitated by the proposed beamformer can be used in the

development of effective speech acquisition systems and in

the design of perceptually motivated beamformers.
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