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and F. FEUILLEBOIS†
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Summary

Comprehensive results are provided for the creeping flow around a spherical particle in a
viscous fluid close to a plane wall, when the external velocity is parallel to the wall and varies
as a second degree polynomial in the coordinates. By linearity of Stokes equations, the solution
is a sum of flows for typical unperturbed flows: a pure shear flow, a ‘modulated shear flow’,
for which the rate of shear varies linearly in the direction normal to the wall, and a quadratic
flow. Solutions considered here use the bipolar coordinates technique. They complement the
accurate results of Chaoui and Feuillebois (2003) for the pure shear flow. The solution of Goren
and O’Neill (1971) for the quadratic flow is reconsidered and a new analytical solution is
derived for the ambient modulated shear flow. The perturbed flow fields for these two cases are
presented in detail and discussed. Results for the force and torque friction factors are provided
with a 5 × 10−17 accuracy as a reference. For the quadratic flow, there is a force and a torque
on a fixed sphere. A minimum value of the torque is found for a gap of about 0·18a, where a
is the sphere radius. This minimum is interpreted in term of the corresponding flow structure.
For the modulated shear flow, there is only a torque. The free motion of a sphere in an ambient
quadratic flow is also determined.

1. Introduction

The motion of particles in a fluid flow along a wall is of fundamental importance for various small
scale systems, in microhydrodynamics or microfluidics. Various applications are concerned, for
example, particle analysis or separation in analytical chemistry by techniques such as the field-flow
fractionation (1).

The problems considered in this article concern a spherical solid particle embedded in a viscous
fluid in the vicinity of a plane wall. At small scales, the Reynolds number is usually low and Stokes
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588 L. PASOL et al.

equations apply. It is known from solutions of these equations (2) that hydrodynamic interactions
are long-ranged. Therefore at small scales wall effects become quite significant.

The problem of the creeping flow around a sphere close to a plane wall has been addressed in
various articles. A survey of the literature can be found in (3) and a preceding article (4) which
treats the cases of a translating and rotating sphere in a fluid at rest and of a sphere held fixed in a
shear flow. The present article is concerned with the more general case where the ambient velocity,
parallel to the plane wall, varies as a polynomial of second degree in the coordinates. Note that
polynomial unperturbed velocities in the direction perpendicular to the wall were considered in (5),
so that by linear combinations various three-dimensional polynomial flow fields may be obtained.

As for various applications, it will be noted below that the polynomial flow velocity in one direc-
tion also satisfies Navier–Stokes equations. Thus the unperturbed creeping flow around the sphere
near a wall may be the local description of some flow field satisfying the Navier–Stokes equations
on a larger scale. This polynomial ambient flow may also be understood as a Taylor expansion in
the coordinates of any general flow field along the wall. A second-order expansion is quite sufficient
for many practical applications.

Since Stokes equations are linear, any unperturbed flow field along a wall can be understood as the
superposition of unperturbed flow fields in two perpendicular directions. It is therefore sufficient to
consider a polynomial flow field in one direction. Also because of linearity, the problem for a general
unperturbed flow field in one direction may be decomposed as a sum of problems for elementary
unperturbed flow fields. As for a pure shear flow, results of (4) may be used. It will be shown that
two other unperturbed flow fields have to be considered: a quadratic shear flow and a ‘modulated
shear flow’ for which the rate of shear varies linearly in the direction of the vorticity. New analytical
solutions in bipolar coordinates will be given for these problems.

The bipolar coordinates (BC), pioneered by Jeffery (6), have been used in numerous publications
involving a sphere and a plane wall; see (3) for a review and a list of references. In particular, the
case of a rotating sphere was solved in (7), the case of translating sphere in (8, 9) and the case of a
sphere held fixed in a pure shear flow and in a quadratic flow in (10). The BC method provides the
solution as series in these coordinates. The number of terms in the series increases for decreasing
gap between the sphere and the wall. It is usually believed that the BC become inappropriate when
this gap becomes small compared with the sphere radius, since the coefficients in the series are
solutions of an increasingly large linear system. However, as shown in (11), numerous coefficients
in the series can be calculated with a fast iteration procedure. Following this idea, comprehensive
results were obtained by Chaoui and Feuillebois (4) for the problems of a sphere translating and
rotating along a wall in a fluid at rest and that of a sphere held fixed in a shear flow along a wall.
Their results for the force and torque on the sphere, which are valid with a 10−16 accuracy for
values of the gap between the sphere and the wall down to 2×10−6 sphere radius, were obtained by
calculating a large number of terms in the series without excessive computer resources. For a freely
moving sphere in a shear flow, they also calculated the sphere translational and rotational velocities
with the same accuracy. In a similar way, the problem of a sphere held fixed in a quadratic flow
solved by Goren and O’Neill (10) is reconsidered here in more detail. Moreover, a novel analytical
solution is presented for a modulated shear flow. For these flow fields, the force and torque on the
sphere are calculated with a 5 × 10−17 accuracy for a large domain of values of the sphere to wall
spacing. Results for the perturbed flow field are provided as well. Note that when the sphere is in
contact with the wall, the BC method is inappropriate. For this case, analytical solutions in tangent
sphere coordinates were obtained for an unperturbed shear flow in (12) and for an unperturbed
quadratic flow in (10).
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A SPHERE IN A CREEPING FLOW 589

An alternative method to solve Stokes flow problems involving spherical particles is the multi-
pole expansion method, which starts with analytical developments and can accommodate many
spherical particles as well as one or two plane boundaries. That method is compared with the present
one for the case of a single sphere and one wall by Ekiel-Jeżewska and Wajnryb in a companion
article (13).

The present results may also be used as a benchmark for numerical techniques.
Of course, high accuracy for the force and torque is not directly needed in comparison with

experiments since the neglected fluid inertia would contribute terms of order O(Re), where Re is
the Reynolds number which is usually larger than the present accuracy. On the other hand, accurate
Stokes flow results are needed to calculate the second-order O(Re) effects for a sphere in the vicinity
of the wall. Work on this problem is in progress. Other second-order effects (14) may also be
calculated on the basis of the present results.

The article is organized as follows. In section 2, we present the problems under consideration and
introduce the notation and definitions of friction factors for the force and torque on the sphere. The
analytical BC solution for the presented problems is derived in section 3. The results for a sphere
held fixed or freely suspended in a quadratic or in a modulated ambient shear flow are presented and
discused in section 4. We moreover provide interpolation formulae for the force and torque exerted
on a sphere held fixed in a quadratic ambient shear flow. Finally, concluding remarks are presented
in section 5.

2. Problems, notation and basic formulae

In this section we introduce the addressed problems and the notation, then define friction factors
and mobilities.

Consider a sphere with radius a embedded in a semi-infinite region bounded by a plane wall. We
use a system of Cartesian coordinates Oxyz (with unit vectors ex , ey, ez) attached to the wall which
is denoted by z = 0. The sphere may be moving and is centred on the z-axis at a distance � from the
wall at the time at which the flow field is observed. The unperturbed velocity field u∞ is assumed
to be along x , such that from continuity equation u∞ = u∞(y, z) ex . Its most general second-order
expansion satisfying the creeping flow equations and the no-slip condition on the wall is

u∞ = (ksz + kqz2 + 2kmzy) ex , (1)

where ks, kq, km are constants. The only component with a non-constant pressure is the quadratic
one, so that the unperturbed pressure p∞ reads, up to an arbitrary constant,

p∞ = 2µkqx . (2)

More generally, note that (1) is also the most general second-order expansion of u∞ parallel to x
satisfying the Navier–Stokes equations. Then, as mentioned in the Introduction, various applications
may be considered in which the flow far from the perturbed Stokes flow region may have a large
Reynolds number based on some outer scale.

By linearity, the perturbed flow field (u∞ + u, p∞ + p) with unperturbed velocity and pressure
given by (1) and (2) is calculated as the sum of solutions to three problems, with unperturbed
velocity ksz ex (pure shear flow), kqz2 ex (quadratic flow) and 2kmzy ex (modulated shear flow),
respectively. Results of (4) may be used for the pure shear flow. The case of a quadratic ambient
flow is calculated here in a similar way and a new analytical solution is derived below for the
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590 L. PASOL et al.

modulated shear flow. By linearity, the solution for the modulated shear flow may be written as the
sum of those for two ambient flows:

2kmzy ex = km(zy ex + zx ey) + km(zy ex − zx ey).

The first contribution, that is a pure straining motion in each plane z = constant, is called a ‘modu-
lated straining motion’. The second contribution, a rotational flow with vorticity varying along z, is
called a ‘modulated rotational flow’. Thus, we successively deal with a quadratic flow, a modulated
straining motion and a modulated rotational flow.

The general problem considered here is that of a particle moving in this ambient flow field with
given translational velocity U and rotational velocity ���. This problem is solved by simply adding
the cases of a translating and rotating sphere in a fluid at rest to that of a fixed sphere in the ambient
flow field. For each separate case, the fluid applies on to the sphere a force F and a torque C which
may be written in term of friction factors f and c (following notation of (4)) as

F t
x = −6πaµ U f t

xx C t
y = 8πa2µ Uct

yx (3a)

F r
x = 6πa2µ�y f r

xy C r
y = −8πa3µ�y cr

yy (3b)

F s
x = 6πa�µ ks f s

xx Cs
y = 4πa3µ ksc

s
yx (3c)

Fq
x = 6πa�2µ kq f q

xx Cq
y = 8πa3�µ kqcq

yx (3d)

C r
z = −8πa3µ�z cr

zz (3e)

Cm
z = −8πa3�µ kmcm

zx . (3f)

The superscripts ()t, ()r, ()s, ()q, ()m denote the translation, rotation, shear flow, quadratic flow,
modulated shear flow, respectively. The first subscript denotes the component of the force or torque
and the second subscript indicates the direction of the unperturbed flow field. The results for the
modulated shear flow are obtained by observing that it is the sum of a modulated straining motion
giving zero force and torque and a modulated rotational flow giving a torque but no force. When �
becomes infinite, the friction factors ct

yx and f r
xy vanish and all other friction factors become unity,

as can be checked by using Faxen formulae (2).
A freely moving sphere (that is, with zero total force and torque) embedded in an unperturbed

flow field having shear and quadratic contributions moves with the following translational and rota-
tional velocities:

U = ksaŨ s + kqa2Ũ q, (4a)

�y = ks�̃
s
y + kqa�̃q

y, (4b)

introducing the mobilities which, by (3) are obtained as

Ũ s = (�/a)cr
yy f s

xx + 1
2 f r

xycs
yx

D
, �̃s

y =
1
2 f t

xx cs
yx + (�/a)ct

yx f s
yx

D
, (5a)

Ũ q = (�/a)2cr
yy f q

xx + (�/a) f r
xycq

yx

D
, �̃q

y = (�/a) f t
xx cq

yx + (�/a)2ct
yx f q

xx

D
, (5b)

where D = cr
yy f t

xx − f r
xyct

yx . (5c)
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A SPHERE IN A CREEPING FLOW 591

Consider first a freely moving sphere in a quadratic flow, that is, ks = 0. The sphere translational
and rotational velocities may be compared with those of a sphere embedded in the same unper-
turbed flow field, but in an unbounded fluid domain. From Faxen formulae, those velocities read
Uun = kq(�

2 + a2/3),�un = kq�. It is therefore appropriate to introduce the normalized velocities

U q = U

Uun
= Ũ q

(�/a)2 + 1/3
, (6a)

�q
y = �y

�un
= �̃

q
y

(�/a)
, (6b)

which tend to unity as �/a → ∞.

3. Bipolar coordinates method and solutions

In the following, the BC method is used to solve the problems of the particle held fixed in the
various components of the unperturbed flow field (1). The free motion of a sphere in a quadratic
flow field is also calculated. The bipolar coordinates (ξ, η, φ) are related to the usual cylindrical
polar coordinates (ρ, z, φ), with x = ρ cos φ and y = ρ sin φ, as follows (2):

ρ = c sin η

cosh ξ − cos η
, z = c sinh ξ

cosh ξ − cos η
, c = (�2 − a2)1/2. (7)

The z = 0 plane corresponds to ξ = 0 whereas the ξ = α coordinate surface with � = a cosh α
is the surface S of the sphere. Accordingly, in the fluid domain we have 0 � φ � 2π, 0 � η � π
and 0 � ξ � α. For convenience we shall also use the usual unit vectors eρ = (xex + yey)/ρ and
eφ = ez × eρ.

3.1 Sphere held fixed in a quadratic flow and earlier similar problems

The solution for the sphere held fixed in a quadratic flow is analogous to previous solutions for a
translating or rotating sphere in a fluid at rest (7 to 9) and for a sphere held fixed in a shear flow
(10). A general solution that includes all cases is presented here in uniform notation. The no-slip
boundary condition on the sphere for the perturbation velocity in the four cases is respectively
u = ex (translation), u = ey × r (rotation), u = −zex (shear flow) and u = −z2ex (quadratic flow).
The general solution of the Stokes equations in the cylindrical coordinates system is of the form

uρ = 1
2{ρQ1 + U0 + U2} cos φ, uφ = 1

2 (U2 − U0) sin φ, (8a)

uz = 1
2{zQ1 + 2U1} cos φ, p = µQ1 cos φ, (8b)

where Q1, U0, U1 and U2 are functions of ρ and z satisfying the differential equations

L2
0[U0] = L2

1[U1] = L2
1[Q1] = L2

2[U2] = 0, (9)

in term of the operators

L2
m = ∂2

∂ρ
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2 − m2

ρ2 . (10)
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592 L. PASOL et al.

When expressed in the bipolar coordinates (ξ, η), the functions Q1, U0, U1, U2 are found to be of
the following form:

U1 = cM (cosh ξ − λ)1/2 sin η
∑
n�1

An sinh(γnξ)P ′
n(λ), (11a)

Q1 = cM−1(cosh ξ − λ)1/2 sin η
∑
n�1

[Bn cosh(γnξ) + Cn sinh(γnξ)]P ′
n(λ), (11b)

U0 = cM (cosh ξ − λ)1/2
∞∑

n�0

[Dn cosh(γnξ) + En sinh(γnξ)]Pn(λ), (11c)

U2 = cM (cosh ξ − λ)1/2 sin2 η
∑
n�2

[Fn cosh(γnξ) + Gn sinh(γnξ)]P ′′
n (λ), (11d)

where λ = cos η, γn = n + 1/2, Pn(λ) denotes the Legendre polynomial of order n and the primes
designate differentiation with respect to λ. The integer M takes the values M = 0 for the translation,
M = 1 for the rotation and shear flow and M = 2 for the quadratic flow. This solution also satisfies
the condition that uz vanishes on the z = 0 plane wall. Enforcing the additional velocity boundary
conditions uρ = uφ = 0 on the wall and the appropriate condition on the sphere surface (ξ = α)
provides (7) the following relationships:

Bn = (n − 1)An−1 − (2n + 1)An + (n + 2)An+1 for n � 1, (12a)

Cn = −2kn

[
(n − 1)

2n − 1
An−1 − An + n + 2

2n + 3
An+1

]
for n � 1, (12b)

Dn = − 1
2 (n − 1)n An−1 + 1

2 (n + 1)(n + 2)An+1 for n � 0, (12c)

En = kn

[
(n − 1)n

2n − 1
An−1 − (n + 1)(n + 2)

2n + 3
An+1

]
− ϕn for n � 0, (12d)

Fn = 1
2

[
An−1 − An+1

]
for n � 2, (12e)

Gn = −kn

[
An−1

2n − 1
− An+1

2n + 3

]
for n � 2, (12f)

with the following definitions:

kn = γn coth(γnα) − coth α for n � 0, (13a)

ϕn = 2
√

2{coth(γnα) − 1} (translation), (13b)

ϕn = 4
√

2γn{coth(γnα) − 1} (shear flow), (13c)

ϕn = 4
√

2

3
γn[coth(α) + 2γn]{coth(γnα) − 1} (quadratic flow). (13d)

Finally, the continuity equation yields in conjunction with the relationships (12) the following infi-
nite linear system for the unknown coefficients An(n � 1):

an,n−1 An−1 + an,n An + an,n+1 An+1 = bn for n � 1 (14)
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A SPHERE IN A CREEPING FLOW 593

with associated coefficients an,n−1, an,n, an,n+1 and bn defined, for n � 1, as†

an,n−1 = n − 1

2n − 1
[(2n − 1)kn−1 − (2n − 3)kn], (15a)

an,n = − 1

2n + 1
{n(2n − 1)kn−1 + 5(2n + 1)kn − (n + 1)(2n + 3)kn+1}, (15b)

an,n+1 = n + 2

2n + 3
[(2n + 5)kn − (2n + 3)kn+1], (15c)

bn = 1
2 [ϕn−1 − 2ϕn + ϕn+1]. (15d)

Since (u, p) vanishes for |r| → ∞, that is, when (ξ, η) → (0, 0), and remains bounded on the wall
and in the entire fluid domain, it is clear that An and all other coefficients in (12) should vanish as
n → ∞. According to (8, 9), the perturbation flow (u, p) applies on the fixed sphere a force Fx ex

and a torque Cyey (with respect to the centre of the sphere) given by the formulae

Fx = cM
√

2πµa sinh α
∑
n�0

{En + n(n + 1)Cn}, (16a)

Cy = 2cM
√

2πµa2 sinh2 α
∑
n�0

{2n(n + 1)An + En coth α}. (16b)

The resulting friction factors f t
xx , ct

yx , f r
xy, cr

yy, f s
xx , cs

yx , f q
xx and cq

yx , previously defined in (3) are
displayed in Appendix A.1.

3.2 Sphere held fixed in a modulated straining motion

As already noticed in (10), the perturbation flow (u, p) that fulfills the no-slip boundary condition
u = −z(y ex + x ey) on S applies, for symmetry reasons, zero torque and force on the fixed sphere.
However, these authors did not determine (u, p) in the fluid domain. This is achieved in the present
subsection by using the more general solution proposed by (15) to obtain the prescribed boundary
conditions:

uρ = −ρz sin 2φ, uφ = ρz cos 2φ, uz = 0 on ξ = α. (17)

The solution, which has not been obtained so far to the authors’ very best knowledge, is established
by mimicking the treatment of (7). Inspecting (17) first suggests to seek the velocity and pressure
disturbances u = uρeρ + uφeφ + uzez and p in the following forms:

uρ = Uρ sin 2φ, uφ = Uφ cos 2φ, uz = Uz sin 2φ, p = µP sin 2φ, (18)

where Uρ, Uφ, Uz and P only depend upon ρ and z. As detailed in Appendix A.2, if the above flow
(u, p) satisfies the Stokes equations, the solution may be obtained in the form

uρ = 1
2{ρQ2 + W1 + W3} sin 2φ, uφ = 1

2 (W1 − W3) cos 2φ, (19a)

uz = 1
2{zQ2 + 2W2} sin 2φ, p = µQ2 sin 2φ, (19b)

†The misprint error for bn in (10, equation (4.24)) is corrected here.
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594 L. PASOL et al.

where Q2, W1, W2 and W3 are functions of ρ and z satisfying the differential equations (recall (10))

L2
1[W1] = L2

2[W2] = L2
2[Q2] = L2

3[W3] = 0. (20)

When expressed in the bipolar coordinates (ξ, η) the solution is obtained from (6), using the condi-
tion that uz vanishes on the wall ξ = 0 and the pressure is bounded there:

W2 = c2(cosh ξ − λ)1/2 sin2 η
∑
n�2

An sinh(γnξ)P ′′
n (λ), (21a)

Q2 = c (cosh ξ − λ)1/2 sin2 η
∑
n�2

[Bn cosh(γnξ) + Cn sinh(γnξ)]P ′′
n (λ), (21b)

W1 = c2(cosh ξ − λ)1/2 sin η
∑
n�1

[Dn cosh(γnξ) + En sinh(γnξ)]P ′
n(λ), (21c)

W3 = c2(cosh ξ − λ)1/2 sin3 η
∑
n�3

[Fn cosh(γnξ) + Gn sinh(γnξ)]P ′′′
n (λ). (21d)

Recall that λ = cos η and γn = n+1/2. These expressions valid for an ambient modulated straining
motion are the counterparts of the expressions (11) for the other ambient flow fields. The unknown
coefficients in (21), An, Bn, Cn for n � 2, Dn, En for n � 1 and Fn, Gn for n � 3 are obtained
by enforcing not only the remaining boundary conditions at the wall (that is, uρ = uφ = 0 for
ξ = 0) and on the sphere (see (17)) but also the continuity equation and the far-field behaviour
(u, p) → (0, 0) as (ξ, η) → (0, 0). This straightforward but somewhat tedious procedure is detailed
in Appendix A.2. The coefficients Bn, Cn, Dn, En, Fn and Gn may then be expressed in terms of
the coefficients An (n � 2) as follows:

Bn = (n − 2)An−1 − (2n + 1)An + (n + 3)An+1 (n � 2), (22a)

Cn = −2kn

{
(n − 2)

2n − 1
An−1 − An + n + 3

2n + 3
An+1

}
(n � 2), (22b)

Dn = − 1
2 (n − 2)(n − 1)An−1 + 1

2 (n + 2)(n + 3)An+1 (n � 1), (22c)

En = kn

{
(n − 2)(n − 1)

2n − 1
An−1 − (n + 2)(n + 3)

2n + 3
An+1

}
− rn (n � 1), (22d)

Fn = 1
2 [An−1 − An+1] (n � 3), (22e)

Gn = −kn

[
An−1

2n − 1
− An+1

2n + 3

]
(n � 3), (22f)

with kn (recall (13a)) and rn defined as

kn = γn coth(γnα) − coth α, rn = −8
√

2γn

3
{coth(γnα) − 1} if n � 1. (23)

Finally, for the reasons invoked in subsection 3.1, An → 0 as n → ∞ and obeys the system of
linear equations

an,n−1 An−1 + an,n An + an,n+1 An+1 = bn for n � 2 (24)
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A SPHERE IN A CREEPING FLOW 595

with coefficients an,n−1, an,n, an,n+1 and bn defined, for n � 2, as

an,n−1 = n − 2

2n − 1
[(2n − 1)kn−1 − (2n − 3)kn], (25a)

an,n = − 1

2n + 1
{n(2n − 1)kn−1 + 5(2n + 1)kn − (n + 1)(2n + 3)kn+1}, (25b)

an,n+1 = n + 3

2n + 3
[(2n + 5)kn − (2n + 3)kn+1], (25c)

bn = 1
2 [rn−1 − 2rn + rn+1]. (25d)

3.3 Sphere held fixed in a rotational flow or modulated rotational flow

In this subsection, the ambient external flow is either a rotational flow (u∞ = y ex − x ey) or
a modulated rotational flow (u∞ = zy ex − zx ey). Both cases may be considered at the same
time by applying the no-slip condition u = zlρeφ with l = 0, 1 for the perturbed flow on the
sphere. This suggests we write the perturbation velocity as u = uφeφ in the entire fluid domain, this
form satisfying automatically the continuity equation. The momentum equation in cylindrical polar
coordinates (ρ, z, φ) gives

L2
1[uφ] = 0, p = 0. (26)

Following (6), the solution uφ that vanishes on the ξ = 0 plane is written in the form

uφ = cl+1(cosh ξ − cos η)1/2 sin η
∑
n�1

H (l)
n sinh(γnξ)P ′

n(cos η) for l = 0, 1 (27)

with, again, γn = n +1/2. For symmetry reasons, the axisymmetric flow (u, p) applies a zero force
and a couple Clez on the sphere with (16)

Cl = −2πµ

∫ π

0
ρ3
[

∂

∂ξ

(
uφ

ρ

)]
ξ=α

dη. (28)

Using the solution (27) one thus derives, after elementary algebra, the simple formula

Cl = −4
√

2πµcl+3
∑
n�1

n(n + 1)H (l)
n . (29)

The required coefficients H (l)
n are obtained by enforcing the velocity boundary condition on the

sphere, that is, the relation Hl(α, η) = zlρ. Exploiting the identity

(cosh α − cos η)1/2 = 2
√

2
∑
n�1

e−γnα P ′
n(cos η)

and (A.8), it follows that

H (0)
n = 2

√
2e−γnα

sinh(γnα)
and H (1)

n = 4
√

2γne−γnα

3 sinh(γnα)
for n � 1. (30)
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596 L. PASOL et al.

These results agree with (16) for l = 0 and (10) for l = 1.‡ Recalling the definitions (3e) of cr
zz

and (3f) of cm
zx , using (29) and the relations c = a sinh α and � = a cosh α, we finally obtain (since

the flow field considered in section 3.2 applies zero torque on S)

cr
zz =

√
2

2
sinh3 α

∑
n�1

n(n + 1)H (0)
n , (31a)

cm
zx =

√
2 sinh4 α

2 cosh α

∑
n�1

n(n + 1)H (1)
n . (31b)

3.4 Explicit iterative procedure

For the axisymmetric flow of section 3.3 the solution is obtained in closed form (see (27), (30),
(31a)). By contrast, for the asymmetric flow fields of section 3.1 and section 3.2 it is necessary to
solve the infinite linear systems (14), (24) respectively, with An → 0 as n → ∞. Note that setting
A′

n = An+1 in (24) also yields (14). In the infinite system (14) the first coefficient A1 is unknown.
It is obtained by enforcing the condition An → 0 as n → ∞.

In order to obtain accurate values for the perturbation flow (u, p) and the associated force and
torque on the sphere, the system (14) should be solved with a high precision for any position of
the sphere relative to the plane (even for �/a − 1 � 1). A classical way consists in truncat-
ing (14) with AN+1 = 0 for some large N , solving the resulting linear system for the An and
repeating the procedure for successively larger values of N until a prescribed accuracy is achieved.
Unfortunately, if the gap between the sphere and the wall becomes small the number of terms
in the series increases and this results in huge linear systems requiring a large computer mem-
ory. Alternative methods, however, exist. For example, the one proposed in (17) uses the Thomas
algorithm. In the present work we rather follow an iterative procedure pioneered in (11) and ap-
plied in (4, 5) to determine the coefficients with a high accuracy and a limited computer mem-
ory. Further details can be found in (4). The drawback is that it is explicit and all intermediate
calculations have to be performed with a high precision. Proceeding as in (4), we therefore used
MAPLE software (which allows to calculate floating point numbers with any precision) and in-
creased in a loop the retained number of digits so as to obtain the required accuracy. In principle,
any precision can be obtained; we decided to give here all results with a precision of 5 × 10−17,
which required typically 35 digits in the intermediate calculations. We could then obtain results for
small gaps down to 2 × 10−6 by calculating a large number N of coefficients (typically more than
10000).

4. Results and discussion

Consider the undisturbed flow (1). The case of the linear shear flow u∞ = ksz ex was explored in
detail in (4). Here, we investigate the remaining term in (1), that is, the quadratic shear flow kqz2 ex

(section 4.1) and the modulated shear flow 2kmzy ex (section 4.2).

‡Note that a misprint occurred in the result (10, (3.17)), where ξ should be replaced by α.
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A SPHERE IN A CREEPING FLOW 597

Table 1 Dimensionless force f q
xx and torque cq

yx (also called the friction factors, as defined in
(3d)1,2, respectively) exerted by a quadratic flow on a fixed sphere centred at a distance � from the
wall. GO represent the numbers obtained by (10) in tangent-sphere coordinates (for �/a = 1) and in
bipolar coordinates (for �/a > 1). The other columns contain our results. The displayed digits have
been calculated using N harmonics for accuracy. Our value for �/a = 1 is obtained by extrapolation

�/a GO This work

f q
xx cq

yx N f q
xx cq

yx

1·0 1·943 0·9907 - 1·9428093729 0·9907705186
1·000002 18639 1·9428069911698754 0·9907704897178268
1·000005 11885 1·942803418541594 0·9907704463397817
1·00001 8456 1·9427974642166769 0·9907703740455426
1·0001 2732 1·9426902982410483 0·9907690732840887
1·001 1·942 0·9907 888 1·9416198743752426 0·9907561213028173
1·005 1·937 0·9907 406 1·9368894693971682 0·9906997696228465
1·01 1·931 0·991 290 1·9310378453544558 0·9906320649887506
1·05 1·887 0·990 136 1·8865513073014267 0·9901908673502305
1·1 1·836 0·990 95 1·8361966587990916 0·989852570880746
1·18 72 1·7658220852369336 0·9896779911554802
1·2 68 1·7499153741475205 0·9896879534804441
1·5 1·568 0.991 44 1·5686405440293652 0·9910961255337066
2·0 1·400 0·999 33 1·399981711095499 0·9942362161231037
4·0 22 1·1752254609536348 0·9988439436952222
5·0 1·135 20 1·1353827710379781 0·9993663652434029

10·0 1·062 1·000 16 1·0623566493117817 0·9999118967578662
21·0 1·028 1·000 13 1·0282170782321677 0·9999901131253082
51·0 1·0113 1·000 11 1·0112763018589653 0·9999992991318837

4.1 Case of the quadratic shear flow

In this subsection we provide results for a fixed sphere embedded in the quadratic shear flow kqz2 ex .
Values of the friction factors f q

xx and cq
yx are listed in Table 1 and compared with the earlier results

of (10)§ which have a lower precision of 10−3.
Using the analytical results from the BC method, the friction factors f q

xx and cq
yx are computed

with a precision of 5 × 10−17 in the range �/a � 1 + 2 × 10−6, as explained in section 3.4. The
indicated number N of retained harmonics, as defined in section 3.4, is seen to increase significantly
as �/a collapses to unity. When the sphere is attached to the wall, that is, for �/a = 1, the BC method
cannot be applied and our results indicated for f q

xx and cq
yx were obtained by extrapolation.

The force friction coefficient f q
xx given in Table 1 is found to monotonically decrease as

�/a increases from unity whereas variations of the torque friction coefficient cq
yx are quite small. The

§Due to a different scaling, the coefficients f2 and g2 displayed in (10, Table 2) read f
q
xx / cosh2 α and c

q
yx / cosh α, respec-

tively.
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598 L. PASOL et al.

accuracy of our results allows us to discover a minimum of cq
yx at the critical distance �/a ∼ 1·18.

This subtle behaviour of the coefficient cq
yx is exhibited in Fig. 1. By contrast, the results of (10)

were not accurate enough to detect the existence of such a minimum.
The fluid velocity and pressure are determined from the BC method with a 10−6 precision, which

is sufficient to describe the flow field. The flow pattern at the critical location �/a = 1·18 is depicted
in Fig. 2(a) where the analytical streamlines of the perturbed velocity z2ex + u are plotted in the
y = 0 plane (these are streamlines because (u∞ + u) · ey = 0 in this entire plane, as evidenced
by (8a) for φ = 0 or φ = π ). The isobars are also represented in Fig. 2(b). Typical values of the
perturbed velocity and pressure are given in Table 2 for the four points Mk (k = 1, . . . , 4) in the
fluid domain represented in Fig. 2(a).

As observed in Fig. 2(a), there are two large vortices of opposite directions right upstream and
dowstream of the stationary sphere. However, the centres of the two vortices are not stagnation
points since, as illustrated in the three-dimensional view of Fig. 3, they are three-dimensional fluid
trajectories around the sphere from the upstream vortex centre to the downstream one. The strong
pressure gradient above the sphere (see Fig. 2(b)) is clearly connected to the fact observed in Fig. 3
that the fluid cannot flow below the sphere and thus is pushed above and around it.

As seen in Fig. 2(a), the fluid flows in the ex direction near M2 and in the opposite direction near
M1. This remark is emphasized in Fig. 4(a) which plots the iso-values of the x velocity component
in the x = 0 plane. This figure shows that, as opposed to the case of an ambient linear shear flow
(4), there is a large pocket of negative Cartesian disturbed velocity component (z2ex +u) · ex below
the sphere. The flow in the vicinity of the points M1 and M2 therefore has a positive contribution
to the torque coefficient cq

yx . By contrast, the flow near the point M3 and its symmetric with respect
to the (O, y, z) plane, that is, the flow related to the two close vortices, induces a negative con-
tribution to cq

yx . The behaviour of cq
yx displayed in Fig. 1(b) thus results, at least for �/a ∼ 1·18,

from a competition between the strength of the two detected vortices and the flow structure right
above and below the sphere. When the sphere–wall gap increases from zero to 0·18 a, the flow rate
in the −ex direction increases below the sphere and the vortices become stronger. Above the critical
ratio �/a = 1·18, the vortices lie too far from the sphere surface to induce a strong enough negative

Fig. 1 (a) Non-dimensional coefficient c
q
yx for the quadratic flow. (b) Magnified plot for a sphere close to the

wall. The dashed line indicates the results of (10).The smallest value of c
q
yx , here obtained for �/a ∼ 1·18, is

found to be c
q
yx = 0·989678.
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A SPHERE IN A CREEPING FLOW 599

Fig. 2 (a) Perturbed flow z2ex + u streamlines in the y = 0 plane about a sphere held fixed in the quadratic
flow z2ex and experiencing the minimum torque at the critical location � = 1·18a. Numbers k indicate the
points Mk where the comparisons, reported in Table 2, have been achieved with the bipolar coordinates and
the boundary element methods, both for the disturbed velocity u∞ + u and pressure p∞ + p. The Cartesian
coordinates of each point Mk are introduced in the legend of Table 2. (b) Isobars of the disturbed quadratic
flow in the plane y = 0 for �/a = 1·18

contribution to cq
yx . Then, as �/a increases, the pocket of negative velocity component (z2ex +u).ex

shrinks, as depicted in Fig. 4(b) for �/a = 5, and eventually disappears for �/a ∼ 20. Note that
for �/a = 5 the fluid in the vicinity of the z-axis and below the sphere (that is, between the sphere
and wall) flows downstream (that is, in the x > 0 direction) except near the wall. It is also found
that the two depicted opposite vortices remain close to the wall and therefore far from the sphere
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600 L. PASOL et al.

Table 2 Dimensionless perturbed fluid velocity and pressure close to a sphere fixed in an ambient
quadratic flow. The sphere centre is at �/a = 1.18. The normalized perturbed velocity components
Vx , Vz and pressure P defined by (34) are evaluated at the four points Mk (k = 1, 2, 3, 4) indicated
in Fig. 2. The Cartesian coordinates of the point Mk are (xk, 0, zk), with x1 = x2 = 0, x3/a = 1·18,
x4/a = 2·5, z1/a = 0·09, z2/a = 2·27, z3/a = 1 and z4/a = 0·55. Note that, for symmetry
reasons, Vy = 0 in the entire y = 0 plane

Perturbed fluid Point M1 Point M2 Point M3 Point M4
velocity and pressure

Vx −0·018624 1·392969 0·012304 −0·084980
Vz 0 0 0·145723 0·005616
P 0 0 1·342334 4·391804

Fig. 3 Perturbed flow z2ex + u around a sphere centred at the critical distance � = 1·18a from the wall. Six
three-dimensional trajectories starting from points at x = −4a and either very close (curves labelled 1, 2, 3
with y = −10−4a) or close (with y = −10−1a) to the y = 0 plane. The initial z-value for trajectories labelled
1, 2, 3 (and neighbouring ones) are 1·5a, a, 0·002a, respectively

as �/a increases. For instance, the streamlines associated to the perturbed velocity z2ex + u for
�/a = 10 plotted in Fig. 5(a) clearly illustrate this feature. The three-dimensional flow field struc-
ture (not shown here) is similar to the one depicted in Fig. 3. As announced, the fluid flows in the
ex direction both above and below the sphere in the x = 0 plane for �/a = 10.

At this stage one may wonder whether the observed near-wall vortices are due to the no-slip
condition at the plane wall. This issue is addressed by determining the perturbed flow about a
sphere held fixed in the unbounded quadratic flow z2ex , that is, in the absence of the wall. Using
the singularity method as in (18) one obtains, as shown in Appendix A.3, the required velocity
z2ex + u. The resulting (disturbed) streamlines pattern is displayed in the y = 0 plane and for the
ratio �/a = 10 in Fig. 5(b) for comparison with Fig. 5(a). The streamlines around z = 4 are not
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A SPHERE IN A CREEPING FLOW 601

Fig. 4 Lines of iso-values of the Cartesian disturbed velocity component (u∞ + u) · ex in the x = 0 plane for
a sphere held fixed in the quadratic flow z2ex . (a) Case of the critical ratio �/a = 1·18. (b) Case �/a = 5

vortices but open trajectories which match the quadratic flow at infinity. There is only one vortex
located in the z < 0 domain. The pair of vortices in Fig. 5(a) is thus due to the wall.

The high accuracy allowed by the BC method makes it possible to build interpolation formulae
both for the force and the torque friction factors f q

xx and cq
yx , using the calculated values in the

range �/a � 1 + 2 × 10−6. For a sphere held fixed close to a motionless wall in an external
viscous flow, there is no relative motion of surfaces and therefore for a vanishing gap �/a − 1 no
lubrication singularity. Hence, there is no singular logarithmic term in �/a − 1 for the force and
torque experienced by the sphere unlike the cases of translation and rotation (parallel to the wall)
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602 L. PASOL et al.

Fig. 5 Perturbed flow z2ex + u streamlines in the y = 0 plane about a sphere held fixed in the parabolic
shear flow z2ex for �/a = 10. (a) Sphere in the presence of the rigid stationary z = 0 plane wall. (b) Sphere
immersed in an unbounded fluid (that is, without the no-slip velocity boundary condition at z = 0)

treated in (19). In searching interpolation formulae using the method of least squares we did not
find regular logarithmic expansions. The following polynomial interpolations:

f q
xx =

16∑
n=0

gq
n

(
1 − a

�

)n
, cq

xx =
16∑

n=0

dq
n

(
1 − a

�

)n
for �/a � 1 + 2 × 10−6, (32)

with coefficients gq
n and dq

n given in Table 6 provide a 10−9 accuracy. A comparable precision is
expected also for smaller values, down to �/a = 1, because both friction factors are smooth, slowly
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A SPHERE IN A CREEPING FLOW 603

varying bounded functions in this limit. Note that the variable 1 − a/� was found to be appropriate
since all coefficients in Table 6 are of order unity.

The translational and rotational velocities of a freely suspended sphere in the ambient quadratic
flow kqz2ex are then calculated from the friction coefficients using formulae (5b). The normalized
translational (6a) and rotational (6b) velocities are represented in Fig. 6. Clearly, as compared with a
freely moving sphere in unbounded fluid, the sphere translational and rotational motions are slower
because of hydrodynamic interactions with the wall when the centre to wall distance is smaller
than about three times its radius. Both velocities decrease rapidly when the gap becomes small and
eventually vanish at contact. Results for U q and �

q
y are presented in Table 3. Note that �

q
y > U q

because of the normalization of these quantities. But taking the normalized quantities �̃
q
y and Ũ q

gives more insight into the ‘rolling’ or ‘slipping’ like behaviour: the ratio �̃
q
y/Ũ q displayed in

Fig. 7 is seen to be less than unity. A freely moving sphere in the vicinity of the wall then slides
when rotating and translating. The ratio �̃

q
y/Ũ q decreases monotonically in most of the range of

distances as �/a increases. However, when the sphere is very close to the wall there is a maximum of
�̃

q
y/Ũ q (as shown in the insert in Fig. 7). As remarked in (13), the limit value of the ratio �̃

q
y/Ũ q at

contact is

lim
�/a→1

�̃
q
y

Ũ q
= lim

�/a→1

16cq
yx + 3 f q

xx

4(cq
yx + 3 f q

xx )
. (33)

With the calculated values of f q
xx and cq

yx at contact (� = a), given in Table 1, formula (33) gives
the limit value 0·7948425310.

4.2 Case of the modulated shear flow

In this subsection results are presented for a sphere either held fixed or freely suspended in the
external modulated shear flow 2kmzy ex . As noticed in section 2, the sphere experiences a zero

Fig. 6 Normalized translational velocity Uq, equation (6a), (solid line) and angular velocity �
q
y , equation (6b),

(dashed line) of a freely suspended sphere in the ambient quadratic flow kqz2ex
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604 L. PASOL et al.

Table 3 Dimensionless translational velocity U q and angular velocity �
q
y (also called mobility

coefficients, as defined in (6a), (6b), respectively) of a sphere moving freely in an ambient quadratic
flow with its centre at a distance � from the wall

�/a U q �
q
y

1·000002 0·2161061590646320 0·2336866110932329
1·000005 0·2294166837813409 0·2484360152957224
1·00001 0·2406265623723410 0·2608952608866086
1·0001 0·2872281377357567 0·3130726412399164
1·001 0·3560609938079604 0·3912789541877235
1·005 0·4272037859600705 0·4732600366715157
1·01 0·4670018215001825 0·5193133178867895
1·05 0·5915594158991740 0·6607431075765295
1·1 0·6632468634793257 0·7371556465619242
1·18 0·7331924694487259 0·8058528255975131
1·2 0·7464632504325890 0·8181196472757272
1·5 0·8635496899936087 0·9146775770556315
2·0 0·9367346605429616 0·9641487658529515
4·0 0·9908714455773604 0·9952880973012159
5·0 0·9952203858995804 0·9975607934040421

10·0 0·9993825919436270 0·9996897015885476
21·0 0·9999327070366851 0·9999663141041392
51·0 0·9999952907394636 0·9999976449020174

Fig. 7 Ratio �̃
q
y/Ũq for a sphere freely suspended in the ambient quadratic flow kqz2ex . As illustrated by

the magnified plot in the range �/a � 1·04, the ratio �̃
q
y/Ũq exhibits a maximum value �̃

q
y/Ũq ∼ 0·83 at

�/a ∼ 1·01
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A SPHERE IN A CREEPING FLOW 605

Table 4 Dimensionless torque (also called the friction factor cm
zx ), see (3f), exerted by a modulated

shear flow on a sphere centred at a distance � from a wall. GO represent the numbers obtained by
Goren and O’Neill (10) in tangent-sphere coordinates (for �/a = 1) and in bipolar coordinates (for
�/a > 1). The other columns contain our result. The displayed digits have been obtained by using
N harmonics in the BC method

�/a GO
cm

zx

Bipolar (this work)

N cm
zx

1·0 1·082 - 1·08232323371114
1·000002 19243 1·0823228586383199
1·000005 11944 1·0823222960331069
1·00001 8325 1·0823213583684568
1·0001 2505 1·0823044826926661
1·001 1·082 752 1·0821359640887292
1·005 1·081 324 1·0813922016793062
1·01 1·080 225 1·0804743246201650
1·05 1·073 97 1·0735791377038244
1·1 1·066 68 1·0659688546427451
1·2 47 1·0534954376152213
1·5 1·031 30 1·0303567293188152
2·0 1·014 21 1·0139336934667268
4·0 13 1·0018959700828119
5·0 1·001 12 1·0009810108318353

10·0 1·000 9 1·0001243906658378
21·0 1·000 7 1·0000134823415187
51·0 1·000 6 1·0000009421420764

force and the torque given by (3f). The calculated values of cm
zx are listed and compared to the

predictions of (10)¶ in Table 4 for different values of the normalized sphere to wall distance �/a.
The two sets of results are in excellent agreement. The coefficient cm

zx is non-singular as �/a − 1
vanishes and the value of cm

zx for �/a = 1 in the ‘bipolar coordinates’ column was obtained by
extrapolation based on our results for �/a � 1 + 2 × 10−6. Note that for �/a = 1, the exact value
cm

zx = π4/90 established in (10) is recovered precisely by the BC with a 10−14 accuracy. (The
multipole expansion which can treat directly the case of contact is applied to this case in (13) and
provides 32 digits.)

The new solution presented in section 3.2 provides the possibility to compute the perturbed
velocity and pressure fields about a sphere held fixed in the ambient modulated straining flow
kmz(yex + xey). The dimensionless velocity and pressure

V′ = u∞ + u
u∗ , P ′ = a

µu∗ (p∞ + p) (34)

¶With our notation the coefficient g0 displayed in (10, Table 1) reads g0 = cm
zx cosh α.
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Table 5 Dimensionless perturbed velocity and pressure close to a sphere fixed in the ambient
modulated straining and modulated shear flows, denoted by (V′, P ′) and (V, P), respectively (and
defined as in (34)). The sphere is located at �/a = 1·5. Results are given at three control points
N1, N2 and N3. The Cartesian coordinates of point Nk are (xk, yk, zk) and its distance from the
sphere surface is denoted by dk with xk/a = −√

3(1·1)/2, yk/a = 1·1/2, z1/a = 0·5, z2/a = 1,
z2/a = 1·5, d1 = d3 ∼ 0·4866a and d2 = 0·1a. These three control points are represented as dots
in Fig. 8

Ambient flow Perturbed velocity Point N1 Point N2 Point N3
and pressure

km(zy ex + zx ey) V ′
x 0·073274 −0·096337 0·012304

V ′
y −0·335637 −0·321480 −1·914931

V ′
z −0·102882 −0·047419 0·423086

P ′ 0·978834 5·111797 1·680545

2kmzy ex Vx 0·216200 0·113334 1·867243
Vy −0·088083 0·041680 −0·090547

Vz −0·102882 −0·047419 0·423086
P 0·978834 5·111797 1·680545

were calculated for �/a = 1·5 at three points in the fluid domain and results are presented in Table 5.
This table also also provides the perturbed velocity V and pressure P (with definitions as in (34))
about the sphere at rest in the modulated shear flow 2km yzex , that is, by adding (V′, P ′) to the
solution obtained in section 3.3 with l = 1. As for the quadratic flow, the results from the BC
method were calculated with a 10−6 precision, sufficient for a description of the flow field.

The flow field associated with the disturbed modulated shear flow 2km yzex for �/a = 1·5 is
illustrated by displaying in Fig. 8 a few three-dimensional fluid trajectories. For symmetry and
clarity reasons, attention is confined to the trajectories of twelve fluid particles located at some
initial time upstream of the sphere in the x/a = −6 plane and in the y > 0 domain. As revealed by
Fig. 8, some particles flow downstream of the sphere in the y > 0 domain (that is, in the positive x
direction) whilst other ones turn, cross the y = 0 plane before reaching the x = 0 plane and move
eventually downstream in the y < 0 domain (that is, towards the negative x direction). This peculiar
behaviour of course did not appear in the previously addressed case of the ambient quadratic flow,
since the ambient velocity was then always in the positive x direction. Here, fluid particles close
to the y = 0 plane are subjected to a low shear rate and they are moreover slowed down by the
sphere so that they cannot continue in the positive x direction. Only close enough to the sphere does
this effect occur: compare the turning trajectory starting from x/a = −6, y/a = 0·6, z/a = 2·2
with the one starting from x/a = −6, y/a = 0·6, z/a = 3·2 that is extending downstream in
the positive x direction. These turning trajectories even occur for a large �/a if the fluid particle
originating from the x/a = −6 plane moves first towards the gap region between the sphere and
the wall, as evidenced by Figs 9(a) and 9(b) which depict 24 fluid trajectories for �/a = 5·7 and
�/a = 5·8, respectively. In Fig. 9(a), for �/a = 5·7, all the trajectories issued from the points
x/a = −6, y/a = 0·1, 0·6, with values of z between the sphere and the wall are turning ones.
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A SPHERE IN A CREEPING FLOW 607

Table 6 Coefficients gq
n and dq

n in the polynomial interpolations (32) of the force and torque fric-
tion factors f q

xx and cq
yx on a sphere held fixed in the ambient quadratic flow z2ex

n gq
n dq

n

0 1·942809372935950 0·990770518637149
1 −1·190886474138724 −0·014458963423686
2 0·197971179572161 0·048012978508492
3 0·017153028426237 0·000110448375706
4 0·008791133201471 −0·000918674215846
5 0·014515813769418 −0·054535006369331
6 −0·008336629006467 0·044760170420802
7 −0·032798221918260 −0·057505664614034
8 0·276562064410017 0·036438908565082
9 −0·666156350582494 0·037436172197695

10 0·832011121112022 −0·018566384980943
11 −0·865119590949199 −0·007424363742828
12 1·732985787425625 −0·038157185515549
13 −2·983624227165502 0·052456242686364
14 2·787095976521595 −0·018167543057367
15 −1·311503308081364 −0·001651453024201
16 0·248529324537360 0·001399799553351

On the other hand for �/a = 5·8, Fig. 9(b), trajectories starting from x/a = −6, y/a = 0·6 are
turning ones provided they are close enough to either the sphere or wall, while the ones in the central
part of the gap, namely the ones starting from 1·9 < z/a < 2·6 are found to extend downstream in
the x > 0 domain. The trajectory starting from s = 2·2 illustrates this behaviour. It thus appears
that for for �/a = 5·7 there is practically a dead-water region in the gap, that the Stokes flow avoids
so as to dissipate the least possible energy. This region can eventually be crossed in its middle for
large enough �/a starting from some critical value around �/a = 5·8.

5. Conclusions

In summary, a complete set of results obtained by the BC method is made available for the problems
involving a sphere embedded in a second degree polynomial flow along a wall. For the case of
an ambient modulated shear flow 2kmzy ex , we derived a new solution in BC by extending the
treatment of (7). We chose to give numerical results for the friction factors in all cases with a
5 × 10−17 accuracy. This was achieved on a personal computer by applying an iteration procedure
pioneered by (11) and applied with success to the cases of a linear shear flow and a translating and
rotating sphere in a fluid at rest by (4). We also calculated the force and torque friction coefficients
on a sphere fixed in a quadratic or a modulated shear flow with this accuracy even for gaps between
the sphere and the wall down to 2 × 10−6 sphere radius. For the quadratic flow, we discovered a
minimum value of the torque friction factor cq

yx at the critical location � ∼ 1·18 a. This minimum
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608 L. PASOL et al.

Fig. 8 Twelve three-dimensional fluid trajectories about a sphere held fixed at �/a = 1·5 in the ambient
‘modulated’ shear flow 2km yzex . These trajectories originate from the points with coordinates x/a = −6,
y/a = 0·1, 0·6, 1·1, z/a = 0·2, 1·2, 2·2, 3·2. The perturbed fluid velocity and pressure at the three control
points represented as dots are given in Table 5

Fig. 9 Counterpart of Fig. 8 but for 24 trajectories originating from the points with coordinates x/a = −6,
y/a = 0·1, 0·6, 1·1, 1·6, z/a = 0·2, 1·2, 2·2, 3·2, 4·2, 5·2. (a) Case �/a = 5·7. (b) Case �/a = 5·8

was explained by determining the associated flow structure. The BC method can treat all distances,
except the sphere in contact with the wall. Results for this case were calculated by extrapolation
with 10−11 accuracy from the data for �/a � 1 + 2 × 10−6. By contrast, the multipole expansion
can treat all the distances, including contact. The corresponding results are given in the companion
article (13).
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A SPHERE IN A CREEPING FLOW 609

The accuracy of the results also allowed us to provide for the friction factors f q
xx and cq

yx polyno-
mial interpolation formulae which approximate the exact results in the range �/a � 1 + 2 × 10−6

with a 10−9 precision. The normalized translational and rotational velocities, or mobilities, of a
freely moving and rotating sphere in a quadratic flow were calculated also with 5 × 10−17 accuracy
by combining the present results for the quadratic flow to those of (4) for the translating and rotating
sphere. Results for the fluid velocity and pressure of the flow fields calculated here were given with
a 10−6 accuracy, sufficient to determine their features.

All these numerical results provide a base of comparison for other methods which can consider
more general geometries. In particular, a detailed study of the accuracy of the multipole expansion
in calculating the friction factors and sphere velocities is presented in (13).

More general ambient flow fields may be considered by combining the results of this article with
the ones calculated with the BC method by (4) for the translating, rotating sphere and sphere in
shear flow and by (5) for the ambient axisymmetrical stagnation point flow z(xex + yey − zez).
Note that in the presence of a stagnation point flow the sphere centre translational velocity has a
non-zero component normal to the wall. This problem can be treated by combining the preceding
results with those for a sphere translating normal to a wall in a fluid at rest (see (20, 21) for the
friction factor and (5) for the fluid velocity and pressure). Examples of application are the motion
of a particle close to a wall in a boundary layer (in a flow along a wall or in a stagnation point flow)
and the motion of a particle in a Poiseuille flow. In this latter case, the solution taking one wall into
account should be compared with other solutions which consider the two walls. That problem will
be treated elsewhere in connection with chemical engineering applications.

The analytical results developed here make it also possible to calculate accurately the stresslet
(22) exerted on a sphere in a flow field parallel to a plane wall. This quantity plays a key role when
evaluating the viscosity of a dilute bounded suspension. This problem is under current investigation.
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APPENDIX
Details of the BC method

A.1 Friction factors occurring in Section 3.1

All friction factors f t
xx , ct

yx , f r
xy , cr

yy, f s
xx , cs

yx , f
q
xx and c

q
yx defined by (3a), (3b), (3c), (3d) are determined

by using the formulae (16) and the relationships c = a sinh α and � = a cosh α:

f t
xx =

√
2S sinh α

6
, ct

yx =
√

2S′ sinh2 α

4
, (A.1a)

f r
xy = −

√
2S sinh2 α

6
, cr

yy = −
√

2S′ sinh3 α

4
, (A.1b)

f s
xx = −

√
2S sinh2 α

6 cosh α
, cs

yx =
√

2S′ sinh3 α

2
, (A.1c)

f
q
xy = −

√
2S sinh3 α

6
cosh2 α, c

q
yx =

√
2S′ sinh2 α

4
cosh α, (A.1d)

S =
∑
n�0

[En + n(n + 1)Cn], S′ =
∑
n�0

[2n(n + 1)An + En coth α]. (A.1e)
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A SPHERE IN A CREEPING FLOW 611

A.2 Calculation of the perturbation flow for the modulated straining motion

As explained in section 3.2, the perturbation flow (u, p) for the modulated straining motion is given by
equations (18) with unknown functions Uρ, Uφ, Uz and P only depending on (ρ, z). Introducing the vector
a = u − px/(2µ) = sin 2φ[Aρeρ + Azez] + Aφ cos 2φeφ thus yields

Aρ = Uρ − ρ

2
P, Aφ = Uφ, Az = Uz − z

2
P, p = µP sin 2φ. (A.2)

From Stokes equations ∇∇∇2a = 0. Recalling the definition (10) of the operator L2
m it follows that

L2
2[Aρ ] − Aρ

ρ2
+ 4Aφ

ρ2
= L2

2[Aφ] − Aφ

ρ2
+ 4Aρ

ρ2
= 0, L2

2[Az] = L2
2[P] = 0. (A.3)

Setting Aρ + Aφ = W1, Aρ − Aφ = W3, Az = W2 and P = Q2 gives equations (20) and the relationships
(19) are obtained by using (A.2) and (18). Appealing to (6) the function W2 thus reads

W2 = c2(cosh ξ − λ)1/2 sin2 η
∑
n�2

[An sinh(γnξ) + A′
n cosh(γnξ)]P ′′

n (λ) (A.4)

with λ = cos η and Q2, W1 and W3 given by (21b) to (21d). Because the velocity u vanishes on the plane
wall ξ = 0, one requires that A′

n = 0 for n � 2 (since uz = 0 and the pressure µQ2 sin 2φ is bounded for
ξ = 0) and

[W1]ξ=0 = [W3]ξ=0 = −
[

ρQ2

2c

]
ξ=0

, [Q2]ξ=0 = − lim
ξ→0

[
2W2c

z

]
. (A.5)

Exploiting the identities (where primes again denote differentiation with respect to λ)

(2n + 1)P ′′
n (λ) = P ′′′

n+1(λ) − P ′′′
n−1(λ), (A.6a)

(2n + 1)λP ′′
n (λ) = (n + 2)P ′′

n−1(λ) + (n − 1)P ′′
n+1(λ) for n � 1, (A.6b)

(2n + 1)(1 − λ2)P ′′
n (λ) = (n + 1)(n + 2)P ′

n−1(λ) − n(n − 1)P ′
n+1(λ), (A.6c)

it is easy to derive (22a), (22c) and the relationships (22f) for the coefficients Bn, Dn and Fn (the procedure
is similar to the one employed by (7)). Let us now turn to the boundary condition (17) on the sphere surface
ξ = α. In our notation (17) becomes

[Q2]ξ=α = −
[

2W2c

z

]
ξ=α

, [W1]ξ=α − 2 sinh α sin η

(cosh α − cos η)2
= [W3]ξ=α = −

[
ρQ2

2c

]
ξ=α

. (A.7)

Using again (A.6a) to (A.6c) in conjunction with the previously obtained formulae for Bn and Fn and the
identity

sinh α

(cosh α − cos η)2
= 4

√
2

3
(cosh α − cos η)1/2

∑
n�1

(n + 1
2 )e−(n+1/2)α P ′

n(cos η), (A.8)
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it is then straightforward to establish (22b), (22d) and (22f) for the coefficients Cn, En and Gn with defi-
nitions (23) of kn and rn . One finally needs to impose the divergence-free condition ∇∇∇.u = 0 in the entire
fluid domain, that is, for 0 � φ � 2π, 0 � η � π and 0 � ξ � α. In our notation, this condition reads
T1 + T2 + T3 + T4 = 0 with

T1 = ∂W1

∂ρ
− W1

ρ
, T2 = 3Q2 + ρ

∂ Q2

∂ρ
+ z

∂ Q2

∂z
, T3 = ∂W3

∂ρ
+ 3W3

ρ
, T4 = 2

∂W2

∂z
. (A.9)

As can be immediately checked from the definition (20) of L2
m , note that

ρ
∂

∂ρ
(L2

m [g]) = L2
m

[
ρ

∂g

∂ρ

]
− 2L2

m [g] + 2
∂2g

∂z2
, (A.10a)

z
∂

∂z
L2

m [g] = L2
m

[
z
∂g

∂z

]
− 2

∂2g

∂z2
, (A.10b)

∂

∂ρ
(L2

m [g]) = L2
m

[
∂g

∂ρ

]
+ m2 − n2 − 1

ρ2
∂g

∂ρ
+ 2n2

ρ3
g, (A.10c)

∂

∂z
L2

m [g] = L2
m

[
∂g

∂z

]
, (A.10d)

1

ρ
L2

m [g] = L2
m

[
g

ρ

]
+ 2

ρ2
∂g

∂ρ
+
[

m2 − n2 − 1

ρ3

]
g. (A.10e)

Combining (20) and (A.10) successively for (n, m) = (1, 2) and (n, m) = (3, 2) it is then established that the
functions T1, T2, T3 and T4 introduced by (A.9) obey

L2
2[T1] = L2

2[T2] = L2
2[T3] = L2

2[T4] = 0. (A.11)

These identities prove (6) that each function Ti (i = 1, . . . , 4) admits the following form:

Ti (ξ, η) = (cosh ξ − cos η)1/2 sin2 η
∑
n�2

[T i
s,n sinh(γnξ) + T i

c,n cosh(γnξ)]P ′′
n (cos η). (A.12)

Accordingly, the task consists in obtaining the above coefficients T i
s,n and T i

c,n in terms of the coefficients
An, Bn, Cn, Dn, En, Fn and Gn by exploiting the definitions (A.9), the relations (A.6a) to (A.6c) and the
additional identities

c
∂g

∂z
= (1 − cosh ξ cos η)

∂g

∂ξ
− sinh ξ sin η

∂g

∂η
, (A.13a)

c
∂g

∂ρ
= − sinh ξ sin η

∂g

∂ξ
+ (cosh ξ cos η − 1)

∂g

∂η
, (A.13b)

(2n + 1)(1 − λ2)P ′′′
n (λ) = (n − 1)(2 − n)P ′′

n+1(λ)

+ (n + 2)(n + 3)P ′′
n−1(λ), (A.13c)

(1 − λ2)P ′′′
n (λ) = 6λP ′′′

n (λ) − (n − 2)(n + 3)P ′′
n (λ). (A.13d)

The procedure makes use of elementary algebra but the detailed calculations are too lengthy to be reproduced
here. For a sake of conciseness, we content ourselves with giving the derived decomposition (A.12) for the
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A SPHERE IN A CREEPING FLOW 613

sum T1 + T2 + T3 + T4. Setting Tc,n =∑4
i=1 T i

c,n and Ts,n =∑4
i=1 T i

s,n, the results, for n � 2, are

Tc,n

c
= 5

2
Bn − n − 2

2
Bn−1 + n + 3

2
Bn+1 − Dn−1

2
+ Dn − Dn+1

2

− (n − 2)(n + 3)Fn + (n − 2)(n − 3)

2
Fn−1 + (n + 3)(n + 4)

2
Fn+1

+ (2n + 1)An − (n − 2)An−1 − (n + 3)An+1, (A.14a)

Ts,n

c
= 5

2
Cn − n − 2

2
Cn−1 + n + 3

2
Cn+1 − En−1

2
+ En − En+1

2

− (n − 2)(n + 3)Gn + (n − 2)(n − 3)

2
Gn−1 + (n + 3)(n + 4)

2
Gn+1. (A.14b)

Of course, the divergence-free condition requires that Tc,n = Ts,n = 0 for n � 2. Using (22a), (22c) and (22f)
it is easy to check that Tc,n vanishes (this is due to the fact that the condition ∇∇∇.u = 0 on the ξ = 0 plane 
was already enforced when using (A.5)). Finally, applying the conditions Ts,n = 0 for n � 2 yields, by virtue
of (A.14b), (22b), (22d) and (22f) for the coefficients Gn the announced system (24).

A.3 Determination of the disturbed flow about a fixed sphere embedded in an unbounded quadratic flow

In this Appendix we build the disturbed velocity, z2ex + u, about a stationary sphere immersed in the un-
bounded quadratic ambient flow z2ex by the singularity method. For convenience we use the vector X in-
troduced in section 2 and denote here its components (X1 = X, X2 = Y, X3 = Z) and χ = |X|. Setting
(e1, e2, e3) = (ex , ey , ez), using the decomposition

z2ex = v0 + v1 + v2, v0 = �2e1, v1 = 2�Ze1, v2 = Z2e1 (A.15)

and invoking the linearity of the Stokes equations, the required velocity disturbance u reads u = u0 +u1 +u2,
where the perturbation flows (um , pm) obey for m = 0, 1 or 2

µ∇∇∇2um = ∇∇∇ pm and ∇∇∇.um = 0 for χ > a, (A.16a)

(um , pm) → (0, 0) as χ → ∞, um = −vm at χ = a. (A.16b)

Each velocity um is obtained by placing a few singularities at the sphere centre. We introduce here, by their
Cartesian components Tαβ(X), Gc

αβ(X), Dαβ(X) and Gstr
αβγ (X), the Stokeslet, rotlet, potential dipole and

stresslet tensors, respectively, as

Tαβ(X) = δαβ

χ
+ Xi X j

χ3
, Gc

αβ(X) = [e j ∧ X]

χ3
.ei , (A.17)

Dαβ(X) = 3Xi X j

χ5
− δαβ

χ3
, Gstr

αβγ (X) = 3Xi X j Xk

χ5
. (A.18)

with δαβ the usual Kronecker delta. Note that T is related to the Oseen tensor

Tαβ(r) = 1

8πµ

(
δαβ

r
+ rαrβ

r3

)
(A.19)

by T = 1/(8πµ) T .
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As established in (18) and easily verified, the result u = u0 + u1 + u2 follows with, under the usual tensor
summation convention, the following formulae:

u0(X) = −3a2l

4

{
Ti1(X) − a2

3
Di1(X)

}
ei , (A.20a)

u1(X) = −la3

{
Gc

i2(X) + 5

3
Gstr

13i (X) + a2

3

∂ D13

∂ Xi
(X)

}
ei , (A.20b)

u2(X) = a3

24

{
− 6Ti1(X) + 4a2 ∂Gc

i2
∂ X3

(X) − 7a2

[
∂Gstr

13i
∂ X3

(X) + ∂2 Di1

∂ X3
2

(X)

]}
ei . (A.20c)
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