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Abstract. Instead of injectivity radius, the contractibility radius is estimated for a

class of complete manifolds such that RicM > 1, KM > -k2 and the volume of M >

the volume of the {m — t)-ball on the unit m-sphere, m = dim M. Then for a

suitable choice of s = e(m, k) every M belonging to this class is homeomorphic to
Sm.

1. Introduction. An important problem in Riemannian geometry is to investigate

relations between curvature and topology of Riemannian manifolds. A classical and

beautiful theorem due to Myers [14] states that if the Ricci curvature RicM of a

complete Riemannian manifold M satisfies RicM > 1, then the diameter d{M) of M

is not greater than tr and hence M is compact and the fundamental group 7tx{M) of

M is finite. After the pioneering work of Rauch [15], the so-called rigidity theorem

was proved by Berger [1] for even dimensional complete simply connected M with

the sectional curvature \ *£ KM < 1, and the so-called sphere theorem was proved by

Khngenberg [13] which states that a complete simply connected M with \ < KM *£ 1

is homeomorphic to a sphere. Recently the sphere theorem has been generalized by

Grove and the author in [12].

However very little has been known for the topology of complete manifolds of

positive Ricci curvature. A splitting theorem due to Cheeger and Gromoll [6] states

that if M is complete noncompact with nonnegative Ricci curvature and if M admits

a straight line, then M is isometric to the Riemannian product M' X R. Recently

Schoen and Yau has proved in [17] that a 3 dimensional complete noncompact M

with positive Ricci curvature is diffeomorphic to R3. Making use of the first

eigenvalue for the Laplacian operator, Cheng [7] has proved that if M is complete

and if Ricw > 1 and if d{M) = 77, then M is isometric to the standard unit sphere.

Since Cheng's method is not useful for perturbation of metrics, it was expected to

obtain an elementary and geometric approach for the proof of the above theorem.

An elementary proof will make it possible to relax assumptions to replace isometry

by homeomorphism or possibly by diffeomorphism.

The purpose of the present paper is to give first of all an elementary proof of the

maximal diameter theorem. This is done by using the monotone property of the

volume rate between concentric metric balls on M and on the complete simply
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812 KATSUHIRO SHIOHAMA

connected space form of constant sectional curvature which is equal to the infimum

of RicM. This property was first obtained by Bishop (see [2,11.10]) for balls inside

cut locus of their center and has recently been proved by Gromov (without giving

details in [11]) beyond the cut locus of the center. Gromov used this property to

obtain a uniform upper bound for the sum of Betti numbers for certain classes of

complete Riemannian manifolds [11]. In the next place, an estimate of the radii of

contractible metric balls on M is obtained under certain conditions for Ricci and

sectional curvatures on M. We then prove the

Main Theorem. Let m be a positive integer and let k > 0 be a constant. Then there

exists an e{m, k) > 0 such that if M is an m-dimensional complete manifold whose

Ricci and sectional curvatures satisfy RicM 3= 1, KM > -k2, and if the volume v{M) of

M satisfies v{M)> r/(w, ir — e{m, k)), then M is homeomorphic to Sm, where r\{m, r)

is the volume of the r-ball on S'"{I).

The author does not know whether the assumption for the sectional curvature is

essentially needed. It is a rather technical one from which the radius of contractible

metric balls (instead of injectivity radius of exponential map) is estimated.

Note also that v{M) > t]{m, m — e) and Ricw s= 1 imply that the diameter d{M)

of M takes value in m — e *£ diM) < it. However it is not certain whether the

assumptions RicM > 1 and d(M) > m — e will give a lower bound for the volume of

M.

The proof of our main theorem is based on the generalized Schoenflies theorem

due to Brown [3]. Namely, if M is covered by two open disks, then M is homeomor-

phic to Sm (for details see Theorem 1.8.4 on p. 49, [16]). The proof is achieved by

covering M by two contractible metric balls. Thus we prove

Theorem 3.4. Let m be a positive integer and let k > 0 and e G (0, w/3) be given

constants. Then there exists for a fixed number 8 E [e, tr/3) a constant cs{m, k, e) > 0

such that if M is an m-dimensional complete manifold whose Ricci and sectional

curvatures and volume satisfy Ricw 3= 1, KM 5» -k2, and v{M) 5= rj(w, -n — e), then

every point x on M has a contractible metric ball Br{x) around it with r> cs{m, k, e).

The rest of the paper is organized as follows. In §2 an elementary proof of the

Cheng maximal diameter theorem is given by using the basic lemma by Gromov

[11]. With the aid of the Toponogov theorem, Theorem 3.4 is proved in §3. Finally

the proof of our main theorem is stated in §4.

An interesting problem is if a finiteness of homotopy types of the class of

complete manifolds whose curvatures and volume fulfill Ricw s* 1, KM > -k2 and

v(M)> r](m.Tt — t) can be proved, where m, k > 0 and e e (0, it/2) are constants.

If M satisfies the above conditions, then M is covered by at most N contractible

metric balls, where N depends only on m, k and e. The problem reduces to the

following: Let Mx and M2 be m-dimensional manifolds each M, of which is covered

by A7' (< N) topological disks B\,_B'N  which are all metric balls of the same

radius such that the number of components Bj n ■ ■ ■ HBj is equal to that of

B2 n ■ • ■ f\B2 for all /,.jk — 1.N'. Then are they homotopy equivalent to
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POSITIVE RICCI CURVATURE 813

each other? In the general case where they are not metric balls but topological disks,

the answer is negative, as stated at the end of §4.

The author would like to express his thanks to T. Kaneto who let him know such a

simple example.

2. An elementary proof of the Cheng theorem. Let M be a complete Riemannian

manifold of dimension m and let Ricw > -k2, where k is a real or a pure imaginary

number. Let M{-k2) be the complete simply connected w-dimensional space form of

constant sectional curvature -k2. For a point x E M and for an r > 0 let Br{x) be

the metric r-ball centered at x. A metric /--ball in M{-k2) is denoted by Br. With

these notations the basic lemma due to Gromov is stated as

Lemma (Gromov [11]). For any fixed x E M, letf. [0, oo) -» R be defined as

f(r):= v(Br(x))/v(Br),

where v{A) is by definition the volume of a set A. Then f is monotone nonincreasing.

Making use of this lemma, we shall establish an elementary proof of the maximal

diameter theorem due to Cheng [7], which is a generalization of the Toponogov

theorem for sectional curvature [18].

Theorem (S. Y. Cheng [7]). Let M be a complete Riemannian m-manifold whose

Ricci curvature is bounded below by I. If the diameter of M is equal to tt, then M is

isometric to Sm{l).

Proof. Take a pair of points p, q at maximal distance, d{p, q) = d{M) = w,

where d is the distance function induced from the Riemannian metric. Define the

volume rate function fp, fq: [0, tr] - R by fp{r) = v{Br{p))/v{Br) and fq{r) =

v{Br{q))/v{Br). It follows from assumption that B7r/2{p) U B„/2{q) E M and

B-n/iiP) ^ B*/2Ía) = 0 »where A is by definition the closure of a set A E M. Thus

v(M) > v(Bn/2(p)) + v(Bv/2(q)).
On the other hand since the basic lemma implies that f and f are monotone

nonincreasing, fp{tt/2) = v{Bv/2{p))/{cm/2) » fp{ir) - v{M)/cm. Hence

u(ß7r/2(p)) 3* v{M)/2, and similarly v{B„/2{q)) > v{M)/2. This fact implies that

fp{ir/2) = fp{ir) = fq{-rr/2) — fq{tr). It follows from the monotone property offp that

fpir) = fpiv) for all r G [tt/2, 77]. From v{M) > v{Br{p)) + v{Bv_r{q)) for r G

[m/2,77] it follows that/itt - r) = v{B„_r{q))/v{B„_r) >f¿v/2) = fp{ir). There-

fore v{M) ^ v{Br{p)) + »(*„-,(?)) >//»)•<?„ = v{M), and//77 - r)=fq{<n/2)

for any r E [tt/2, tt]. Since fp{0) = fq{0) = 1, this fact means that f = f = I, and

hence Cp = Cq = the sphere of radius 77, where Cp C Mp is by definition the tangent

cut locus of p.

If y: [0,77] -> M is a geodesic with y(0) = p, ||y|| = 1, then y(77) G C{p) and

from Ricw > 1, y(77) is conjugate to p along y. It follows from the index comparison

theorem (see [10, p. 178]) together with Ind^Q,,) > 0 that if £ is a unit parallel field

along y with (E, y)= 0, then sin tE{t) is a Jacobi field along y. Thus the multiplic-

ity of the first conjugate point y{ir) to p along y is m — 1. This fact implies that

C{p) = {q}-  Because the sectional curvature determined by  the plane section
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iy{t), E{t)) is 1, M is isometric to the standard unit sphere by the composed

exponential mappings.

3. Estimate of contractibility radius. Let N be a complete manifold of dimension n.

For a fixed point x E N consider the distance function dx: N -> R, dx{y) = d{x, y).

A point y G N is by definition a noncritical point of dx if the set of all unit vectors

tangent to minimizing geodesies homy to x is contained in an open half space of Nx.

A point y E N is by definition a critical point of dx if for any nonzero tangent vector

u E Nx there is a minimizing geodesic from y to x whose tangent vector at y makes

an angle with u not greater than 77/2. Obviously a critical point y of dx belongs to

the cut locus C{x) of x.

If Brix) contains no critical point of dx except at the origin x of the ball, then

dx\Br{x) can be approximated by smooth functions which have no critical point

except at the origin x. In fact, let 2r0 be the radius of a strongly convex ball around

x. The smooth approximations of dx are obtained as follows: Let <ï>: R -> R be a

smooth function whose support is in [-1,1] such that it is constant 1 around 0 and

such that fveR»<b{\\v\\) = 1. For a sufficiently small positive p, define {dx)p: N ^ R

by

(dx)p(q):= p-f      dx(exp,o)*(||i>||/p)<fc,

where dv is the Riemannian volume on N . It has been proved in [8] that {dx)p is

smooth and {{dx)p}p converge uniformly to dx as p -» 0. Moreover, it has been

proved in [12] that {dx)p \ Br{x) — Bro{x) has nonvanishing gradient and the gradient

vectors are transversal to dBr{x). And hence Br{x) is contractible to x.

The contractibility radius c{x) at x E N is defined as

c(x) '■= sup{r; Br(x) is contractible to x} .

Lemma 3.1. Let N be a complete manifold. The contractibility radius function c:

N -» R has the following properties: (1) For every x EN c{x) is not less than the

positive minimum critical value = '■ cx{x ) of dx; (2) The positive minimum critical value

is lower semicontinuous on N.

Proof. If Br{x) contains no critical point of dx, then the above argument shows

that c{x) > r. This proves (1). Let {x,} be a sequence of points on N which tends to

x E N, and for each i let y, be a critical point of dx with d{x¡, y,) = cx{x¡). If {y,}

tends toy G N, then>> is a critical point of dx. Therefore lim inf cx{x,) > cx{x).

It follows from Lemma 3.1 that a lower bound of the contractibility radius on N is

obtained by the infimum of the positive minimum critical values of distance

functions.

Now let M be a complete manifold of dimension m whose Ricci curvature and

volume satisfy RicM > 1, v{M) > cm — r/(w, e). The first observation to give an

estimate of contractibility radius for a certain class of manifolds with the above

properties is this: Under the assumptions for Ricci curvature and volume of M as

stated above, each point x E M has the property that

l(x) := max{d{x, y); y E M) > w — e.
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Indeed, it follows from the basic lemma together with B¡(x){x) = M that v{É/{x)) >

v{M)>cm - 7]{m, e). Since v{Él(x)) = r¡{m, l{x)),cm - r¡(m, e) = Tj(m,77 - e) and

since 7j(w, e) is strictly increasing with e, l{x) 3= 77 — e.

As a straightforward consequence of the basic lemma, we have

Lemma 3.2. // M is a complete manifold of dimension m whose Ricci curvature and

volume satisfy RicM > 1, v{M) > cm/2, then M is simply connected.

The next observation is to see what will happen when c{x) is small roughly

speaking. Since a critical point of dx belongs to C{x), it will turn out that the

appearance of such a critical point will give less contribution to the volume of

concentric balls around x which contain critical points of dx. But if v{M) is

bounded below, then the total volume of the compact set in Mx which is star-shaped

with respect to the origin and whose boundary consists of Cx is also bounded below.

This phenomenon will be interpreted as follows.

Proposition 3.3. Let e E (0, m) be a given constant. Assume that RicM ~» 1 and

v{M) 3s cm — f){m, e). For every point x E M and a number 6 E (0,77) and for every

v E Sx let V{v; 0) '■= {w E Mx; ^.{v, w) < 0}. Then there exists a positive smooth

function r -> 0{r, m, e), 0 < r < 77 — e, such that if every w E V{v; 0) D Cx has norm

Il w || < r, then 0 < 0{r, m, e). 6{r, m, e) is obtained as the solution of

Jr0(r,m,e) , . ..       f* ,
smm-21 dt = t]{m, t)/ \ sinm^U dt.

0 Jr

Proof. As is seen in the first observation, l{x) > m — e holds for every x E M.

The area of V{v; 0) n Sx is t/(w — 1, 0). Thus an upper bound for v{M) is given by

r\(m - l,e)fsmm~ltdt + i¡{m - 1,77 - 0) /"W"-11 dt > v(M).
A A

Since v{M) 3= cm — f]{m, e), the above inequality reduces to

tj(w - 1,0) fsinm~xtdt <T)(m,e).

The desired 6{r, m, e) is obtained by solving

cm-2¡ sirí"~2tdtf sin"1 ~xtdt = i](m, e).
A A

The function 6{r,m, e) has the following properties: (1) For every fixed r E (0,77

— e) lim£l0 6{r, m, e) = 0 and e -> 0{r, m, e) is monotone increasing. (2) For every

fixed e G (0,77) 0 < limri0 0{r, m, e) < ifx[ft(m, e)/fgskf"~ ' t dt].

Let 8 E [e, tr/3) be a fixed number and set rx = 77 — 38. It follows from Proposi-

tion 3.3 together with the continuity of the map u E Sx -> the distance from x to the

cut point of x along the goedesic t -* expx tu that for every x EM and for every

uESx there exists a w E Sx with the properties that <):(«, w) *s 0{rx,m,e) and that

the cut point expx txw to x along the geodisic t -» expx tw appears at f, 3= rx. Then the

Toponogov comparison theorem will be applied to obtain a lower bound for cx:

M -> R. Thus an additional assumption for the sectional curvature will be needed.
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Theorem 3.4. Let m be a positive integer and let k > 0 and e E (0, tt/3) be given

constants. Then there exists for a fixed number 8 E [e, tt/3) a constant cs{m, k, e) > 0

such that if M is a complete manifold of dimension m whose curvatures and volume

satisfy

RicM3M,    Km^-k2,   v{M)»7,{m,TT-e),

then cx{x) 3= cs{m, k, e)for every point x E M. The constant is given by

cs(m, k, e) = min[77 — 36, K"'tanh"'(tanh(77 — 3ô)k -cos0(77 — 3ô, m, e)}].

Proof. Let x E M be a fixed point and let y E M be a critical point of dx with the

positive minimum critical value r0 = cx{x). Let u E Sx be the unit vector tangent to a

minimizing geodesic yu: [0, r0] -* M with y„(0) = x, yu{r0) = y. The above argument

shows that there is a w E Sx with the properties: <${u, w) =£ 6{rx, m, e) and yw has

the cut point to x along it at yw{tx) with tx > rx. If rQ > r, then nothing is left to

prove.

Assume that r0 < rx. The Toponogov comparison theorem implies that if a =

<£ {u, w) and if r2 — d{y, z), where z = yw{tx), then

cosh r2K < cosh txK ■ cosh r0K — sinh /,k ■ sinh r0K ■ cos a.

Since y is a critical point of dx, there exists for a minimizing geodesic from y to z, a

minimizing geodesic from y to x (possibly different from yu) whose angle at y is not

greater than 77/2. Thus the Toponogov theorem again implies for this triangle to get

cosh txK < cosh r0K ■ cosh r2K.

Eliminate r2 from the above inequalities to obtain

cosh /,k • tanh r0K 3= cos a.

Insert a *S 8{rx, m, e) and /, > rx = w — 35 to complete the proof.

It should be noted that for every fixed ô G [e, 77/3), hmei0 cs{m, k, e) = it — 38.

4. The proof of Main Theorem and remarks. By means of the generalized

Schoenflies theorem, it suffices for the proof of our main theorem to exhibit M as a

union of two open disks. In fact the open disks are obtained as contractible metric

balls.

Proof of Main Theorem. It follows from Theorem 3.4 that if r E (0,77) is

arbitrarily given, then there exists an e G (0,77/3) and a 8 E [e, tt/3) such that

r *£ cs{m, k, e).

Letp, q E M be a pair of points such that d := d{p,q) = d{M). Then 77 — e < d

< tt. The minimal radius R of closed balls around p and q by which M is covered

satisfies d/2 < R < d and R = max{d{p, y); y EM, d{p, y) = d{q, y)}. It fol-

lows from the basic lemma that if x is a point with d{ p, x) — d(q, x) = R, then

v(M) > v(Bd/2(p)) + v(Bd/2(q)) + v(BR_d/2(x))

>iviM)/cm)x[2v{Bd/2) + v{BR_d/2)].

Thus

r(ir-e)/2 , cR-tt/2 ,
if sinm-] tdt+ / sin"''1 tdt
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Let R0 = R{m, e) be the solution of

r(iT + e)/2 , fRa-ir/2 ,
/        ' sinm~U dt= / sinmU dt.
J(n-e)/2 A

Then R0** R and limEl0Ä(m, e) = 77/2 and e -» R{m, e) is strictly monotone

increasing. The desired e = e{m, k) is obtained as follows. Let 8 E (0,77/6) be a

fixed number and let e G (0,5]. Then limet0 cs{m, k, e) = 77 — 36 > 77/2 =

limel0R{m, e). Because cs{m, k, e) is monotone decreasing with e G (0,5] and

because R{m, e) is monotone increasing with e, there exists a unique e{m, k) such

that if e G (0, e{m, k)) thenR{m, e) < cs{m, k, e). If r '■— {R{m, e) + cs{m, k, e))/2,

then r < cs{m, k, e) implies that Br{p) and Br{q) are open disks and r > R{m, e)

implies that they cover M.

Remark 1. If we apply Gromov's technique developed in [11] to our case, then the

sum of Betti numbers is bounded as follows. For given constants m, k > 0 and

e G (0,77/3) consider the class of all complete manifolds of dimension m satisfying

RicM > 1, KM > -k2, v{M) > cm — t\{m, e). Let 2c := ct{m, k, e). Then each M in

the class has the property that every point x on M has a contractible metric ball of

radius at least 2c. The minimal covering argument (see [4,11 and 19]) implies that M

is covered by at most N{m, k, e) '■ = [cm/v{Bc)] + 1 contractible balls. Since every

contractible ball has content 1, cont(M) = 2m/>,(M; F) =£ {m + l)2N<m-'<'ï follows

from the topological lemma in [11].

Remark 2. In the proof of finiteness theorems due to Weinstein [19] and Cheeger

[4], it is essential to find a uniform positive lower bound for convexity radius of a

certain class of complete manifolds. The assumption for an upper bound of sectional

curvature of the class plays an important role to obtain such a uniform positive

lower bound for convexity radius. However in our case it is not easy to find such a

lower bound because there is no assumption for the upper bound of sectional

curvature. It is difficult to see when a contractible metric ball becomes a convex ball.

Also it is hard to control the intersections of contractible metric balls. And this point

makes it difficult to prove finiteness of homotopy types of the class.

Let us assume that two manifolds M and M' of the same dimension have the same

number of topological disks BX,...,BN E M and B\,...,B'N C M' such that they

satisfy: (1) Ufi, = M and UB¡M', (2) for every 1 < ix,...,ik < N the number of

components of the intersection B, D B, D- ■ -DB, is equal to that of the intersection

B[ n B¡ n - ■ ■ n B\. The question is if M and M' have the same homotopy type.

There is a counterexample of 3-dimensional manifolds M and M' with the covers by

the same number of disks which satisfy the above properties and the homotopy type

of M is different from that of M'. Such an example was first discovered by Tsukui

for the lens space L3 (3; 1) of type (3; 1) and a connected sum P3#P3 of real

projective spaces. Then a simpler example has been furnished by T. Kaneto for S3

and P3 as follows.

Example. Let 7", and T2 be 3-dimensional solid tori. It follows from the Hopf

fibration that S3 is obtained by attaching 3T, and dT2 with an attaching map <;>:

37, -» dT2 as S3 « Tx U, T2. Tx and T2 are decomposed into Bx, B2 and B3, B4 such

that B1 n B2 and B3 n B4 consist of two closed 2-disks, as indicated in the figure.
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For each i = 1,... ,4 let B, be a neighborhood of B, in S3 which is homeomorphic

to an open 3-disk. Choose an attaching map <i> in such a way that <j> maps dBx into

dT2 whose image is indicated by the shaded region and dB2 onto the unshaded region

of dT2. Then {Bx, B2, B3, B4} forms a covering of S3 by disks and satisfies: (1) for

every i, j = 1,... ,4 with i ¥*j, B, n B¿ consists of two 3-cells, (2) for every i, j, k =

1,... ,4 with i 1=] ¥=k¥= i, B, n Bj n Bk consists of four 3-cells, (3) fi,ni2n B3

n B4 consists of eight 3-cells.

Let B E R3 be the unit ball around the origin. P3 is obtained by identifying the

boundary 35 = S2 via the antipodal map. For a fixed number r E (0,1) and for a

fixed straight line L passing through the origin, let U be an r-tubular neighborhood

of L in R3. P3 is then decomposed as a union of two sohd tori T\ and T2 which are

obtained by identifying dB n U and dB — U by the antipodal map. Obviously

dU n B is homeomorphic to T2 after the identification. Every circle on 372' which is

obtained by a line segment indU C\ B parallel to L turns around 372 twice.

T\ and T{ are decomposed into B\, B2 and /?,, B'A respectively such that B\ n B2

and /?3 D /?4 consist of two closed 2-disks, as indicated in the figure. For each

/ = 1,... ,4 let B/ be a neighborhood of /?,' in P3 which is homeomorphic to an open

3-disk. Choose an attaching map \p: 37,' -» 372' which sends dB'x onto the shaded

region of 372' and dB'2 onto the unshaded region of 372'. Then {B'x, B2, B'3, B4} is a

covering of P3 by disks and satisfies: (1) for every i,j— 1,...,4 with /' i= j, B¡ n B-

consists of two 3-cells, (2) for every i, j, k = 1,... ,4 with i ¥=j ¥^ k ¥= i, B[ D Bj n

B'k consists of four 3-cells, (3) B'x n B2 n B^ n B4 consists of eight 3-cells.
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Thus S3 and P3 have the same type of covering by disks, however they do not

have the same homotopy type.
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