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Abstract

Viewport prediction for 360 video forecasts a viewer’s view-
port when he/she watches a 360 video with a head-mounted
display, which benefits many VR/AR applications such as
360 video streaming and mobile cloud VR.

Existing studies based on planar convolutional neural net-
work (CNN) suffer from the image distortion and split caused
by the sphere-to-plane projection. In this paper, we start by
proposing a spherical convolution based feature extraction
network to distill spatial-temporal 360 information. We pro-
vide a solution for training such a network without a dedi-
cated 360 image or video classification dataset.

We differ with previous methods, which base their predic-
tions on image pixel-level information, and propose a seman-
tic content and preference based viewport prediction scheme.
In this paper, we adopt a recurrent neural network (RNN)
network to extract a user’s personal preference of 360 video
content from minutes of embedded viewing histories. We uti-
lize this semantic preference as spatial attention to help net-
work find the “interested” regions on a future video. We fur-
ther design a tailored mixture density network (MDN) based
viewport prediction scheme, including viewport modeling,
tailored loss function, etc, to improve efficiency and accuracy.

Our extensive experiments demonstrate the rationality and
performance of our method, which outperforms state-of-the-
art methods, especially in long-term prediction.

Introduction

Viewport prediction is one of the most challenging tasks
in 360 video, which forecasts a viewer’s viewport when
he/she watches a 360 video with a head-mounted display
(HMD). Many virtual reality (VR) applications, e.g., 360
video streaming (Xiao et al. 2017) or mobile cloud VR (Hou
et al. 2018) benefit from such technique. Because a user’s
future viewport is related to the 360 video contents, re-
searchers have proposed to incorporate multi-modal infor-
mation to predict future viewport, e.g., dedicated saliency
detection network (Nguyen, Yan, and Nahrstedt 2018) for
360 video and temporary head movement.
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Previous studies often extract visual features from 360
videos with the conventional planar CNN, such as the
VGG16 network (Simonyan and Zisserman 2014) used by
(Nguyen, Yan, and Nahrstedt 2018) or C3D network (Tran
et al. 2015). However due to the image distortion and split
caused by the sphere-to-plane projection of 360 video, these
planar CNN networks are not capable of extracting visual
features effectively, thus sabotaging the accuracy of the later
viewport prediction process. This problem imposes an ur-
gent requirement for a dedicated 360 feature extraction net-
work. However, as the planar feature extraction networks
are trained on planar image classification datasets (e.g., Im-
ageNet (Deng et al. 2009)) or video classification datasets
(e.g., UCF101 (Soomro, Zamir, and Shah 2012)), there also
lacks a 360 image or video classification dataset for pre-
training 360 feature extraction network.

On the other hand, previous work (Xu et al. 2018; Fan
et al. 2017) bases their predictions on the saliency or opti-
cal flow information of 360 videos. However, a user’s future
viewport doesn’t always correlate with this visual informa-
tion. For example, Hu et al 2017 found that in a sightsee-
ing video1 where the visually salient foreground is the video
shooter, human viewers tend to watch the visually un-salient
background view. Furthermore, these kinds of information
describe more of the pixel information of 360 video frames,
rather than the semantic content information, but human
viewers tend to have their personal preferences of certain
objects or video contents. A content and preference aware
viewport prediction network is called for these problems.

In this paper, we start by proposing and training a dedi-
cated spherical CNN (S2CNN) based 360 feature extraction
network. We design a convolutional RNN based visual fea-
ture extraction network to distill spatial-temporal informa-
tion from sequential 360 video data. We provide a two-step
training process and a method for converting planar video
classification dataset to sphere domain, which allows us to
pre-train the rotational invariant feature extraction network.
We conduct a series of video classification experiments with
our 360 video dataset to study the effects of different kernel
shape, network depth, etc.

We then propose a preference-aware viewport prediction

1https://aliensunmin.github.io/project/360video/
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network. In Fig. 1, we show an overview of our network.
Our network takes input of multi-modal data, including past
viewing history, future video, and head motion, to make ac-
curate and explainable predictions. Specifically, we encode
a user’s viewing history, i.e., the video content that he/she
viewed, with our 360 feature extraction network, as well as
the future video content. We adopt an RNN network to pro-
cess up to minutes of viewing histories and use the output
at each timestamp, along with past head motion and future
video, to predict the viewport of several seconds later. In this
way, the RNN network can capture the semantic information
that is important for accurate prediction, in the long run, i.e.,
a user’s personal preference.

To improve the effectiveness and efficiency of the view-
port prediction network, we first apply the viewer’s personal
preference as the context information as spatial attention to
the future video. This attention mechanism calculates the
semantic relevance between a region on future video and
user’s preference, thus indicating which region is important
for viewport prediction and improving the prediction accu-
racy. We model the viewport prediction probability as von
Mises-Fisher2 (vMF) mixture model and propose a MDN
based viewport prediction network. Such design not only re-
duces the decision space but also improves the correlation
during the parameterization process.

The main contributions can be summarized as threefold:
✄ We propose a 360 feature extraction network based on

S2CNN to distill spatial-temporal information and a training
method that doesn’t require a dedicated 360 dataset.
✄ We extract user’s preference from up to minutes of re-

cent viewing histories and utilize the attention mechanism to
achieve preference-aware viewport prediction.
✄ We present a sophisticated MDN based viewport pre-

diction scheme, including viewport modeling, tailored loss
function, etc., to improve the efficiency and accuracy of the
prediction process.

We compare our method with several baseline methods
to validate its effectiveness. Compared with the state-of-the-
art method, our network significantly improve the long-term
prediction accuracy, e.g., 32.3% for 6 seconds later.

Related Work

Deep Viewport Prediction

Unlike gaze prediction (Xu et al. 2018; Koulieris et al.
2016), viewport prediction predicts a user’s head pose. De-
spite the center of the viewport may slightly differ from
a user’s actual gaze point, user’s head pose determines
which part of 360 video or 3D scene is showed or ren-
dered. Viewport prediction has demonstrated its importance
in many popular VR/AR applications. For example, in view-
port adaptive 360 video streaming (Xiao et al. 2017), re-
searchers adopt viewport prediction to prefetch video tiles
in advance, .i.e., part of the video, to improve user experi-
ence. In cloud-based VR/AR gaming (Hou et al. 2018), this
technique enables pre-rendering of 3D scenes in advance.

We first review the state-of-the-art viewport prediction
methods. Fan et al. 2017 proposed to use the visual saliency,

2https://en.wikipedia.org/wiki/Von Mises-Fisher distribution

Figure 1: Predict future viewport h̄t+k at time t

optical flow of the 360 video, and user’s head motion to pre-
dict the future viewport. They adopt an LSTM network to
predict the user’s viewport at each video frame recurrently.
Their method can achieve FoV prediction of at most 1 sec-
ond later. Xu et al. 2018 proposed to encode the optical
flow and saliency with a single encoder. The resulting em-
bedding is concatenated with auser’s historical head motion
to make displacement prediction of the user’s future view-
port. Nguyen et al. 2018 trained a dedicated 360 saliency
detection network based on human fixation on 360 videos,
and predict users’ future viewport using image saliency map
and head orientation map recurrently. They were able to pre-
dict the future viewport of 2.5 seconds later. Xu et al. 2017
adopted the DRL algorithms to learn a viewport prediction
network from 360 video frame and user’s view traces.

These work all processed 360 videos with conventional
planar CNN and models, which have been proven to work
poorly (Zhao et al. 2018) for 360 images. In our work, in-
stead of using pre-trained saliency or optical flow detection
network on planar images, we design and train a spherical
CNN based 360 feature extraction network with our own
dataset. Also these studies predicted the future viewport in
a recurrents style, in which the predicted viewport at times-
tamp t is used to predict the viewport at timestamp t+ 1.

Our Method To the best of our knowledge, this is the
first work that addresses the problem of video content-based
long-term viewport prediction (46% accuracy for 6s later,
larger than 40% for 10s later). (Nguyen, Yan, and Nahrst-
edt 2018) predicts viewport of at most 2.5s and mentions the
result of 6s later (less than 34% after 6s). Other work only
predicts short-term viewport, e.g., next frame prediction in
(Xu et al. 2018) and 1s later in (Xu et al. 2017).

Spherical Convolution and Attention

The demand for analyzing spherical data in omnidirectional
vision, molecular modeling, etc., has motivated many re-
searchers to investigate the convolution on the 3D sphere.
Cohen et al. 2018 and Esteves et al. 2018 propose spherical

14004



CNN to directly sampling feature from spherical images and
achieves lossless rotation-invariant 360 convolution.

Although spherical CNN shows its strong potential in pro-
cessing spherical data, it is still at an early age, and the of-
ficial implementations lack the efficiency for real-world de-
ployment. Therefore, researchers have also investigated how
to apply the well-developed planar CNN for sphere signal
processing. The most common technique is to alter the shape
of the convolution kernels of planar CNN. Su et al. 2017
propose a knowledge distillation based solution for process-
ing spherical data by learning different kernel for each row
of the spherical image and transferring a pre-trained con-
ventional CNN model to the spherical network. (Zhao et al.
2018; Jiang et al. 2019) are the other attempts to apply tradi-
tional CNN in the spherical data processing. These solutions
benefit from the efficiency of traditional CNN and overcome
the problem of image distortion and split. However, they still
can’t achieve rotation-invariant convolution since traditional
CNN only has the ability of translational-invariant convolu-
tion.

We further discuss some related work about the atten-
tion mechanism. Attention mechanism was first proposed in
(Bahdanau, Cho, and Bengio 2014) to help deep learning
network to selectively focus on part of the input sequence,
similar to human attention. This method has then been ap-
plied to almost every deep learning tasks, due to its ability to
significantly improve network performance. The spatial and
channel-wise attention are proposed in (Chen et al. 2017),
in which Chen et al. adopt the attention mechanism to effec-
tively integrate spatial, channel-wise, and multi-layer visual
attention in the convolution stage for image captioning. This
method enables the network to select semantically important
features on the demand of the sentence context.

Method

In this section, we first present some of the necessary back-
ground of spherical convolution S2CNN, and our study on
360 visual feature extraction. We then present the details of
our preference-aware viewport prediction network.

360 Feature Extraction Network

S2CNN Background As a recently proposed group con-
volution method, S2CNN intends to extract lossless rotation-
invariant features from 360 sphere signals. Despite lacking a
thorough investigation into the feasibility of S2CNN based
360 video feature extractor, its design is suitable and essen-
tial for sequential 360 video data processing. due to the ob-
ject split on the boundary area and image distortion. For ex-
ample, in Fig. 2a, we show a distorted and split surfer in the
south pole area of a 360 video frame. These problems are in-
evitable for 360 video projection formats, such as equirect-
angular and cube-map. Another problem of 360 video is the
object rotation caused by 360 video’s panorama view of the
real-world scene. In Fig. 2b, we show a video frame of a ski-
ing athlete whose body is rotated upside down. which hap-
pens very often with unaligned 360 camera orientation or
dynamic object movement,

Compared to planar CNN, S2CNN is defined on 3D

Lower Body Upper Body

(a) Distortion and split

Rotated Figure

(b) Rotation

Figure 2: Distortion and rotation problems in 360 videos

sphere, i.e., S2 sphere3, and samples features directly from
sphere. S2CNN first defines a S2 convolution, denoted as
S2Conv, to convert a S2 signal to the representation on
SO(3) rotation group4. Here we take an input spherical im-
ages X of width b, height b and 3 channels as example. The
input image is of shape 3× b× b. The width and height cor-
respond to the axis latitude α and longitude β on sphere, in
which 0 ≤ α < 2π, 0 ≤ β < π. The output of S2Conv with
c channels and bandwidth b is a tensor of shape c×b×b×b.
The last three dimensions correspond to the axis α, β and
γ, in which 0 ≤ γ < 2π defines a rotation around the axis
through the point (αi, βj). The convolutions on the SO(3)
rotation group can then be continued with SO3conv.

Spatial-Temporal Feature Extraction Our 360 feature
extraction network is composed of two stages, i) spatial fea-
ture extraction, ii) temporal feature aggregation. For spatial
feature extraction, our network is composed of 1 S2Conv
layer and 4 SO3Conv layers with near-identity kernels.
The channels are increased from 3, 48, 72, 240, 312 to 528
in the final layer. We reduce the resolution b from 240 to
64, 48, 36, 20 and 14 in the final layer.

During the temporal aggregation stage, we intend to pre-
serve the spatial information. The temporal aggregation net-
work is composed of a dimension-reduction layer and a con-
volutional RNN network (Xingjian et al. 2015). In convolu-
tional RNN network, the original hidden state update based
on fully connected layers is replaced with convolution net-
work. However in practice, we found that simply replacing
the planar convolution with SO3Conv layer is impossible
to train due to extremely large GPU memory consumption.

As we mentioned above, the dimension γ of SO3Conv
feature map represents the rotation around axis α, β, which
is relatively negligible for our task since we only predict the
location of viewport. By pooling an SO3Conv feature map
over the γ axis, we can obtain a 3D feature map on the sphere
which still the contains the location information latitude α
and longitude β. but the embedding dimensionality is sig-
nificantly reduced and can be processed with S2Conv.

Thus we first conduct a global pooling over the γ axis on
the spatial embeddings and adopt a convolutional RNN net-
work to aggregate the spatial-temporal information. Specif-
ically, we adopt a convolutional gated recurrent network
(GRU) with one hidden layer. After temporal aggregation,
we obtain a feature map with size 528× 14× 14.

3https://en.wikipedia.org/wiki/N-sphere
4https://en.wikipedia.org/wiki/3D rotation group
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Preference-Aware Multi-Model Fusion

Preference Encoder We adopt a GRU to extract user pref-
erence from L seconds of viewing histories. As shown in
Fig. 1, we first project user’s past viewport back to the cor-
responding video frame. For each second, the sample fre-
quency is also F timestamp per second. The viewing his-
tory of each second is thus a sequence of F masked images,
showing the contents that user viewed. We encode these im-
ages, i.e., F × 3× 240× 240 input tensor, with our feature
extraction network and obtain a history representation ht of
shape 528×14×14, which is embedded to the same space as
the video embedding and allows the network to easily corre-
late the viewing histories and future video.

For a history embedding, the channel contains the seman-
tic information of viewed contents, while the other two di-
mensions contain the spatial information. For preference ex-
traction, we care about the semantic information rather than
location information. Thus we integrate the spatial dimen-
sion, i.e., the last two dimensions, to convert the history rep-
resentation to a vector of shape 528. We then adopt a RNN
network, with 1 hidden layer, to process the L × 528 view-
ing histories. The hidden layer of the RNN network at times-
tamp t is used to represent the user preference pt, which is a
784× 1 vector.

Motion Encoder We represent user’s head orientation
with the Euler angles5, which is 1 × 3 vector representing
the rotations around X,Y, Z axis. For the temporary head
movement, we sample 30 timestamps of head orientations
from the past 3 seconds to form a input feature of shape
3 × 30 and embed it with a dense layer to obtain a motion
embedding of 128× 1.

Preference-Aware Multi-Modal Fusion At each times-
tamp t, our network first updates user’s preference pt with
the new viewing history embedding ht, in which 1 ≤ t ≤ L.
The video embeddings of timestamp t is denoted as vt. And
the motion embeddings at t is denoted as mt. Our network
predicts the future viewport of K different time windows wk

later, i.e., the future viewport at timestamp t+ wk, 1 ≤ k ≤
K. For each prediction, the input to the prediction network
is the prediction time window wk, i.e., a scalar, the prefer-
ence embedding pt, the motion embedding mt, and the fu-
ture video content vt+wk

.
We first apply a preference pt guided spatial attention to

video embedding vt+wk
and help the network locate the in-

terested regions. The video embedding vt+wk
is of shape

528× 14× 14 and the preference embedding pt is of shape
784 × 1. For each region r on the video embedding vt+wk

,
we compute a importance score q. The video embedding is
reshaped as V = {vr|r ∈ 1 · · · 196}, in which vr ∈ R528.

q̄ = tanh
(

(WvV + bv)⊕Wppt
)

(1)

q = softmax(Wpv q̄ + bpv) (2)

in which 1 ≤ r ≤ 14 × 14,Wv ∈ R128×528,Wp ∈
R128×784,Wpv ∈ R1×128. bv ∈ R128×1 and bpv ∈ R1 are
the model biases. ⊕ denotes adding each value of a vector to

5https://en.wikipedia.org/wiki/Euler angles

the corresponding column of a matrix. vrt+wk
is the feature

vector at region r with shape of 528×1. The dimension 128
is the mapping space of pt and vwk

.
The importance score is calculated using dense layers,

which incurs very little overhead. The above equation can
be regarded as calculating the relevance of each visual re-
gion to user preference. Thus user preference is directly used
to guide the attention learning of the video modality. The
feature vector vrt+wk

of each region is multiplied with the
attention score qr to obtain an attended embedding.

For dimensionality reduction of the attended video em-
bedding, We adopt a 1 × 1 convolution to keep the spa-
tial information. We use a 1 × 1 convolution with 4 output
channels and gain a new video embedding v̄t+wk

with shape
4 × 14 × 14. The representation is flattened to a 1D vector
of shape 784× 1.

Viewport Prediction Network

MDN based Prediction Network The ground truth view-
port at timestamp t is denoted as a 40 × 20 binary matrix
λt, in which λt

i,j = 1 represents the point (i, j) is within
user’s viewport. However, in our practice, we find that net-
works directly predicting the probability of λt

i,j converge
very slowly, because the network has a relatively large de-
cision space, i.e., 800 for a 20 × 40 label. Rather than di-
rectly predicting the probability of each point (x, y), we
adopt a MDN(Graves 2013; Bazzani, Larochelle, and Torre-
sani 2016) to predict the parameters of a probability density
function that describes the overall distribution.

In this paper, we describe the future viewport with vMF
mixture model. The vMF mixture can be considered as
Gaussian mixture model6 on 3D sphere. A single vMF
distribution is parameterized by a mean direction µ =
(xµ, yµ, zµ) and a concentration scalar τ > 0. For view-
port prediction, µ represents the position of a viewport on
unit sphere and τ represents its size. We adopt this spherical
distribution such that the viewport can be modeled as its ac-
tual state on the sphere, rather than its projection on planar
image.

For point (x, y), its direction vector is denoted as ni,j .
The probability of ni,j is calculated as follows:

f(ni,j |µ, τ) =
τeτµ

Tni,j

2π(eτ − e−τ )
(3)

And the vMF mixture model fits a data distribution with
C single vMF distributions. The probability density function
of vMF mixture model is defined as:

F(ni,j |Θ) =
C
∑

c=1

acf(ni,j |µc, τc) (4)

where
∑C

c=1
ac = 1 and Θ = {ac, µc, τc|1 ≤ c ≤ C}.

The multi-modal representation (wk, pt,mt, vwk
) is used

to predict the parameters Θ of vMF mixture model, which
are then used to calculate the probability F(ni,j |Θ). The

6https://en.wikipedia.org/wiki/Mixture model
#Gaussian mixture model
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(a) Original frame (b) PanoUCF101 (c) Activation

Figure 3: v CuttingInKitchen g02 c02

(a) Original frame (b) PanoUCF101 (c) Activation

Figure 4: v CuttingInKitchen g05 c02

predicted λ̄t
i,j is then calculated by normalize F(ni,j |Θ) to

between [0, 1]. Thus our MDN network only has to predict
C × 5 parameters, which significantly reduces the decision
space and makes it converge much faster.

Spherical MSE We use the mean squared error (MSE)
to measure the accuracy based on ground truth λ. Sim-
ilar to previous work(Nguyen, Yan, and Nahrstedt 2018;
Fan et al. 2017), we define a threshold t, such that if
F(ni,j |Θ) > t, the point (i, j) is predicted to be within
user’s viewport. As previous work, we use t = 0.5. How-
ever, the calculation is based on planar labels, of which pix-
els on the polar areas have redundant densities, thus con-
tributing more to the final loss. To counter this problem, we
use the quadrature weight (Kostelec and Rockmore 2008) to
measure the inverse density of point (i,j):

ωj =
4

b
sin(

π(2j − 1)

2b
)

b//2−1∑

s=0

1

2s+ 1
sin(

(2j − 1)(2s+ 1)π

2b
)

(5)

in which 1 ≤ i, j ≤ b. We define a spherical MSE loss as
follows:

Loss = E
(

ωj(λ̄i,j − λi,j)
2
)

(6)

Experiments

Our code and more results can be found at Github7.

360 Feature Extraction Network

PanoUCF101 Dataset As we mentioned above, training
S2CNN is extremely memory consuming. We therefore train
the spatial feature extraction and the temporal aggregation
network separately. As there lacks a dedicated 360 image
or video classification dataset, we provide a method for pre-
training the feautre extraction network based on the off-the-
shelf planar video classification dataset UCF101.

7https://github.com/wuchlei/AAAI20-Viewport-Prediction

Table 1: Top-1 Classification Accuracy

Network Accuracy

P
an

o
U

C
F

1
0
1 S2CNN 65.7

S2CNN, equatorial kernel 57.9
S2CNN, 6 layer 76.5
S2CNN+ConvGRU, F=4 70.3
S2CNN+ConvGRU, F=8 72.7
S2CNN+ConvGRU, F=16 73.2

(a) v CuttingInKitchen g02 c02 (b) v CuttingInKitchen g05 c02

Figure 5: S2CNN with 6 layers and b = 2

We convert the planar UCF101 dataset(Soomro, Zamir,
and Shah 2012), which contains video clips of 101 human
actions classes, to the sphere domain. As shown in Fig. 3
and Fig. 4, we project each video clip to a 360 viewport of
random orientation, including its position and rotation. The
width and height of the viewport is 160◦ and 120◦, same as
the original width-to-height ratio. We then apply a sphere-to-
plane projection to store these videos in regular format, with
width and height both set to 240, i.e. the input resolution of
spatial feature extraction network. We refer to this dataset as
the PanoUCF101 dataset. We use 70% of videos as training
set, 10% as validation set and 20% for testing. As UCF101 is
a relatively small dataset, we use a 0.5 dropout rate through
the experiments to avoid over-fitting.

Training of Spatial Feature Extraction Network We
extract one frame per second from the videos of our
PanoUCF101 and embed it with our 360 feature extraction
network. The representation is integrated to contain only
feature information and used to predict its class with a sim-
ple two-layer predictor. We use a cross-entropy loss with
softmax layer to train this network. The network is trained
with a Adam optimizer with learning rate 3e − 4 for 100
epochs. We adopt an early stop if both the loss and predic-
tion accuracy on the validation set is not improved for more
than 1 epoch.

In our model design, we use a relatively unusual channel
settings. This is due to fact that training S2CNN network
is extremely memory consuming. In our experiments, we
are only able to put a batch of at most 4 to 8 images in a
GTX 1080Ti GPU with 11GB memory. Therefore we adopt
a group normalization method(Wu and He 2018) to avoid
gradient vanishing, rather than batch normalization. We as-
sign 24 channels to each group and the mean and variance
are computed within each group for normalization. Each
epoch takes about 2 hours to train on a computer with 2 GTX
1080Ti GPU and the total training time is around 200 hours.
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(a) Accuracy of AttPref (b) Baseline comparison (c) Our method (d) History method

Figure 6: Experiment results

Figure 7: Visualization of viewport prediction

Training of Temporal Aggregation Network We then
train our temporal aggregation network with different frame
rate, i.e., F = {4, 8, 16}. The hidden state of the final video
frame is integrated and used to predict the video class, also
with a simple two-layer predictor. The embedding of each
video frame is pre-processed with the spatial feature extrac-
tion network in advance. Thus we only have to to train the
temporal aggregation RNN network. We further improve the
training efficiency by initialize the predictor’s weight with
the model from previous spatial network training and freeze
its weights, until the whole model is performing acceptably.

Evaluation Results We investigate the prediction accu-
racy of our spatial feature extraction with different se-
tups, including kernel shape8 and network depth (one more
SO3Conv layer with 1200 output channel and b = 4). In Ta-
ble 1, we present the top-1 accuracies, in which our model
with near-identity kernel achieves 65.7% accuracy and out-
performs the the model with equatorial kernel. The model
with 6 layers performs best with an accuracy of 76.5%.

In Fig. 3 and Fig.4, we also present some visualization
results. In Fig. 3c and Fig. 4c, we adopt the Grad-CAM
method (Selvaraju et al. 2017) to highlight the activation re-
gion of input images, i.e., the red regions. We can observe
that our network can correctly locate the semantically im-
portant regions, which are barely recognizable even for a
human viewer.

However the 4 × 4 feature embedding doesn’t preserve
enough spatial information, as shown in Fig. 5. And despite
that S2CNN with 6 layers improves the prediction accuracy,
it also increases the model size by 2× larger. Since our goal

8https://github.com/jonas-koehler/s2cnn

is not to design a dedicated video classification network, but
a general feature extraction network, we choose the network
setup with 5 layers.

We then investigate the impact of frame sampe rate on
temporal aggregation network. We can found in Table 1 that
the more frequent temporal sampling improves performance
of the RNN network. However the marginal improvement is
not very significant, thus for the sake of efficiency, we use a
temporal sample frequency of F = 4.

Note that there’s no comparison between our results and
the results of state-of-the-art planar methods on the original
dataset. Because by projecting the standard videos to sphere,
they only cover less than half of the images, which means the
resolution of our input videos are much smaller. Also the
planar feature extraction networks used by these methods,
such as VGG16, is much deeper than our network.

360 Viewport Prediction Network

Baseline Methods We compare our method with 3 base-
line methods. Our method is denoted as AttPref.

(I) We use only the viewing history ht of current time t
and wk,mt, vwk

as input features, denoted as History. The
dimensionality of viewing history ht is reduced with a 1× 1
convolution as the attended video embedding.

(II) We concatenate the preference pt with wk,mt, vwk

as the input features, denoted as Pref. These two baseline
networks are trained with the same setup as our method for
abalation study.

(III) We also compare with the state-of-the-art
method (Nguyen, Yan, and Nahrstedt 2018) which is
based on 360 saliency information, denoted as 360Sal.

Dataset and Training Setup We train our preference-
aware viewport prediction network with the public
dataset(Wu et al. 2017), which contains the records of 48
users viewing 18 videos. We use the 9 videos from its first
experiment, as previous work (Nguyen, Yan, and Nahrst-
edt 2018), in which users watch a 360 video freely without
tasks. We use 35 users’ records as the training set, 5 for vali-
dation and 8 for test. We use the model performs best on the
validation set to carry out the following experiments on the
test set. Throughout the experiments, we use a 0.5 dropout
rate to avoid over-fitting.

Videos and viewing histories are processed with our 360
feature extraction network and stored in local disk. We use
a viewing history length L = 120, i.e., two minutes of ht.
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The prediction time window wk is set to {1, 2, 4, 8}, i.e., we
predict the future viewport of 1, 2, 4, 8 seconds later. For
each record of a user watching a video, we sample the 120s
viewing history every 45 seconds. Thus for each sequence
of viewing history, we make 120 predictions. The viewport
prediction network is trained with our spherical MSE loss
and Adam optimizer for 200 epochs with a learning rate of
1e − 4 on a dual GTX 1080Ti GPU computer. We use a
training batch size of 6, validation and test batch size of 10.

Visualization of Viewport Prediction In Fig. 7, we
present some interesting success and failure cases of view-
port prediction. In the first row of success prediction, we
observe that even with rapid head movements at wk = 1 and
wk = 2, our network is still able to perform properly. While
it fails to predict the viewport at wk = 4, it predicts the cor-
rect viewport at wk = 8. In the second row, we observe that
despite rapid head movement causes our network to not pre-
dict correctly at wk = 1 and wk = 2, it’s able to predict
the correct position at wk = 4 and wk = 8. These findings
suggest that the prediction of our network is not driven by
the head motion, but by the video content and its correlation
to user preference.

The bottom two rows show two cases of failure predic-
tions with some wrong predictions Although we observe that
that our network tries to model the probability distribution
of future viewport with more than one vMF distributions. A
further study could be conducted to evaluate the effects of
the number of mixtures.

Impact of Prediction Time Window We first evaluate
the effects of different time window wk. We use three
metrics to evaluate the prediction performance, i.e., ac-
curacy, precision and recall. Specifically, accuracy is de-
fined as previous work(Nguyen, Yan, and Nahrstedt 2018;
Fan et al. 2017) to be the intersection over union (IOU) in-
dex of the set of point predicted to be within future viewport,
i.e., λ̄i,j > 0.5, and the point within viewport on label, i.e.,
λi,j = 1.

In Fig. 6a, we show the prediction accuracy of our method
with time window wk ∈ {1, 2, 4, 6, 8, 10}. We observe that
all three metrics decrease as the time window increases. For
the viewport prediction of 10s later, our network is still able
to achieve a more than 40% accuracy. A interesting finding
is that compared to accuracy and recall, our network has a
much higher precision This can be interpreted as the network
tends to make cautious guesses of future viewports, as can be
observed in Fig. 7. Also note that we only train our network
to predict time window wk ∈ {1, 2, 4, 8}, while our network
still performs ideally when predicting the viewport of 6s or
10s later. This confirms that our model can adapt to new data
including i.e., time window and the corresponding video.

In Fig. 6b, we show the accuracy of our method compared
with the three baselines. We observe that for short-term pre-
diction, the four methods performs similarly. This is mostly
because that head motion and recently viewed content play
more important roles in short-term prediction and the four
methods all take input of these features. However, in terms
of long-term viewport prediction, our method outperforms
360Sal method by a large margin, e.g., 32.3% improvement

for wk = 6. This confirms our motivation that pixel infor-
mation is important but not enough for viewport prediction.
Semantic content information and long-term preference can
greatly improve the prediction accuracy.

The prediction accuracies of History and Pref demon-
strate that the removal of network modules, such as atten-
tion and preference, degrades the performance of long-term
prediction. Compared with History, the accuracy is reduced
by 16.2% for wk = 8. Comparing History and 360Sal, we
also observe that even without preference-aware attention,
the dedicated 360 video feature extraction network still im-
proves the prediction accuracy by a noticeable margin.

Impact of User Preference To further validate the impor-
tance of user preference, we plot the time-varing change of
prediction accuracy for different future time window t in
Fig. 6c and Fig. 6d. At each timestamp t, the hidden state
or the preference embedding pt is obtained by recurrently
processing all past viewing histories [h1, h2, · · · , ht]. Thus
a larger t indicates that the input preference embedding pt
contains more past viewing histories. We evaluate if more
preference information can improve the perdition accuracy.

In Fig. 6c, we first show the time-varying prediction accu-
racy with our method, in which the transparent line are the
real accuracies and the solid line are the values smoothed
with moving average. We observe that bottom subplot of
long-term prediction wk = 4 shows a remarkable tendency
of accuracy improvement, which demonstrate the effective-
ness of extracting user preference.

In Fig. 6d, we show the same figure of History. We ob-
serve that the top subfigure of Fig. 6c and Fig. 6d are al-
most identical, indicating that long-term preference doesn’t
improve the short-term prediction accuracy. As the History
only takes the the viewing history of past 1 second as input,
in the bottom subfigure, its long-term prediction accuracy
shows no correlation with the timestamp t, confirming that
preference is the reason that improves accuracy in Fig. 6c.

Conclusion

In this paper, we address the major and unique challenges
in 360 viewport prediction, such as 360 feature extraction,
multi-modal learning, etc. Through meticulous scheme de-
sign, we propose a preference-aware viewport prediction
network, tailored for 360 immersive scenarios. We start by
improving the 360 feature extraction with the S2CNN and
design a attention based viewport prediction framework,
which embeds user’s long-term preference of 360 content
and uses it as spatial attention to achieve effective multi-
modal data learning. We carefully design a MDN network
based viewport predictor and a matching spherical loss to
accelerate the training process. We prove the performance
of our network through extensive experiments.
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