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ABSTRACT 

In  this  paper,   the  problem of speech   enhancemen t  
when  only  corrupted  speech  signal  is   available  for 
processing  is  considered. For this ,   the   Kalman  f i l ter ing 
method is s tudied  and  compared  with  the Wiener 
f i l ter ing  method.  Its performance  is   found  to  be  signi-  
f ican t ly   be t te r   than   the  Wiener f i l ter ing  method.  
A delayed-Kalman  fi l tering  method is also  proposed 
which   improves   the   speech   enhancement   per formance  
of Kalman  f i l t e r   fur ther .  

I. INTRODUCTION 

In  many  situations of practical 
interest,  the  speech  signal  gets  corrupted 
by the  addition  of  white  noise.  Presence 
of noise  affects the intelligibility of 
speech.  An  example is the  communication 
between  a  pilot  and  an  air  traffic  control 
tower, where  speech is usually  degraded by 
the addiion of  engine  noise.  In  such 
situations,  it  is  desirable to enhance the 
quality  and  intelligibility of speech.  In 
automatic  speech  and  speaker  recognition 
systems if a  speech  enhancement  scheme  is 
incorporated  in  a  preprocessing stage, 
recognition  becomes  simpler and more 
reliable.  Speech  enhancement  also  plays 
an  important  role  in  speech  coding 
applications. 

The  problem  addressed  in the present 
paper i s  to enhance  speech  when  only the 
corrupted  speech  signal  is  available for 
processing.  A  large  number of  meth.ods 
have  been  reported  in the literature [l] 
for speech  enhancement.  The  stationary 
Wiener  filtering  method  is  one of the 
important  speech  enhancement  methods. 

Since  speech  is  nonstationary  in 
nature, stationary  Wiener  filter  does not 
perf or~n  very  well.  Theref ore, methods 
based  on  short-time  power-spectrum  have 
been  proposed. Recently, Paliwal [ 2 ]  has 
proposed  a  nonstationary  Wiener  f ilterirlg 
method for speech  enhancement,  where the 

Wiener filter is  designed for each 
short-time  speech  segment  (duration= 20-30 
msec)  using a least-squares  procedure. 

Though  the  nonstationary  Wiener  filter 
is  optimum for a  given  segment  in  a 
least-squares-error sense, it  does not 
exploit  the  knowledge  about  speech 
production  process.  In the present paper, 
we  propose  Kalman  filtering  method  which 
allows  for the nonstationarity of speech 
and, at the same time, exploits  speech 
production  model.  We  also  show  that  a 
delayed  version  of the same  filter  offers 
further  improvement,  though the 
computat'ional  complexity  remains 
identical. 

11.  KALMAN  FILTER  FOR  SPEECH  ENHANCEMENT 

A. Mathematical  Formulation 

Speech  can  be  represented by an 
autoregressive (AR) process  which  is 
essentialy the output of an all-pole 
linear  system  driven by white  noise 
sequence.  Thus  speech  signal at k-th  time 
instant,  s(k),  is  given by: 

s(k)=als(k-l)+ . . . . +  aps(k-p)+u(k) 
. . . .  (1) 

A little  observation of the  equation 
(1) reveals  that  it  can be  represented by 
the state-space  model  as shown  below. 

. . . I ( 2 )  

or X(k)= 4 X(k-l)+ G u(k) (3) 

where X(k), @ and G are state vector, 
state  transion  matrix  and  input matrix, 
respectively.  These  are  defined  as 
follows : 



XT(k)=[s(k-p+l), . . . ,s(k-l),~(k)] 
. . . . ( 4 )  
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G =[0 . . .  0 11 (6) 

When  only  the  noise  corrupted  signal 
y(k)  is available, the  observatlon  process 
can be  written in the  following form: 

y(k)=s(k)+n(k) ( 7 :  

This  equation can be written in the  matrix 
form  as follows: 

y(k)=H X(k)+n(k) (8) 

where  X(k)  is  the state vector  already 
defined  by  equation (4) and H is the 
observation  matrix  given by: 

H =[0 0 . . . .  0 11 (9) 

The  noise  sequences { u ( k ) }  and  {n(k)} 
are zero mean  white noise processes and 
are  uncorrelated.  The  observation  noise 
n ( k )  is also  uncorrelated  to the state 
vector. For a l l  k and 1, we can write: 

E{u(k)]=O E{u(k)u(l)j=&(k)Bk 

E{n(k)}=O E{n(k)n(l)}=R(k)Gk 

(k)n(l)?=U 
. . . .  (10)-(12) 

that  initial 
) = X o  and  is 

(13) 

The  initial  estimate of the  error 
covariance  matrix Po, is known from the 
following  relation 

Po  =EC[X(O)-Xo]  [X(O)-Xol'] (14) 

The  state  and  observation  equations (3) 
and (8) clearly  suggest that Kalman  filter 
can readily  be  applied for an  estimate of 
the state-vector X ( k  . It can be  easily 
shown  that  the  pairs {b ,  G }  and {@, H} are 
controllable and observable, respectively. 
Hence, the I<al.man filter based on this 
model  will be 'stable' or 'robust'  in the 
sense that the  effects of  initial  errors 
and round-of f and other  computational 
errors will die  out  asymptotically. 

The  Kalman  filter  gives the minimum 
mean-square-error estimate of X ( k )  based 
or: the  observaLions { y ( l ) , y ( 2 ) ,  . . . , ~ ( k ) 2 - ,  
and this estimate i.s represented by 
X ( k i  li) . The  corresponding  error 
* 

It is also  assumRd 
estimate of X  is  X(0 
unbiased, i. e. 

E{X(O)-Xo}=O 

covariance  matrix is P(klk). Similarly, 
the one  step  predicted  estimate of X(k) is 
X(kik-1) and  associated  error  covariance 
matrix  is  P(kik-1).  Using  these  notations 
the Kalman  filtering  algorithm  can be 
given  by  the  following  recursive 
relations: 

h 

n 
X(klk)=~(klk-l)cK(k)Cy(k)-H T(k:k-l)] 

X(k;kl)=@ 8(k-i Ik-l), with ?(O iO)=Xo 

F(k/k)=[I-K(k)H] P(kik-1) 

h 

. . . . (  15)-(17) 
where 

K(k)=P(k;k-l)H'[H  P(k/k-l)HT+R(k)]-' 

F(klk-l)=@ P(k-lIk-1)QT+G Q ( k ) G T  

. . . .  ( 1 8 ) ,  ( 1 9 )  

Application of Kalman  filtering for 
speech enhancement  consists of two 
separate steps; 

(1) Estimation of AR coefficients 
{a,,a2, . . . . ,  ap} and noise  variances Q and 
R for  each  segment  over  which  speech  is 
assumed to be  stationary.  Different 
methods  have  been  proposed  in the 
literature for estimating  these  parameters 
13-61. 

( 2 )  Apply the Kalman  filtering 
algorithm  using  estimated  parameter 
values.  The  last  component of the  state 
vectorAX (k)=[s(k-p+l) . . . .  s(k)], i.e., 
xp!k)=s(k) gives the Kalman  filtered 
estimate of speech  signal s(k). 

€3. Delayed  Kalman  Filter 

Further observation  shows  that  the 
first colnponent of the state vector, 
s(k-p+l)  will give a  better  estimate  of 
speech  signal at (k-p+l) -th instant, since 
this  estimate is using  additional 
inf ormation  in the form of (p-1) extra 
observation  data  {y(k-p+2), . . . . ,  yjk)]. 
This  phenomenon is reflected  in  the  fact 
that  the  diagonal elements, 
{pi ( k / k ) )  i-1,. . ,p}, of the error 
covariance  matrix P(kik) get  arranged  in 
their  ascending order, as  the  filter 
reaches  its  steady state. Actually 2, (k) 
is the fixed-lag-smoothed  estimate of 
s(k-p+l), whe're lag=p-1. This  method 
delays  the  computation of S(k) until1 
(k+p-1). Hence, we have  called this 
estimate  the  delayed  Kalman  filter 
estimate. 

111. EXPERIMENTAL  RESULTS 

We have  used 4 sec  of continuous  speech 
snci evaluated the performance of the 
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Kalman  filtering  method  at  different  intelligibility [ S I .  But  Kalman  filtering 
signal-to-noise  ratio (SNR) conditions.  method  offers  improvement in  terms  of  both 
Performance  is  measured  here in terms of SNR and SEGSNR. Therefore it  is  expected 
output SNR and  output  segmental  SNR to improve  speech qual.ity  as  well  as  its 
(SEGSNR).  In  order  to  put  the  present  intelligibility. However, we  have  not  yet 
method  in  proper  perspective,  we have made  formal  intelligibility  tests to 
compared  its  performance  with  that  of the confirm  this  conjecture. 
stationary  and  nonstationary  Wiener 
filtering  methods. 

In the present study, we have used 
ideal  values of parameters, 
{ai , i=l, . . ,p, Q, R}. Their  estimated 
values  will  be  used  in  future  and the 
sensitivity of the filter to different 
parameter  estimation  schemes  will  be 
reported  later. 

The experimental  procedure  is  as 
follows. Kalman  filter  is  initialized 
only  for  the  first  segment.  In the 
subsequent segments,  the state  vector  and 
error  covariance  matrix  are  initialized 
using the last  values  from the previous 
segment. For  the first  segment the filter 
state  vector  is  initialised  with  the  first 
p data  points: 

and the error  covariance  matrix  is 
accordingly  set to 

P(OIO)=P,=diag[R , R , . . . . ,  R 3 
where R is  the  estimated  observation 
noise  variance  for  the first segment of 
speech.  This  filter  starts  from  the 
(p+l)-th time instant  and  runs  for the 
full  data  length. At the  beginning  of 
each segrnent 0, Q, and R are  replaced by 
their  new  estimated  values. 

The  SNR  and  SEGSNR  results  are  shown  in 
Figs. 1 and 2, respectively.  In  terms of 
SEGSNR, Kalman  filter  offers an  advantage 
of 4.5 dB over the nonstationary  Wiener 
filtering  method,  and 7.4 dB  over the 
stationary  Wiener  filtering  method for 
input  speech  with  SNR=O dB. Results  for 
delayed  Kalman  filter  show an additional 1 
dB improvement  over  the  Kalman  filtering 
method for 0 dB SNR case.  For further 
illustration  of  our  results,  we  show  in 
Fig. 3 the 0 dB  noisy  speech  processed by 
stationary  Wiener  filtering  method  and the 
delayed-Kalman  filtering  method.  This 
figure  clearly  shows the superiority of 
the  delayed-Kalman  filtering  method  over 
the Wiener  filtering  method.  Subjective 
listining  tests  have also confirmed  these 
findings. 

It  might  be  noted here that the Wiener 
filtering  methods  provide  improvements  in 
terms of SNR  only.  These  methods do not 
improve  SEGSNR of the output  speech.  This 
is the reason that these  methods  have  been 
found to show  improvements  in  terms of 
speech  quality  but  not  in  terms  of  speech 
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Fig.  1: Output  SNR values  (in dB) fo r   d i f f e ren t  
speech  enhancement   methods as a func t ion  of 
input SNR values  (in dB). 
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Fig. 2: Output  SEGSNR values  ( in dB) fo r   d i f f e ren t  
speech   enhancemen t   me thods  as a func t ion  of 
input  SNR values  (in dB). 



(a) Clean speech 

I (b)Noisy s p e e c h ( 0 d B )  I , 

( c )  Stationory Wiener I 

I ( d )  Delayed- Kalrnan I ,  

~~~ 

Fi,g. 3: Illustration of speech   enhancement .  

IV. COMPUTATIONAL  COMPLEXITY 

Kalman  filtering  method  is  undoubtedly 
more  complicated  computationally. 
Matrix-vector  multiplications  are  needed 
at  each iteration, resulting  in an O(p2) 
number of operations. But, use  of Fast 
Kalman  algorithm [7], which  relies upon 
some  shift-invariant properties, reduces 
the  computational  complexity to O(p) 
operations  per iteration. Another 
interesting  point  is that for each 
segment, error  covariance  and  Kalman  gain 
matrices  reach  a  steady  state  value  after 
a few steps. After  that point, steady 
state  gain  value  can be used for the rest 
of the segment. Thus, a large  saving  in 
computa-Lion  can  be achieved. 

V. CONCLUSION 

In the present paper, a Kalman 
filtering  method is proposed for speech 
enhancement and its  performance  is 
compared  with that of the  stationary and 
norlstationary Wiener  filtering methods. 
Since Kalman  filter  exploits  speech 

production model, it has  been  found to 
result in better  performance (in terms  of 
both  SNR  and  SEGSNR) than the  Wiener 
filtering method. A  delayed  Kalman  filter 
has  also  been  proposed  which  improves the 
speech  enhancement  performance of the 
Kalman  filter  further  due to its  inherent 
fixed-lag smoothing  operation. 
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